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ABSTRACT
Graph partitioning is an essential yet challenging task for
massive graph analysis in distributed computing. Com-
mon graph partitioning methods scan the complete graph
to obtain structural characteristics offline, before partition-
ing. However, the emerging need for low-latency, continuous
graph analysis led to the development of online partition-
ing methods. Online methods ingest edges or vertices as a
stream, making partitioning decisions on the fly based on
partial knowledge of the graph. Prior studies have com-
pared offline graph partitioning techniques across different
systems. Yet, little effort has been put into investigating the
characteristics of online graph partitioning strategies.

In this work, we describe and categorize online graph
partitioning techniques based on their assumptions, objec-
tives and costs. Furthermore, we employ an experimental
comparison across different applications and datasets, us-
ing a unified distributed runtime based on Apache Flink.
Our experimental results showcase that model-dependent
online partitioning techniques such as low-cut algorithms
offer better performance for communication-intensive appli-
cations such as bulk synchronous iterative algorithms, albeit
higher partitioning costs. Otherwise, model-agnostic tech-
niques trade off data locality for lower partitioning costs
and balanced workloads which is beneficial when executing
data-parallel single-pass graph algorithms.
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1. INTRODUCTION
Graph partitioning, the process of dividing a graph into a

predefined number of subgraphs, is essential for graph anal-
ysis using distributed algorithms. Distributed graph pro-
cessing has been widely adopted in recent years and enables
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knowledge extraction from large and medium-scale graph-
structured datasets using commodity clusters [36, 21, 22,
14]. In such settings, each cluster node operates on one
partition in parallel and communicates with other nodes
through message-passing. Hence, partitioning quality di-
rectly affects communication and computation costs and is
crucial for graph application performance [21, 45].

The problem of graph partitioning has been thoroughly
studied and several methods have been proposed in the past
few decades, each with a particular graph type, ingestion
model or application objective in mind. Among existing
methods, we study streaming graph partitioning algorithms.
As opposed to offline methods, which first load the complete
graph in memory and then divide it into partitions, stream-
ing graph partitioning operates online, while ingesting the
graph data as a stream [45].

We examine two practical use-cases of streaming graph
partitioning. First, in the context of the load-compute-store
computational model (e.g., MapReduce [15], Spark [52, 22],
Giraph [14]), partitioning can be performed in a streaming
manner during the load phase, by treating the bounded in-
put graph dataset as a stream of vertices or edges. Second, it
is appropriate for distributed streaming and semi-streaming
algorithms [38, 37, 46, 5] that compute graph summaries and
perform aggregations on possibly unbounded edge streams,
and systems supporting native graph-as-a-stream computa-
tions [12, 28, 9, 27, 40].

Partitioning methods vary significantly in terms of their
heuristics, assumptions, and respective performance, thus
making it difficult for developers to compare them and as-
sess their characteristics. Choosing the right technique for
the computational problem at hand is non-trivial, especially
because each method adopts a limited set of application ob-
jectives and constraints. As in offline graph partitioning,
streaming partitioning typically defines two main objectives:
load balancing and minimum cuts (vertex or edge). These
correspond to aiming for fair load distribution and mini-
mized communication overhead, respectively. Optimizing
for both objectives, also known as the balanced graph parti-
tioning problem, is an NP-hard problem [4].

Past studies [49, 24] have focused on offline graph par-
titioning techniques or heuristics used for streaming graph
partitioning [45]. However, in the context of the stream in-
gestion model, the question of identifying factors that influ-
ence performance and quantifying their effects is still open.
We specifically examine sensitivity to stream ingestion or-
der, the number of partitions, suitability for unbounded
processing, and cost amortization of applications, includ-
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ing bulk synchronous iterative processing [36] and stream or
semi-streaming graph approximations [37, 38].

Contributions. In this study, we first define the domain
of online graph partitioning and its role in graph process-
ing workflows, decoupling the partitioning step from the ap-
plication logic computation, whether staged or pipelined.
Second, we propose a uniform analysis framework to eval-
uate and compare partitioning features and characteristics
of streaming partitioning methods. We classify algorithms
with regards to their data model, strategy, constraints, com-
plexity, state requirements, and objectives. To provide an
unbiased performance comparison, we implement all studied
methods on top of a common evaluation framework based
on Apache Flink [8, 9], a distributed stream processing en-
gine. Finally, we use bulk synchronous and single-pass graph
streaming algorithms to evaluate distributed graph applica-
tion performance in terms of partitioning cost amortization.

Main Findings. Our results indicate that the majority of
streaming graph partitioning algorithms are unsuitable for
continuous processing of unbounded streams due to their re-
liance on a priori knowledge of graph properties and their
global state requirements. All studied algorithms except
hash-based partitioning are stateful and maintain summaries
and other global information, such as current vertex assign-
ment, partition capacities, or degree distributions. With
regards to performance, we note the advantage of low-cut
partitioning methods for iterative applications, while low-
cost partitioning mechanisms seem preferable for streaming
applications. Overall, we identify several open research chal-
lenges in the area of streaming graph partitioning that aim
at developing new, scalable online partitioning algorithms,
with relaxed constraints on the graph properties and fewer
state requirements. We believe that further efforts are neces-
sary to make algorithms practical for modern stream proces-
sors, including achieving distributed execution independent
of global graph state and developing adaptive partitioning
methods that can adapt to workload or other changes.

The survey is structured as follows. Section 2 presents
preliminaries and necessary notation. Section 3 describes
the streaming graph partitioning algorithms and their cate-
gorization based on the selected criteria. Section 4 outlines
the applications used for evaluation. Section 5 presents the
experimental setup and Section 6 provides the experimental
results. Section 7 discusses related work. We conclude and
highlight open challenges for future work in Section 8.

2. PRELIMINARIES
Here, we provide the necessary background and introduce

the data and computation models we target. Table 1 con-
tains the notation used throughout this paper.

Definition 1. Given a graph G = (V,E), where V is
the set of vertices and E is the set of edges, and k machines
of capacity C, so that the total capacity kC is sufficient to
store the whole graph, a partitioning algorithm splits G into
k partitions, Pi, so that P1 ∪ . . . ∪ Pk = G.

For convenience, we often refer to each individual partition
by its index i. An offline graph partitioning algorithm ac-
cepts the complete graph G as input and typically computes
the partitioning in multiple passes. For example, iterative
clustering and community detection methods are often used

Table 1: The notation used in this paper
Symbol Description

G input graph
m = |E| number of edges in G
n = |V | number of vertices in G

k number of partitions, k ∈ N
Pi set of vertices or edges in a partition i, i ∈ [1, k]
N(v) set of neighbors of a vertex v
S(v) set of partitions containing vertex v
C partition capacity

to compute high-quality partitions. In contrast, a stream-
ing graph partitioning algorithm processes the graph as a
stream, a sequence of edges or vertices, and maps each ele-
ment to a partition index i on-the-fly.

