
An Eight-Dimensional Systematic Evaluation of Optimized
Search Algorithms on Modern Processors

Lars-Christian Schulz
University of Magdeburg
Magdeburg, Germany

lschulz@st.ovgu.de

David Broneske
University of Magdeburg
Magdeburg, Germany

dbronesk@ovgu.de

Gunter Saake
University of Magdeburg
Magdeburg, Germany

saake@ovgu.de

ABSTRACT
Searching in sorted arrays of keys is a common task with a
broad range of applications. Often searching is part of the
performance critical sections of a database query or index
access, raising the question what kind of search algorithm
to choose and how to optimize it to obtain the best possible
performance on real-world hardware. This paper strives to
answer this question by evaluating a large set of optimized
sequential, binary and k-ary search algorithms on a modern
processor. In this context, we consider hardware-sensitive
optimization strategies as well as algorithmic variations re-
sulting in an eight-dimensional evaluation space.

As a result, we give insights on expected interactions be-
tween search algorithms and optimizations on modern hard-
ware. In fact, there is no single best optimized algorithm,
leading to a set of advices on which variants should be con-
sidered first given a particular array size.

PVLDB Reference Format:
Lars-Christian Schulz, David Broneske, Gunter Saake. An Eight-
Dimensional Systematic Evaluation of Optimized Search Algo-
rithms on Modern Processors. PVLDB, 11 (11): 1550-1562, 2018.
DOI: https://doi.org/10.14778/3236187.3236205

1. INTRODUCTION
Searching in sorted data is one of the most fundamental

operations in computing. A typical search problem consists
of a sequence of key/value pairs sorted by keys and a query
for either a single key or a range of keys. The task is then
either to retrieve the value belonging to the given key, or to
retrieve all key/value pairs in the given key range.

Since this problem is so fundamental and its solution so
universally useful, it has been studied extensively since the
early days of computer science. The classical and asymp-
totically optimal algorithm to solve it is the well known bi-
nary search [7]. However, there is no single binary search
algorithm, but many different variants with slightly differ-
ent properties [10]. Moreover, binary searching can logically
be extended to ternary searching and in all generality to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236205

k-ary searching. While their conceptual benefit is intuitve,
these benefits are not as easily inferable on a modern, deeply
pipelined, superscalar, out-of-order processor with a multi-
level cache hierarchy and SIMD facilities. In this context,
there is also the question what influence code optimizations
like loop unrolling have on the performance of a particular
algorithm. Furthermore, the algorithm, the applied code op-
timizations, and micro-architectural specifics of the proces-
sor can have surprising interactions. Therefore, a systematic
experimental evaluation of all these factors is necessary to
find optimal search algorithms. To enable reproducibility,
the code can be access from our git1.

Our Contributions. This paper aims at providing insight
into the behavior of optimized search algorithms on modern
processors on static arrays of tightly packed 32-bit integer
keys. We evaluate search variants in an eight-dimensional
space of algorithmic variations, code optimizations, and data-
set properties. The algorithmic aspects include:

1. Base algorithm. We consider sequential, binary and
k-ary search algorithms. The binary and k-ary search
include variants with irregular subdivisions or strictly
regular subdivisions, also often called uniform.

2. Exact match vs. lower bound. There are two pos-
sible functions when searching in sorted lists: range
and exact match queries. To answer range queries, all
keys in the closed interval [a, b] have to be retrieved.
To this end, a lower bound and upper-bound search is
performed. We only consider the lower-bound search,
since only minimal differences exist to the upper-bound
search. Since exact match can be trivially derived once
the lower bound has been located, we compare direct
exact-match search algorithms and lower-bound-based
exact-match search algorithms.

We apply the following four code optimization techniques:
3. Branch Elimination. We remove branches from the

search loops by using branch predication.
4. Loop unrolling. We unroll the search loops.
5. Software Prefetching. We add prefetching to avoid

or shorten the stalls caused by cache misses.
6. Vectorization. We use the AVX2 instruction set to

parallelize the algorithms in SIMD fashion.
The generated evaluation dataset raises two dimensions:

7. Dataset size. We vary the array size from one to 228

keys. Thus, we consider a continuous range of array
sizes from arrays comfortably fitting into the processor
cache to much larger ones.

1
https://git.iti.cs.ovgu.de/dbronesk/SearchAlgorithms

1550



8. Locality of search queries. We use two different
schemes to generate search queries with different cach-
ing demands.

In addition to runtime measurements we analyze micro-
architectural performance aspects like branch mispredictions
and cache activity utilizing the performance counters built
into modern processors. Ultimately, we arrive at a rec-
ommendation which algorithms and code tuning strategies
should be used first when a search algorithm is needed.

2. OPTIMIZING SEARCH ALGORITHMS
We consider three different general methods to search on

sorted data: (1) sequential searching, (2) binary searching
and, as a generalization thereof, (3) k-ary searching. Sec-
tion 2.1 discusses these algorithms. In Section 2.2, we im-
prove the performance of the basic algorithms by adapting
them to characteristics of modern processors.

