
Approximately Counting Triangles in Large Graph Streams
Including Edge Duplicates with a Fixed Memory Usage

Pinghui Wang1,4, Yiyan Qi1
∗

, Yu Sun1, Xiangliang Zhang2, Jing Tao1, Xiaohong Guan1,3

1NSKEYLAB, Xi’an Jiaotong University, China
2King Abdullah University of Science and Technology, Thuwal, SA

3Department of Automation and NLIST Lab, Tsinghua University, Beijing, China
4Shenzhen Research Institute of Xi’an Jiaotong University, Shenzhen, China

Email: {phwang, jtao, xhguan}@mail.xjtu.edu.cn, {qiyiyan, sunyuxajd2013}@stu.xjtu.edu.cn,
xiangliang.zhang@kaust.edu.sa

ABSTRACT
Counting triangles in a large graph is important for detecting net-
work anomalies such as spam web pages and suspicious accounts
(e.g., fraudsters and advertisers) on online social networks. How-
ever, it is challenging to compute the number of triangles in a large
graph represented as a stream of edges with a low computational
cost when given a limited memory. Recently, several effective
sampling-based approximation methods have been developed to
solve this problem. However, they assume the graph stream of in-
terest contains no duplicate edges, which does not hold in many
real-world graph streams (e.g., phone calling networks). In this
paper, we observe that these methods exhibit a large estimation er-
ror or computational cost even when modified to deal with dupli-
cate edges using deduplication techniques such as Bloom filter and
hash-based sampling. To solve this challenge, we design a one-
pass streaming algorithm for uniformly sampling distinct edges
at a high speed. Compared to state-of-the-art algorithms, our al-
gorithm reduces the sampling cost per edge from O(log k) (k is
the maximum number of sampled edges determined by the avail-
able memory space) to O(1) without using any additional memory
space. Based on sampled edges, we develop a simple yet accu-
rate method to infer the number of triangles in the original graph
stream. We conduct extensive experiments on a variety of real-
world large graphs, and the results demonstrate that our method is
several times more accurate and faster than state-of-the-art methods
with the same memory usage.

PVLDB Reference Format:
Pinghui Wang, Yiyan Qi, Yu Sun, Xiangliang Zhang, Jing Tao, and Xiao-
hong Guan. Approximately Counting Triangles in Large Graph Streams
Including Edge Duplicates with a Fixed Memory Usage. PVLDB, 11(2):
xxxx-yyyy, 2017.
DOI: https://doi.org/10.14778/3149193.3149197

∗Pinghui Wang and Yiyan Qi contributed equally to this work.
Yiyan Qi is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 2
Copyright 2017 VLDB Endowment 2150-8097/17/10... $ 10.00.
DOI: https://doi.org/10.14778/3149193.3149197

1. INTRODUCTION
Recently, a considerable attention has been paid to designing

one-pass streaming algorithms for mining large graph streams with-
out storing the entire graph, because many real-world networks are
given in a stream fashion, whose size (i.e., the number of edges at
the end of the stream) is unknown, or even infinite. For example,
computer network traffic can be modeled as a graph stream where
a node represents a computer and an edge in the graph stream rep-
resents a packet transmitting from one computer to another. Sim-
ilarly, a stream of phone calling records can also be modeled as
a graph stream where a node represents a phone number and an
edge in the graph stream represents a call from one phone num-
ber to another. Many other examples can be found in other areas
such as online social networks, instant messaging networks, email
networks, and financial networks. Due to the large-size and high-
speed nature of these graph streams, it is prohibitive to collect the
entire graph for many graph mining applications such as anomaly
detection. Therefore, it is critical to develop one-pass streaming al-
gorithms with features: 1) computationally efficient, e.g., quickly
approximate metrics of interest; 2) allow users to easily set algo-
rithm parameters in appropriate values to maximize the per-
formance of algorithms, e.g., allow users to easily specify a limit
on memory usage. Many streaming algorithms do not meet this
requirement. Take random edge sampling as an example, which
greatly reduces the computational cost and memory usage by sam-
pling each edge in the graph stream of interest with a fixed proba-
bility p. However, it is problematic to use a fixed p when the graph
stream’s size is not known. That is, the algorithm may run out of
memory when users specify a large p, because the number of sam-
pled edges grows with the size of the graph stream. In contrary,
it provides suboptimal estimations when using a smaller p because
the available memory is not fully used.

In this paper, we study how to compute the number of triangles in
a large graph stream, which is one of the most widely studied graph
mining problems. It has been successfully used to detect network
anomalies such as spam pages [6] and suspicious accounts (e.g.,
fraudsters and advertisers) on online social networks [23,52]. Other
applications include social role identification [50], community de-
tection [7], topic mining [14], and motif detection [7,31]. To handle
large-scale graph streams, most previous works are sampling-based
algorithms (e.g., edge sampling, wedge sampling, and triple sam-
pling) for estimating the number of triangles [1, 5, 9, 20, 21, 26, 30,
38, 48]. However, these algorithms usually require users to specify
in advance a fixed edge sampling probability p. As mentioned, it is
difficult to set the optimal value of p when the graph’s size is un-

162

162 - 175

known. Even when it is possible to specify a fixed p to fully use the
available memory space at the end of the graph stream, it is still not
memory-efficient for estimating the triangle count over time, be-
cause the allocated memory is not fully used at any time before the
end of the graph stream. To address the above issues, De Stefani
et al. [44] present several triangle count approximation algorithms
using the reservoir sampling technique [49] to sample edges with a
fixed amount of memory.

However, all the above works assume there exist no edge du-
plicates in the graph stream of interest, which does not hold in
real-world graph streams such as sequences of packets in computer
networks, calling records in phone networks, transactions in finan-
cial networks, and emails in email networks. In addition, many
of these real networks are directed graphs, and counting directed
triangles in figure 1 has been used to characterize evolution pat-
terns in online social networks [10, 41], evaluate the transitivity of
directed graphs [42], and detect web spams [6]. Directed graph
streams can be modeled as a stream of edges e(1), e(2), · · · , where
e(t) = (u(t), v(t), l(t)), t ≥ 1, is the tth edge, l(t) ∈ {→,←}
is the direction label of edge e(t) between nodes u(t) and v(t). Let
G(t) be the directed graph built on edges e(1), · · · , e(t). Two nodes
u and v may have more than one edge between them occurred
in the edge stream, and the direction label of edge (u, v) in G(t)

may change over time. For example, there may exist two edges
e(l) = (u, v,→) and e(t) = (u, v,←) in the graph stream, where
1 ≤ l < t, and the direction label of edge (u, v) in G(t) changes
from → to ↔ at time t. To some extent, a directed graph stream
can be viewed as an undirected edge stream with undirected edge
duplicates and updates of edge direction labels. We observe that
it is not trivial to deal with edge duplicates when estimating the
number of triangles in a large graph stream. More specifically, we
summarize the shortcomings of existing methods as:

! " #$ % & ' (

XQGLUHFWHG GLUHFWHG

Figure 1: Undirected/Directed triangles. The numbers are type
IDs of different directed triangles.

• Existing triangle count estimation algorithms produce inaccu-
rate results when applied to graph streams including edge dupli-
cates. When we directly apply existing sampling algorithms such
as the state-of-the-art method Trièst [44] to a large graph stream in-
cluding edge duplicates, their original probabilistic models fail to
model sampled edges due to the existence of duplicate edges, so es-
timations given by the probabilistic models are not able to converge
to the correct value. For example, when applying the reservoir sam-
pling to sample edges in the graph stream in a direct manner, at any
time, (at most) k edges are randomly sampled from all the edges
presented so far, but they are not necessarily distinct due to the ex-
istence of edge duplicates, where k is the user-specified reservoir
size, i.e., the maximum number of sampled edges. Unlike sampling
each edge uniformly in [44], the reservoir sampling tends to sample
edges with a large number of duplicates and it leads to the estima-
tion method in [44] being inaccurate for graph streams including
edge duplicates. We notice that De Stefani et al. [45] (the extended
version of [44]) extend their method Trièst to approximate the num-
ber of triangles in a large multigraph stream. Compared to simple
graphs having no more than one edge between two nodes, there

may exist multiple edges between two nodes in multigraphs. The
set of triangles in multigraphs defined in [44] is allowed to contain
multiple triangles with the same set of nodes. Take a multigraph
with edges e1 = (u,w), e2 = (u,w), e3 = (u, v), e4 = (w, v) as
an example. The multigraph has two triangles between nodes u, v,
and w consisting of edges: 1) e1, e3, e4; and 2) e2, e3, e4. There-
fore, Trièst essentially treats all edges in a stream graph as distinct
edges no matter whether they have the same two endpoints or not.
Clearly, it is different from the problem studied in this paper.
• Hash-based sampling can help on dealing with edge duplicates
but causes serious issues such as high computational cost and
large memory usage. To handle edge duplicates, one can use a
uniform random hash function r to hash each edge e into the range
(0, 1), and e is sampled when r(e) ≤ p. This hash-based sam-
pling is essentially equivalent to the method of sampling edges
with a fixed probability p, so it has serious issues (e.g., the algo-
rithm may run out of memory) for analyzing large graph streams
discussed previously. Moreover, to avoid storing all duplicates of
a sampled edge e with r(e) ≤ p in memory, hash-based sampling
requires an extra computational cost to check whether a coming
edge e has been already sampled when r(e) ≤ p. Using hash-
based sampling, Jha et al. [19] recently present the first triangle
count approximation algorithm for large graph streams including
edge duplicates. Besides no guarantee on the amount of memory
usage, it also has a high computational cost because it enumerates
each sampled wedge to check whether a coming edge is the closing
edge or one edge of the wedges. Jung et al. [22] develop an al-
gorithm FURL that immediately extends Trièst [44] by combining
reservoir and hash-based sampling techniques. It keeps track of k
distinct edges with the smallest hash values at each time. However,
the disadvantage of FURL is its computational complexity O(k) in
the sampling process of each edge. Fast-searching and fast-sorting
algorithms can be used to reduce this complexity to O(log k), but
require a large amount of memory for storing auxiliary information
(e.g., child pointers in a search tree) besides sampled edges.
• Bloom filter [8] has the potential to handle edge duplicates
but requires non-neglectable additional cost (memory usage and
computing time) and introduces errors difficult to be corrected.
Lim et al. [30] suggest dealing with edge duplicates by using a
Bloom filter, which is a space-efficient probabilistic approach for
testing whether an element is a member of a set. A Bloom fil-
ter consists of m bits and z independent hash functions. All bits
are initialized to zero. To insert an edge into the Bloom filter, z
bits are randomly selected from the m bits using the z hash func-
tions, and then set to one. To check whether a coming edge in a
graph stream is presented previously, the Bloom filter uses the z
hash functions to get z bits associated with the edge. When any
of these z bits is zero, the edge is definitely not presented previ-
ously and then inserted into the Bloom filter. Otherwise, the edge
is discarded as a duplicate edge, because it is either presented pre-
viously or its associated z bits have been set to one by chance dur-
ing the insertion of other edges, which results in a false positive.
The more edges added to the Bloom filter, the more false positives
caused. Let n(t) denote the number of distinct edges occurred up
to time t. Then, the false positive probability of wrongly discarded
edges equals p(t) = (1 − (1 − 1/m)zn

