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ABSTRACT
Industrial systems, e.g., wind turbines, generate big amounts of
data from reliable sensors with high velocity. As it is unfeasible to
store and query such big amounts of data, only simple aggregates
are currently stored. However, aggregates remove fluctuations and
outliers that can reveal underlying problems and limit the knowl-
edge to be gained from historical data. As a remedy, we present the
distributed Time Series Management System (TSMS) ModelarDB
that uses models to store sensor data. We thus propose an online,
adaptive multi-model compression algorithm that maintains data
values within a user-defined error bound (possibly zero). We also
propose (i) a database schema to store time series as models, (ii)
methods to push-down predicates to a key-value store utilizing this
schema, (iii) optimized methods to execute aggregate queries on
models, (iv) a method to optimize execution of projections through
static code-generation, and (v) dynamic extensibility that allows
new models to be used without recompiling the TSMS. Further,
we present a general modular distributed TSMS architecture and its
implementation, ModelarDB, as a portable library, using Apache
Spark for query processing and Apache Cassandra for storage. An
experimental evaluation shows that, unlike current systems, Mode-
larDB hits a sweet spot and offers fast ingestion, good compression,
and fast, scalable online aggregate query processing at the same
time. This is achieved by dynamically adapting to data sets using
multiple models. The system degrades gracefully as more outliers
occur and the actual errors are much lower than the bounds.
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1. INTRODUCTION
For critical infrastructure, e.g., renewable energy sources, large

numbers of high quality sensors with wired electricity and connec-
tivity provide data to monitoring systems. The sensors are sampled
at regular intervals and while invalid, missing, or out-of-order data
points can occur, they are rare and all but missing data points can be
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Table 1: Comparison of common storage solutions
Storage Method Size (GiB)
PostgreSQL 10.1 782.87
RDBMS-X - Row 367.89
RDBMS-X - Column 166.83
InfluxDB 1.4.2 - Tags 4.33
InfluxDB 1.4.2 - Measurements 4.33

Storage Method Size (GiB)
CSV Files 582.68
Apache Parquet Files 106.94
Apache ORC Files 13.50
Apache Cassandra 3.9 111.89
ModelarDB 2.41 - 2.84

corrected by established cleaning procedures. Although practition-
ers in the field require high-frequent historical data for analysis, it is
currently impossible to store the huge amounts of data points. As a
workaround, simple aggregates are stored at the cost of removing
outliers and fluctuations in the time series.

In this paper, we focus on how to store and query massive amounts
of high quality sensor data ingested in real-time from many sensors.
To remedy the problem of aggregates removing fluctuations and
outliers, we propose that high quality sensor data is compressed
using model-based compression. We use the term model for any
representation of a time series from which the original time series
can be recreated within a known error bound (possibly zero). For
example, the linear function y = ax+ b can represent an increasing,
decreasing, or constant time series and reduces storage requirements
from one value per data point to only two values: a and b. We
support both lossy and lossless compression. Our lossy compression
preserves the data’s structure and outliers and the user-defined error
bound allows a trade-off between accuracy and required storage.
This contrasts traditional sensor data management where models are
used to infer data points with less noise [29].

To establish the state-of-the-art used in industry for storing time
series, we evaluate the storage requirements of commonly used
systems and big data file formats. We select the systems based
on DB-Engines Ranking [11], discussions with companies in the
energy sector, and our survey [28]. Two Relational Database Man-
agement Systems (RDBMSs) and a TSMS are included due to their
widespread industrial use, although being optimized for smaller data
sets than the distributed solutions. The big data file formats, on the
other hand, handle big data sets well, but do not support streaming
ingestion for online analytics. We use sensor data with a 100ms
sampling interval from an energy production company. The schema
and data set (Energy Production High Frequency), are described in
Section 7. The results, in Table 1 including our system ModelarDB,
show the benefit of using a TSMS or columnar storage for time
series. However, the storage reduction achieved by ModelarDB is
much more significant, even with a 0% error bound, and clearly
demonstrates the advantage of model-based storage for time series.

To efficiently manage high quality sensor data, we find the fol-
lowing properties paramount for a TSMS: (i) Distribution: Due to
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huge amounts of sensor data, a distributed architecture is needed.
(ii) Stream Processing: For monitoring, ingested data points must
be queryable after a small user-defined time lag. (iii) Compression:
Fine-grained historical values can reveal changes over time, e.g.,
performance degradation. However, raw data is infeasible to store
without compression, which also helps query performance due to
reduced disk I/O. (iv) Efficient Retrieval: To reduce processing
time for querying a subset of the historical data, indexing, parti-
tioning and/or time-ordered storage is needed. (v) Approximate
Query Processing (AQP): Approximation of query results within a
user-defined error bound can reduce query response time and enable
lossy compression. (vi) Extensibility: Domain experts should be
able to add domain-specific models without changing the TSMS,
and the system should automatically use the best model.

While methods for compressing segments of a time series using
one of multiple models exist [22, 37, 40], we found no TSMS using
multi-model compression for our survey [28]. Also, the existing
methods do not provide all the properties listed above. They either
provide no latency guarantees [22, 40], require a trade-off between
latency and compression [37], or limit the supported model types [22,
40]. ModelarDB, in contrast, provides all these features, and we
make the following contributions to model-based storage and query
processing for big data systems:

• A general-purpose architecture for a modular model-based TSMS
providing the listed paramount properties.
• An efficient and adaptive algorithm for online multi-model com-

pression of time series within a user-defined error bound. The
algorithm is model-agnostic, extensible, combines lossy and loss-
less compression, allows missing data points, and offers both low
latency and high compression ratio at the same time.
• Methods and optimizations for a model-based TSMS:

– A database schema to store multiple time series as models.
– Methods to push-down predicates to a key-value store used as

a model-based physical storage layer.
– Methods to execute optimized aggregate functions directly on

models without requiring a dynamic optimizer.
– Use of static code-generation to optimize projections.
– Dynamic extensibility making it possible to add additional

models without changing or recompiling the TSMS.
• Realization of our architecture as the distributed TSMS Mode-

larDB, consisting of the portable ModelarDB Core interfaced
with unmodified versions of Apache Spark for query processing
and Apache Cassandra for storage.
• An evaluation of ModelarDB using time series from the energy

domain. The evaluation shows how the individual features and
contributions effectively work together to dynamically adapt to
the data sets using multiple models, yielding a unique combina-
tion of good compression, fast ingestion, and fast, scalable online
aggregate query processing. The actual errors are shown to be
much lower than the allowed bounds and ModelarDB degrades
gracefully when more outliers are added.

The paper is organized as follows. Definitions are given in Section 2.
Section 3 describes our architecture. Section 4 details ingestion and
our model-based compression algorithm. Section 5 describes query
processing and Section 6 ModelarDB’s distributed storage. Sec-
tion 7 presents an evaluation, Section 8 related work, and Section 9
conclusion and future work.

2. PRELIMINARIES
We now provide definitions which will be used throughout the

paper. We also exemplify each using a running example.

DEFINITION 1 (TIME SERIES). A time series TS is a sequence
of data points, in the form of time stamp and value pairs, or-
dered by time in increasing order TS = 〈(t1, v1), (t2, v2), . . .〉.
For each pair (ti, vi), 1 ≤ i, the time stamp ti represents the
time when the value vi ∈ R was recorded. A time series TS =
〈(t1, v1), . . . , (tn, vn)〉 consisting of a fixed number of n data points
is a bounded time series.

As a running example we use the time series TS = 〈(100, 28.3),
(200, 30.7), (300, 28.3), (400, 28.3), (500, 15.2), . . .〉, each pair
represents a time stamp in milliseconds since the recording of mea-
surements was initiated and a recorded value. A bounded time series
can be constructed, e.g, from the subset of data points of TS where
ti ≤ 300, 1 ≤ i.