2.1 Algorithmic Variations
In the following, we briefly discuss sequential, binary and

k-ary searching for the lower bound. Additionally we in-
troduce modifications to the traditional binary and k-ary
search based on searching in perfect search trees inspired by
Schlegel et at. [12]. The differences between lower bound
and exact-match searching are outlined in Section 2.1.5.

2.1.1 Sequential Search
The sequential search visits each element in turn and re-

turns with the current index when the first key not smaller
than the search key—the lower bound—has been found. Its
run time is linear in the number of array elements.

2.1.2 Binary Search
A binary search algorithm recursively splits the search

range in two approximately equally sized partitions and ex-
amines the array element separating them, i.e., the separator
key. The search then continues with just one of the parti-
tions, thereby halving the search space. This way we need at
most blog2(size)c+ 1 iterations to localize the lower bound.
This can be seen by constructing a binary tree corresponding
to the search and analyzing its height [7].

A variant of the binary search splits the search range in
two differently sized partitions according to a fixed ratio, so
that the separator key is not exactly in the middle of the
range. We will call this offset binary search.

2.1.3 k-ary Search
A logical generalization of binary searching is the k-ary

search, not just dividing the search range in two partitions,
but in k partitions for a k > 2. This requires probing k − 1
separator elements in each iteration. The separator elements
are chosen to divide the search range evenly.

Since a k-ary search reduces the search space by a factor
of k in each iteration, the worst case number of iterations
is dlogk(size + 1)e = blogk(size)c+ 1. Thus, the speedup of
k-ary searching is approximately log2 n/ logk n = log2 k [12].

2.1.4 Uniform Binary and k-ary Search
The binary and k-ary search algorithms discussed above

divide the number of keys by the desired number of parti-
tions. This has the disadvantage that the partitions are not
exactly equally sized if the current number of keys is not
divisible by the number of partitions. Therefore the number

8 17

20 23

24 2521 2218 19

11 14

15 1612 139 10

2 5

6 73 40 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 1: Perfect k-ary search tree for k = 3 con-
taining 26 keys and the corresponding array.

of iterations needed to complete a lower-bound search can
vary depending on whether the smaller or the larger parti-
tions are chosen during the search. Furthermore, we have
to explicitly track the bounds of the current search range.

It is possible to avoid these problems by restricting the
algorithms to array sizes of the form kh − 1, where h > 0 is
an integer. We will call these array sizes perfect, allowing
a perfect k-ary search tree to be constructed. In a perfect
k-ary search tree every node contains k − 1 keys and every
internal node has k children. Additionally, every leaf node
is at the same depth [12]. Figure 1 shows a perfectly sized
array and the perfect search tree for k = 3. As we can see,
all partitions (excluding the separator keys) possibly created
during a search have perfect length themselves. The separa-
tor keys contained in a node at height h > 0 are located at
indices of the form left + i · kh−1 − 1, where left is the start
index of the current search range. We call algorithms based
on perfect search trees uniform. The uniform algorithms
generally have simpler index computations than their non-
uniform counterparts enabling more optimizations.

Uniform Binary Search. We first consider the uniform bi-
nary search (Algorithm 1). In contrast to the non-uniform
binary search its search loop runs for exactly dlog2(size +1)e
iterations. This is the height of the conceptual binary search
tree constructed by the algorithm. The indices of the separa-
tor keys are computed as left + 2height−1− 1. Generalization
to arrays of arbitrary length is achieved by potentially let-
ting the left and right partitions overlap in the first iteration.
The following iterations can then assume both the left and
right partition to be equally sized and correspond to perfect
binary search trees, i.e., to have a length of 2height−1 − 1.
Since the right partition begins with the key to the right of
the separator element, the overlapping is achieved by setting
the index of the first separator element to size − 2height−1.
This way neither the left nor the right partition extend be-
yond the array bounds.

Algorithm 1 Lower-Bound Uniform Binary Search

function uniformBinarySearch(keys, size, searchKey)
height← dlog2(size + 1)e
mid← size− 2height−1; left← 0
height← height− 1
while height > 0 do

if searchKey > keys[mid] then
left← mid + 1

end if
mid← left + 2height−1 − 1
height← height− 1

end while
return left

end function

1551



Algorithm 2 Lower-Bound Uniform k-ary Search

function uniformKarySearch(keys, size, searchKey)
height← dlogk(size + 1)e; left← 0
if size 6= kheight − 1 then

// imperfect array size
height← height− 1

end if
while height > 0 do

step← 0; offset← 0
for i← 1, ..., k − 1 do

offset← offset + kheight−1

if searchKey ≤ keys[left + offset− 1] then
break

end if
step← offset

end for
left← left + step
height← height− 1

end while
return left

end function

Uniform k-ary Search. The uniform k-ary search handles
imperfectly sized arrays using the same idea as the binary
search: The size of the array is rounded up to the next per-
fect size and the size of the partitions is selected accordingly,
but they are allowed to overlap. Again, care must be taken
that the rightmost partition does not extend outside of the
array. The following iterations then proceed as shown in Al-
gorithm 2. The algorithm uses an inner for loop to examine
the k−1 separators. The index of the i-th separator is com-
puted as left + offset − 1, where offset = i · kheight−1, i.e.,
the offset of the partition to the left of the current separator
from the start of the current search range.