(t)
)z at time t. To achieve

a small desired false positive probability p(t), the Bloom filter re-
quires at least m = −n(t) ln p(t)

(ln 2)2
bits, given that z is set to the

optimal value z = m ln 2
n(t) . For example, to guarantee p(t) ≤ 0.001,

the Bloom filter requires m = 14.4n(tmax) bits of memory given
z = 10.0, where tmax is the discrete time of the graph stream’s last
edge. When introducing Bloom filter to existing triangle count ap-

163

proximation algorithms, non-neglectable extra memory usage and
computational cost are introduced by the Bloom Filter. Moreover,
the false positives of wrongly discarded edges also make the es-
timation errors of triangle count approximation algorithms uncon-
trollable and not quantifiable, because the value of false positive
probability p(t) is unknown and varies overtime.
Our contributions. To solve the above challenges, we design a
one-pass streaming algorithm PartitionCT to fast and accurately
estimate the number of triangles in a large graph stream including
edge duplicates. PartitionCT only requires users to specify one pa-
rameter k, i.e., the maximum number of sampled edges determined
by the available memory space. To deal with edge duplicates, it
randomly assigns different ranks for different edges in the graph
stream and hashes edges into k buckets. At any time, a bucket
holds only one edge and keeps track of the edge with the small-
est rank among all edges occurred so far that are hashed into the
bucket. Based on edges stored in all k buckets over time, we de-
velop a novel method to accurately estimate the number of trian-
gles and provide theoretical proofs for the accuracy of our method.
Compared to the state-of-the-art method FURL [22], PartitionCT
reduces the sampling cost per edge from O(log k) to O(1) with
no additional memory usage. We conduct extensive experiments
on a variety of real-world large graphs, and experimental results
show that 1) PartitionCT is several times more accurate than FURL
and other state-of-the-art methods with the same memory usage;
2) when setting the same k, PartitionCT is better than or compara-
ble to FURL on estimation accuracy but significantly outperforms
FURL in terms of running time and memory usage. To guaran-
tee the reproducibility of the experimental results, we release the
source code of our algorithm in open source1.

The rest of this paper is organized as follows. The problem for-
mulation is presented in Section 2. Section 3 summarizes related
work. Sections 4 and 5 present our algorithms of approximately
counting triangles in undirected and directed graph streams. The
performance evaluation and testing results are presented in Sec-
tion 6. Conclusions then follow.

2. PROBLEM FORMULATION
To formally define our problem, we first introduce some nota-

tion. Let Π denote the graph stream of interest, representing a
stream of edges e(1), e(2), . . . , e(tmax), where tmax is the time of the
last edge of Π. For any discrete time t > 0, e(t) = (u(t), v(t))
represents the tth edge of Π, where u(t) and v(t) are the edge’s
two endpoints. For ease of presentation, in this paper we model
directed graphs as undirected graphs with edge direction label (in
short, edge label). That is, we denote e(t) = (u(t), v(t), l(t)),
where l(t) ∈ {→,←} is the label of edge (u(t), v(t)). Let G(t) =
(V (t), E(t), L(t)) denote the graph occurred up to and including
time t, where V (t), E(t), and L(t) are the sets of nodes, edges, and
edge labels respectively. We use l(t)u,v ∈ {→,←,↔} to denote the
label of an edge (u, v) in E(t). Denote V (0) = E(0) = L(0) =
∅. Then we observe that G(t) can be computed incrementally as:
V (t) = V (t−1) ∪ {u(t), v(t)} and E(t) = E(t−1) ∪ {(u(t), v(t))}.
We easily find that l(t)

u(t),v(t) = l(t) when edge (u(t), v(t)) has no

duplicate occurred before time t, i.e., (u(t), v(t)) /∈ E(t−1). Oth-
erwise, l(t)

u(t),v(t) is computed based on both l(t−1)

u(t),v(t) and l(t). For

example, when the tth edge in Π is e(t) = (u, v,→) and the label of
edge (u, v) is l(t−1)

u,v =← at time t−1, then at the end of time t we
update the label of edge (u, v) from l(t−1)

u,v =← to l(t)
u(t),v(t) =↔.

1http://nskeylab.xjtu.edu.cn/dataset/phwang/code/PartitionCT.zip

In summary, edges in the graph streaming model studied in this pa-
per have: 1) duplicates, i.e., an edge in Π may appear more than
once, which is similar to the data streaming model in [19, 22]; 2)
time-variant edge direction labels, i.e., each edge label l(t)

u(t),v(t)

may change with t, which results in existing streaming algorithms
failing to approximately count directed triangle patterns over time.

Let ∆(t) denote the set of triangles in undirected graph G(t). Let
τ (t) = |∆(t)| be the triangle count, where |∆(t)| is the cardinality
of set ∆(t). For directed graphs, as shown in figure 1, there exist
7 different types of triangles. For the ith type triangle, 1 ≤ i ≤ 7,
similarly, we let ∆(i,t) denote the set of its instances (i.e., induced
3-node subgraphs in G(t) isomorphic to the ith type triangle) in
G(t). Let τ (i,t) = |∆(i,t)|. In this paper, we aim to design a
fast one-pass streaming algorithm to solve two tasks for undirected
graphs: task 1) estimate τ (t) over time, i.e., all τ (1), . . . , τ (tmax);
task 2) estimate only τ (tmax). Our algorithm PartitionCT solves
these two tasks in slightly different manners. That is, similar to
state-of-the-art methods [22, 30, 44] for task 1, PartitionCT spends
a significant time cost on dynamically keeping track of the num-
ber of triangles consisting of sampled edges. In contrary, the com-
putational cost of task 2 is dominantly determined by the average
time in the sampling process, i.e., the average time to determine
whether to sample a coming edge and the average time to store a
sampled edge. Task 2 is useful for time interval based applications
such as network traffic anomaly detection. For example, Π is a net-
work packet stream collected on a router in a time interval (e.g.,
one hour in a day), and one wants to compute the triangle count
for each interval, i.e., τ (tmax) for each interval. In addition to undi-
rected graphs, we also extend our algorithm to solve two tasks for
directed graphs: task 3) estimate τ (1,t), . . . , τ (7,t) over time; task
4) estimate only τ (1,tmax), . . . , τ (7,tmax). For ease of reading, we list
notation used throughout the paper in Table 1.

Table 1: Table of notation.
Π graph stream of interest

G(t) =
(V (t), E(t), L(t))

graph at the end of time t, where
V (t), E(t), and L(t) are node, edge
edge label sets

n(t) the number of distinct edges
presented at the end of time t

d(t)u
the number of edges in graph G(t)

connecting to node u ∈ V (t)

tmax the discrete time of the last edge
k the size of user-specified memory space

S[1], . . . , S[k] buckets used in PartitionCT
S(t) edges sampled at the end of time t

G(t)
S graph consists of edges in S(t)

N (t)
u,S the set of neighbors of u in G(t)

S

∆(t) triangles in G(t)

∆(i,t), 1 ≤ i ≤ 7 ith type directed triangles in G(t)

τ (t) = |∆(t)| the number of triangles
τ (i,t) = |∆(i,t)| the number of ith type directed triangles

3. RELATED WORK
Global triangle count estimation. Compared to methods of ex-
actly listing and counting triangles in a large graph [2, 3, 17, 18, 24,
28,34–37,39,40,46,53], approximation methods require much less
computational and memory resources. Bar-Yossef et al. [5] reduce