DEFINITION 2 (REGULAR TIME SERIES). A time series TS
= 〈(t1, v1), (t2, v2), . . .〉 is considered regular if the time elapsed
between each data point is always the same, i.e., ti+1 − ti =
ti+2 − ti+1 for 1 ≤ i and irregular otherwise.

Our example time series TS is a regular time series as 100 mil-
liseconds elapse between each of its adjacent data points.

DEFINITION 3 (SAMPLING INTERVAL). The sampling inter-
val of a regular time series TS = 〈(t1, v1), (t2, v2), . . .〉 is the
time elapsed between each pair of data points in the time series
SI = ti+1 − ti for 1 ≤ i.

As 100 milliseconds elapse between each pair of data points in
TS, it has a sampling interval of 100 milliseconds.

DEFINITION 4 (MODEL). A model is a representation of a
time series TS = 〈(t1, v1), (t2, v2), . . .〉 using a pair of functions
M = (mest,merr). For each ti, 1 ≤ i, the function mest is a
real-valued mapping from ti to an estimate of the value for the
corresponding data point TS. merr is a mapping from a time series
TS and the correspondingmest to a positive real value representing
the error of the values estimated by mest.

For the bounded subset of TS a model M can be created using,
e.g., a linear function with mest = −0.0024ti + 29.5, 1 ≤ i ≤ 5,
and an error function using the uniform error norm so merr =
max(|vi−mest(ti)|), 1 ≤ i ≤ 5. This model-based representation
of TS has an error of |15.2 − (−0.0024 × 500 + 29.5)| = 13.1
caused by the data point at t5. The difference between the estimated
and recorded values would be much smaller without this data point.

DEFINITION 5 (GAP). A gap between a regular bounded time
series TS1 = 〈(t1, v1), . . . , (ts, vs)〉 and a regular time series
TS2 = 〈(te, ve), (te+1, ve+1), . . .〉 with the same sampling inter-
val SI and recorded from the same source, is a pair of time stamps
G = (ts, te) with te = ts+m×SI , m ∈ N≥2, and where no data
points exist between ts and te.

The concept of a gap is illustrated in Figure 1. For simplicity we
will refer to multiple time series from the same source separated by
gaps as a single time series containing gaps.

t1 ts te . . .

G = (ts, te)

TS1 TS2

Figure 1: Illustration of a gap G between ts and te
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TS does not contain any gaps. However, the time series TSg =
〈(100, 28.3), (200, 30.7), (300, 28.3), (400, 28.3), (500, 15.2),
(800, 30.2), . . .〉 does. While the only difference between TS and
TSg is the data point (800, 30.2) a gap is now present as no data
points exist with the time stamps 600 and 700. Due to the gap, TSg

is an irregular time series, while TS is a regular time series.

DEFINITION 6 (REGULAR TIME SERIES WITH GAPS). A
regular time series with gaps is a regular time series, TS=〈(t1, v1),
(t2, v2), . . .〉 where vi ∈ R ∪ {⊥} for 1 ≤ i. For a regular time
series with gaps, a gap G = (ts, te) is a sub-sequence where
vi = ⊥ for ts < ti < te.

The irregular time series TSg = 〈(100, 28.3), (200, 30.7), (300,
28.3), (400, 28.3), (500, 15.2), (800, 30.2), . . .〉with an undefined
SI due to the presence of a gap, can be represented as the regular
time series with gaps TSgr=〈(100, 28.3),(200, 30.7),(300, 28.3),
(400, 28.3), (500, 15.2), (600,⊥), (700,⊥), (800, 30.2), . . .〉with
SI = 100 milliseconds.

DEFINITION 7 (SEGMENT). For a bounded regular time se-
ries with gaps TS = 〈(ts, vs), . . . , (te, ve)〉 with sampling interval
SI , a segment is a 6-tuple S = (ts, te, SI,Gts,M, ε) where Gts

is a set of timestamps for which v = ⊥ and where the values of all
other timestamps for TS are defined by the model M within the
error bound ε.

In the example for Definition 4, the model M represents the data
point at t5 with an error that is much larger than for the other data
points of TS. For this example we assume the user-defined error
bound to be 2.5 which is smaller than the error of M at 13.1. To
uphold the error bound a segment S = (100, 400, 100, ∅, (mest =
−0.0024ti +29.5,merr = max(|vi−mest(ti)|)), 2.5), 1 ≤ i ≤
4, can be created. As illustrated in Figure 2, segment S contains
the first four data points of TS represented by the model M within
the user-defined error bound of 2.5 as |30.7− (−0.0024× 200 +
29.5)| = 1.68 ≤ 2.5. As additional data points are added to the
time series, new segments can be created to represent each sub-
sequence of data points within the user-defined error bound.

In this paper we focus on the use case of multiple regular times
with gaps being ingested and analyzed in a central TSMS.

3. ARCHITECTURE
The architecture of ModelarDB is modular to enable re-use of

existing software deployed in a cluster, and is split into three sets
of components with well-defined purposes: data ingestion, query
processing and segment storage. ModelarDB is designed around
ModelarDB Core, a portable library with system-agnostic function-
ality for model-based time series management, caching of metadata
and a set of predefined models. For distributed query processing and
storage ModelarDB Core integrates with existing systems through
a set of interfaces, making the portable core simple to use with
existing infrastructure. The architecture is shown in Figure 3. Data
flow between components is shown as arrows, while the sets of
components are separated by dashed lines. Our implementation of

M

S = (ts, te, SI, Gts, M, ε)

ts te
MM

error > ε

Figure 2: Model-based representation of data points

the architecture integrates ModelarDB Core with the stock versions
of Apache Spark [8, 17, 45, 46, 47] for distributed query processing,
while Apache Cassandra [2,32] or a JDBC compatible RDBMS can
be used for storage. As distributed storage is a paramount property
of ModelarDB we focus on Cassandra in the rest of the paper. Each
component in Figure 3 is annotated with the system or library pro-
viding the functionality of that component in ModelarDB. Spark
and Cassandra are used due to both being mature components of the
Hadoop ecosystem and well integrated through the DataStax Spark
Cassandra Connector. To allow unmodified instances of Spark and
Cassandra already deployed in a cluster to be used with ModelarDB,
it is implemented as a separate JAR file that embeds ModelarDB
Core and only utilizes the public interfaces provided by Spark and
Cassandra. As a result, ModelarDB can be deployed by submitting
the JAR file as job to an unmodified version of Spark. In addition,
a single-node ingestor has been implemented to support ingestion
of data points without Spark. Support for other query processing
systems, e.g. Apache Flink [3, 18], can be added to ModelarDB by
implementing a new engine class. Support for other storage systems,
e.g. Apache HBase [4] or MongoDB [5], simply requires that a
storage interface provided by ModelarDB Core be implemented.

When ingesting, ModelarDB partitions the time series and assigns
each subset to a core in the cluster. Thus, data points are ingested
from the subsets in parallel and time series within each subset are
ingested concurrently for unbounded time series. The ingested
data points are converted to a model-based representation using an
appropriate model automatically selected for each dynamically sized
segment of the time series. In addition to the predefined models,
user-defined models can be dynamically added without changes to
ModelarDB. Segments constructed by the segment generators are
kept in memory as part of a distributed in-memory cache. As new
segments are emitted to the stream, batches of old segments are
flushed to the segment store. Both segments in the cache and in
the store can be queried using SQL. By keeping the most recent set
of segments in memory, efficient queries can be performed on the
most recent data. Queries on historical data have increased query
processing time as the segments must be retrieved from Cassandra
and cached. Subsequent queries will be performed on the cache.