2.1.5 Exact Match
Until now we have only described lower-bound search al-

gorithms. There are two ways to derive exact-match variants
from them: (1) Add an equality case to every key compari-
son and terminate successfully when the search key is found.
(2) Perform a lower-bound search, then check whether the
search key is at the index of the lower bound. We have imple-
mented exact-match binary and k-ary search algorithms in
both variants and compare them in Sections 4.2.4 and 4.3.3.
Note that the index computations in variant (1) are slightly
different from a lower-bound search, since the separator ele-
ments themselves are not included in any of the partitions.

2.2 Hardware-Sensitive Optimizations
We implemented the algorithms described above and opti-

mized the resulting code by eliminating branches, unrolling
loops and adding software prefetching. Moreover, we vec-
torized the sequential, binary and uniform k-ary search us-
ing AVX2 instructions. We assumed the array length to be
evenly divisible by the SIMD register width and the arrays
to be aligned at SIMD word boundaries. If these two as-
sumptions are not met, additional code is needed to handle
the “overhanging” elements. The vectorized implementa-
tions were again tuned like the scalar variants. In Table 1,
we summarize which optimizations were applied to which al-
gorithm. More implementation details are available in [13].

Table 1: Overview of the applied optimizations.
Algorithm Branch Free Loop Unrolled Prefetch

Sequential predication 2/4/8/16 times –

Vectorized Seq. mask eval. 2/4/8 times –

Binary predication – 1 iter.

Vectorized Bin. predication – 1 iter.

Uniform Bin. (predication) completely 1/2 iter.

Vect. Unif. Bin. predication completely 1 iter.

k-ary predication inner loop –

Uniform k-ary predication inner loop 1 iter.

Vect. Unif. k-ary (mask eval.) (inner loop) –

2.2.1 Vectorization
In this paper, we use AVX2 to exploit SIMD parallelism

on a single processor for all search algorithms. In each al-
gorithm, we have to evaluate the bitmask returned by an
AVX2 comparison. This mask contains set bits in each lane
where the comparison evaluated to true and unset bits oth-
erwise. One way to branch on an AVX2 comparison is the
vptest instruction. Another, more flexible way is to cre-
ate a bitmask in a general purpose register derived from
the comparison result using the vpmovmskb instruction. We
can then count the number of bits set in the mask to de-
cide which branch to take or use the count directly without
any branch. More information on the evaluation of SIMD
comparison bitmasks can be found in [14].

The sequential search is vectorized by simply loading and
comparing m consecutive keys in parallel each iteration,
where m is the number of keys per SIMD word.

The binary search can be vectorized by viewing the array
as a sequence of SIMD word sized blocks. A binary search
is then performed on these blocks until the lower bound is
localized to a single block [12, 15]. Once the search range is
narrowed down to a single block, the position of the lower
bound is determined like outlined above.

Schlegel et al. [12] propose to use SIMD to parallelize in-
dex computations and key comparisons of a k-ary search by
fitting the k − 1 separator elements and their indices in a
single SIMD register. Hence, k is determined by the width
of the SIMD registers and the larger of the key and index bit
width. Assuming AVX2 with 32-bit indices and keys, k = 9.
We thus implemented a vectorized branchless uniform k-ary
search. It uses AVX2 gather instructions to load separators
from non-continuous memory locations.

2.2.2 Branch Elimination
Modern processors are deeply pipelined, relying on branch

prediction to be able to continue executing instructions im-
mediately after they have encountered a conditional jump [6].
Consequently, mispredicted branches are costly [1]. There-
fore it is worthwhile to eliminate unpredictable branches
from programs. The branches in the loops of our search
algorithms often fall in this category, since generally the
search keys are not predictable.

One way to eliminate branches is by branch predication,
i.e., both sides of a branch are executed and only the effects
of the side that was actually needed are kept. The x86 ar-
chitecture supports branch predication via conditional move
instructions (cmov). The scalar sequential search can make
use of conditional moves by always visiting all array ele-
ments and updating the position of the lower bound only as
long as the lower bound has not yet been passed. Branches

1552



from the inner search loop over the k−1 separator elements
in the k-ary search can be eliminated similarly. We also
used branch predication in the binary and vectorized binary
search, where either the left or the right boundary of the
search range is updated. Note that the vectorized binary
search retains one branch in the search loop to handle cases
where the lower bound is located in the current SIMD word.
Also, exact-match search algorithms (not based on a lower
bound) always retain one branch in the search loop allowing
them to terminate when an exact match is found.

Sometimes, a branch can be avoided. This is the case in
the vectorized sequential search, where the number of set
bits in a comparison result mask is directly used to update
the location of the lower bound [14]. In the uniform binary
search, there is no need to manually eliminate branches, be-
cause the compiler predicated the single branch in the search
loop by itself. Similarly no branch elimination was necessary
in the vectorized uniform k-ary search, because the starting
index of the selected partition is computed directly from the
comparison result without a branch.

2.2.3 Loop Unrolling
Loop unrolling improves performance by reducing the time

spent executing loop control instructions. We have unrolled
the loop in the scalar sequential search 2, 4, 8 and 16 times.
The vectorized sequential search was unrolled 2, 4 and 8
times. We did not unroll the vectorized search further, since
its code size is about twice that of the scalar variant, leading
to a higher register pressure [4, 6].