164

the problem of counting triangles to estimate zero-th, first, and sec-
ond frequency moments for a stream of node triples, and propose
the first one-pass streaming algorithm for estimating the number
of triangles in a graph stream. Subsequently, [9, 21] present sev-
eral sampling methods to further reduce the space complexity of
the algorithm in [5]. Algorithms in [21] sample node triples based
on random edge sampling, and algorithms in [9] sample triplets
by combining random edge and node sampling techniques. These
algorithms are far from practical for handling large graph streams
due to unsatisfied performance (e.g., large estimation errors and
high computational complexity) and unrealistic assumptions. For
example, the one-pass streaming algorithm in [9] requires the en-
tire node set is known in advance. To address these issues, very
recently, [1, 20, 38, 44, 48] develop several one-pass streaming al-
gorithms for estimating the number of triangles in a large graph
stream. Jha et al. [20] develop a wedge sampling based algorithm
to estimate the triangle count. Pavan et al. [38] present a neighbor-
hood sampling method to sample and count triangles. Tsourakakis
et at. [48] present a triangle sparsification method by sampling each
and every edge with a fixed probability, which can be directly ap-
plied to estimate the number of triangles in a graph stream. Ahmed
et al. [1] present a more general edge sampling framework for esti-
mating a variety of graph statistics including the triangle count. De
Stefani et al. [44] use a fixed user-specified memory space to sample
edges by the reservoir sampling technique [49], and then estimate
the triangle count from these edges sampled not-independently. All
the above works assume there is no edge duplicate in the graph
stream of interest. To deal with edge duplicates, Jha et al. [19] use
a hash-based sampling technique to sample distinct edges with a
fixed probability. Besides no guarantee on the amount of memory
usage, their method also has a high computational cost because it
enumerates each sampled wedge to check whether a coming edge is
the closing edge or one edge of the wedges. In addition to stream-
ing algorithms, [43,51] present sampling algorithms for estimating
the number of triangles in a large static graph that can be entirely
fitted into memory space.
Local triangle count estimation. [6, 26, 30] focus on computing
local (i.e., incident to each node) triangles counts for large graph
streams. Becchetti et al. [6] develop a semi-streaming algorithm
to estimate local triangle counts. However, their algorithm requires
multiple (log n) passes. Kutzkov and Ragh [26] develop a one-pass
streaming algorithm. However, their algorithm requires the total
number of edges and nodes in the graph stream of interest is known
in advance. Lim and Kang [30] present an algorithm for count-
ing local triangles based on sampling edges with a fixed probabil-
ity, which results in no guarantee on the amount of memory usage.
Recently, Jung et al. [22] also develop a reservoir sampling based
method FURL to estimate local triangle counts. FURL samples dis-
tinct edges from the graph stream of interest with a fixed available
memory usage by combining reservoir and hash-based sampling
techniques. That is, it keeps track of k distinct edges with the small-
est hash values at any time. FURL reduces the computational com-
plexity O(k) in each coming edge’s sampling process to O(log k)
by using a Fibonacci heap [13] (a fast priority queue algorithm) to
keep track of k distinct edges with the smallest hash values and
using a hash table to determine whether a coming edge’s duplicate
has been sampled. These fast-sorting and fast-searching algorithms
require a large additional memory usage. For example, besides
sampled edges, the Fibonacci heap also needs a large amount of
memory for storing 7 kinds of auxiliary information (e.g., pointers
to child and parent). We would like to point out that most global tri-
angle count estimation algorithms such as [1, 44, 48] can be easily
extended to approximate local triangle counts, and vice versa.

4. ESTIMATING THE TRIANGLE COUNT
FOR UNDIRECTED GRAPH STREAMS

4.1 Basic Idea of PartitionCT
For each undirected edge (u, v), we assign it a random rank

r(u, v) independently drawn from a Uniform(0, 1) distribution.
Let H be a family of hash functions that map undirected edges
into integers 1, . . . , k uniformly. Let h be a hash function ran-
domly selected from H. Throughout this paper we set all hash
functions such as r(u, v) and h(u, v) regardless of the order of
u and v, i.e., r(u, v) = r(v, u), h(u, v) = h(v, u). It can be
easily achieved. For example, when u and v are two 32-bit inte-
gers, we can define r(u, v) = r̂(x), where x is a 64-bit integer
whose low and high 32-bit values are min{u, v} and max{u, v}
respectively, and function r̂(x) maps a 64-bit integer into a random
variable drawn from a Uniform(0, 1) distribution. Using hash
function h, we randomly hash edges in the graph stream Π into k
buckets S[1], . . ., S[k]. At any time t, a bucket holds only one
edge and keeps track of the edge with the smallest rank among
all edges presented so far that are hashed into the bucket. For
example, when Π = e1e1e2e3e1e4e5e6e7e8e9e10 and k = 5,
we randomly partition distinct edges E = {e1, e2, . . . , e10} in
Π into 5 subsets E1, . . . , E5 without overlapping by hash func-
tion h. The edge subset Ei, 1 ≤ i ≤ 5, is formally defined as
{e : h(e) = i, e ∈ E}. At any time, S[i] only records the edge
with the smallest rank value r(e) among occurred edges in Ei. We
can easily find that all duplicates of an edge are hashed into the
same bucket and have the same rank value. All edges have different
ranks, i.e., r(u, v) ̸= r(u′, v′) for any two different edges (u, v)
and (u′, v′), because r(u, v) = r(u′, v′) happens with probability
0 when r(u, v) and r(u′, v′) are two independent random variables
drawn from Uniform(0, 1). This leads to the following property:

THEOREM 1. At the end of any time t, the set of edges sampled
by PartitionCT is independent with the order of edges occurred be-
fore and including time t.

Proof. At the end of any time t, a bucket S[i], 1 ≤ i ≤ k, samples
(i.e., stores) the edge (u∗, v∗) ∈ E(t) having the smallest rank
among the edges that are mapped to the bucket by hash function h.
Formally, we have

(u∗, v∗) = argmin
(u,v)∈E(t)∧h(u,v)=i

r(u, v).

Clearly, (u∗, v∗) is independent with the order of edges occurred
before and including time t. !

From the edges stored in buckets S[1], . . ., S[k] at the end of
time t, we estimate the triangle count τ (t) as well as the number
of distinct edges n(t) = |E(t)| online, which is used for correcting
the error introduced by sampling when estimating τ (t).

4.2 Update Procedure
The pseudo-code of PartitionCT is shown as Algorithm 1. Parti-

tionCT uses k buckets S[1], . . ., S[k] to store distinct edges sam-
pled at random. S[1], . . ., S[k] are initialized to be empty. For
any edge e(t) = (u, v) coming at time t, we directly set bucket
S[h(u, v)] = (u, v) when S[h(u, v)] is empty or (u, v) has a
smaller rank than the edge (u∗, v∗) currently in S[h(u, v)], and
discard (u, v) otherwise. Let S(t) = {S[i] : S[i] ̸= ∅, 1 ≤ i ≤ k}
be the set of edges sampled at the end of time t. Denote by G(t)

S the
graph consisting of all edges in S(t), and N (t)

u,S the set of neighbors
of u in G(t)

S . Define ϕ(t) as the number of triangles in G(t)
S . For

165

task 1, similar to [30,44], we use a counter ϕ (initialized to zero) to
keep track of ϕ(t). That is, function UpdateTriCounts(±, (u, v))

in Algorithm 1 is defined as: ϕ ← ϕ ± |N (t)
u,S ∩ N (t)

v,S |. Instead
of computing ϕ(t) over time, which requires a large computational
cost, we only compute ϕ(tmax) at the end of time tmax for task 2.

To estimate the number of distinct edges, i.e., n(t), we use a
counter q in Algorithm 1 to keep track of 1

k

∑k
j=1 2

−y(S[j]) over
time, where y(S[j]) is defined as

y(S[j]) =

{
⌊− log r(S[j])⌋, S[j] ̸= ∅,
0, otherwise.

In Algorithm 1, we use a counter n̂ to keep track of an estimate
of n(t) over time. At the end of time t, we update n̂ as n̂ ←
n̂+ 1

q when ⌊− log r(u, v)⌋ is larger than ⌊− log r(u∗, v∗)⌋, where
(u, v) is the edge coming at time t and (u∗, v∗) is the edge sampled
in S[h(u, v)] at the end of time t− 1. The idea behind our method
of estimating n(t) will be introduced in Section 4.3.

Algorithm 1: The pseudo-code of PartitionCT. The lines start-
ing with “###” are only for directed graphs.
input : edge stream Π, integer k.

q ← 1; n̂← 0; S[1, . . . , k]← [∅, . . . , ∅];
foreach (u, v, l) ∈ Π do

gmax ← 0;
j ← h(u, v);
if S[j] ̸= (u, v) then

(u∗, v∗)← S[j];
if S[j] == ∅ or r(u, v) < r(u∗, v∗) then

if S[j] ̸= ∅ then
UpdateTriCounts (−, (u∗, v∗));
gmax ← ⌊− log r(u∗, v∗)⌋;

end
y = ⌊− log r(u, v)⌋;
/* y might equals gmax when S[j] ̸= ∅

and r(u, v) < r(u∗, v∗) */
if y > gmax then

n̂← n̂+ 1
q ;

q ← q + 1
k (2

−y − 2−gmax);
end
S[j]← (u, v);
###lu,v ← l;
UpdateTriCounts (+, (u, v));

end
end
###UpdateEdgeLabel (u, v, l);

end

4.3 Estimating the Number of Distinct Edges
We first introduce the HyperLogLog algorithm [15], which esti-

mates the number of distinct items (i.e., cardinality) in large data
streams based on the Flajolet-Martin (FM) sketch. The FM sketch
consists of a list of k integers g1, . . . , gk, initialized to 0. Let g(t)j ,
1 ≤ j ≤ k, be the value of gj at the end of time t. When the tth item
e(t) (e.g., an undirected edge) comes, it maps the item into a pair
of two random variables h(e(t)) and y(e(t)), where h(e(t)) is an
integer uniformly selected from {1, . . . , k} at random and y(e(t))
is drawn from a Geometric(1/2) distribution, supported on the

set {0, 1, 2, . . .}, i.e., P (y(e(t)) = l) = 1
2l+1 for l = 0, 1, 2,

Then, gh(e(t)) is updated as

g(t)
h(e(t))

← max{g(t−1)

h(e(t))
, y(e(t))}.

Let q(t−1) denote the probability of e(t) changing any g1, . . . , gk.
Formally, q(t−1) is defined as

q(t−1) =
k∑

j=1

P (h(e(t)) = j ∧ y(e(t)) > g(t−1)
j)

=

∑k
j=1 2

−g
(t−1)
j

k
.

At the end of time t, Flajolet et al. [15] estimate the number of dis-
tinct items that have been presented in the data stream as n̆(t) =
ρ

q(t)
, where ρ is an appropriate constant to correct for bias. Com-

pared to the HyperLogLog method in [15], Ting [47] gives a more
accurate estimator named streaming HyperLogLog, that is

n̂(t) ← n̂(t−1) +
1(g(t)

h(e(t))
̸= g(t−1)

h(e(t))
)

q(t−1)
.

where 1(P) is the indicator function that equals 1 when the predi-
cate P is true and 0 otherwise. Next, we demonstrate that our algo-
rithm PartitionCT estimates the number of distinct edges (i.e., n(t))
following the same steps as the streaming HyperLoglog method.
We can easily find that PartitionCT has similar data structure as
HyperLogLog. It differs from HyperLogLog by storing a sampled
edge (u, v) in bucket S[h(u, v)] instead of using a variable gh(u,v)
to record y(u, v). Suppose we apply HyperLogLog to estimate n(t)

of the edge stream Π. Given hash functions h and y, then we have

g(t)i = max
(u,v)∈E(t)∧h(u,v)=i

y(u, v), 1 ≤ i ≤ k.