By reusing existing systems, functionality for fault tolerance
can be reused as demonstrated in [44]. As a result, ModelarDB
can provide mature and well-tested fault-tolerance guarantees and
allows users of the system to select a system for storage and a
query processing engine with trade-offs appropriate for a given
use case. However, as the level of fault tolerance of ModelarDB
depends on the query engine and data store, we only discuss it
at the architectural level for our implementation. For ModelarDB
data loss can occur at three stages: data points being ingested,
segments in the distributed memory cache, and segments written
to disk. Fault tolerance can be guaranteed for data points being
ingested by using a reliable data source such as Apache Kafka, or by
ingesting from each time series at multiple nodes. Fault tolerance
for segments in memory and on disk can be ensured through use of
distributed replication. In our implementation, loss of segments can
be prevented by compiling ModelarDB with replication enabled for
Spark and Cassandra. In the rest of this paper we do not consider
replication, since ModelarDB reuses the replication in Spark and
Cassandra without any modification. As each data point is ingested
by one node, data points will be lost if a node fails. However, as our
main use case is analyzing tendencies in time series data, some data
loss can be acceptable to significantly increase ingestion rate [39].

In addition to fault tolerance, by utilizing existing components
the implementation of ModelarDB can be kept small, reducing the
burden of ensuring correctness and adding new features. ModelarDB
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Figure 3: Architecture of a ModelarDB node, each contains query processing and storage to improve locality

is implemented in 1675 lines of Java code for ModelarDB Core and
1429 lines of Scala code for the command-line and the interfaces to
existing systems. ModelarDB Core is implemented in Java to make
it simple to interface with the other JVM languages and to keep
the translation from source to bytecode as simple as possible when
optimizing performance. Scala was used for the other components
due to increased productivity from pattern matching, type inference,
and immutable data structures. The source code is available at
https://github.com/skejserjensen/ModelarDB.

4. DATA INGESTION
To use the resources evenly, ingestion is performed in parallel

based on the number of threads available for that task and the sam-
pling rate of the time series. The set of time series is partitioned into
disjoint subsets SS and assigned to the available threads so the data
points per second of each subset are as close to equal as possible.
Providing each thread with the same amount of data points to pro-
cess, ensures resources are utilized uniformly across the cluster to
prevent bottlenecks. The partitioning method used by ModelarDB is
based on [31], and minimizesmax(data points per minute(S1))
−min(data points per minute(S2)) for S1, S2 ∈ SS.

4.1 Model-Agnostic Compression Algorithm
To make it possible to extend the set of models provided by

ModelarDB Core, we propose an algorithm for segmenting and
compressing regular time series with gaps in which models using
lossy or lossless compression can be used. By optimizing the algo-
rithm for regular time series with gaps as per our use case described
in Section 1, the timestamp of each data point can be discarded as
they can be reconstructed using the sampling interval stored for each
time series and the start time end time stored as part of each seg-
ment. To alleviate the trade-off between high compression and low
latency required by existing multi-model compression algorithms,
we introduce two segment types, namely a temporary segment (ST)

and a finalized segment (SF). The algorithm emits STs based on
a user-defined maximum latency in terms of data points not yet
emitted to the stream, while SFs are emitted when a new data point
cannot be represented by the set of models used. The general idea
of our algorithm is shown in Figure 4 and uses a list of models from
which one model is active at a time as proposed by [22]. For this
example we set the maximum latency to be three data points, use
a single model in the form of a linear function, and ingest the time
series TS from Section 2. At t1 and t2, data points are added to a
temporary buffer while a modelM is incrementally fitted to the data
points. As our method is model-agnostic, each model defines how it
is fitted to the data points and how the error is computed. This allows
models to implement the most appropriate method for fitting data
points, e.g., models designed for streaming can fit one data point a
time, while models that must be recomputed for each data point can
perform chunking. At t3, three data points have yet to be emitted,
see ye, and the model is emitted to the main memory segment cache
as a part of a ST. For illustration, we mark the last data point emitted
as part of a ST with a T , and the last data points emitted as part of a
SF with an F . As M might be able to represent more data points,
the data points are kept in the buffer and the next data point is added
at t4. At t5, a data point is added which M cannot represent within
the user-defined error bound. As our example only includes one
model, a SF is emitted to the main memory segment cache and the
data points represented by the SF deleted from the buffer as shown
by dotted circles, before the algorithm starts anew with the next data
point. As the SF emitted represents the data point ingested at t4, ye
is not incremented at t5 to not emit data points already represented
by a SF as a part of a ST. Last, at tn, when the cache reaches a
user-defined bulk write size, the segments are flushed to disk.

Our compression algorithm is shown in Algorithm 1. First vari-
ables are initialized in Line 8-11, this corresponds to t0 in Figure 4.
To ensure the data points can be reproduced from each segment, in
Line 14-16, if a gap exists all data points in the buffer are emitted as
one or more SFs. If the number of data points in the buffer is lower

Figure 4: The multi-model compression algorithm, maximum for yet to be emitted (ye) data points is three
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Algorithm 1 Online model-agnostic (lossy and lossless) multi-
model compression algorithm with latency guarantees
1: Let ts be the time series of data points.
2: Let models be the list of models to select from.
3: Let error be the user defined error bound.
4: Let limit be the limit on the length of each segment.
5: Let latency be the latency in not emitted data points.
6: Let interval be the sampling interval of the time series.
7:
8: model ← head(models)
9: buffer ← create list()

10: yet emitted ← 0
11: previous ← nil
12: while has next(ts) do
13: data point = retrieve next data point(ts)
14: if time diff (previous, data point) > interval then
15: flush buffer(buffer)
16: end if
17: append data point to buffer(data point , buffer)
18: previous ← data point
19: if append data point to model(

data point ,model , error , limit) then
20: yet emitted ← yet emitted + 1
21: if yet emitted = latency then
22: emit temporary segment(model , buffer)
23: yet emitted ← 0
24: end if
25: else if has next(models) then
26: model ← next(models)
27: initialize(model , buffer)
28: else
29: emit finalized segment(models, buffer)
30: model ← head(models)
31: initialize(model , buffer)
32: yet emitted ← min(yet emitted , lengh(buffer))
33: end if
34: end while
35: flush buffer(buffer)

than what is required to instantiate any of the provided models
(a linear function requires two data points) a segment containing
uncompressed values is emitted. In Line 17-20 the data point is
appended to the buffer, and previous is set to the current data point.
The data point is appended to model , allowing the model to update
its internal parameters and the algorithm to check if the model can
represent the new data point within the user-defined error bound or
length limit. Afterwards, the number of data points not emitted as a
segment is incremented. This incremental process is illustrated by
states t1 to t4 in Figure 4. If latency data points have not been emit-
ted, a ST using the current model is emitted in Line 21-23. The cur-
rent model is kept as it might represent additional data points. This
corresponds to t3 in Figure 4 as a ST is emitted due to latency = 3 .
If the current model cannot be instantiated with the data points in
the buffer, a ST containing uncompressed values is emitted. When
model no longer can represent a data point within the required error
bound, the next model in the list of models is selected and initialized
with the buffered data points in Line 25-27. As the model represents
as many data points from buffer as possible when initialized, and
any subsequent data points are rejected, no explicit check of if the
model can represent all data points in the buffer is needed. Instead,
this check will be done as part of the algorithm’s next iteration when
a new data point is appended. When the list of models becomes

empty, a SF containing the model with the highest compression
ratio is emitted in Line 29. To allow for models using lossless
compression we compute the compression ratio as the reduction in
bytes not the number of values to be stored: compression ratio =
(data points represented(model) × size of (data point)) /
size of (model). As model selection is based on the compression
ratio, the segment emitted by emit finalized segment might not
represent all data points in the buffer. In Line 30-32 model is set to
the first model in the list and initialized with any data points left in
the buffer. If data points not emitted by a ST were emitted as part of
the SF, yet emitted is decremented appropriately. This process of
emitting a SF corresponds to t5 of Figure 4, where the latest data
point is left in the buffer and one data point is emitted first by a SF.
In Line 35 as all data points have been received, the buffer is flushed
so all data points are emitted as SFs.