Since the number of iterations in the uniform binary search
only depends on the logarithm of the array size, we have un-
rolled all possible iterations of the search loop in the scalar
and vectorized variant. Our implementations of scalar k-ary
searching employ an inner loop over the k − 1 separator el-
ements. Although, this loop was automatically unrolled by
the compiler, we also manually unrolled these loops.

2.2.4 Software Prefetching
A processor may start loading cache lines not yet accessed

by the program, expecting them to be accessed soon due
to the principle of locality [6]. This is called prefetching.
Prefetching can be triggered by the hardware itself, or by
using special instructions in software [1].

Due to its perfectly sequential memory access, the sequen-
tial search does not need extra software prefetching. In con-
trast, the scalar and vectorized binary search keep track of
the next two possible separator elements, so that they can be
prefetched one iteration before they are needed. The regular
spacing of the separators in the uniform binary search sim-
plifies keeping track of the possible next separator elements,
thus reducing the amount of index computations needed for
software prefetching. We have implemented variants looking
one iteration ahead like for the non-uniform binary search,
but also variants looking two iterations ahead and there-
fore prefetching four separators each search step. Notably,
prefetching stops in the last iterations, because the cache
lines containing the next separators are already loaded.

Moreover, we added software prefetching to the branchless
uniform k-ary search by splitting the search loop into two
variants. The first prefetches the k− 1 separators in each of
the k partitions while iterating over them, the second is un-
modified. We use the unmodified loop for the last dlogk(m)e
iterations, where m is the number of keys per cache line.

3. METHODOLOGY
We compare the search algorithm variants from the last

section by the time needed to search for a single key in a
tightly packed array of 32-bit signed integer keys. By av-
eraging over a batch of 10,000 searches we obtained repro-
ducible runtimes. Additionally, the caches were prepopu-
lated by executing 10,000 search runs before we started the
measurement. The behavior of the algorithms when starting
from an empty cache are explored in Section 5.1.

The largest arrays used in the evaluation contain 228 keys
yielding a size of 1 GiB with 32-bit keys. By going up to
this size, we can capture any changes in runtime from cases
where the whole array fits into L1 cache up cases where
nodes of the conceptual search trees spanned by the binary
and k-ary search algorithms do not fit into L3 cache.

How many nodes in these search trees are available in the
caches is critical for performance. Therefore, we consider
two different schemes to select the keys to search for. The
first scheme (Scheme 1) uniformly draws random keys from
the array. Thus the whole search tree is evenly accessed.
The second scheme (Scheme 2) works by randomly selecting
128 keys from the array and then randomly drawing from
these keys for 2000 searches. After every 2000 searches, 128
new keys are selected. In doing so, only a small subset of the
paths through the search tree is accessed. The evaluation
is mostly based on Scheme 1. When we do not explicitly
state that Scheme 2 was used to generate the search keys,
Scheme 1 was used. We will only refer to Scheme 2 when
there is a significant difference to Scheme 1.

Note that the distribution of the keys in the arrays has
little influence on the evaluation, because the search keys
are selected from random array positions and not from an
underlying key distribution. In this evaluation, the arrays
simply contain uniformly distributed keys.

The experiments were conducted on a single thread with
an otherwise idle system. This means, the search algorithms
had almost the entirety of the processor cache size and band-
width exclusively available. This limits the applicability of
our results, since in a real world scenario other code would
pollute the caches. The processor used was an Intel Xeon
E5-2630 v3. This processor has 32 KiB of L1 instruction
cache, 32 KiB of L1 data cache and 256 KiB L2 cache per
core. Additionally, it has 20 MiB of shared L3 cache. To an-
alyze the micro-architectural resource usage, we utilized the
performance monitoring counters available in the evaluation
system. The specific performance events used are stated in
footnotes when referring to special performance counters.
See the Intel Software Developer’s Manual for a description
of the counters and their settings [2].

All algorithms were implemented in C++ and compiled
with GNU C++ compiler version 5.4.0 on the highest op-
timization level (-O3). In some cases we had to resort to
inline assembler to apply branch elimination. Automatic
loop vectorization was disabled.

Goal of the Evaluation. Our goal is to determine the best
search algorithm and set of optimizations minimizing the
time required to locate an integer key in a sorted array. To
this end, we first conduct an intra-algorithm evaluation for
the sequential, binary and k-ary search to analyze the im-
pact of software optimization techniques on their runtime.
In doing so, we determine the best implementation variant
of each algorithm depending on the size of the input array.

1553



While the exact runtimes and array size class boundaries
depend on the specific hardware, the same algorithm vari-
ants should perform well on all similar systems. We then
use the knowledge gained in the intra-algorithm evaluation
to conduct an inter-algorithm comparison, where we deter-
mine the best implementation variants from the complete
set of best sequential, binary and k-ary search algorithms.

4. INTRA-ALGORITHM EVALUATION
In the following, we evaluate the effectiveness of branch

elimination, loop unrolling, software-controlled prefetching
and vectorization in sequential, binary and k-ary searching.