As mentioned, at the end of time t, the sampled edge in bucket
S[i] is (u∗, v∗) = argmin

(u,v)∈E(t)∧h(u,v)=i

r(u, v). Then, we easily

have g(t)i = y(S[i]) = y(u∗, v∗). In addition, PartitionCT uses
a function y(e(t)) = ⌊− log r(e(t))⌋. Then, we easily find that
y(e(t)) ∼ Geometric(1/2) because r(e(t)) ∼ Uniform(0, 1).
Based on the above observations, we easily find that the method of
PartitionCT estimating n̂(t) in Algorithm 1 is equivalent to stream-
ing HyperLoglog [47]. Last, we would like to point out that Parti-
tionCT does not require any extra memory to store g(t)i , because
g(t)i can be directly computed based on the sampled edge in bucket
S[i] at the end of time t. Define

Q(t) = {q(l−1) : g(l)
h(e(l))

̸= g(l−1)

h(e(l))
, 1 ≤ l ≤ t},

and q(t)min = minq∈Q(t) q. Then, we have

THEOREM 2. [47] For any t > 0, the expectation and vari-
ance of n̂(t) given Q(t) are

E(n̂(t)|Q(t)) = n(t),

Var(n̂(t)|Q(t)) =
∑

q∈Q(t),q ̸=q
(t)
min

1− q
q2

+
1

q(t)min

.

The variance of n̂(t) is Var(n̂(t)) ≈ (n(t))2

1.4426k when k ≥ 128.

The above theorem shows that n̂ is an unbiased estimate of n, and
its estimation error decreases as k increases. For example, when
k ≥ 106, we easily have P (| n̂n − 1| ≥ 0.01) ≤ 1

144.26 from
Chebyshev’s inequality [33].

166

4.4 Estimating the Number of Triangles
For any 1 ≤ j ≤ k different edges e1, . . . , ej ∈ E(t), we first

compute the probability of PartitionCT sampling these edges at the
end of time t, i.e. P (e1, . . . , ej ∈ S(t)|e1, . . . , ej ∈ E(t), n(t)).
In what follows we drop two conditions e1, . . . , ej ∈ E(t) and n(t)

for brevity. To compute P (e1, . . . , ej ∈ S(t)), we first define

γ(t)
j =

k(k − 1) · · · (k − j + 1)

n(t)(n(t) − 1) · · · (n(t) − j + 1)
, (1)

β(t)
j = γ(t)

j

(
1−

j∑

i=1

(−1)i−1

(
j
i

)(
1− i

k

)n(t))
. (2)

Then we have

THEOREM 3. For 1 ≤ j ≤ k different edges e1, . . . , ej ∈
E(t), PartitionCT samples them at the end of time t with probability

P (e1, . . . , ej ∈ S(t)) = β(t)
j .

Proof. For any j different edges e1, . . . , ej in E(t), there exist
k(k−1) · · · (k− j+1) different ways to select j different buckets
S[c1], . . . , S[cj] to sample these edges, i.e., S[c1] = e1 ∧ · · · ∧
S[cj] = ej , where c1, . . . , cj ∈ {1, . . . , k} are different to each
other. Thus, we have

P (e1, . . . , ej ∈ S(t))

=
∑

c1,...,cj∈{1,...,k}

P (S[c1] = e1 ∧ · · · ∧ S[cj] = ej). (3)

For any j different buckets S[c1], . . . , S[cj], we first compute the
probability that none of them is empty at the end of time t as

P (S[c1] ̸= ∅ ∧ · · · ∧ S[cj] ̸= ∅)
=1− P (S[c1] = ∅ ∨ · · · ∨ S[cj] = ∅)

=1−
j∑

i=1

(−1)i−1
∑

1≤b1<···<bi≤j

P (S[cb1] = · · · = S[cbi] = ∅)

=1−
j∑

i=1

(−1)i−1

(
j
i

)(
1− i

k

)n(t)

.

The second last equation is obtained by the inclusion-exclusion
principle, and the last equation holds because P (S[cb1] = · · · =
S[cbi] = ∅) =

(
1− i

k

)n(t)

.
Each edge is hashed into a bucket at random, and the ranks of

edges are also random variables and different to each other. Based
on these properties, we can easily find that any j different edges
in E(t) have the same chance to reside in nonempty buckets S[c1],
. . ., S[cj] at the end of time t. There exist n(t)(n(t)−1) · · · (n(t)−
j + 1) ways to select j different edges from all n(t) edges in E(t)

and put them into j different buckets S[c1], . . . , S[cj]. Thus, we
easily have the following equation at the end of time t.

P (S[c1] = e1 ∧ · · · ∧ S[cj] = ej |S[c1] ̸= ∅ ∧ · · ·

∧S[cj] ̸= ∅) =
1

n(t)(n(t) − 1) · · · (n(t) − j + 1)
. (4)

Then, we have

P (S[c1] = e1 ∧ · · · ∧ S[cj] = ej)

=
1−

∑j
i=1(−1)

i−1
(
j
i

) (
1− i

k

)n(t)

n(t)(n(t) − 1) · · · (n(t) − j + 1)
.

(5)

From Eqs. (3) and (5), we have P (e1, . . . , ej ∈ S(t)) = β(t)
j . !

From Theorem 3, we easily find that a triangle in G(t) is sam-
pled by PartitionCT at the end of time t with probability β(t)

3 . We
can easily find that β(t)

3 ≈ γ(t)
3 and β(t)

3 ≈ 1 for n(t) ≫ k
and n(t) ≪ k respectively. Later in Section 4.7, we show that
PartitionCT samples triangles with a larger probability than the
state-of-the-art method FURL [22] under the same memory us-
age, which results in a smaller estimation error. We easily find
that E(ϕ(t)) = β(t)

3 τ (t). Thus, we can approximate β(t)
3 as β̂(t)

3

by substituting n(t) with n̂(t) in Eq. (2), and then estimate τ (t)

as τ̂ (t) = ϕ(t)

β̂
(t)
3

. However, it is difficult to bound the error of

β̂(t)
3 . To solve this challenge, at the end of time t, we compute

C(t) = {c : S[c] ̸= ∅}, the set of non-empty buckets’ IDs, and use
this knowledge to build a more accurate and simpler probabilistic
sampling model of PartitionCT. For example, when k = 10, 000
and there exist |C(t)| = 9, 000 non-empty buckets at the end of
time t, our method PartitionCT can be simply modeled as a method
of sampling 9, 000 distinct edges from all occurred edges before
and including time t at random. Formally, we have

THEOREM 4. At the end of time t, the probability of Parti-
tionCT sampling different edges e1, . . . , ej ∈ E(t) given C(t) is

P (e1, . . . , ej ∈ S(t)|C(t)) = γ(t)
j,C ,

where γ(t)
j,C is defined as

γ(t)
j,C =

|C(t)|(|C(t)|− 1) · · · (|C(t)|− j + 1)

n(t)(n(t) − 1) · · · (n(t) − j + 1)
. (6)

Proof. From Eq. (4), we easily have

P (e1, . . . , ej ∈ S(t)|C(t))

=
∑

c1,...,cj∈{1,...,k}

P (S[c1] ̸= ∅ ∧ · · · ∧ S[cj] ̸= ∅|C(t))×

P (S[c1] = e1 ∧ · · · ∧ S[cj] = ej |S[c1] ̸= ∅ ∧ · · · ∧ S[cj] ̸= ∅)

= γ(t)
j,C . !

From the above theorem, we estimate τ (t) as

τ̂ (t)
C =

ϕ(t)

γ̂(t)
3,C

,

where γ̂(t)
3,C is an estimate of γ(t)

3,C by substituting n(t) with n̂(t) in
Eq. (6).

4.5 Error Analysis
To compute the error of our estimate τ̂ (t)

C , we first define a vari-
able τ (t)

C

τ (t)
C =

ϕ(t)

γ(t)
3,C

,

and derive its expectation and variance given C(t), which are shown
in the following theorem.

THEOREM 5. Define ϑ(t)
3,C = 1

γ
(t)
3,C

− 1, ϑ(t)
5,C =

γ
(t)
5,C

(γ
(t)
3,C)2

− 1,

and ϑ(t)
6,C =

γ
(t)
6,C

(γ
(t)
3,C)2

− 1. Then, we have

E(τ (t)
C |C(t)) = τ (t),

Var(τ (t)
C |C(t)) = τ (t)ϑ(t)

3,C + 2ζ(t)ϑ(t)
5,C + 2η(t)ϑ(t)

6,C , (7)

167

where ζ(t) is the number of unordered pairs of distinct triangles in
∆(t) sharing an edge, and η(t) = 1

2τ
(t)(τ (t) − 1) − ζ(t) is the

number of unordered pairs of distinct triangles in ∆(t) sharing no
edge.

Proof. For a triangle σ in G(t), let ζ(t)σ be a random variable
that equals 1 when all three edges of σ are sampled (i.e., stored in
three different buckets) at the end of time t and 0 otherwise. From
Theorem 4, we have E(ζ(t)σ |C(t)) = γ(t)

3,C . Thus, we obtain

E(τ (t)
C |C(t)) = E

(∑
σ∈∆(t) ζ

(t)
σ

γ(t)
3,C

|C(t)

)
= τ (t).

We compute the variance of τ (t)
C given C(t) as

Var(τ (t)
C |C(t)) = Var

(∑
σ∈∆(t) ζ

(t)
σ

γ(t)
3,C

|C(t)

)

=

∑
σ,σ∗∈∆(t) Cov(ζ(t)σ , ζ(t)σ∗ |C(t))

(γ(t)
3,C)

2

=

∑
σ∈∆(t) Var(ζ(t)σ |C(t))

(γ(t)
3,C)

2
+

∑
σ,σ∗∈∆(t),σ ̸=σ∗ E(ζ(t)σ ζ(t)σ∗ |C(t))− E(ζ(t)σ |C(t))E(ζ(t)σ∗ |C(t))

(γ(t)
3,C)

2
.