2.1 Data Model
There exist two main approaches to graph partitioning

(in a broad spectrum and not limited to stream ingestion),
namely vertex partitioning and edge partitioning. Both ap-
proaches aim to minimize cross-partition dependencies by
defining a minimum-cut optimization objective.

Figure 1: Vertex partitioning (left) assigns vertices
to partitions, possibly creating edge-cuts; Edge par-
titioning (right) places edges to partitions, possibly
creating vertex-cuts.

Vertex Partitioning. Vertex partitioning [4] operates on
the vertex set V , assigning each vertex to a partition i.
Edges can cross partition boundaries, as in Figure 1 (left),
where edges (d, z) and (b, z) are cut by the partitioning.

Definition 2. For a graph G, the edge-cut E′ ⊆ E is a
set of edges, such that G′ = (V,E\E′) is disconnected.

The fewer edges crossing partition boundaries the lower
the communication overhead, considering distributed graph
processing using a vertex-centric model with message-pas-
sing along edges. Thus, the main optimization objective
of vertex partitioning methods is the minimum edge-cut.
Vertex partitioning is also known as edge-cut partitioning.

Edge Partitioning. Analogously, edge partitioning [6] op-
erates on the edge set E, assigning each edge to a respective
partition i. In this case, references to the same vertex can
potentially co-exist across multiple partitions. In Figure 1
(right), vertices d and z are cut by the partitioning. Their
references in individual partitions are also known as mirrors.

Definition 3. For a graph G, the vertex-cut V ′ ⊆ V is
a set of vertices such that V \V ′ along with E′ ⊆ E, the set
of incident edges, make G′ = (V \V ′, E\E′) disconnected.
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1) loading

2) partitioning

3) computation

graph snapshot
graph stream

Figure 2: A general workflow for graph snapshot
and stream loading, partitioning, and computation.

The fewer mirror vertices the lower the communication
overhead, considering a distributed graph processing with
an edge-centric programming model. Thus, the main op-
timization objective is now minimum vertex-cut. Edge
partitioning is also known as vertex-cut partitioning.

2.2 Computational Model
Streaming graph partitioning is applicable to both the

load-compute-store (batch) graph processing model, used in
systems such as Pregel [36], GraphX [22] and Giraph [14],
and the stream processing model, used in systems such as
Flink [9], Storm [1] and Naiad [40]. Figure 2 shows the work-
flow of staged and pipelined phases for these models. In the
case of batch processing, graph loading, partitioning, and
computation, happen in separate consecutive stages. For
stream processing, stages are pipelined and data is continu-
ously passed as a stream from one stage to the next.

Loading. During the loading phase, graph is read from the
disk or other external source and placed onto the computa-
tion cluster. In batch processing, the graph data is bounded
and once loaded it represents a graph snapshot (e.g. the
Facebook social network at a given time). In stream process-
ing, graph data is continuously read from an external source
and can be potentially unbounded (e.g. live user interactions
on Twitter). A graph stream can be represented either as a
sequence of edges (edge stream) or as a sequence of vertices
with their adjacency lists (vertex stream). In essence, the
streaming model subsumes the batch model, since a graph
snapshot is merely a bounded graph stream. Hence, graph
properties, such as the number of vertices n, the number of
edges m, and the degree distribution can be computed be-
fore partitioning for a graph snapshot, while these properties
continuously evolve for an unbounded stream.

Partitioning. During the partitioning phase, the parti-
tioner takes a graph stream as input and assigns each vertex
or edge to a partition. The decision is made on-the-fly by
processing each element only once. In many cases, the par-
titioning logic can be implemented inside the graph loader,

so that loading and partitioning happen in a single phase.
Partitioners can base their decision on the current element
or they can maintain state. Stateful partitioners consider
the history of the stream seen so far. For example, in order
to properly balance the number of elements per partition,
a partitioner might store the current available capacity per
partition. In principle, the state can be distributed among
parallel partitioner instances, where each instance has a
partial view of the stream, or a global view shared across
parallel instances. As our analysis reveals, existing stateful
streaming partitioning methods require shared state, which
is a feature not available in modern distributed stream pro-
cessors. Thus, partitioning logic needs to be executed by
a single instance. Moreover, many methods often assume
that global graph metrics are available before partitioning.
These characteristics pose a major challenge in adapting
existing methods for distributed processing of unbounded
graph streams.

Computation. Computation takes place after loading and
partitioning. In the batch model, computation starts af-
ter the whole graph has been loaded and partitioned, in a
subsequent stage, and it operates in one or multiple passes
(e.g. bulk synchronous model with fixpoint termination). In
contrast, in the streaming model, application logic is trig-
gered on-the-fly, per graph element, in a pipelined fashion
after the partitioning step. In this case, graph elements are
only accessed once. Therefore, applications that employ on-
the-fly processing are also referred as single-pass streaming
applications (the term semi-streaming [38] is also used to
describe a constant number of graph stream passes).

3. ONLINE PARTITIONING METHODS
Streaming graph partitioning algorithms are quite diverse

in their objectives, assumptions, and runtime complexities.
We summarize eight partitioning algorithms that can be
used in the streaming model and categorize them based on
the following criteria: 1) data model, 2) partitioning strategy,
3) possible constraints (e.g., regarding input boundness or a
priori knowledge), 4) computational and space complexities,
5) state requirements while partitioning, and 6) optimiza-
tion objectives. Table 2 summarizes the algorithms across
all criteria. In Section 3.4 we highlight the main findings.

3.1 Model-Agnostic Methods
Data-model agnostic partitioning algorithms can be em-

ployed in both vertex and edge-centric models. Hash parti-
tioning is probably the most representative and widely-used
method in this category.

3.1.1 Hash Partitioning
The idea of using a consistent hashing function to map ele-

ments with distinct keys to different partitions is widespread
outside the domain of graph processing (e.g., for load bal-
ancing content in distributed key-value stores [16] and man-
aged stream state [8]). In the context of vertex partition-
ing, a consistent hashing function can be used to assign ver-
tices with unique identifiers to a physical partition index
V → N uniformly at random. Similarly, in the case of an
edge data model hashing maps a set of edges to partitions
E → N. For brevity, if we assume a vertex-centric model,
hash-based partitioning can be defined as the mapping func-
tion f(v) = hash(v) mod (k).
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Table 2: Features and characteristics of the chosen streaming partitioning methods for this study.
Algorithm Data model Strategy Constraints Space Time State Objective
Hash Agnostic Hash None None O(n)/

O(m)
None Load balance

LDG Vertex
stream

Neighbors Bounded
stream

O(n) O(kn+m) Vertices, partition
assignment

Load balance,
edge-cuts

Fennel Vertex
stream

Neighbors /
non-neighbors

Bounded
stream

O(n) O(kn+m) Vertices, partition
assignment

Load balance,
edge-cuts

Greedy Edge stream End-vertices None O(n) O(km+n) Vertices, partition
assignment

Load balance,
vertex-cuts

HDRF Edge stream Degree None O(n) O(km+n) Vertices, degree,
partition assignment

Load balance,
vertex-cuts

DBH Edge stream Degree and
hash

None O(n) O(m+n) Vertices, degree,
partition assignment

Load balance,
vertex-cuts

Grid Edge stream Hash Perfect square
partitions

O(n+k) O(m+n) Vertices, partition
assignment

Load balance,
vertex-cuts

PDS Edge stream Hash p2 + p+ 1 = k O(n+k) O(m+n) Vertices, partition
assignment

Load balance,
vertex-cuts

Discussion: Hash partitioning is simple and does not re-
quire any a priori knowledge of the graph structure (only
the number of partitions needs to be known), making it
generally applicable to unbounded streams. Hashing is also
stateless since it requires no history synopsis during parti-
tioning, thus it can be trivially parallelized and be used to
partition large-scale graphs.