4.2 Considerations Regarding Data Ingestion
Two methods exist for segmenting time series: connected and

disconnected. A connected segment starts with the previous seg-
ment’s last data point, while a disconnected segment starts with
the first data point not represented by the previous segment. Our
algorithm supports both by changing if emit finalized segment
keeps the last data point of a segment when it is emitted. The use of
connected segments provides two benefits. If used with models sup-
porting interpolation, the time series can be reconstructed with any
sampling interval as values between any two data points can be inter-
polated. Also, connected segments can be stored using only a single
time stamp as the end time of one segment is the start time of the
next. However, for multi-model compression of time series [37, 38]
demonstrated an increased compression ratio for disconnected seg-
ments if the start and end time of each segment are stored for use
with indexing. The decreased size is due to the increased flexibil-
ity when fitting disconnected segments as no data point from the
previous segment is included [37, 38]. Since time series may have
gaps, the start and end time of a segment must be stored to ensure
all data points ingested can be reconstructed. As a result, the rest of
this paper will only be concerned with disconnected segments.

To represent gaps, there are two methods: flushing the stream of
data points when a gap is encountered, or storing the gaps explicitly
as a pair of time stamps G = (ts, te). When we evaluated both we
observed no significant difference in compression ratio. However,
storing gaps explicitly requires additional computation as any opera-
tion on segments must skip gaps which also complicates the imple-
mentation. Storing gaps explicitly requires flush buffer(buffer) in
Line 15 in Algorithm 1 be substituted with timestamp(previous)
and timestamp(data point) being added to a gap buffer and that
the functions emitting segments are modified to include gaps as part
of the segment. ModelarDB flushes the stream of data points as
shown in Algorithm 1; but explicit storage of gaps can be enabled.

4.3 Implementation of User-Defined Models
For a user to optionally add a new model and segment in addition

to those predefined in ModelarDB Core, each must implement the
interfaces in Table 2. Tid is a unique id assigned to each time series.
By having a segment class, a model object can store data while
ingesting data points without increasing the size of its segment. As
a result, models can implement model-specific optimizations such
as chunking, lazy fitting or memoization. For aggregate queries to
be executed directly on a segment, the optional methods must be
implemented. An implementation of sum for a segment using a
linear function as the model is shown in Listing 1. For this model,
the sum can be computed without recreating the data points by
multiplying the average of the values with the number of represented
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Table 2: Interface for models and segments, is a required method and is an optional method
Model
new(Error, Limit) Return a new model with the user-defined error bound and length limit.
append(Data Point) Append a data point if it and all previous do not exceed the error bound.
initialize([Data Point]) Clear the existing data points from the model and append the data points from

the list until one exceeds the error bound or length limit.
get(Tid, Start Time, End Time, SI, Parameters, Gaps) Create a segment represented by the model from serialized parameters.
get(Tid, Start Time, End Time, SI, [Data Point], [Gap]) Create a segment from the models state and the list of data points.
length() Return the number of data points the model currently represents.
size() Return the size in bytes currently required for the models parameters.
Segment
get(Timestamp, Index) Return the value from the underlying model that matches the timestamp and

index, both are provided to simplify implementation of this interface.
parameters() Return the segment specific parameters necessary to reconstruct it.
sum() Compute the sum of the values of data points represented by the segment
min() Compute the minimum value of data points represented by the segment.
max() Compute the maximum value of data points represented by the segment.

data points. In Line 2-3 the number of data points is computed. In
Line 4-5 the minimum and maximum value of the segment. Last, in
Line 6-7 the sum is computed by multiplying the average with the
number of data points. As a result, the sum can be computed in ten
arithmetic operations and without a loop.

1 public double sum() {
2 int timespan = this.endTime - this.startTime;
3 int size = (timespan / this.SI) + 1;
4 double first = this.a * this.startTime + this.b;
5 double last = this.a * this.endTime + this.b;
6 double average = (first + last) / 2;
7 return average * size;
8 }

Listing 1: sum implemented for a linear model

To demonstrate we use the segment from Section 2 with the start
time 100, the end time 400, the sampling interval 100, and the linear
function as−0.0024ti+29.5 as model. For a more realistic example
we increase the end time to 7300. First the number of data points
represented by the segment is calculated ((7300−100)/100)+1 =
73, followed by the value of the first −0.0024 × 100 + 29.5 =
29.26, and last data point −0.0024 × 7300 + 29.5 = 11.98. The
average value for the data points represented by the segment is then
(29.26+11.98)/2 = 20.62, with the sum of the represented values
given by 20.62 × 73 = 1505.26. Our example clearly shows the
benefit of using models for queries as computing the sum is reduced
from 73 arithmetic operations to 10, or in terms of complexity, from
linear to constant time complexity.

All models must exhibit the following behavior. A model yet
to append enough data points to instantiate the model must return
an invalid compression ratio NaN so it is not selected to be part of
a segment. Second, if a model rejects a data point, all following
data points must be rejected until the model is reinitialized. Last, as
consequence of using an extensible set of models, the method for
computing the error of a model’s approximation must be defined by
the model. The combination of user-defined models and the model
selection algorithm provides a framework expressive enough to ex-
press existing approaches for time series compression. For TSMSs
that compress time series as statically sized sub-sequences using
one compression method, such as Facebook’s Gorilla [39], a single
model which rejects data points based on the limit parameter can be
used. For methods that use multiple lossy models in a predefined
sequence, such as [22], the same models can be implemented and
re-used with any system that integrates ModelarDB Core, with the

added benefit that the ordering of the models are not hardcoded as
part of the algorithm as in [22] but simply a parameter.

For evaluation we implement a set of general-purpose models
from the literature. We base our selection of models on [27] demon-
strating substantial increases in compression ratio for models sup-
porting dynamically sized segments and high compression ratio
for some constant and linear models, in addition to existing multi-
model approaches predominately selecting constant and linear mod-
els [22, 38]. Also we select models that can be fitted incrementally
to efficiently fit the data points online. To ensure the user-provided
error bound is guaranteed for each data point, only models providing
an error bound based on the uniform error norm are considered [34].
Last, we select models with lossless and lossy compression, allowing
ModelarDB to select the approach most appropriate for each sub-
sequence. We thus implement the following models: the constant
PMC-MR model [33], the linear Swing model [23], both modified
so the error bound can be expressed as the percentage difference
between the real and approximated value, and the lossless compres-
sion algorithm for floating-point values proposed by Facebook [39]
modified to use floats. A model storing raw values is used by
ModelarDB when no other model is applicable.

5. QUERY PROCESSING

5.1 Generic Query Interface
Segments emitted by the segment generators are put in the main-

memory cache and made available for querying together with seg-
ments in storage. ModelarDB provides a unified query interface for
segments in memory and storage using two views. The first view rep-
resents segments directly while the second view represents segments
as data points. This segment view uses the schema (Tid int,
StartTime timestamp,EndTime timestamp,SI int,
Mid int, Parameters blob) and allows for aggregate que-
ries to be executed on the segments without reconstructing the
data points. The attribute Tid is the unique time series id, SI the
sampling interval, Mid the id of the model used for the segment,
and Parameters the parameters for the model. The data point
view uses the schema (Tid int, TS timestamp, Value
float) to enable queries to be executed on data points recon-
structed from the segments. Implementing views at these two levels
of abstraction allows query processing engines to directly inter-
face with the data types utilized by ModelarDB Core. Efficient
aggregates can be implemented as user-defined aggregate functions
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(UDAFs) on the segment view, and predicate push-down can be im-
plemented to the degree that the query processing engine supports it.
While only having the data point view would provide a simpler query
interface, interfacing a new query processing engine with Mode-
larDB Core would be more complex as aggregate queries to the data
point view should be rewritten to use the segment view [21, 29, 43].