From Theorem 4, we easily have

Var(ζ(t)σ |C(t)) = γ(t)
3,C − (γ(t)

3,C)
2,

E(ζ(t)σ |C(t))E(ζ(t)σ∗ |C(t)) = (γ(t)
3,C)

2,

E(ζ(t)σ ζ(t)σ∗ |C(t)) =

{
γ(t)
5,C , triangles σ and σ∗ share one edge,

γ(t)
6,C , triangles σ and σ∗ share no edge.

Recalling the definition of ϑ(t)
3,C , ϑ(t)

5,C , ϑ(t)
6,C , ζ(t), and η(t), we

easily obtain Eq. (7) based on the above equations. !

THEOREM 6. For any ϵ > 0 and ε > 0, define

ϵ3 = (1 + ϵ) · (1 + ϵ)n(t) − 1

n(t) − 1
· (1 + ϵ)n(t) − 2

n(t) − 2
− 1,

ϵ∗ = ϵ3 + ε+ ϵ3ε.

Then, we have

P (| τ̂
(t)
C

τ (t)
− 1| < ϵ∗|C(t), Q(t))

> 1− Var(n̂(t)|Q(t))

(ϵn(t))2
− Var(τ (t)

C |C(t))

(ετ (t))2
,

where Var(n̂(t)|Q(t)) and Var(τ (t)
C |C(t)) are given in Theorems 2

and 5 respectively. When n(t) ≫ 1, and ϵ and ε are close to 0, we
have ϵ∗ ≈ ε+ 3ϵ.

Proof. Theorem 4 indicates that P (S(t)|C(t)) is independent with
Q(t), so we have P (τ (t)|C(t), Q(t)) = P (τ (t)|C(t)). From Cheby-
shev’s inequality [33], then we have

P (|τ
(t)
C

τ (t)
− 1| < ε|C(t), Q(t)) > 1− Var(τ (t)

C |C(t), Q(t))

(ετ (t))2

= 1− Var(τ (t)
C |C(t))

(ετ (t))2
. (8)

Let s(t)3 = n̂(t)(n̂(t)−1)(n̂(t)−2)

n(t)(n(t)−1)(n(t)−2)
. We easily find that τ̂ (t)

C = τ (t)
C s(t)3 .

When n̂(t) ≈ n(t), we have s(t)3 ≈ 1 and τ̂ (t)
C ≈ τ (t)

C . To get a con-
fidence interval of τ̂ (t)

C with respect to τ (t)
C , we first bound the value

of s(t)3 − 1. From Chebyshev’s inequality [33], we have

P (| n̂
(t)

n(t)
− 1| < ϵ|C(t), Q(t)) > 1− Var(n̂(t)|C(t), Q(t))

(ϵn(t))2

= 1− Var(n̂(t)|Q(t))

(ϵn(t))2
,

where the last equation holds because n̂(t) only depends on the
values of elements in Q(t). When | n̂(t)

n(t) − 1| < ϵ, we easily have
−ϵ3 < s(t)3 − 1 < ϵ3. Thus, we obtain

P (−ϵ3 < s(t)3 − 1 < ϵ3|C(t), Q(t)) > 1− Var(n̂(t)|Q(t))

(ϵn(t))2
. (9)

Since 1− ϵ∗ < (1− ε)(1− ϵ3), we have

P (| τ̂
(t)
C

τ (t)
− 1| < ϵ∗|C(t), Q(t))

= P (1− ϵ∗ <
τ (t)
C s(t)3

τ (t)
< 1 + ϵ∗|C(t), Q(t))

> P ((1− ε)(1− ϵ3) <
τ (t)
C s(t)3

τ (t)
< (1 + ϵ)(1 + ϵ3)|C(t), Q(t))

> P (|τ
(t)
C

τ (t)
− 1| < ε ∧ |s(t)3 − 1| < ϵ3|C(t), Q(t)).

From the inclusion-exclusion principle and inequalities (8)-(9), we
have

P (|τ
(t)
C

τ (t)
− 1| < ε ∧ |s(t)3 − 1| < ϵ3|C(t), Q(t))

= P (|τ
(t)
C

τ (t)
− 1| < ε|C(t), Q(t)) + P (|s(t)3 − 1| < ϵ3|C(t), Q(t))

− P (|τ
(t)
C

τ (t)
− 1| < ε ∨ |s(t)3 − 1| < ϵ3|C(t), Q(t))

> 1− Var(n̂(t)|Q(t))

(ϵn(t))2
− Var(τ (t)

C |C(t))

(ετ (t))2
. !

4.6 Memory and Computational Complexities
Similar to [22, 30, 44], we use a hash table to store each pair

of u and N (t)
u,S to speed up the calculation of N (t)

u,v,S = N (t)
u,S ∩

N (t)
v,S . Besides S[1], . . . , S[k], PartitionCT also needs about 2

lf

times more memory for the hash table with load factor lf , which
is usually set to 0.7. Next, we discuss the computational complex-
ity of PartitionCT. To determine whether to sample a coming edge
(u, v), PartitionCT only requires to compute h(u, v) and the ranks
of both (u, v) and the edge currently in bucket S[h(u, v)], so the
computational complexity in each edge’s sampling process is O(1).

168

For task 1, we also need to update the triangle counter when sam-
pling an edge. Suppose the tth edge in G(t) is e(t) = (u, v), and
d(t)u and d(t)v edges presented so far are incident to nodes u and
v respectively. Then, d(t)u k/n(t) and d(t)v k/n(t) sampled edges
are expected to be incident to u and v respectively. Therefore,
the computational complexity of updating the triangle counter is
O
(
(d(t)u + d(t)v)k/n(t)

)
when inserting e(t) into S[h(u, v)]. We

compute the number of insertions by the end of time t as: When
l − 1 distinct edges were presented so far, the probability of sam-
pling the lth distinct edge is k

l (1 − (1 − 1
k)

l). Thus, the expected

number of insertions is at most
∑n(t)

l=1 k/l ≈ k lnn(t). For task
2, we compute the number of triangles in a graph consisting of k
sampled edges only at the end of tmax.

4.7 Discussion
PartitionCT vs MinHash Sketches. To some extent, our method
PartitionCT and FURL [22] can be viewed as variants of MinHash
sketches [11, 16] and inherit their properties, which have been ex-
tensively used for estimating the number of distinct items in a large
data stream [4, 11, 16, 47], intersections of item sets [11], and dis-
tances between nodes in a large graph [12]. To sample k items,
MinHash comes in three flavors with respect to sampling schemes:
1) k-min sketch [16] uses k independent random rank assignments,
and it samples the data item with the smallest rank for each rank
assignment; 2) bottom-k sketch [11] uses only one random rank
assignment and samples k data items with the smallest ranks; 3) k-
partition sketch [16] also uses only one random rank assignment.
It hashes data items into k buckets at random. Among all data items
hashed into a bucket, the bucket only keeps track of the data item
with the smallest rank. We can easily find that k-partition sketch
is faster than k-min and bottom-k sketches. k-min sketch is pro-
hibitive for processing high-speed data streams when k reaches to
thousands or millions, because it requires to compute k rank values
for processing each data item. PartitionCT (resp. FURL) extends
k-partition (resp. bottom-k) sketch to estimate the number of trian-
gles in a large graph stream.
PartitionCT vs FURL. Jung et al. [22] develop two algorithms
FURL-MB and FURL-MXB to solve the problem studied in this
paper, which directly extend TRIÉST-BASE [44] by combining
reservoir and hash-based sampling techniques. We only compare
PartitionCT with FURL-MB, because it is unknown how to choose
the optimal decay parameter of FURL-MXB and their experimen-
tal results indicate that the accuracy of FURL-MXB is slightly bet-
ter (sometimes even worse) than FURL-MB. FURL-MB is simply
called FURL in this paper. As mentioned in Section 3, FURL [22]
with the same k (i.e., the maximum number of sampled edges) re-
quires about 3 times more memory space than PartitionCT. Par-
titionCT samples each coming edge with a small computational
complexity O(1). In contrary, FURL has a high computational
complexity O(log k) when deleting an edge from the Fibonacci
heap used for storing sampled edges. We compute the number
of edge deletions as: When l − 1 > k distinct edges were pre-
sented so far, we obtain the probability of sampling the lth distinct
edge (trigger an edge deletion) is k

l from [22, 44]. Thus, the ex-

pected number of edge deletions is
∑n(t)

l=k+1
k
l ≈ k ln n(t)

k . Our
method PartitionCT reduces the computational complexity of sam-
pling these edges from O(k ln n(t)

k log k) to O(k). Next, we com-
pare the probabilities of PartitionCT and FURL sampling triangles
under the same memory usage. At the end of any time t, the proba-
bility of FURL sampling a triangle in G(t) is α(t)

3 = min{1, γ(t)
3 },

where γ(t)
3 has the same definition as in Eq. (1). As mentioned in

Theorem 3, PartitionCT samples a triangle in G(t) with probability
β(t)
3 at the end of time t. Figure 2 shows the values of α(t)

3 and β(t)
3

for different n(t). We observe α(t)
3 ≈ β(t)

3 when k ≫ n(t) and
k ≪ n(t). As mentioned, FURL requires several times (about 3
times) as much memory space as PartitionCT for the same k. Fig-
ure 2 shows that β(t)

3 with k = 1, 000 is 8 and 9 times larger than
α(t)
3 with k = 500 and k = 333 respectively, when n(t) > 2, 000.

It indicates that PartitionCT samples more edges and tends to sam-
ple more triangles than FURL under the same memory usage. This
results in a smaller estimation error, which is consistent to our ex-
perimental results in Section 6.

100 101 102 103 104 105
10−8

10−6

10−4

10−2

100

n(t)

β3
(t), k=1,000

α3
(t), k=1,000

α3
(t), k=500

α3
(t), k=333

Figure 2: PartitionCT (α(t)
3) vs FURL (β(t)

3): the probability of
sampling a triangle in G(t).