3.2 Vertex Partitioning Methods
In the category of vertex partitioning algorithms, we an-

alyze Linear Deterministic Greedy [44, 45] and Fennel [47,
48] as good representatives of partitioning mechanisms that
can be applied online on a stream of vertices.

3.2.1 Linear Deterministic Greedy (LDG)
Linear Deterministic Greedy partitioning (LDG) tries to

place neighboring vertices to the same partition, in order
to yield fewer edge-cuts [45]. It uses a greedy heuristic that
assigns a vertex to the partition containing most of its neigh-
bors while respecting certain capacity constraints.

More specifically, given a range of partitions in [1, k] ∈ N,
let Pi represent the set of vertices placed in partition i ∈
{1, ..., k}. For N(v), the known set of neighbors of v, the
LDG heuristic is given by f(v) in the following Equation:

f(v) = argmaxi∈[1,k] {g(v, Pi)}
g(v, Pi) = |Pi ∩N(v)|w(i)

w(i) = 1− |Pi|
C

(1)

LDG selects the partition that maximizes |Pi∩N(v)|, the
number of neighbors already assigned to a partition while
enforcing the capacity constraint C = n

k
.

The algorithm is shown in Pseudocode 1. The heuristic is
continuously applied until the load of a partition reaches the
threshold g(v, Pi) < g(v, Pj), j ∈ {1, ..., k} and j 6= i. The
load penalty enforces load balancing to avoid the extreme
case where all vertices end up in the same partition.

Discussion: LDG requires the number of vertices n to
be known a priori for calculating the capacity constraint
C. Hence, it is generally unsuitable for unbounded process-
ing. The algorithm requires keeping track of all partitioning
decisions made so far, saved as the partitioning assignment
state, which is accessed for every vertex in the input stream.

Pseudocode 1 LDG
Input: v, N(v), k
Output: partition ID
1: procedure partition(v, N(v), k)
2: for all partitions i = 1 to k do
3: Pi ∩N(v) . neighbors in partition i

4: w(i) = 1− |Pi|
C

. load penalty

5: g(v, Pi) = |Pi ∩N(v)|w(i) . partition scoring
end for

6: for all partitions i = 1 to k do
7: ind = argmaxi{g(v, Pi)}

end for
8: Return ind

3.2.2 Fennel
Fennel [48] is a partitioning strategy whose heuristic com-

bines locality-centric measures (low edge-cut) [45] with bal-
ancing goals [43]. Fennel’s core idea is to interpolate be-
tween maximizing the co-location of neighbouring vertices
and minimizing that of non-neighbours. Pseudocode 2 pre-
sents the Fennel logic in more detail. As in LDG, Fennel
computes the number of neighbors present in each partition
for every input vertex. In addition, the load limit per par-
tition which sets a threshold for the maximum number of
assigned vertices. The score δg(v, Pi) is computed accord-
ing to Equation 2 for each partition whose load is below the
threshold and the input vertex is assigned to the partition
with the maximum score.

f(v) = argmaxi∈[1,k] {δg(v, Pi)}
δg(v, Pi) = |Pi ∩N(v)| − αγ|Pi|γ−1

(2)

Here, α =
√
k m

n3/2 and the load limit = ν n
k

. The parameters
α, γ, and ν are tunable and control the weights associated
with maximizing the number of neighbors and minimizing
the number of non-neighbors for the input vertex during
partitioning. In our experiments (Section 6) we picked the
values used in the original evaluation [48], γ = 1.5, ν = 1.1.

Discussion: Similar to LDG, Fennel requires the param-
eters n and m to be known a priori, and maintaining a per-
sistent state of the assigned partitions during execution, that
makes it unsuitable for partitioning unbounded streams.
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Pseudocode 2 Fennel
Input: v, N(v), k
Output: partition ID
1: procedure partition(v, N(v), k)
2: load limit = ν n

k
. load limit

3: for all partitions i = 1 to k do
4: if |Pi| < load limit then
5: Pi ∩N(v) . neighbors in partition i

6: δg(v, Pi) = |Pi ∩N(v)| − αγ|Pi|γ−1

end if
end for

7: for all partitions i = 1 to k do
8: ind = argmaxi{δg(v, Pi)}

end for
9: Return ind

3.3 Edge Partitioning Methods
Many partitioning mechanisms operate on the edge-centric

model. We select the following techniques that can op-
erate online on an edge stream: Greedy [21], HDRF [41],
DBH [50], and Grid [30], which are presented next.

3.3.1 Greedy
Greedy is a rule-based partitioning mechanism introduced

in PowerGraph [21]. It aims to minimize vertex-cuts while
also assigning balanced load across partitions. Let S(vi)
denote the set of partitions containing the vertex vi. Pseu-
docode 3 presents the rules employed by the Greedy algo-
rithm, where the leastLoad(S(v)) method returns the least
loaded partition ID form the set S(v).

Pseudocode 3 Greedy

Input: v1, v2, k
Output: partition ID
1: procedure partition(v1, v2, k)
2: if S(v1) ∩ S(v2) 6= ∅ then
3: partitionID = leastLoad(S(v1) ∩ S(v2)) .

leastLoad() returns least loaded partition ID
end if

4: if S(v1) ∩ S(v2) = ∅ && S(v1) ∪ S(v2) 6= ∅ then
5: partitionID = leastLoad(S(v1) ∪ S(v2))

end if
6: if S(v1) = ∅ && S(v2) 6= ∅ then
7: partitionID = leastLoad(S(v2))

end if
8: if S(v1) 6= ∅ && S(v2) = ∅ then
9: partitionID = leastLoad(S(v1))

end if
10: if S(v1) = ∅ && S(v2) = ∅ then
11: partitionID = leastLoad(k)

end if
12: Return partition ID

For each edge in the input stream, Greedy examines the
participation of the endpoint vertices to existing partitions
by applying the following rules: 1) Rule 1: If both end-
point vertices have been previously assigned in any common
partition pick the least loaded common partition. 2) Rule
2: If both endpoint vertices have been previously assigned
in different partitions pick the least loaded from the union
of all assigned partitions. 3) Rule 3: In case either vertex
has been previously assigned, pick the least loaded partition
from the assigned partitions of that vertex. 4) Rule 4: If

none of the vertices has been previously assigned, then pick
the least loaded partition overall.