4.1 Sequential Search
For the sequential search we consider branch elimination,

loop unrolling and vectorization. We exclude software pre-
fetching, since the sequential access pattern of these algo-
rithms is already handled by the hardware prefetcher. Since
the algorithm behavior of branch elimination and loop un-
rolling is similar to other work, we exclude performance
graphs for brevity and refer to [13].

4.1.1 Branch Elimination
We compared the average search time for the branching

search implementation with their branchless counterparts,
for scalar and vectorized searches. Since the branchless vari-
ants always iterate over the whole array, they get slower
compared to the branching ones the larger the array be-
comes. However, on small array the cost of a mispredicted
branch exiting the search loop outweighs the benefits of ear-
lier termination. This break-even point is at 28 keys for the
scalar and about 135 keys for the vectorized implementation.

4.1.2 Loop Unrolling
Unrolling the loop of the scalar sequential search variants

does not yield consistent improvements. There is a slight
speedup for some array sizes below 100 to 200 keys of up
to 5%, but otherwise the runtimes are worse. Repeating
the same experiment on a different processor (Intel Core i7-
3610QM) we observed speed improvements of over 20% in
the scalar branching search and some slight improvements
in the four times unrolled scalar branchless search. Further-
more, we found the compiler has a significant influence on
the effectiveness of loop unrolling in the sequential search.

We obtained more consistent results for the vectorized
sequential search algorithms, where the branching variant
generally profits by about 5% from loop unrolling on arrays
of more than 200 keys and is never slower than a not unrolled
implementation. Similarly, the branchless implementation
unrolled four or eight times is accelerated by about 10% on
arrays larger than 250 keys. However, the two times unrolled
variant is slower than the not unrolled base version.

Given the strong influence of compiler and hardware, loop
unrolling in the sequential search requires careful tuning to
be effective.

4.1.3 Vectorization
In Figure 2, we compare the fastest scalar and vector-

ized search functions. From Figure 2a we conclude that the
branchless vectorized implementation offers the best perfor-
mance for arrays with up to about 135 elements. For ar-
rays with more elements, the branching vectorized search is

better. Figure 2b shows the speedup obtained by vectoriza-
tion. At an array size of 100 elements, the branching vector-
ized search processes about 30% more keys per second than
the scalar implementation. The difference is greater in the
branchless search, where vectorization increases the search
speed by a factor of 2.3 for 100 elements. At an array size of
4096 keys, the speedup factor has converged to 3.5 for the
branching and 4.9 for the branchless search.

0 50 100 150 200 250 300
size in elements

0

50

100

150

200

250

ti
m

e
 i
n
 n

s

(a) Run-Time

scalar branching
scalar branchless
vectorized branching (unrolled 4 times)
vectorized branchless

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

sp
e
e
d
u
p
 f

a
ct

o
r

(b) Vectorization Speedup

branching
branchless

Figure 2: Comparison of scalar and vectorized
(AVX2) sequential search implementations.

4.1.4 Best Sequential Search Algorithms
For the sequential search, vectorized implementations are

superior to scalar ones. For arrays of 135 keys or less, the
branchless version is to be preferred. Loop unrolling does
not significantly improve it. On larger arrays the branch-
ing implementation becomes superior. In contrast to the
branchless variant, it profits from unrolling the search loop
at least four times. Table 2 summarizes these results.

Table 2: Best sequential search algorithms.
Keys Best Lower-Bound Sequential Search

≤ 135 Vectorized branchless sequential search

> 135
Vectorized branching sequential search unrolled 4
times

4.2 Binary Search
Next we evaluate the interaction of the uniform and non-

uniform binary search with branch elimination, software pre-
fetching, loop unrolling and vectorization.

4.2.1 Branch Elimination
The runtime of the binary search, its branchless version

and the uniform binary search, which is also branchless, are
plotted in the first row of Figure 3. The size of the L1,
L2 and L3 caches are marked with dashed lines. As can be
seen, the branchless algorithms are faster than the branching
implementation for arrays up to a size of 217 elements. This
is twice the size of the L2 cache. For larger arrays, their
performance declines.

The increased runtime of the branchless implementations
can be explained with significantly more stalled clock cycles2

than in the branching implementation for arrays of more
than 217 keys (Figure 3c). The branching search has less
stalled clock cycles, because the processor speculates on the
outcome of the conditional branches and can continue with
the next iteration before the necessary separator elements
are actually loaded. Such speculation is not possible in the

2Performance event RESOURCE STALLS.ANY

1554



0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

100

ti
m

e
 i
n
 n

s

(a) Run-Time (Linear Scale)

branching
branchless
uniform (branchless)

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 i
n
 n

s

(b) Run-Time (Logarithmic Scale)

branching
branchless
uniform (branchless)

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

1000

2000

3000

4000

5000

st
a
lle

d
 c

y
cl

e
s

(c) Stalled Cycles (Resource Allocation Stalled)

branching
branchless
uniform (branchless)

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

2

4

6

8

10

12

14

n
u
m

b
e
r 

o
f 

re
q
u
e
st

s

(d) L2 HW Prefetcher Requests

branching
branchless
uniform (branchless)

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

0

1

2

3

4

5

6

7

8

b
ra

n
ch

 m
is

se
s 

re
ti

re
d

(e) Retiered Branch Mispredictions

branching
branchless
uniform (branchless)

Figure 3: Branch elimination applied to the binary search (vertical lines represent respective cache sizes).

branchless implementation. Additionally, the branching bi-
nary search makes use of hardware prefetching. Figure 3d
shows the number of L2 hardware prefetcher requests3. As
we can see, for more than 217 keys the prefetcher is only
active in the branching implementation.