5. ESTIMATING THE TRIANGLE COUNT
FOR DIRECTED GRAPH STREAMS

In this section, we extend our algorithm PartitionCT to estimate
directed triangle counts (i.e., τ (1,t), . . . , τ (7,t)).
Update procedure. As shown in Algorithm 1, PartitionCT can be
easily extended to estimate the number of directed triangles in a
large graph stream. The major difference is: the labels of edges in
graph G(t)

S may vary with time. For example, for an edge (u, v,→)
coming at time t, suppose an edge (u, v,←) has already occurred
and been stored in one of buckets S[1], . . . , S[k], then lu,v turns
from← to↔ at the end of time t. Therefore, we keep track of the
labels of edges in S[1], . . . , S[k] over time, which is achieved by a
function UpdateEdgeLabel in Algorithm 2. For i = 1, . . . , 7, let
φ(i,t) denote the number of ith type directed triangles in G(t)

S at the
end of time t. We can easily observe that φ(i,t) may change when
the label of edge (u, v) changes. For task 3, similar to undirected
PartitionCT, we maintain a counter φ(i) to track φ(i,t) dynamically.
That is, function UpdateTriCounts(±, (u, v)) in Algorithm 1 is
defined as: For each node w in N (t)

u,v,S = N (t)
u,S ∩N (t)

v,S , we update
counter φ(i) ← φ(i) ± 1 when the induced subgraph consisting of
nodes u, v, and w in G(t)

S is a triangle of the ith type. Each counter
φ(i) is initialized as zero. Instead of computing φ(i,t) over time, we
only compute φ(i,tmax) at the end of tmax for task 4.
Directed triangle count estimation. For i = 1, . . . , 7, we define
ϕ(i,t) as the number of directed triangles of the ith type in S(t).
Then, we estimate τ (i,t) as

τ̂ (i,t)
C =

ϕ(i,t)

γ̂(t)
3,C

,

where γ̂(t)
3,C has the same definition as in Section 4.

169

Algorithm 2: UpdateEdgeLabel(u, v, l).

l∗ ← ComputeEdgeLabel(lu,v, l);
if lu,v ̸= l∗ then

UpdateTriCounts (−, (u, v));
lu,v ← l∗;
UpdateTriCounts (+, (u, v));

end

Error analysis. Similar to our analysis for undirected graphs in the
last section, we first define a variable

τ (i,t)
C =

ϕ(i,t)

γ(t)
3,C

to compute the error of our estimate τ̂ (i,t)
C . Let ζ(i,t) denote the

number of unordered pairs of distinct triangles in ∆(i,t) sharing an
edge, and η(i,t) = 1

2τ
(i,t)(τ (i,t)−1)−ζ(i,t) denote the number of

unordered pairs of distinct triangles in ∆(i,t) that do not share any
edge. Then we have

THEOREM 7. For any 1 ≤ i ≤ 7, we have

E(τ (i,t)
C |C(t)) = τ (i,t),

Var(τ (i,t)
C |C(t)) = τ (i,t)ϑ(t)

3,C + 2ζ(i,t)ϑ(t)
5,C + 2η(i,t)ϑ(t)

6,C , (10)

where variables ϑ(t)
3,C , ϑ(t)

5,C , and ϑ(t)
6,C have the same definitions as

in Theorem 5.

THEOREM 8. For any 1 ≤ i ≤ 7, ϵ > 0, and ε > 0, we have

P (| τ̂
(i,t)
C

τ (i,t)
− 1| < ϵ∗|C(t), Q(t))

> 1− Var(n̂(t)|Q(t))

(ϵn(t))2
− Var(τ (i,t)

C |C(t))

(ετ (i,t))2
,

where Var(n̂(t)|Q(t)) and Var(τ (i,t)
C |C(t)) are given in Theorems 2

and 7 respectively, and ϵ∗ has the same definition as in Theorem 6.

We omit the proofs of Theorems 7 and 8, which are similar to the
proofs of Theorems 5 and 6 respectively.

6. EVALUATION
We evaluate the performance of our method PartitionCT on sev-

eral real-world graphs with up to a billion edges for the four tasks
in Section 2. The algorithms are implemented in C++, and run
on a computer with a Quad-Core Intel(R) Xeon(R) CPU E3-1226
v3 CPU 3.30GHz processor. We compare our method PartitionCT
with four state-of-the-art methods: TRIÉST [44], MASCOT [30],
FURL [22], and MG-Triangle [19]. For TRIÉST, both of its ba-
sic TRIÉST-BASE and improved TRIÉST-IMPR variants are con-
sidered. MASCOT has three variants: MASCOT-C, MASCOT-A,
and MASCOT-I (MASCOT-I has no suffix and is simply called
MASCOT in [30], while here we add the -I suffix to avoid con-
fusion). [44] reveals that the variant MASCOT-A may be forced to
store the entire graph stream, so we do not consider it in this paper.

6.1 Datasets
We perform our experiments on a variety of publicly available

real-world directed graphs, which are summarized in Table 2. Un-
like the first four graph files, a directed edge (e.g. (u, v,←)) may

occur more than once in the last four graph files. In the experiment
on undirected graphs (Section 4.3), we discard edge directions of
these graphs.

Table 2: Graph datasets used in our experiments.
graph nodes edges distinct edges triangles

Flickr [32] 2.3M 33M 23M 838M
LiveJournal [32] 4.3M 69M 43M 286M

YouTube [32] 1.1M 4.9M 3.0M 3.1M
Twitter [27] 42M 1.5B 1.2B 34.8B

wiki-Talk [29] 0.2M 1.2M 0.6M 1.9M
Actor [25] 0.4M 33M 15M 346M
Baidu [25] 0.4M 3.3M 2.4M 14M

DBLP-M [25] 1.3M 18M 5.2M 12M

6.2 Comparison Models
In this subsection, we introduce a model used to compare our

method with state-of-the-art methods.
Modify MASCOT and TRIÉST to deal with edge duplicates.
Except MG-Triangle and FURL, MASCOT and TRIÉST are not
designed for estimating the number of triangles in a large graph
stream including edge duplicates. As mentioned in Section 1, we
can easily modify MOSCOT-C by using the hash-based sampling
to uniformly sample distinct edges from the graph stream. Meth-
ods MASCOT-I, TRIÉST-BASE, and TRIÉST-IMPR cannot be ex-
tended in this way, therefore we simply combine them with a Bloom
filter to handle edge duplicates, which is also recommended in [30].
Initialize all methods under the same memory space. As men-
tioned, MASCOT-C, MASCOT-I, and MG-Triangle sample edges
(or wedges) with a fixed probability, so they have no guarantee on
the amount of memory used when the graph stream Π comes con-
tinuously and the amount of edges is unpredictable. To make a
fair comparison, we devise the following experiment. First, we run
MG-Triangle for 100 times with the same values of parameters α
(edge sampling probability) and β (wedge sampling probability)
and compute the average number of edges and wedges sampled at
the end of Π, which are denoted as M1 and M2 respectively. To
achieve the same memory usage, we set k = M1 + 2M2 for Par-
titionCT. As mentioned in Section 4.7, FURL requires three times
as much memory space as PartitionCT when setting the same k.
Therefore, we set k = 1

3 (M1 + 2M2) for FURL to achieve the
same memory usage. In our experiments, we also compare Parti-
tionCT and FURL with the same k. For MASCOT-C, the expected
number of edges it sampled at the end of Π is p|E(tmax)|, where p is
the edge sampling probability specified by users in advance. There-
fore, we set p = M1+2M2

|E(tmax)| for MASCOT-C. For MASCOT-I com-

bined with a Bloom filter, we set p = (M1+2M2)(1−fBloom)

|E(tmax)| , where
fBloom is the fraction of memory space allocated for the Bloom fil-
ter. For TRIÉST-BASE and TRIÉST-IMPR, similarly, we set both
their reservoir sizes as k = (M1 + 2M2)(1 − fBloom), where k
refers to the parameter M in the original work [44].

In our experiments, we set α = 0.01, β = 0.1, and fBloom = 0.7
as the default values. The default memory usage of a sampling
method such as PartitionCT, MASCOT, FURL, TRIÉST, and MG-
Triangle is determined by these default values according to the
above comparison model.

6.3 Performance on Undirected Edge Streams
Estimation of the triangle count. Figure 3 shows the evolution
(over time) of the estimation computed by our method PartitionCT

170

0 1 2 3 4 5 6 7
x 107

0

1

2

3

4 x 108

t

Tr
ia

ng
le

 C
ou

nt

ground truth
avg est.
max est.
min est.

(a) LiveJournal

0 5 10 15
0

2

4

6 x 1010

t
Tr

ia
ng

le
 C

ou
nt

avg est.
max est.
min est.

x 108

(b) Twitter

Figure 3: Estimation of the triangle count over time by our
method PartitionCT with k = 5, 000, 000. The max/min/avg
estimation is computed over twenty runs.

with k = 5, 000, 000. The curve of our estimation is almost in-
distinguishable from the ground truth of LiveJournal. For the very
large graph Twitter, using less than 0.5% sampled edges, our method
also has small relative variances. Due to the extensive computation,
we do not provide the ground truth of τ (t) over time for Twitter
in figure 3. For task 2, we compute the ground truth τ (τmax) =
3.5× 1010. Each of our twenty estimations has a relative error less
than 0.08, i.e., |τ̂max − τmax| < 0.08τmax.
Comparison with the state-of-the-art methods. For task 1, sim-
ilar to [44], we use a metric MAPE (Mean Average Percentage Er-
ror) to assess the accuracy of triangle count estimations over time.
Formally, the MAPE of estimate τ̂ (t) with respect to its true value
τ (t) is defined as 1

tmax

∑tmax
t=1 | τ(t)−τ̂(t)

τ(t) |. For task 2, similarly, we

use a metric APE (Absolute Percentage Error) | τ(tmax)−τ̂(tmax)

τ(tmax) | to
assess the accuracy of τ̂ (tmax). We run each method twenty times to
compute the average MAPE and APE for tasks 1 and 2 respectively.