Discussion: Greedy does not require any knowledge of
graph properties before processing the stream. Therefore,
it can potentially process an unbounded edge stream. How-
ever, it requires maintaining the current partition assign-
ment as a synopsis, which, in case of an unbounded stream
would also grow without bound.

3.3.2 HDRF
HDRF [41] is particularly tailored for power-law graphs.

It is based on PowerGraph’s heuristic [21], which targets
workloads with highly skewed graphs. The key idea that
since power-law graphs have few high degree nodes and
many low degree nodes, it is beneficial to prioritize cutting
the high degree nodes to radically reduce the number of
vertex-cuts. Pseudocode 4 summarizes the logic of HDRF.

Pseudocode 4 HDRF
Input: v1, v2, k
Output: partition ID
1: procedure partition(v1, v2, k)
2: δ1 = getDegree(v1)
3: δ2 = getDegree(v2) . getting partial degree

values

4: θ(v1) = δ(v1)
δ(v1)+δ(v2)

= 1− θ(v2) . normalizing the

degree values

5: for all partitions i = 1 to k do

6: CHDRFBAL (i) = λ× maxsize−|i|
ε+maxsize−minsize

7: CHDRFREP (v1, v2, i) = g(v1, i) + g(v2, i)
8: CHDRF (v1, v2, i) = CHDRFREP (v1, v2, i)+C

HDRF
BAL (i)

end for
9: for all partitions i = 1 to k do

10: ind = argmaxi{CHDRF (v1, v2, i)}
end for

11: Return ind . returning id of the partition

12: procedure g(v, i)
13: if partition i ∈ S(v) then
14: Return 1 + (1− θ(v))
15: else
16: Return 0

end if else

In more detail, for an input edge e = (v1, v2), the partial
degrees of its endpoint vertices are recorded as δ1 and δ2 .
These values are then normalized using:

θ(v1) =
δ(v1)

δ(v1) + δ(v2)
= 1− θ(v2) (3)

HDRF works using Equation 4. Each edge is assigned to
the partition i with highest value of CHDRF (v1, v2, i).

CHDRF (v1, v2, i) = CHDRFREP (v1, v2, i) + CHDRFBAL (i) (4)

CHDRFREP (v1, v2, i) = g(v1, i) + g(v2, i) (5)

g(v, i) =

{
1 + (1 − θ(v)) if i ∈ S(v)

0 otherwise

CHDRFBAL (i) = λ× maxsize− |i|
ε+maxsize−minsize (6)
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Here, maxsize is the size of partition with maximum load,
minsize is the size of partition with minimum load, S(v)
here is set of partitions containing vertex v, ε is a constant
value, and λ controls load imbalance [41]. When λ ≤ 1,
the algorithm behaves similarly to Greedy. When the in-
put stream is ordered in breadth-first or depth-first search
order, each incoming edge is placed in the partition con-
taining most of its endpoint vertices’ neighbors. As a re-
sult, the algorithm can yield imbalanced partitions. Setting
λ > 1 solves this issue by accommodating for load balance.
If λ approaches ∞, then the algorithm behaves like random
hash partitioning. In our experiments (Section 6), we set
the value of λ = 1 to optimize for minimum vertex-cuts.

Discussion: Similar to Greedy, HDRF does not require
any graph parameters to be computed before partitioning,
and thus, it can potentially process an unbounded edge
stream. On the other hand, it requires maintaining the state
of partitions for computing the load and S(v). HDRF uses
degree information for making partitioning decisions, how-
ever, instead of pre-computing degrees offline before parti-
tioning, it can maintain partial degree information and up-
date it while processing the input stream.

3.3.3 DBH
Degree Based Hashing (DBH) [50] is quite similar to

HDRF, because it prioritizes cutting those vertices that have
the highest degree. However, unlike HDRF, DBH employs
hashing for partitioning. Pseudocode 5 presents the algo-
rithm in more detail. For an input edge e, DBH computes
the partial degree of its endpoint vertices v1 and v2, δ1 and
δ2. After that, e is assigned to the partition ID computed
as the hash of the vertex with the lowest degree.

Pseudocode 5 DBH
Input: v1, v2, k
Output: partition ID
1: procedure partition(v1, v2, k)
2: δ1 = getDegree(v1)
3: δ2 = getDegree(v2)
4: if δ1 < δ2 then
5: Return Hash(v1)mod(k)
6: else
7: Return Hash(v2)mod(k)

end if else

Discussion: DBH algorithm keeps partial degree infor-
mation of vertices as a state synopsis. Since it uses hashing,
it can compute the current partitioning assignment on-the-
fly, thus reducing the state requirements. DBH can poten-
tially process unbounded streams because no global graph
properties are required prior to partitioning.

3.3.4 Grid and PDS
The Grid [30] algorithm also uses hashing for partitioning.

Prior to employing hashing, all partition IDs are arranged in
a square matrix, termed the Grid. For each incoming edge
e = (v1, v2), a constrained set of partitions S(v) for each
end vertex v is formed by taking all the partitions in the
row and column of the partition where v hashes to in the
grid. The edge is assigned to the least loaded partition in the
set S(v1)∩S(v2). The main limitation of Grid is that it lim-
its the possible number of partitions to logarithmic degrees
for constructing a square matrix (rows × columns = N),

where N is the total number of partitions. An alternative
algorithm to Grid is PDS [30] that computes the set of par-
titions using Perfect Difference Sets. It requires (p2 + p+ 1)
number of partitions, where p is a prime number.

Discussion: Both Grid and PDS place a constraint on
the number of partitions, but, they require no pre-compu-
tation on the input graph and they can both potentially
sustain unbounded streams. With regards to the state, both
algorithms need to maintain the partitioning assignment to
compute the least loaded partitions.

3.4 Comparison Summary
The streaming graph partitioning algorithms presented so

far in this section have various objectives and characteristics.
We summarize their main features and design choices and
point the reader to their categorization in Table 2.

Strategy: Except for hash-based partitioning which is the
only stateless algorithm we consider, the strategy used by a
partitioning method generally also defines the state it needs
to maintain during partitioning. The current partitioning
assignment and degree information are used across algo-
rithms to reduce cuts. Vertex partitioning algorithms check
the partitioning assignment to compute the number of exist-
ing neighbors and non-neighbors of a vertex, while few edge
partitioning algorithms also use degree-based strategies.

Constraints: All stateful vertex partitioning algorithms
considered are designed for partitioning bounded streams of
vertices, while edge partitioning algorithms are more flexible
in general. Greedy, HDRF, and DBH have no constraints
whatsoever and could potentially process unbounded edge
streams. However, this is challenging in practice, due to
state requirements discussed next.

State: The state kept and accessed for decision making by
the partitioning algorithms affects their computational and
space complexities, as well as their applicability to process-
ing unbounded graph streams. All stateful algorithms con-
sidered require a way to inspect the current partition assign-
ment or degree, whether for load balancing or for minimizing
cuts. As a result, they need to maintain a synopsis that can
be queried for vertex or edge membership and current par-
tition size at the very least. Such synopses can grow beyond
memory limits for unbounded streams, and also complicate
distributed implementations, as they need to be consistent
and accessible by all parallel instances of the partitioner.