The linearly scaled runtime graph in Figure 3a shows dif-
ferently shaped curves for the three algorithms on smaller
arrays. The branching, non-uniform search closely follows
the logarithmic curve we expect. The uniform binary search
performs exactly one additional iteration for each doubling
of the array size, resulting in steps at powers of two. In con-
trast to the former two, the branchless non-uniform search
oscillates with minimums at power of two element counts
and maximums about one third of the way to the next
power of two. These oscillations are explained by the num-
ber of retired branch mispredictions 4,5 plotted in Figure 3e.
At power of two array sizes, the non-uniform binary search
runs for exactly log2(array size)+1 iterations, independently
from which key is searched for. If the array size is not a
power of two, either log2(array size) or log2(array size) + 1
iterations are needed. This makes the jump at the end of the
search loop harder to predict than in the uniform variant.

4.2.2 Prefetching
For the evaluation of the software prefetching algorithms,

we used the T0 locality hint, i.e., the prefetcht0 instruction,
loading into all cache levels. We found this generally gives
the best performance.

Since hardware prefetching did not work for larger ar-
rays in the branchless implementations, software controlled
prefetching might yield an improvement. The left column
of Figure 4 shows our results for the non-uniform binary
search. As we can see, adding software prefetching only
marginally improves the runtime on arrays below the 217 el-
ements mark. On larger arrays however, the branchless bi-

3Performance event L2 RQSTS.ALL PF
4Branch instructions whose outcome was mispredicted, but
that were not executed due to false speculation themselves.
5Performance event BR MISP RETIRED.ALL BRANCHES

nary search is significantly faster if prefetching is employed.
The difference with software prefetching in the branching
implementation is less apparent, but becomes more visible
once the array size surpasses 226 keys, since DRAM accesses
are by several factors more expensive.

Remember that the uniform binary search algorithms con-
ditionally call the prefetch intrinsic to avoid redundant in-
structions. We found that this significantly reduces the ex-
ecution time for arrays of less than 218 keys with almost no
change in runtime on even larger arrays. The middle column
of Figure 4 shows, that prefetching one iteration in advance
(prefetch 2 keys) increases the performance of the uniform
binary search if the array has more than about 216 keys. For
smaller arrays however, prefetching adds a few nanoseconds
of overhead to the runtime. Naturally, this overhead is even
larger in the implementation prefetching two iterations in
advance (prefetch 4 keys). Nevertheless, prefetching two it-
erations in advance becomes slightly faster than prefetching
just one iteration in advance for arrays larger than 217 keys.
Figure 4c shows the runtime difference between prefetching
two and four keys in more detail. Interestingly, the largest
speed difference occurs around the size of the L3 cache be-
tween 220 and 223 keys, where prefetching four keys is about
25% faster than prefetching just two keys.

In Figure 4f, we show the number of L3 cache misses6

caused by the different implementations. The uniform and
the non-uniform branchless binary search have the least num-
ber of cache misses, but are both slow on large arrays. As
expected, prefetching two keys each iteration in the uni-
form and non-uniform branchless search causes more cache
misses, but it also significantly improves the performance of
the algorithms. The uniform search prefetching four keys
each iteration causes yet more cache misses for a slight per-
formance improvement on large arrays. The unoptimized
branching binary search causes the most cache misses, yet
it is never the fastest implementation. Therefore the other
algorithms should be preferred.

6Performance event LONGEST LAT CACHE.MISS

1555



0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

100
ti

m
e
 i
n
 n

s
(a) Run-Time of the non-uniform search (Linear Scale)

branching
branching + prefetch
branchless
branchless + prefetch

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

100

ti
m

e
 i
n
 n

s

(b) Run-Time of the uniform search (Linear Scale)

no prefetching
prefetch 2 keys
prefetch 4 keys

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

sp
e
e
d
u
p
 f

a
ct

o
r

(c) Run-Time improvement by
prefetching four keys instead of two

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 i
n
 n

s

(d) Run-Time of the non-uniform search (Log Scale)

branching
branching + prefetch
branchless
branchless + prefetch

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 i
n
 n

s

(e) Run-Time of the uniform search (Log Scale)

no prefetching
prefetch 2 keys
prefetch 4 keys

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

size in elements

0

10

20

30

40

50

60

70

80

90

ca
ch

e
 m

is
se

s

(f) L3 Cache Misses

uniform
uniform prefetch 2 keys
uniform prefetch 4 keys
branching
branchless
branchless prefetch

Figure 4: Software prefetching applied to the non-uniform and uniform binary search.