Figure 4 shows the accuracy of our method PartitionCT in com-
parison with state-of-the-art methods under the same memory us-
age, where we set α = 0.01 and β = 0.1 for MG-Triangle (later we
will also compare PartitionCT with MG-Triangle with different α
and β). On average, all these methods sample up to 1.3% of distinct
edges in LiveJournal. For task 1, as shown in figure 4(a), TRIÉST-
BASE, TRIÉST-IMPR, and MASCOT-I fail to provide an accurate
estimation, and their estimates have average MAPEs larger than
0.6 for different fBloom. The average MAPEs of MASCOT-C and
FURL are about 0.15 and 0.08 respectively. MG-Triangle further
reduces the average MAPE to 0.05. PartitionCT is the best one,
reducing the average MAPE to 0.03. For task 2, PartitionCT and
MG-Triangle almost have the same APE, and they are several times
more accurate than the other methods. Table 3 shows the average
MAPE and APE of our method PartitionCT in comparison with
MOSCOT-C, MG-Triangle, and FURL on more real-world graphs
for both tasks 1 and 2. For task 1 (resp. task 2), PartitionCT has
an average MAPE (resp. APE) up to 6, 3, and 3 times (resp. 3, 4,
and 3 times) smaller than MOSCOT-C, MG-Triangle, and FURL
respectively.

Figure 5 shows the performance of our method PartitionCT on
LiveJournal in comparison with FURL with the same 106 ≤ k ≤
8 × 106 and MASCOT-C with the same memory usage. To avoid
storing duplicate edges, we use a hash table to speed up the compu-
tation of determining whether a coming edge has been sampled for
both MASCOT-C and FURL. PartitionCT is slightly more accurate
than FURL for both tasks 1 and 2. However it reduces the com-
putational cost of FURL by up to 2 and 4 times for tasks 1 and 2
respectively. Note that here FURL (with the same k as PartitionCT)

(a) task 1

(b) task 2

Figure 4: (LiveJournal) Average MAPE of our method Par-
titionCT in comparison with state-of-the-art methods MAS-
COT, TRIÉST, FURL, and MG-Triangle with α = 0.01 and
β = 0.1 under the same memory usage (about 0.01|E(tmax)|).
To deal with duplicate edges, we modify MASCOT-I, TRIÉST-
BASE, and TRIÉST-IMPR by using a Bloom filter, and modify
MASCOT-C by using hash-based sampling.

requires 3 times as much memory usage as PartitionCT. Compared
to MOSCOT-C, PartitionCT is 4 times more accurate but 1.2-2.7
times slower for task 1, and is 2 times more accurate and has the
same computational cost for task 2. MOSCOT-C outperforms Par-
titionCT and FURL in terms of computational time for task 1, but
it exhibits much larger errors and has no guarantee on the amount
of memory usage for evolving graph streams.

It is unknown how to compute the optimal values of α and β for
MG-Triangle. Therefore, we also compare our method PartitionCT
with MG-Triangle with different α and β. The result is shown in
figure 6. We omit results for pairs of α and β above the black
dashed line in figure 6, because MG-Triangle with any of these
pairs requires more memory usage than that is required for storing
the entire distinct edges. Compared to MG-Triangle with different
α and β, our method PartitionCT is 5 to 50 times more accurate
and 30 to 1,200 times faster than MG-Triangle for task 1. We omit
similar results of task 2.
Performance vs the order of edges and duplication ratio. To
assess the impact of the order of edges in the graph stream and
different duplication ratios on the accuracy of our algorithm, we
generate a graph by randomly repeating each edge in WikiTalk a
few times drawn from a distribution Geometric(1/b), where b is

171

0 2 4 6 8
x 106

10−3

10−2

10−1

100

k

av
g.

M
AP

E

PartitionCT
FURL
MOSCOT−C

(a) task 1, average MAPE

0 2 4 6 8
x 106

101

102

103

k
Ti

m
e

(s
ec

on
d)

PartitionCT
FURL
MOSCOT−C

(b) task 1, time cost

0 2 4 6 8
x 106

10−3

10−2

10−1

100

k

av
g.

AP
E

PartitionCT
FURL
MOSCOT−C

(c) task 2, average APE

0 2 4 6 8
x 106

101

102

103

k

Ti
m

e
(s

ec
on

d)

PartitionCT
FURL
MOSCOT−C

(d) task 2, time cost

Figure 5: (LiveJournal) PartitionCT vs FURL (with the same k as PartitionCT) vs MOSCOT-C (with the same memory usage as
PartitionCT). In this experiment, the memory usage of FURL is 3 times larger than PartitionCT.

Table 3: Average MAPE and APE of triangle count estimation under the same memory usage (we set α = 0.01 and β = 0.1 for
MG-Triangle) for tasks 1 and 2 respectively.

graph task 1 task 2
MOSCOT-C MG-Triangle FURL PartitionCT MOSCOT-C MG-Triangle FURL PartitionCT

Flickr 0.092 0.057 0.038 0.017 0.054 0.022 0.058 0.02
LiveJournal 0.14 0.062 0.080 0.027 0.054 0.026 0.13 0.025

YouTube 0.32 0.28 0.25 0.10 0.21 0.21 0.34 0.18
Wiki-Talk 0.054 0.40 0.025 0.019 0.035 0.21 0.047 0.025

Actor 0.12 0.035 0.034 0.021 0.07 0.016 0.051 0.015
Baidu 0.037 0.36 0.027 0.021 0.020 0.095 0.043 0.017

DBLP-M 0.36 0.14 0.33 0.10 0.20 0.11 0.48 0.11

0.01 0.2 0.4 0.6 0.8 1
0.005

0.02

0.035

0.05

β

α

5 20 35 50

(a) MAPE of MG-Triangle
MAPE of PartitionCT

0.01 0.2 0.4 0.6 0.8 1
0.005

0.02

0.035

0.05

β

α

30 400 800 1200

(b) time cost of MG-Triangle
time cost of PartitionCT

Figure 6: (WikiTalk, Task 1) PartitionCT vs MG-Triangle with
different α and β under the same memory usage. We omit re-
sults for pairs of α and β above the black dashed line, because
MG-Triangle with any of these pairs requires more memory
usage than that is required for storing the entire distinct edges.

the duplication ratio (i.e., the expected number of duplicates gen-
erated for each edge), then randomly shuffle the generated edge
stream. From figure 7, we can see that our method PartitionCT
is consistently more accurate than MOSCOT-C, MG-Triangle and
FURL for different b.

6.4 Performance on Directed Edge Streams
Next, we evaluate the performance of our methods on directed

graphs. To the best of our knowledge, no sampling method has
been given to estimating the number of directed triangles from large
directed graph streams. Figure 8 shows the estimations by Parti-
tionCT on LiveJournal and Twitter. We set k = 5, 000, 000 and
k = 10, 000, 000 for LiveJournal and Twitter respectively. For
LiveJournal, the curve of estimation is very close to the ground

1 20 40 60 80 10010−2

10−1

100

duplication ratio b

Av
g.

M
AP

E

FURL
PartitionCT
MG−Triangle
MOSCOT−C

(a) task 1

1 20 40 60 80 10010−2

10−1

100

duplication ratio b

Av
g.

AP
E

FURL
PartitionCT
MG−Triangle
MOSCOT−C

(b) task 2

Figure 7: (WikiTalk) Average MAPE and APE of our method
PartitionCT in comparison with MOSCOT-C, MG-Triangle,
and FURL with different duplication ratio b under the same
memory usage. We set α = 0.01 and β = 0.1 for MG-Triangle.

truth for each type of directed triangles. The estimation of the type-
1 triangle (i.e., the directed cycle) count exhibits a larger error than
the other types of directed triangles, because triangles of type-1 are
about 2 orders of magnitude less than triangles of the other types
in LiveJournal. The MAPE and APE are 0.007 and 0.045 for tasks
3 and 4. For the graph stream of Twitter, a user with more follow-
ers (incoming edges) has smaller node IDs and all of its incoming
edges occur earlier than its outgoing edges in the stream. Therefore,
there exist a large number of type-2 and type-5 triangles at the be-
ginning of the graph stream, which are mainly generated by friend
nodes with the same popular followings (e.g., Lady Gaga). Friends
tend to have the same popular followings and common friends on
Twitter, therefore, later a large fraction of type-2 triangles trans-
fer to triangles of type-4, and a large fraction of type-5 triangles
transfer to triangles of type-6 and type-7.

172

0 2 4 6 8
x 107

0

1

2

3 x 105

t

Tr
ia

ng
le

 C
ou

nt

ground truth
avg.PartitionCT
min.PartitionCT
max.PartitionCT

(a) LiveJournal, type-1

0 2 4 6
x 107

0

2

4

6 x 107

t

Tr
ia

ng
le

 C
ou

nt

(b) LiveJournal, type-2

0 2 4 6
x 107

0

2

4

6
x 106

t

Tr
ia

ng
le

 C
ou

nt

(c) LiveJournal, type-3

0 2 4 6
x 107

0

2

4 x 107

t

Tr
ia

ng
le

 C
ou

nt

(d) LiveJournal, type-4

0 2 4 6
x 107

0

2

4

x 107

t

Tr
ia

ng
le

 C
ou

nt

(e) LiveJournal, type-5

0 2 4 6
x 107

0

5

10 x 107

t

Tr
ia

ng
le

 C
ou

nt

(f) LiveJournal, type-6

0 2 4 6
x 107

0

5

10 x 107

t

Tr
ia

ng
le

 C
ou

nt

(g) LiveJournal, type-7

0 5 10 15
0

5

10

15 x 107

t

Tr
ia

ng
le

 C
ou

nt

avg.PartitionCT
min.PartitionCT
max.PartitionCT

x 108

(h) Twitter, type-1

0 5 10 15
0

2

4

6 x 109

t

Tr
ia

ng
le

 C
ou

nt

x 108

(i) Twitter, type-2

0 5 10 15
0

5

10

15 x 108

t

Tr
ia

ng
le

 C
ou

nt

x 108

(j) Twitter, type-3

0 5 10 15
0

1

2

3 x 109

t

Tr
ia

ng
le

 C
ou

nt

x 108

(k) Twitter, type-4

0 5 10 15
0

5

10 x 109

t

Tr
ia

ng
le

 C
ou

nt

x 108

(l) Twitter, type-5

0 5 10 15
0

5

10 x 109

t

Tr
ia

ng
le

 C
ou

nt

x 108

(m) Twitter, type-6

0 5 10 15
0

1

2 x 1010

t

Tr
ia

ng
le

 C
ou

nt

x 108

(n) Twitter, type-7

Figure 8: Estimation of the number of directed triangles over time by PartitionCT. We set k = 5, 000, 000 and k = 10, 000, 000.