4. APPLICATIONS
We evaluate the partitioning methods with applications

that operate on graph snapshots (batch) and graph streams.
We have chosen bulk iterative algorithms and single-pass
streaming summaries which we briefly describe next.

4.1 Iterative Applications
Connected Components: The connected components al-
gorithm identifies subgraphs within which every vertex is
reachable from every other vertex [26]. In the iterative,
vertex-centric implementation of this algorithm [31, 33], each
vertex is initially assigned a value equal to its own ID. Then,
in every iteration, the vertex gathers values from its neigh-
bors and picks the lowest value, which it then scatters back
to its neighbors. When the algorithm converges, vertices
with the same ID belong to the same component.
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PageRank: The PageRank algorithm is an iterative vertex
ranking algorithm that assigns weights to vertices based on
their importance and their connectivity to other well ranked
vertices [7]. The algorithm assigns an initial uniform rank
to all vertices. Then, in each iteration, a vertex updates
its rank by summing up the partial ranks from its incoming
neighbor vertices. The new rank is then evenly distributed
across outgoing edges to outgoing neighbors. The algorithm
converges when the difference between the vertex rank form
the current iteration and the rank in the previous iteration
is less than a specified threshold.

Single Source Shortest Paths: The SSSP algorithm finds
the shortest path between the source vertex and all con-
nected vertices [17]. It initially assigns a zero value to the
source vertex and∞ to all other vertices. Then, each vertex
updates its distance or path length to the source, until it
does not change anymore across two consecutive iterations.

4.2 Single-Pass Applications
Bipartiteness: The bipartiteness algorithm continuously
checks whether a graph stream forms a bipartite graph [19].
As long as the vertices seen so far can be divided into two
groups such that there are no edges within those groups,
then the graph is bipartite. The single-pass implementation
maintains the current groups as state and assigns them a
positive or negative sign. Then, the algorithm tries to place
the vertices of each incoming edge to the existing groups by
maintaining or flipping the signs. The distributed imple-
mentation maintains a partial state per processing instance
and periodically merges the states into a combined state re-
flecting the history of the graph stream. The number of
operations during the merge of partial state corresponds to
cross-partition communication and thus we expect good par-
titioning algorithms to result into smaller partial states and
more efficient merging.

Connected Components: The single-pass Connected
Components [20] algorithm, also known as union-find, oper-
ates online over an edge stream. The algorithm maintains a
disjoint set data structure to keep track of components. For
each incoming edge, it checks whether the endpoint vertices
belong to an existing component and merges components
accordingly if the endpoints already exist in disjoint compo-
nents. The distributed implementation maintains a partial
disjoint set per partition and periodically merges states sim-
ilarly to the bipartiteness check implementation.

5. EVALUATION METHODOLOGY
We design our experimental analysis by separating con-

cerns among the system runtime, partitioning algorithms,
and application on top. With that goal, we implement a
comparison framework that can isolate partitioning costs
and application performance under different iterative and
pure streaming workloads. More concretely, in our experi-
ments, we seek answers to the following questions:

Q1 What are the benefits, if any, of using more complex,
data-centric partitioning methods compared to a generic
hash-based strategy?

Q2 What is the partitioning overhead for an application
using each partitioning algorithm?

Q3 How does the partitioning quality affect the application
performance?

Next, we describe the implementation, datasets, parame-
ters, metrics and experimental setup we use.

5.1 Implementation
Apache Flink [9, 8] is a streaming-first distributed analyt-

ics platform which executes complex applications by gener-
ating a DAG of logical operators and connecting the data
streams to it. Bounded computation in Flink (in this case
a graph snapshot) is also ingested internally as a stream,
which makes Flink a convenient platform to build any graph
as a stream ingestion scenario and implement complex parti-
tioning logic. For the purposes of our evaluation framework,
we have effectively implemented on Flink the general graph
processing workflow presented in Figure 2. For staged and
iterative tasks, we use the DataSet API to implement all
respective transformations and application logic (i.e. itera-
tive algorithms). Similarly, we use the DataStream API to
implement all pipelined workflow steps. That includes all
partitioning algorithms presented, as well as the single-pass
stream processing applications.

5.2 Datasets
Table 3 shows the characteristics of the datasets we use

in our experiments. We have generated synthetic graphs
of varying sizes using the RMAT (Recursive Matrix) model
[11] implemented in Gelly [29], Flink’s graph processing API.
RMAT produces skewed graphs that follow a power-law de-
gree distribution. Such graphs commonly appear in social
network problems [21] and are thus interesting for our anal-
ysis. We also use real-world datasets, including the Flickr
graph [10] from the Online Social Networks Research web
portal [3] produced by [39], several graphs from SNAP [35]
(DBLP and Skitter), the MovieLens 10M datasets from
GroupLens [2], large Twitter graph [34] and Friendster [51].

5.3 Order
For the real datasets, we have used the original order in

which they were generated by their source, usually ordered
by IDs. Otherwise, we consider three stream orderings for
iterating through our datasets: 1) BFS [13], in a breadth-
first search traversal, a vertex of the graph is selected at
random, then the neighbors of that vertex are processed
first. After that, the next level neighbors (the neighbors
of the neighbors) are processed. 2) DFS [13], similar to
BFS, after selecting a vertex at random, depth-first search
is performed starting from that vertex. 3) Random [23], this
order assumes that the vertices or the edges arrive at ran-
dom from the streaming source. All partitioning algorithms
behave similarly for BFS and DFS orderings, thus we only
present results with DFS in Section 6.2.1.

5.4 Metrics
We use the following metrics for evaluation:

Partitioning Performance. We measure the through-
put of a partitioning algorithm as the number of edges or
vertices it can process (assign to a partition) per second.

Partitioning Quality. We evaluate partitioning quality
using three metrics. Load balancing indicates how well
the computation load is divided across partitions. Specifi-
cally, we calculate the normalized load for the highest loaded
partition using the following formula:

1596



Table 3: Datasets information
Dataset Vertices Edges Category
RMAT 500,000 9,127,486 Synthetic
RMAT 1,000,000 18,540,007 Synthetic
RMAT 1,500,000 28,181,948 Synthetic
RMAT 2,000,000 37,547,390 Synthetic
RMAT 2,500,000 47,411,497 Synthetic
RMAT 4,000,000 80,000,000 Synthetic
RMAT 5,000,000 100,000,000 Synthetic
DBLP 317,080 1,049,866 Collaboration
Flickr 1,715,255 15,551,250 Social
Skitter 1,696,415 11,095,298 Computer

MovieLens 80,555 10,000,054 Rating
Twitter 41,652,230 1,468,365,182 Social

Friendster 65,608,366 1,806,067,135 Social

ρ =
Load on highest loaded partition

n
k

(7)

where n is the input size (number of edges for edge stream
partitioning or number of vertices for vertex stream parti-
tioning) and k is the total number of partitions.