5.2 Query Interface in Apache Spark
Through Spark SQL ModelarDB provides SQL as its query lan-

guage. Since Spark SQL only pushes the required columns and
the predicates of the WHERE clause to the data source, aggregates
are implemented as UDAFs on the segment view. While full query
rewriting is not performed, the data point view retrieves segments
through the segment view which pushes the predicates of the WHERE
clause to the segment store. As a result, the segment store needs
only support predicate push-down from the segment view, and never
from both views. Our current implementation supports COUNT,
MIN, MAX, SUM, and AVG. The UDAFs use the optional methods
from the segment interface shown in Table 2 if available, otherwise
the query is executed on data points. As UDAFs in Spark SQL can-
not be overloaded, two sets of UDAFs are implemented. The first set
operate on segments as rows and have the suffix S. The second set
operate on segments as structs and have the suffix SS. Queries on
segments can be filtered at the segment level using a WHERE clause.
Thus, for queries on the segment view to be executed with the same
granularity as queries on the data point view, functions are provided
to restrict either the start time (START), end time (END), or both
(INTERVAL) of segments. While ModelarDB at the moment only
supports a limited number of built-in aggregate functions through
the segment view, to demonstrate the benefit of computing aggre-
gates using models, any aggregate functions provided as part of
Spark SQL can be utilized through the data point view. In addition,
existing software developed to operate on time series as data points,
e.g., for time series similarity search, can utilize the data point view.
Last, using the APIs provided by Spark SQL any distributive or
algebraic aggregation function can be added to both the data point
view and the segment view.

5.3 Execution of Queries on Views
Examples of queries on the views are shown in Listing 2. Line

1-2 show two queries calculating the sum of all values ingested
for the time series with Tid = 3. The first computes the result
from data points reconstructed from the segments while the second
query calculates the result directly from the segments. The query on
Line 4-5 computes the averages of the values for data points with a
timestamp after 2012-01-03 12:30. The WHERE clause filters
the result at the segment level and START disregards the data that
is older than the timestamp provided. Last, in Line 7-8 a query is
executed on the data point view as if the data points were stored.

1 SELECT SUM(Value) FROM DataPoint WHERE Tid = 3
2 SELECT SUM_S(*) FROM Segment WHERE Tid = 3
3
4 SELECT AVG_SS( START(*, '2012-01-03 12:30') )
5 FROM Segment WHERE EndTime >= '2012-01-03 12:30'
6
7 SELECT * FROM DataPoint WHERE Tid = 3
8 AND TS < '2012-04-22 12:25'

Listing 2: Query examples supported in ModelarDB

To lower query latency, the main memory segment cache, see
Figure 3, stores the most recently emitted or queried SFs and the
last ST emitted for each time series. Then, to ensure queries do not
return duplicate data points, the start time of a ST is updated when a
SF with the same Tid is emitted so the time intervals do not overlap.
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Finalized
Segments
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Data Point
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(Spark)

Segment 
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RS3 = { SF4, SF5 }

RS2 = { SF3 }
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RS6 = { SF3, ST6 }

RS4 = { ST6 }

SELECT * FROM   
Segment WHERE 
Tid = 77 AND  
EndTime > '2012-01-03' 

Figure 5: Query processing in ModelarDB

STs where StartTime > EndTime are dropped. Last, the SF
cache is flushed when it reaches a user-defined bulk write size.

Query processing in ModelarDB is primarily concerned with
filtering out segments and data points from the query result. An
example is shown in Figure 5 with a query for segments that contain
data points from the sensor with Tid = 77 from after the date
2012-01-03. Assume that only SF3 and ST6 satisfy both pred-
icates and that SF3 is not in the cache. First, the WHERE clause
predicates are pushed to the segment store, see RS1, to retrieve the
relevant segment. The segment retrieved from disk is cached, see
RS2, and the cache is then unioned with the STs and SFs in memory,
shown as RS3 and RS4, to produce the set RS5. RS5 is filtered
according to the WHERE clause to possibly remove segments pro-
vided by a segment store with imprecise evaluation of the predicates
(i.e., with false positives) and to remove irrelevant segments from
the in-memory cache. The final result is shown as RS6. Queries on
the data point view are processed by retrieving relevant segments
through the segment view. The data points are then reconstructed
and filtered based on the WHERE clause.

5.4 Code-Generation for Projections
In addition to predicate push-down, the views perform projections

such that only the columns used in the query are provided. However,
building rows dynamically based on the columns requested creates a
significant performance overhead. As the columns of each view are
static, optimized projection methods can be generated at compile
time without the additional overhead and complexity of dynamic
code generation.

1 def getDataPointGridFunction
2 (columns: Array[String]): (DataPoint => Row) = {
3 val target = getTarget(columns, dataPointView)
4 (target: @switch) match {
5 //Permutations of ('tid')
6 case 1 => (dp: DataPoint) => Row(dp.tid)
7 ...
8 //Permutations of ('tid', 'ts', 'value')
9 ...

10 case 321 => (dp: DataPoint) => Row(dp.value,
11 new Timestamp(dp.timestamp), dp.tid)
12 }
13 }

Listing 3: Selection of method for a projection

The method generated for the data point view is shown in List-
ing 3. On Line 3, the list of requested columns is converted to
column indexes and concatenated in the requested order to create
a unique integer. This works for both views as each has less than
ten columns and allows the projection method to be retrieved using

1694



a switch instead of comparing the contents of arrays. On Line 4,
the projection method is retrieved using a match statement which
is compiled to an efficient lookupswitch [15].

6. SEGMENT STORAGE
Figure 6 shows a generic schema for storing segments with the

metadata necessary for ModelarDB. It has three tables: Time
Series for storing metadata about time series (the current im-
plementation requires only the sampling interval), Model for stor-
ing the model type contained in each segment, and last Segment
for storing segments with the model parameters as blobs. The
bulk of the data is stored in the segment table. Compared to
other work [22, 24, 38], the inclusion of both a Tid and the Time
Series table allows queries for segments from different time se-
ries with different sampling intervals to be served by one Segment
table.

Tid (PK)
1

3

...

EndTime
1460442620000

1460645060000

...

Parameters
0x3f50cfc0

0x3f1e ...

...

Mid (PK)
1

2

3

Name
PMC-MR

Swing

Facebook

Tid (PK)
1

2

3

SI
60000

120000

30000

Mid
1

2

...
Time Series ModelSegment

StartTime (PK)
1460442200000

1460642900000
...

Figure 6: Generic schema for storage of segments

6.1 Segment Storage in Apache Cassandra
Compression is the primary focus for ModelarDB’s storage of

segments in Cassandra. As Cassandra expects each column in a
table to be independent, using Tid, StartTime, EndTime
as the primary key only indicates to Cassandra that each partition
is fully sorted by StartTime. As a result, adding StartTime
and EndTime to the primary key does not allow direct lookup of
segments. However, as segments are partitioned by Tid, inside
each partition the EndTime would be sorted as a consequence of
StartTime being sorted. We utilize this for ModelarDB by parti-
tioning each table on their respective ids, and use EndTime as the
clustering column for the segment table so segments are sorted as-
cendingly by EndTime on disk. This allows the Size of a segment
to be stored instead of StartTime, for a higher compression ratio,
while allowing ModelarDB to exploit the partitioning and ordering
of the segment table when executing queries as Cassandra can filter
segments on EndTime while Spark loads segments until the re-
quired StartTime is reached. The StartTime column cannot
be omitted due to the presence of gaps as explained in Section 4.2.
To support indexing methods suitable for a specific storage system
like in [24], secondary indexes can be implemented in ModelarDB
as part of the storage interface shown in Figure 3.