4.2.3 Loop Unrolling
In Figure 5, we show the speedups obtained by loop un-

rolling. In the non-prefetching uniform binary search, loop
unrolling has the most noticeable benefit for arrays of be-
tween 218 and 226 keys. If prefetching (four keys per itera-
tion) is used, there are improvements of about 5% on arrays
of less than 218 keys. We have excluded the variant prefetch-
ing two keys per iteration from this comparison, since the
compiler did not generate branch-free code for the unrolled
version. These results differ from our earlier evaluation [13],
where loop unrolling had no benefit using a different com-
piler. We conclude that the effectiveness of loop unrolling
in a high-level language like C++ depend on the compiler.

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

re
la

ti
v
e
 s

p
e
e
d

no prefetching
prefetch 4 keys

Figure 5: Speedup achieved by unrolling the uni-
form binary search.

4.2.4 Exact-Match Search
In this section, we compare direct exact-match search im-

plementations with implementations in terms of a lower-
bound search. The former have an equality test in the
search loop terminating the search if the search key has
been seen. In contrast, the latter have the same search loop
as a lower-bound search and delay the equality test to the
end. Since the search keys are drawn from the array being
searched in (see Section 3), the search key is always found
and the direct exact-match implementation can make use
of its early exit condition. Consequently, the direct exact-
match searches need almost precisely one iteration less than
the lower-bound-based exact-match search.

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

re
la

ti
v
e
 s

p
e
e
d

(a) Search keys generated by Scheme 1

branchless prefetch
uniform prefetch 2 keys

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

re
la

ti
v
e
 s

p
e
e
d

(b) Search keys generated by Scheme 2

branchless prefetch
uniform prefetch 2 keys

Figure 6: Speedup obtained by a lower-bound-based
exact-match search over a direct implementation.

Figure 6 shows the speedup obtained for a lower-bound
search to find an exact match instead of using a direct imple-
mentation. On the left side, the search keys were drawn from
the whole array (Scheme 1), and on the right side only from
a small randomly determined subset (Scheme 2). In case of
the (non-uniform) branchless binary search, the lower bound
based is almost always faster than the direct implementa-
tion. On the other hand, the lower-bound-based uniform
exact-match search becomes inferior to the corresponding
direct variant on large arrays, but only in Scheme 1. In all
cases, the performance advantage of the lower-bound-based
search algorithms diminishes on very large arrays.

In conclusion, removing the potentially expensive equality
test from the search loop is often worth more than saving
one search iteration, but cannot be recommended for arrays
much larger than the processor cache.

4.2.5 Vectorization
We compared the runtimes of the vectorized binary search

using the ptest instruction and the alternative implemen-
tation using a combination of pmovmskb and test/cmp. We
found little to no difference between them.

The effect of optimizing the vectorized binary search by
removing branches and adding software prefetching can be
seen in Figure 7. Note that in contrast to the scalar binary
search there is also a branching variant of the vectorized

1556



0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

100
ti

m
e
 i
n
 n

s
(a) Non-Uniform Vectorized Binary Search (AVX2)

branching
branchless
prefetch
branchless + prefetch

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

100

ti
m

e
 i
n
 n

s

(b) Uniform Vectorized Binary Search (AVX2)

branching
branchless
prefetch
branchless + prefetch

212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

1400

1600

1800

ti
m

e
 i
n
 n

s

(c) Non-Uniform Vectorized Binary Search (AVX2)

branching
branchless
prefetch
branchless + prefetch

212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

1400

1600

1800

ti
m

e
 i
n
 n

s

(d) Uniform Vectorized Binary Search (AVX2)

branching
branchless
prefetch
branchless + prefetch

Figure 7: Branch elimination and prefetching in the
vectorized (AVX2) binary search.

uniform binary search. Just eliminating a branch in the
search loop again yields an algorithm becoming very slow
on large arrays. A branching implementation with software
prefetching offers the best performance for both the uniform
and non-uniform algorithm. On smaller arrays of less than
215 keys, the optimizations do not make a large difference,
with the exception of the branching uniform search with
prefetching, where a branchless implementation should be
preferred. An additional unrolling of the vectorized binary
search did not yield any benefits.

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

0

20

40

60

80

100

ti
m

e
 i
n
 n

s

(a) Smaller Arrays (Linear Scale)

scalar branching prefetch
vectorized branching
scalar uniform (branchless) unrolled
vectorized uniform branchless

212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

ti
m

e
 i
n
 n

s

(b) Larger Arrays (Log Scale)

scalar branching prefetch
vectorized branching prefetch
scalar uniform (branchless)
prefetch 4 keys unrolled
vectorized uniform
branching prefetch

Figure 8: Comparison of scalar and vectorized bi-
nary search implementations.

Figure 8 shows the runtimes of the fastest scalar and
SIMD lower-bound search algorithms on smaller (≤ 4096
keys) and larger (> 4096 keys) arrays. In both cases, a vec-
torized non-uniform binary search is faster than the fastest
scalar implementation. The opposite is true for the uniform
binary search, where an optimized scalar implementation
is clearly superior to the vectorized version. An optimized
scalar uniform binary search is preferable over vectorization.
We conclude, that the additional complexity introduced by
using SIMD increases the runtime more than it is decreased
by slightly reducing the number of iterations.