Edge-cut measures the fraction of edges cut from the
resulting partitions. We calculate it using the following for-
mula:

λ =
No. of edges cut by the partitions

Total no. of edges
(8)

This metric applies to vertex partitioning algorithms only.
Finally, the replication factor indicates how many ver-

tex copies an edge partitioning algorithm creates. We cal-
culate it as follows:

σ =
Total vertex copies

Total no. of vertices
(9)

Application Performance. We evaluate the partitioning
quality and performance for both vertex and edge parti-
tioning methods, but the application performance is evalu-
ated using edge partitioning because it partitions power-law
graphs better in terms of low communication cost than ver-
tex partitioning. Also, some vertex partitioning algorithms
require a priori knowledge, i.e, |V | and |E|, making them
unsuitable for processing continuous streams.

Next, we evaluate the effect of partitioning algorithms on
the performance of graph analysis applications. Particularly,
for iterative applications we measure complete application
execution time which consists of partitioning time spent
during the stream ingestion phase and computation time
spent during the compute phase of the staged workflow. We
report the ratio of partitioning time over total application
execution time. This metric provides a good indication of
the impact a partitioning method can make to the perfor-
mance of an application. We also report the ratio of total ap-
plication execution time when using a partitioning method
over the execution time when using hash partitioning as a
baseline. It is a meaningful metric to infer the cases where
the partitioning cost is amortized. In the case of single-pass
stream processing applications, we measure the number
of edges processed during the whole pipelined workflow.
This indicates which algorithm yields lower end-to-end la-
tency. Additionally, for both these applications, we measure

the communication cost as the ratio of the network traffic
when using a partitioning method over the network traffic
when using hash partitioning as a baseline.

5.5 Environment Setup
We deployed our experiments both on-premises on a uni-

versity cluster as well as using a virtualized environment at
Amazon EC2. The specs of the physical on-premises nodes
are 2x Intel(R) Xeon(R) CPU @ 2.80GHz, 44GB of RAM
and Linux OS. This setup applies to all experiments in Sec-
tions 6.1 and 6.2. For the experiments in Section 6.3 we used
up to 17x r3.2xlarge EC2 instances. The exact number of
virtual instances in the latter case is experiment-specific and
depends on the dataset size and the application type.

For our on-premises deployment, we set up Flink with
one Job Manager (master node) and two Task Managers
(workers). We further shared equally the amount of slots
(allocated tasks) throughout workers. Regarding the virtual
EC2 deployment we used one instance as the JobManager
and the rest as TaskManagers. Finally, we used Flink v1.2.0
with Java 8 (Oracle JVM).

6. RESULTS
In order to answer Q1 proposed in Section 5, we present

partitioning performance results in Section 6.1 and parti-
tioning quality (edge-cuts, replication factor and load bal-
ancing) results in Section 6.2. We give answers to Q2 and
Q3 by results related to application performance in Sec-
tion 6.3.

6.1 Partitioning Performance
We measure the throughput of vertex and edge partition-

ing algorithms with varying graph sizes. We use synthetic
RMAT graphs and set the number of partitions to 4.

Vertex Partitioning. Figure 3(a) shows throughput mea-
surements in vertices processed per second for vertex parti-
tioning methods. Throughput initially increases with the
graph size for all algorithms and then drops sharply for
graphs with 20 × 105 vertices or larger. Overall, Hash par-
titioning demonstrates superior performance, while Fennel
and LDG behave worse but similar to each other.

Edge Partitioning. Figure 3(b) plots throughput for edge
partitioning algorithms. Hash partitioning shows the highest
throughput as compared to all other methods. DBH has
the second best throughput, followed by Greedy and HDRF
which show almost identical performance. Finally, the Grid
partitioner ranks last in terms of throughput.

Findings. Our results so far demonstrate that Hash parti-
tioning outperforms all other evaluated methods in terms
of throughput. However, the difference in performance is
not dramatic. In both experiments, Hash shows at most 2x
higher throughput than that of the second best partitioning
method and the gap shrinks for larger graphs.

6.2 Partitioning Quality
A good partitioning method is not only fast but also pro-

duces high-quality partitions. We evaluate partitioning qual-
ity by first measuring the edge-cut for vertex partitioners
and the replication factor for edge partitioners using differ-
ent datasets. Then we measure the load balancing for these
datasets. Next, we evaluate how stream order affects these
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(a) Vertex partitioning (b) Edge partitioning

Figure 3: Throughput of partitioning algorithms us-
ing 4 partitions. Input: RMAT graphs.

results in Section 6.2.1. Finally, we examine how the number
of partitions affects these results in Section 6.2.2.

We measure the partitioning quality using different input
graphs. We use the Friendster, Twitter, largest RMAT, and
Flickr graphs. We set the number of partitions to 16 for
Friendster and Twitter and to 4 for the two smaller graphs.
We stream all graphs in the order in which they are gener-
ated by their source. The power-law exponent that controls
skewness is 1.7 for Flickr and has a very low value for RMAT
making it highly skewed.

Edge-Cuts. Figure 4(a) shows the fraction of edges cut,
i.e., λ for Twitter, RMAT, and Flickr. Hash has the high-
est λ value for all three datasets, since it does not take into
account vertex locality. In fact, more than 70% of edges
are cut for RMAT and Flickr, while on Twitter Hash gen-
erates 90% edge-cut. Fennel has the lowest cuts for Twitter
and RMAT and it is only slightly outperformed by LDG for
Flickr. In the case of RMAT, LDG produces more cuts than
Fennel because RMAT is highly skewed compared to the
other datasets.

Replication Factor. Figure 4(b) shows the replication
factor, σ, for Friendster, Twitter, and Flickr. Hash has the
highest σ of all methods across all datasets. The rest of
the algorithms perform quite similarly, with Grid performing
worst for Twitter and DBH for Friendster. We also observe
that overall Greedy and HDRF perform better than other al-
gorithms for all the datasets by giving lower σ. Specifically,
for Flickr, Greedy and HDRF have σ ≈ 1.

(a) λ for vertex partitioning (b) σ for edge partitioning

Figure 4: Fraction of edges cut λ and replication
factor σ for different types of graphs.

Vertex Partitioning Load Balance. Table 4 shows the
normalized load, ρ, defined in Section 5.4, using vertex par-
titioning algorithms. Hash gives perfectly balanced parti-
tions because of its random placement. Fennel and LDG have
nearly perfect load balance for Twitter and Flickr. However,

LDG does not balance RMAT well compared to Fennel be-
cause LDG uses a greedy placement of vertices, and RMAT
is highly skewed.

Table 4: Normalized maximum load ρ for vertex par-
titioning algorithms.