6.2 Predicate Push-Down
The columns for which predicate push-down is supported in our

implementation are shown in Figure 7. Each cell in the table shows
how a predicate on a specific column is rewritten before it is pushed
to the segment view or storage. Cells for the column StartTime
marked with Spark takeWhile indicate that Spark reads rows from
Cassandra in batches until the predicate represented by the cell is
false for a segment. As explained above, this allows StartTime
to be replaced with the column Size which stores the number of
data points in the segment. This reduces the storage needed for start
time without sacrificing its precision. When a segment is loaded,
the start time of the segment can be recomputed as StartTime =
EndTime - (Size * SI), allowing Spark to load segments

until the predicate represented by the cell is false for a segment. Non-
equality queries on Tid are rewritten as Cassandra only supports
equality queries on a partitioning key.

7. EVALUATION
We compare ModelarDB to the state-of-the-art big data systems

and file formats used in industry: Apache ORC [6,26] files stored in
HDFS [42], Apache Parquet [7] files stored in HDFS, InfluxDB [13],
and Apache Cassandra [32]. InfluxDB is running on a single node as
the open-source version does not support distribution. The number
of nodes used for each experiment is shown in the relevant figures.
Multi-model compression for time series is also evaluated in [22,37,
38]. We first present the cluster, data sets and queries used in the
evaluation, then we describe each experiment.

7.1 Evaluation Environment
The cluster consists of one master and six worker nodes con-

nected by 1 Gbit Ethernet. All nodes have an Intel Core i7-2620M
2.70 GHz, 8 GiB of 1333 MHz DDR3 memory and a 7,200 RPM
hard-drive. Each node runs Ubuntu 16.04 LTS, InfluxDB 1.4.2,
InfluxDB-Python 2.12, Pandas 0.17.1, HDFS from Hadoop 2.8.0,
Spark 2.1.0, Cassandra 3.9 and DataStax Spark Cassandra Connec-
tor 2.0.2 on top of EXT4. The master is a Primary HDFS NameNode,
Secondary HDFS NameNode and Spark Master. Each worker serves
as an HDFS Datanode, a Spark Slave, and a Cassandra Node. Cas-
sandra does not require a master node. Only the software necessary
for an experiment is kept running and replication is disabled for all
systems. Disk space utilization is found with du. The time series are
stored using the same schema as the Data Point View: Tid as a int,
TS using each storage method’s native timestamp type, and Value
as a float. InfluxDB is an exception as it only supports double.
Ingestion for all storage methods is performed using float. For
Parquet and ORC, one file is created per time series using Spark and
stored in HDFS with one folder created for each data set and file
format pair, for InfluxDB time series are stored as one measurement
with the Tid as a tag, and for Cassandra we partition on Tid and
order each partition on TS and Value for the best compression.

The configuration of each system is, in general, left with its de-
fault values. However, the memory available for Spark and either
Cassandra or HDFS, is statically allocated to prevent crashes. To
divide memory between query processing and data storage, we limit
the amount of memory Spark can allocate per node, so the rest
is available to Cassandra/HDFS and Ubuntu. Memory allocation
is limited through Spark to ensure consistency across all experi-
ments. The appropriate amount of memory for Spark is found by
assigning half of the memory on each system to Spark and then
reduce the memory allocated for Spark until all experiments can
run successfully. We enable predicate push-down for Parquet and
ORC. The parameters used are shown in Table 3, with ModelarDB

Table 3: The parameters we use for the evaluation
ModelarDB Value
Error Bound 0%, 1%, 5%, 10%
Limit 50
Latency 0
Bulk Write Size 50,000

Spark Value
spark.driver.memory 4 GiB
spark.executor.memory 3 GiB
spark.streaming.unpersist false
spark.sql.orc.filterPushdown true
spark.sql.parquet.filterPushdown true

Model Representation Type of Compression
PMC-MR [33] Constant Function Lossy Compression
Swing [23] Linear Function Lossy Compression
Facebook [39] Array of Delta Values Lossless Compression
Uncompressed Values Array of Values No Compression
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Figure 7: The two-step methods for predicate push-down utilized by ModelarDB

specific parameters in the upper left table, changes to Spark’s default
parameters in the upper right table, and the models implemented
in ModelarDB Core shown in the bottom table. The parameter
values are found to work well with the data sets and the hardware
configuration. The error bound is 10% when not stated explicitly.

7.2 Data Sets and Queries
The data sets we use for the evaluation are regular time series

where gaps are uncommon. Each data set is stored as CSV files with
one time series per file and one data point per line.

Energy Production High Frequency This data set is referred
to as EH and consists of time series from energy production. The
data was collected by us from an OPC Data Access server using
a Windows server connected to an energy producer. The data has
an approximate sampling interval of 100ms. As pre-processing we
round the timestamps and remove data points with equivalent times-
tamps due to rounding. This pre-processing step is only required
due to limitations of our collection process and not present in a
production setup. The data set is 582.68 GiB in size.

REDD The public Reference Energy Disaggregation Data Set
(REDD) [30] is a data set of energy consumption from six houses
collected over two months. We use the files containing energy usage
in each house per second. Three of the twelve files have been sorted
to correct a few out-of-order data points and the files from house
six removed due to irregular sampling intervals. As REDD fits into
memory on a single node, we extend it by replicating each file 2,500
times by multiplying all values of each file with a random in the
range [0.001, 1.001) and round each value to two decimals places
to ensure our results are not impacted by identical files. 2,500 is
selected due to the amount of storage in our cluster. The data set is
487.52 GiB in size, and is referred to as Extended REDD (ER). We
use this public data set to enable reproducibility.

Energy Production This data set is referred to as EP and primar-
ily consists of time series for energy production and is provided by
an energy trading company. The data is collected over 508 days,
has a sampling interval of 60s, and is 339 GiB in size. The data set
also contains entity specific measurements such as wind speed for a
wind turbine and horizontal irradiance for solar panels.

Queries The first set of queries (S-AGG) consists of small aggre-
gate and GROUP BY queries and represents online analytics on one
or a few time series, e.g., correlated sensors, as analytical queries
are the intended ModelarDB use case. Both types of queries are re-
stricted by Tid using a WHERE clause, with the GROUP BY queries
operating on five time series each and GROUP on Tid. The second
set (L-AGG) consists of large aggregate and GROUP BY queries,
which aggregate the entire data set and each GROUP BY query
GROUPs on Tid. L-AGG is designed to evaluate the scalability of
the system when performing its intended use case. The third set
(P/R) contains time point and range queries restricted by WHERE
clauses with either TS or Tid and TS. P/R represents a user extract-
ing a sub-sequence from a time series, which is not the intended
ModelarDB use case, but included for completeness. We do not
evaluate SQL JOIN queries as they are not commonly used with
time series, and similarity search is not yet built into ModelarDB.