7. CONCLUSIONS AND FUTURE WORK
We develop a one-pass streaming method PartitionCT to fast ap-

proximate the number of triangles in a large graph stream includ-
ing edge duplicates without storing the entire graph. To handle
edge duplicates, our method PartitionCT randomly assigns differ-
ent ranks for different edges and hashes edges in the graph stream
into k buckets, where k is the maximum number of sampled edges
specified in advance. All duplicates of an edge are hashed into the
same bucket and have the same rank value. At any time, a bucket
holds only one edge and keeps track of the edge with the small-
est rank among all edges presented so far that are hashed into the
bucket, which requires a small computational time O(1) for pro-
cessing each edge in the graph stream. We develop an accurate
method to estimate the number of triangles based on edges stored
in all buckets over time. We conduct experiments on a variety of
real-world large graphs, and experimental results demonstrate that
PartitionCT is several times more accurate than FURL and other
state-of-the-art methods with the same memory usage, and is better
than or comparable to FURL on estimation accuracy but signifi-
cantly outperforms FURL in terms of running time and memory

usage when setting the same maximum number of sampled edges.
Our method PartitionCT is limited to handle graph streams (e.g.,
streams of network traffic and calling records) without edge dele-
tions. In future, we plan to develop triangle counting methods for
centralized (i.e., streams of edges observed at a single site) and
distributed (i.e., streams of edges observed at multiple distributed
sites) fully-dynamic graph streams including edge additions, dele-
tions, and duplicates.

Acknowledgment
The research presented in this paper is supported in part by Na-
tional Natural Science Foundation of China (U1301254, 61603290,
61602371), 111 International Collaboration Program of China, Min-
istry of Education&China Mobile Research Fund (MCM20160311),
Natural Science Foundation of Jiangsu Province (SBK2014021758),
Prospective Joint Research of Industry-Academia-Research Joint
Innovation Funding of Jiangsu Province (BY2014074), Shenzhen
Basic Research Grant (JCYJ20160229195940462), China Postdoc-
toral Science Foundation (2015M582663), Natural Science Basic
Research Plan in Shaanxi Province of China (2016JQ6034).

173

8. REFERENCES
[1] N. Ahmed, N. Duffield, J. Neville, and R. Kompella. Graph

sample and hold: A framework for big-graph analytics. In
SIGKDD, pages 1446–1455, 2014.

[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17:354–364, 1997.

[3] S. Arifuzzaman, M. Khan, and M. Marathe. Patric: A
parallel algorithm for counting triangles in massive
networks. In CIKM, pages 529–538, 2013.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
RANDOM, pages 1–10, 2002.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting
triangles in graphs. In SODA, pages 623–632, 2002.

[6] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
algorithms for large-scale local triangle counting. TKDD,
4(3):13, 2010.

[7] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A.
Phillips. Tolerating the community detection resolution limit
with edge weighting. Physical Review E, 83(5):056119+,
2011.

[8] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. CACM, 13(7):422–426, 1970.

[9] L. S. Buriol, G. Frahling, S. Leonardi,
A. Marchetti-Spaccamela, and C. Sohler. Counting triangles
in data streams. In PODS, pages 253–262, 2006.

[10] H. Chun, Y. yeol Ahn, H. Kwak, S. Moon, Y. ho Eom, and
H. Jeong. Comparison of online social relations in terms of
volume vs. interaction: A case study of cyworld. In IMC,
pages 57–70, 2008.

[11] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. Syst. Sci.,
55(3):441–453, 1997.

[12] E. Cohen. All-distances sketches, revisited: Hip estimators
for massive graphs analysis. In PODS, pages 2320–2334,
2014.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[14] J.-P. Eckmann and E. Moses. Curvature of co-links uncovers
hidden thematic layers in the world wide web. PNAS,
99(9):5825–5829, 2002.

[15] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: The analysis of a near-optimal cardinality
estimation algorithm. In AOFA, pages 127–146, 2007.

[16] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[17] I. Giechaskiel, G. Panagopoulos, and E. Yoneki. PDTL:
parallel and distributed triangle listing for massive graphs. In
ICPP, pages 370–379, 2015.

[18] X. Hu, Y. Tao, and C.-W. Chung. Massive graph
triangulation. In SIGMOD, pages 325–336, 2013.

[19] M. Jha, A. Pinar, and C. Seshadhri. Counting triangles in
real-world graph streams: Dealing with repeated edges and
time windows. In ACSSC, pages 1507–1514, 2015.

[20] M. Jha, C. Seshadhri, and A. Pinar. A space efficient
streaming algorithm for triangle counting using the birthday
paradox. In SIGKDD, pages 589–597, 2013.

[21] H. Jowhari and M. Ghodsi. New streaming algorithms for

counting triangles in graphs. In COCOON, pages 710–716,
2005.

[22] M. Jung, S. Lee, Y. Lim, and U. Kang. FURL: fixed-memory
and uncertainty reducing local triangle counting for graph
streams. CoRR, abs/1611.06615, 2016.

[23] U. Kang, B. Meeder, E. E. Papalexakis, and C. Faloutsos.
Heigen: Spectral analysis for billion-scale graphs. TKDE,
26(2):350–362, 2014.

[24] J. Kim, W.-S. Han, S. Lee, K. Park, and H. Yu. Opt: A new
framework for overlapped and parallel triangulation in
large-scale graphs. In SIGMOD, pages 637–648, 2014.

[25] J. Kunegis. Handbook of network analysis [KONECT - the
koblenz network collection]. CoRR,
abs/1402.5500:1343–1350, 2014.

[26] K. Kutzkov and R. Pagh. On the streaming complexity of
computing local clustering coefficients. In WSDM, pages
677–686, 2013.

[27] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600,
2010.

[28] M. Latapy. Main-memory triangle computations for very
large (sparse (power-law)) graphs. TCS, 407(1-3):458–473,
2008.

[29] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting
positive and negative links in online social networks. In
WWW, pages 641–650, 2010.

[30] Y. Lim and U. Kang. MASCOT: memory-efficient and
accurate sampling for counting local triangles in graph
streams. In SIGKDD, pages 685–694, 2015.

[31] R. Milo, E. Al, and C. Biology. Network motifs: Simple
building blocks of complex networks. Science,
298(5549):824–827, 2002.

[32] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In IMC, pages 29–42, 2007.

[33] M. Mitzenmacher and E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, New York, NY, USA, 2005.

[34] R. Pagh and F. Silvestri. The input/output complexity of
triangle enumeration. In PODS, pages 224–233, 2014.

[35] H. Park, S. Myaeng, and U. Kang. PTE: enumerating trillion
triangles on distributed systems. In SIGKDD, pages
1115–1124, 2016.

[36] H.-M. Park and C.-W. Chung. An efficient mapreduce
algorithm for counting triangles in a very large graph. In
CIKM, pages 539–548, 2013.

[37] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh. Mapreduce
triangle enumeration with guarantees. In CIKM, pages
1739–1748, 2014.

[38] A. Pavany, K. Tangwongsan, S. Tirthapuraz, and K.-L. Wu.
Counting and sampling triangles from a graph stream. In
PVLDB, 6(14):1870–1881, 2013.

[39] T. Schank. Algorithmic aspects of triangle-based network
analysis. Phd in Computer Science, 2007.

[40] T. Schank and D. Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In WEA,
pages 606–609, 2005.

[41] D. Schiöberg, F. Schneider, S. Schmid, S. Uhlig, and
A. Feldmann. Evolution of directed triangle motifs in the
google+ OSN. CoRR, abs/1502.04321, 2015.

[42] C. Seshadhri, A. Pinar, N. Durak, and T. G. Kolda. Directed
closure measures for networks with reciprocity. J. Complex

174

Networks, 5(1):32–47, 2017.
[43] C. Seshadhri, A. Pinar, and T. G. Kolda. Wedge sampling for

computing clustering coefficients and triangle counts on
large graphs. Statistical Analysis and Data Mining,
7(4):294–307, 2014.

[44] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal. Trièst:
Counting local and global triangles in fully-dynamic streams
with fixed memory size. In SIGKDD, pages 825–834, 2016.

[45] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal. Trièst:
Counting local and global triangles in fully-dynamic streams
with fixed memory size. CoRR, abs/1602.07424, 2016.

[46] S. Suri and S. Vassilvitskii. Counting triangles and the curse
of the last reducer. In WWW, pages 607–614, 2011.

[47] D. Ting. Streamed approximate counting of distinct
elements: Beating optimal batch methods. In SIGKDD,
pages 442–451, 2014.

[48] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos.
Doulion: Counting triangles in massive graphs with a coin.
In KDD, pages 837–846, 2009.

[49] J. S. Vitter. Random sampling with a reservoir. TOMS,
11(1):37–57, 1985.

[50] H. T. Welser, E. Gleave, D. Fisher, and M. Smith. Visualizing
the signatures of social roles in online discussion groups.
JoSS, 8(2):1–32, 2007.

[51] B. Wu, K. Yi, and Z. Li. Counting triangles in large graphs
by random sampling. TKDE, 28(8):2013–2026, 2016.

[52] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and
Y. Dai. Uncovering social network sybils in the wild. TKDD,
8(1):1–29, 2014.

[53] H. Zhang, Y. Zhu, L. Qin, H. Cheng, and J. X. Yu. Efficient
triangle listing for billion-scale graphs. In BigData, pages
813–822, 2016.

175