Dataset Hash Fennel LDG
Twitter 1.0 1.1 1.13
RMAT 1.0 1.1 1.5
Flickr 1.0 1.0 1.0

Edge Partitioning Load Balance. Table 5 shows the
results for ρ using edge partitioning algorithms. All algo-
rithms yield almost perfectly balanced partitions with ρ ≈ 1
for all graphs except Flickr. When partitioning Flickr with
HDRF and Greedy the result has a lower replication factor
compared to others, hence generating unbalanced partitions.

Table 5: Normalized maximum load ρ for edge par-
titioning algorithms.

Dataset Hash DBH Greedy Grid HDRF
Friendster 1.0 1.001 1.0 1.0 1.0
Twitter 1.0 1.001 1.0 1.0 1.0
Flickr 1.001 1.002 3.98 1.0 3.98

6.2.1 Sensitivity to Order
We now investigate how stream ordering affects the par-

titioning quality in terms of cuts and load balance. Some
algorithms are particularly sensitive to the order in which
they receive edges and vertices for processing. For example,
BFS order is bad for Greedy because all neighboring vertices
that arrive together might end up in the same partition. As
a matter of fact, neighboring nodes do often arrive together
in a graph stream. For instance, nodes grouped based on lo-
cation in social graphs and links connecting web pages. We
simulate this locality using BFS and DFS ordering and also
use Random order as a baseline. To measure the effect of
order on the partitioning quality in terms of λ, σ and ρ, we
stream the Twitter and Friendster graphs in different orders
and set the number of partitions to 16.

Edge-Cuts. Figure 5(a) shows the results for λ using or-
dered streams. Hash performs worst with highest λ for all
orders. Moreover, λ remains the same using Hash despite
of the change in order. LDG has higher λ for Random or-
der compared to the DFS order. In the case of Fennel, we
see that λ is not affected by the order. This can actually
be controlled by changing the γ parameter values. In this
experiment, we have set γ = 1.5, which according to [48]
makes the algorithm less sensitive to the order. Overall,
Fennel also has lower λ values than both Hash and LDG.

Replication Factor. Figure 5(b) contains the results for
σ using ordered streams. Hash has the highest σ, while the
other algorithms perform better and similar to each other.
Hash and Grid are unaffected by order. HDRF has lower σ
using Random order compared to the DFS order.

Vertex Partitioning Load Balance. Table 6 displays re-
sults for ρ using vertex partitioning algorithms on different
stream orders. Hash and Fennel give well balanced partitions
for all orders. LDG has slightly better results for Random
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(a) λ for vertex partitioning (b) σ for edge partitioning

Figure 5: Fraction of edges cut λ and replication fac-
tor σ for different input orders, using 16 partitions.
Input: Twitter (vertex partitioning) and Friendster
(edge partitioning).

order. Overall, we conclude that none of the studied algo-
rithms is highly sensitive to order when balancing partitions.

Table 6: Normalized maximum load ρ values for ver-
tex partitioning algorithms using 16 partitions. In-
put: Twitter.

Order Hash Fennel LDG
Random 1.0 1.1 1.12
DFS 1.0 1.1 1.13

Edge Partitioning Load Balance. Table 7 contains the
result for ρ using edge partitioning algorithms on different
stream orders for the MovieLens graph. We omit the results
for the Friendster graph, as they were almost identical for
both orders and all algorithms produced well-balanced par-
titions. For MovieLens, Greedy and HDRF show imbalance
because they greedily place the neighboring edges arriving
in the stream, together in the same partition.

Table 7: Normalized maximum load ρ values for
edge partitioning algorithms and 4 partitions. In-
put: MovieLens.

Order Hash DBH Greedy Grid HDRF
Random 1.001 1.005 1.0 1.0 1.0
DFS 1.001 1.006 4.0 1.0 4.0

6.2.2 Sensitivity to The Number of Partitions
We evaluate the effect of the increase in the number of

partitions on λ, σ and ρ by taking the Twitter graph and
partitioning it across a range of partitions from 2 to 32.

Edge-Cuts. Figure 6(a) plots λ for vertex partitioning al-
gorithms with increasing number of partitions. λ increases
with more partitions for all the algorithms. While Hash
performs poorly for a high number of partitions, LDG ap-
proaches 0.8 for 32 partitions and Fennel produces few edge-
cuts even with many partitions, with λ slightly above 0.6.

Replication Factor. Figure 6(b) plots σ for edge parti-
tioning algorithms using different number of partitions. For
all algorithms, σ increases with the increase in the number
of partitions. Hash shows a steep increase, while Grid shows
the second worst behavior. σ for DBH, HDRF, and Greedy
does not exceed a value of 4 even for 32 partitions.

Vertex Partitioning Load Balance. When examining
how the number of partitions affects load balancing, we find

(a) λ for vertex partitioning (b) σ for edge partitioning

Figure 6: Fraction of edges cut λ and replication
factor σ for different number of partitions (2 to 32).
Input: Twitter.

that both Hash and Fennel have ρ ≈ 1, thus we omit the re-
sults for these methods. Figure 7 plots ρ for LDG on Twitter,
which is the only algorithm with different behavior. We see
that LDG is affected by the number of partitions and its load
factor increases, reaching a value of 1.15 for 32 partitions.

Figure 7: Normalized maximum load ρ for different
number of partitions (2 to 32). Input: Twitter.

Edge Partitioning Load Balance. Increasing the num-
ber of partitions does not significantly affect load balancing
for the Twitter graph regardless of the edge partitioning al-
gorithm. All methods produce almost perfectly balanced
partitions with ρ ≈ 1.

Findings. We can summarize our results so far into the fol-
lowing observations: 1) Hash gives well-balanced partitions
in all cases but produces many edge-cuts and high vertex
replication. It is not sensitive to order and it behaves worse
in terms of cuts when increasing the number of partitions.
In the next section, we investigate how the low partition-
ing quality it provides in some cases affects application per-
formance and when its perfect load balancing proves to be
beneficial. 2) Fennel and LDG provide low edge-cuts; LDG
is sensitive to order; Fennel is tunable. 3) HDRF and Greedy
give low vertex-cuts, but both are sensitive to order. 4) Grid
and DBH give moderate vertex-cuts; Grid and DBH give al-
most perfectly balanced partitions.

6.3 Application Performance
Considering our previous observations regarding partition-

ing algorithms, we would like to understand how the par-
titioning quality of different algorithms affects the perfor-
mance of applications. We examine two factors that can
have an impact: (a) the partitioning performance, i.e, the
one-time overhead of the partitioning algorithm when the
graph stream is ingested and (b) the partitioning quality,
i.e, the load balance and cuts that the partitioning method
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produces. Good load balancing is important for distributed
execution because it lowers the probability of straggler work-
ers and computation skew. On the other hand, a low number
of cuts usually enables distributed algorithms to perform as
much computation as possible locally and minimize cross-
partition communication. To evaluate these factors we use
the Twitter and Friendster graphs and partition them across
16 partitions. We examine the effects of partitioning on per-
formance both on the batch, iterative applications, as well
as on single-pass distributed streaming applications.