7.3 Experiments
Ingestion Rate To remove the network as a possible bottleneck,

the ingestion rate is mainly evaluated locally on a worker node.
For each system/format we ingest channel one from house one
of ER from gzipped CSV files (14.67 GiB) on local disks. Ex-
cept for InfluxDB, ingestion is performed using a local instance
of Spark through spark-shell with its default parameters. As no
mature Spark Connector to our knowledge exists for InfluxDB,
we use the InfluxDB-Python client library [14]. The input files
are parsed using Pandas and InfluxDB-Python is configured with
a batch size of 50,000. For Cassandra we increase the parame-
ter batch size fail threshold in kb to 50 MiB to allow
larger batches. To determine ModelarDB’s scalability we also eval-
uate its ingestion rate on the cluster in two different scenarios: Bulk
Loading (BL) without queries and Online Analytics (OA) with ag-
gregate queries continuously executed on random time series using
the Segment View. When using a single worker, ModelarDB uses
the single-node ingestor, and when it is distributed, Spark streaming
with one receiver per node, a micro-batch interval of five seconds,
and latency set to zero so each data point is part of a segment only
once.
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The results are shown in Figure 8. As expected InfluxDB and
Cassandra had the lowest ingestion rate, as they are designed to
be queried while ingesting. ModelarDB also supports executing
queries during ingestion but still provides 11 times and 4.89 times
faster ingestion than InfluxDB and Cassandra, respectively. Par-
quet and ORC provided 1.52 and 1.39 times increase compared to
ModelarDB, respectively. However, an entire file must be written
before Parquet and ORC can be queried, making them unsuitable
for online analytics due to the inherent latency of this approach.
This compromise is not needed for ModelarDB as queries can be
executed on data as it is ingested. When bulk loading on the six
node cluster the ingestion rate for ModelarDB increases 5.39 times,
a close to linear speedup. The ingestion is nearly unaffected, a 5.36
times increase, when doing online analytics in parallel. In summary,
ModelarDB, achieves high ingestion rates while allowing online
analytics, unlike the alternatives.

Effect of Error Bound and Outliers The trade-off between stor-
age efficiency and error bound is evaluated using all three data sets.
The models used and size of each data set are found when stored
in ModelarDB with the error bound set to values from 0% to 10%.
We compare the storage efficiency of ModelarDB with the systems
used in industry. In addition, we evaluate the performance of Mod-
elarDB’s adaptive compression method when outliers are present,
by adding an increasing number of outliers to each data set. The
outliers are randomly created such that the average distance between
two consecutive outliers is N and the value of each outlier is set to
(Value of Data Point to Replace + 1) ∗ 2.

The storage used for EH is seen in Figure 9. Of the existing
systems, InfluxDB performs the best, but even with a 0% error
bound, ModelarDB reduces the size of EH 1.52 times compared to
InfluxDB. This is expected as the PMC-MR model can be used to
perform run-length encoding while changing values are managed
with delta-compression using the Facebook model. Increasing the
error bound to 10% provides a further 1.18 times reduction, while
the average actual error is only 0.005%. The results for ER are seen
in Figure 10. Compared to InfluxDB, ModelarDB provides much
better compression: 2.40 times for 1%, 7.02 times for 5%, and 9.31
times 10% error bound. For ER, ORC is best of the existing systems,
but ModelarDB further reduces by 2.13 times for 1%, 6.24 times for

5%, and 8.27 times for 10% error bound. In addition, average actual
error for ER is only 0.22% with 1% bound, 1.25% for 5% bound
and 2.50% for 10% bound. Even with a 0% bound, ModelarDB
uses just 1.17 times more storage than ORC. EP results are shown
in Figure 11. Here, ModelarDB provides the best compression, even
at 0% error bound, however, the difference is smaller than for EH
and ER. This is expected, as the EH and ER sampling intervals
are 600 and 60 times lower, respectively, yielding more data points
with similar values due to close time proximity. ModelarDB also
manages to keep the average actual error for EP low at only 0.08%
for 1%, 0.48% for 5% and 0.73% for a 10% bound.

The models utilized for each data set are shown in Figure 12—14.
Overall PMC-MR and Facebook are the most utilized models, with
Swing used sparingly except for EP with 5% and 10% error. Note,
that Swing also is utilized for ER and EP with a 0% error bound
as perfectly linear increases and decreases of values do exist in the
data sets. Last, except for EH, multiple models are used extensively.
These results clearly show the benefit and adaptivity of multi-model
compression as each combination of data set and error bound can
be handled efficiently using different combinations of the models.

The effect of outliers is shown in Figure 15. As expected the
storage used increases with the number of outliers, but the increase
depends on the data set and error bound. For all data sets, Mode-
larDB degrades gracefully as additional outliers are added to the
data set. As the values of N decrease below 250 the relative size
increases more rapidly as the high number of outliers severely re-
strict the length of the segments ModelarDB can construct. The
results also show that ModelarDB is more robust against outliers
when a 0% error bound is used. With a 10% error bound the relative
increase for EH and EP is slightly higher than for a 0% error bound,
while the relative size increase for ER with a 10% error bound in
the extreme case of N = 25 is 9.06 while it is only 1.12 with a 0%
error bound. This is expected as ER has a high compression ratio
with a 10% error bound and the high number of outliers prevents
ModelarDB from constructing long segments. The results show that
although designed for time series with few outliers, ModelarDB
degrades gracefully as the amount of outliers increases.

In summary, ModelarDB provides as good compression as the
existing formats when a 0% error bound is used, and much better
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compression for even a small error bound, by combining different
models depending on the data and error bound.

Scale-out To evaluate ModelarDB’s scalability we first compare
it to the existing systems when executing L-AGG on ER using the
test cluster. Then, to determine the scalability of ModelarDB on
large clusters, we execute L-AGG on Microsoft Azure using 1—32
Standard D8 v3, the node type is selected based on the documenta-
tion for Spark, Casandra and Azure [1,9,10]. The configuration from
the test cluster is used with the exception that Spark and Cassandra
each have access to 50% of each node’s memory as no crashes were
observed with this initial configuration. For each experiment REDD
is duplicated, using the method described above, and ingested so
each node stores compressed data equivalent to the node’s memory.
This makes caching the data set in memory impossible for Spark
and Cassandra. The number of nodes and data size are scaled in
parallel based on existing evaluation methodology for distributed
systems [19]. Queries are executed using the most appropriate
method for each system: InfluxDB’s command-line interface (CLI),
ModelarDB’s Segment View (SV) and Data Point View (DPV), and
for Cassandra, Parquet, and ORC a Spark SQL Data Frame (DF).
We evaluate the query performance using a DF and a cached Data
Frame (DFC) as shown in Figure 25. However, as DFCs increased
the run-time, as the data was inefficiently spilled to disk, we only
use DFs for the other queries.

The results are shown in Figure 16—17. For both views Mode-
larDB achieves close to linear scale-up. This is expected as queries
can be answered with no shuffle operations as all segments of a time
series are co-located. However, using SV, the query processing time
is significantly reduced as SV does not reconstruct the data points
which reduces both CPU and memory usage. On one node SV is
2.27 times faster than DPV, and 2.16 times faster with six nodes. For
L-AGG on ER, ModelarDB is faster than all the existing systems.
Compared to InfluxDB, on one node, ModelarDB is 2.95 times and
1.30 times faster for SV and DPV, respectively. Using six nodes,
ModelarDB is 1.52 times and 1.67 times faster than Parquet and
ORC, respectively. In summary, ModelarDB scales almost linearly
while providing better performance than the competitors.

Effect of Optimizations To evaluate the code generation and
predicate push-down optimizations, we execute L-AGG and P/R
on ER both with and without the optimizations. As a comparison
to static code generation, we implement a straightforward dynamic
code generator using scala.tools.reflect.ToolBox and
Spark’s mapPartitions transformation. By default ModelarDB
uses static code-generation for projections and predicate push-down
for Tid, Timestamp, and takeWhile. The results for projec-
tion in Figure 18 show that generating optimized code for projections
decreases the run-time up to 1.60 times compared to constructing
each row dynamically. However, using our implementation of dy-
namic code generation increases the run-time compared to our static
code generation. The results for predicate push-down are seen in
Figure 19. Predicate push-down has little effect on the query pro-

cessing time for L-AGG, but the reduction is more pronounced for
P/R where we see a 7.03 times reduction. This is to be expected as
all queries in L-AGG must read the entire data set from disk, while
all queries in P/R can be answered using only a small subset.

Further Query Processing Performance To further evaluate the
query performance of ModelarDB, we execute S-AGG and P/R on
all data sets using the query interfaces described for scale-out.

The results for S-AGG are shown in Figures 20—22. Once again
the run-time is reduced using the SV. While InfluxDB performs
slightly better than ModelarDB for S-AGG on ER and EP, it is
limited in terms of scalability and ingestion rate, as shown above
where ModelarDB executes L-AGG on ER 2.95 times faster than
InfluxDB. Compared to the distributed systems, ModelarDB pro-
vides as good, or better query processing times for nearly all cases.
On EH, ModelarDB is 1.4 times faster than ORC and 152.62 times
faster than Cassandra. For EH, Parquet is faster, but for all other
data sets ModelarDB is faster and uses much less storage space.
For ER, which is a core use case scenario, ModelarDB reduces the
query processing time by staggering 34.57, 286.03 and 45.99 times,
compared to Cassandra, Parquet and ORC, respectively. Last, for
EP, Cassandra and ModelarDB provide the lowest query process-
ing time with ModelarDB being 11.33 times faster. Thus for our
experiments ModelarDB improves the query processing time sig-
nificantly compared to the other distributed systems, in core cases
by large factors, while it for small-scale aggregate queries remains
competitive with an optimized single node system.

The results for P/R are shown in Figures 23—25. For P/R, In-
fluxDB and Cassandra perform the best, which contrasts our scale-
out experiment where they perform the worst. Clearly these systems
are optimized for queries on a small subset of a data set, while Par-
quet, ORC, and ModelarDB, are optimized for aggregates on large
data sets. While P/R queries are not a core use case, ModelarDB
provides equivalent performance for P/R queries in most cases and
is only significantly slower for EH. When compared to ORC and
Parquet, ModelarDB is in general faster and in the best case, ER,
provides 1.63 times faster query processing time. In one single
instance, for EH, ORC is 33.59 times faster than ModelarDB due to
better predicate push-down, as disabling predicate push-down for
ORC increases the run-time from 47.64 seconds to 1 hour and 40
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minutes. However, unlike Parquet and ORC, time series ingested
by ModelarDB can be queried online. An interesting result was that
DFCs increased the query processing time, particularly for the first
query. This indicates that the data set is read from and spilled to disk
due to a lack of memory during the initial query with subsequent
queries executed using Spark’s on-disk format.

For our experiments, the other systems require a trade-off as
they are either good at large aggregate queries or point/range and
small aggregate queries and support online analytics, but not both.
ModelarDB hits a sweet spot, improving the state-of-the-art for
online analytics by providing fast ingestion, better compression and
scalability for large aggregate queries while remaining competitive
with other systems for small aggregate and point-range queries. This
combination of features is not provided by any competitor.

8. RELATED WORK
Management of sensor data using models has received much

attention as the amounts of data have increased. We provide a
discussion of the most relevant related methods and systems. For a
survey of model-based sensor data management see [41], while a
survey of TSMSs can be found in [28].

Methods have been proposed for online construction of approx-
imations with minimal error [25], or maximal segment length for
better compression [34]. As the optimal model can change over time,
methods using multiple mathematical models have been developed.
In [37] each data point in the time series is approximated by all
models in a set. A model is removed from the set if it cannot repre-
sent a data point within the error bound. When the set of models is
empty, the model with the highest compression ratio is stored and
the process restarted. A relational schema for segments was dis-
cussed in [38]. The Adaptive Approximation (AA) algorithm [40]
uses functions as models with an extensible method for computing
the coefficients. The AA algorithm approximates each data point
in the time series until a model exceeds the error bound and a local
segment is created for that model and the model reset. After all
models have constructed one local segment, the segments using the
lowest number of parameters are stored. An algorithm based on
regression was proposed in [22]. It approximates data points with a
single polynomial model and then increases the number of coeffi-
cients as the error bound becomes unsatisfiable. As the user-defined
maximum number of coefficients is reached, the model with the
highest compression ratio is stored and the time series rewound to
the last data point of the stored segment. In this paper, we propose a
multi-model compression algorithm for time series that improves on
the state-of-the-art as it supports user-defined models, supports lossy
and lossless models, and removes the trade-off between compression
and latency inherent to the existing methods.

In addition to techniques for representing time series as mod-
els, RDBMSs with support for models have also been proposed.
MauveDB [21] supports using models for data cleaning without
exporting the data to another application. Models are explicitly
constructed from a table with raw data and then maintained by the
RDBMS. Model-based views created with a static sampling inter-
val serve as the query interface for the models. FunctionDB [43]
natively supports polynomial functions as models. The RDBMS’s
query processor evaluates queries directly on these models when
possible, with the query results provided as discrete values. Model
fitting is performed manually by fitting a specific model to a table.
Maintenance of the constructed models is outside the scope of the pa-
per. Plato [29] allows for user-defined models. Queries are executed
on models if the necessary functions are implemented and discrete
values if not. The granularity at which to instantiate a model for a
query can be specified with a grid operator or left to Plato. Fitting

models to a data set is done manually as automated model selection
is left as future work. Tristan [36], based on the MiSTRAL architec-
ture [35], approximates time series as sequences of fixed-length time
series patterns using dictionary compression. Before ingestion a dic-
tionary must be trained offline on historical data. During ingestion a
fixed number of data points are buffered before the compression is
applied and the dictionary updated with new patterns if necessary.
For approximate query processing a subset of the patterns stored for
a time series is used. A distributed approach to model-based storage
of time series using an in-memory tree-based index, a key-value
store, and MapReduce [20] was proposed by [24]. The segmentation
is performed using Piecewise Constant Approximation (PCA) [41].
Each segment is stored and indexed twice, once by time and once by
value. Query processing is performed by locating segments using
the index, retrieving segments from the store using mappers, and
last, instantiating each model using reducers. ModelarDB hits a
sweet spot and provides functionality in a single extensible TSMS
not present in the existing systems: storage and query processing for
time series within a user-defined error bound [21, 29, 43], support
for both fixed and dynamically sized user-defined models that can
be fitted online without requiring offline training of any kind [36],
and automated selection of the most appropriate model for each part
of a time series while also storing each segment only once [24].

9. CONCLUSION & FUTURE WORK
Motivated by the need for storage and analysis of big amounts of

data from reliable sensors, we presented a general architecture for a
modular model-based TSMS and a concrete system using it, Mode-
larDB. We proposed a model-agnostic extensible and adaptive multi-
model compression algorithm that supports both lossless and lossy
compression within a user-defined error bound. We also presented
general methods and optimizations usable in a model-based TSMS:
(i) a database schema for storing multiple distinct time series as (pos-
sibly user-defined) models, (ii) methods to push-down predicates to
a key-value store that utilizes the presented schema, (iii) methods to
execute optimized aggregate functions directly on models without
requiring a dynamic optimizer, (iv) static code-generation to opti-
mize execution of projections, (v) dynamic extensibility that allows
user-defined models to be added and used without recompiling the
TSMS. The architecture was realized as a portable library which
was interfaced with Apache Spark for query processing and Apache
Cassandra for storage. Our evaluation showed that, unlike current
systems, ModelarDB hits a sweet spot and achieves fast ingestion,
good compression, almost linear scale-out, and fast aggregate query
processing, in the same system, while also supporting online queries.
The evaluation further demonstrated how the contributions effec-
tively work together to adapt to the data set using multiple models,
that the actual errors are much lower than the bounds, and how
ModelarDB degrades gracefully as outliers are added.

In future work we are planning to extend ModelarDB in multiple
directions: (i) Increase query performance by developing new tech-
niques for indexing segments represented by user-defined models,
performing similarity search directly on user-defined models, and
performing dynamic optimizations utilizing that the time series are
represented as models. (ii) Reduce the storage needed for large
volumes of sensor data by representing correlated streams of sensor
data as a single stream of segments. (iii) Further simplify use of
ModelarDB by removing or automatically inferring parameters.
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