6.3.1 Iterative Applications
We first measure the ratio of network traffic as the com-

munication cost for different partitioning methods. Next,
we measure the application execution time and report the
ratio of partitioning time over the total application execu-
tion time. We also compare the total application execution
time for different partitioning methods with that of Hash.
We run 10 iterations for the considered applications.

Communication Cost. Figure 8 plots the results for the
ratio of network traffic using a partitioning method over the
network traffic using the baseline Hash partitioning. In the
case of SSSP and Connected Components (CC), data ex-
changed between the partitions using other partitioning al-
gorithms is lower compared to Hash. All algorithms perform
similarly with Greedy and HDRF being slightly better. With
regards to PageRank on Twitter, DBH shows poor behavior
and even exchanges more data than the baseline.

(a) Twitter (b) Friendster

Figure 8: Communication cost of partitioning algo-
rithms as compared to Hash for iterative applica-
tions on Twitter and Friendster.

Execution Time. Figure 9 plots the ratio of partitioning
time over the total execution time (partitioning time and
computation time) for iterative applications. Here, we want
to compare the effect of different partitioning algorithms on
the execution time. Greedy, Grid and HDRF have high ratio
for all applications; whereas the ratio of DBH is almost as
low as of Hash. The ratio is much lower for PageRank than
for SSSP and CC across all methods.

Figure 10 shows the ratio of total execution time for ap-
plications using different partitioning algorithms over the
total execution using the baseline Hash. Here, we want to
examine whether the partitioning time for expensive parti-
tioning methods can be amortized by improved application
performance. For both datasets, Grid results in the highest
total execution time for all applications. After Grid, Hash
yields higher execution time compared to others followed
by DBH, for SSSP and Connected Components; whereas,
for PageRank, the total execution time using DBH is higher
than that of Hash. Finally, Greedy and HDRF result in lower
total execution time for all applications. Overall, HDRF and

Greedy improve the performance of iterative applications by
reducing computation times.

(a) Twitter (b) Friendster

Figure 9: Partitioning time over execution time ra-
tio for iterative applications on Twitter and Friend-
ster.

(a) Twitter (b) Friendster

Figure 10: Total application execution time of parti-
tioning algorithms as compared to Hash for iterative
applications on Twitter and Friendster.

6.3.2 Single-Pass Applications
We ingest the Twitter and Friendster graph streams with-

out using any a priori information to emulate the behaviour
of unbounded streams and partition them. Next, we run
the applications over the incoming partitioned streams for
an interval of 15 min. After this, we measure: 1) the com-
munication cost as the ratio of network traffic, and 2) the
number of edges processed per second during the execution
of the application to indicate which partitioning algorithm
improves the latency of edges.

Communication Cost. Figure 11 shows the ratio of net-
work traffic using a partitioning method over the network
traffic using the baseline Hash. Grid minimizes network traf-
fic for Bipartiteness check, while none of the partitioning
algorithms provides impressive results for Connected com-
ponents. For this application, HDRF has low communication
cost for both Friendster and Twitter.

Number of Edges Processed. Figure 12 plots the aver-
age throughput in edges per second for Bipartiteness check
and Connected components. Hash results in significantly su-
perior performance for Bipartiteness check, where the state
requirements are lower. In the case of Connected compo-
nents, HDRF and Greedy either match or exceed the perfor-
mance of Hash. Grid partitioning results in poor throughput
for both applications and both datasets.

Findings. Our last results demonstrate that HDRF and
Greedy, which have lower replication factor, yield higher par-
titioning cost that is amortized by lower computation time
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(a) Bipartiteness check (b) Connected components

Figure 11: Communication cost of partitioning al-
gorithms as compared to Hash for streaming appli-
cations on Twitter and Friendster.

(a) Bipartiteness check (b) Connected components

Figure 12: Average throughput (edges/s) for
streaming applications on Twitter and Friendster.

for iterative applications and better end-to-end latencies for
single-pass stream processing applications where data local-
ity significantly affects the communication cost. Hash, with
lowest partitioning time, improves the performance of appli-
cations when data locality does not significantly affect com-
munication cost. In most cases, Hash results in higher com-
munication cost; however, its partitioning overhead is negli-
gible. HDRF and Greedy are effective at minimizing commu-
nication costs; however, they are more beneficial for compu-
tation and communication-intensive applications, since their
partitioning costs cannot be easily amortized.

6.4 Summary of Results
We have arranged the partitioning algorithms based on

our findings in Figure 13. The partitioning cost is indicated
by shades of gray. Hash has the lowest partitioning cost; it
is shown in the darkest color. Grid with highest partitioning
cost is shown in lightest shade. For load balancing, DBH,
Grid, and Hash give well-balanced partitions. Finally, HDRF
provides the lowest vertex-cuts. Overall, the trade-off be-
tween balancing and reducing cuts remains. None of the
studied algorithms provides both low cuts and perfect load
balancing.

Among these algorithms, the low-cut partitioning meth-
ods, such as HDRF and Greedy, improve the performance of
iterative applications, which have frequent communication
between partitions during the compute phase. On the other
hand, the impact seems to be less significant for streaming
graph applications. Low-cost, partitioning algorithms, such
as Hash appear more beneficial, probably because they have
a pipelined compute phase and no state requirements.

7. RELATED WORK
A number of surveys [18, 42, 32, 25] have focused on offline

partitioning algorithms in the past. Besides, several online

Figure 13: Cuts, load balance and partitioning cost
comparison of edge partitioning algorithms.

partitioning methods have been surveyed in the context of
the load-compute-store model and bounded graphs (snap-
shots) [49]. A survey by Guo et.al. [24] exclusively covers
vertex partitioning algorithms. Our work is, to our knowl-
edge, the first dedicated study to online graph partitioning
methods that includes stream-specific properties (e.g., inges-
tion order) as well as considering single-pass graph stream
aggregations, an emerging application domain with increas-
ing system support [12, 28, 9, 27, 40].

8. CONCLUSION AND FUTURE WORK
In this paper, we have studied streaming graph partition-

ing algorithms and we have empirically compared them us-
ing a framework based on Apache Flink [9]. We have evalu-
ated the partitioning quality and performance and we have
measured the effect of partitioning on application perfor-
mance, using both iterative and streaming applications. We
conclude that algorithms aiming for optimal cuts, such as
HDRF and Greedy, exhibit higher online partitioning cost
that is otherwise amortized throughout the graph compu-
tation when that computation is sensitive to data locality
and associated communication costs. Otherwise, when the
computation is not directly affected by data locality, it is
preferred to use online partitioning algorithms that aim for
load balancing and performance (e.g., Hash and DBH). In
the future, we plan to study more graph applications, es-
pecially streaming applications, and work to evaluate their
performance using various partitioning techniques. Several
open challenges remain in the area of streaming graph parti-
tioning. We highlight the need for developing new, scalable
online partitioning algorithms, with relaxed constraints on
the graph properties and fewer state requirements. We be-
lieve that the development of such algorithms is crucial for
making graph partitioning practical for applications ingest-
ing continuous streams on top of modern distributed stream-
ing engines.
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