4.2.6 Cache Utilization and Offset Binary Search
The binary search algorithms evaluated so far exhibit an

unfortunate interaction with the way the processor caches
are indexed. Consider Figure 9 showing the runtime of an
optimized (branching, prefetching) non-uniform and an op-
timized (branchless, prefetching 4 keys, unrolled) uniform

binary search. In Figure 9a, the search keys were randomly
selected from the whole array (Scheme 1 described in Sec-
tion 3), and in Figure 9b, the keys were drawn from a small
subset of array elements (Scheme 2). Once the number of
keys surpasses the size of the L3 cache (20 MiB≈ 222.3 keys),
the runtime grows rapidly and the graphs become very spiky.
The peaks occur at powers of two and are more pronounced
if the better cacheable Scheme 2 is used to select the search
keys, hinting at a problem with caching.

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

ti
m

e
 i
n
 n

s

(a) Search keys generated by Scheme 1

binary
uniform binary
offset binary 3:5

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

100

200

300

400

500

600

ti
m

e
 i
n
 n

s

(b) Search keys generated by Scheme 2

binary
uniform binary
offset binary 3:5

Figure 9: Inefficient cache usage of the binary search
on large arrays.

The problems with the binary search on larger arrays,
especially when the size is a power of two, is explained by
Figure 10. It shows the number of unique memory addresses
accessed, not including prefetching, falling into each set of
the L1 cache. The data was collected over 10,000 search
runs with randomly selected search keys on an array of 224

keys. The diagram only shows the regular non-uniform bi-
nary search and the offset binary search, but the uniform
binary search behaves almost identical to the regular non-
uniform variant. As we can see, the access distribution of
the regular binary search is very spiky and therefore many
separator elements compete for the same set in the cache.
This results in an inefficient usage of the available space.

0 10 20 30 40 50 60
cache set

0

2000

4000

6000

8000

10000

12000

14000

16000

n
u
m

b
e
r 

o
f 

u
n
iq

u
e
 m

e
m

o
ry

 a
d
d
re

ss
e
s

Binary Search
Offset Binary Search 3:5

Figure 10: Number of unique memory accesses
falling into each L1 cache set.

The aliasing of many separator elements to the same cache
sets arises, because of the formula used to index them, in our
case of an 8-way set associative L1 cache cache line address
mod 64, and the search algorithm selecting separator keys
approximately spaced powers of two apart. The effect is
worst for the uniform binary search, since it directly uses
powers of two to calculate the separator indices and the
non-uniform binary search on arrays with a power of two
size, since then most keys fall into the same cache set.

We recorded virtual addresses to generate the graphs in
Figure 10. For the L1 cache this is correct, because our test
machine actually indexes it with virtual addresses. The sit-
uation is more complex for the L2 and L3 cache, since higher
cache levels are typically indexed with physical addresses. If
the array is in a continuous range of physical memory, the

1557



0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

30

40

50

60

70

80

90

100

110

120
ti

m
e
 i
n
 n

s
(a) Smaller Arrays (Linear Scale)

branching
branchless
prefetch
branchless + prefetch

212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

ti
m

e
 i
n
 n

s

(b) Larger Arrays (Log Scale)

branching
branchless
prefetch
branchless + prefetch

Figure 11: Runtime of the 3:5 offset binary searches.

plots would look like in Figure 10. Otherwise, the location of
pages in physical memory and the distribution of search keys
will influence the aliasing effect, giving the binary search an
unreliable performance.

Fortunately there is a way to remedy the inefficient cache
usage of the binary search. By not dividing the search ranges
in two (almost) equally sized halves but in an unequal ratio,
we can avoid powers of two based memory accesses. The
runtime of an offset binary search using a split ratio of 3:5
is plotted in Figure 9. If the search keys are generated by
Scheme 1, it becomes the fastest binary search algorithm
for more than 223 keys. In Scheme 2 it becomes the fastest
algorithm even earlier at about 218 keys.

The algorithm plotted in Figure 9 employs software pre-
fetching. As we can see in Figure 11 this optimization pro-
vides the best performance on large arrays. We have not
found a significant difference between equal split ratios in
the left and right partitions and mirrored ratios. Since mir-
roring the split ratios adds additional complexity to the im-
plementation, we do not recommend it.

4.2.7 Best Binary Search Algorithms
In Table 3, we summarize which binary search algorithm

performs best depending on the size of the arrays to search
in. Note that the break-even point between offset and reg-
ular binary searching strongly depends on the search key
distribution. Distributions exhibiting a high locality of ref-
erence encounter caching issues earlier and favor the offset
binary search more. For example, the offset binary search
already becomes faster than the regular variants for 218 keys
if Scheme 2 is used to generate the search keys.

Table 3: Best lower-bound binary search algorithms.
Keys Best Lower-Bound Binary Search

< 40
Different algorithms, unrolled branchless uniform
binary search works consistenly well

40 – 213 Unrolled branchless uniform binary search

213 – 223 Unrolled branchless uniform binary search prefetch-
ing keys two iterations in advance

> 223 Offset binary search (ratio 3:5) prefetching separator
keys one iteration in advance

4.3 k-ary Search
The k-ary search aims at reducing the number of search

iterations by using not 1 (binary search) but k − 1 separa-
tor elements (cf. Section 2.1.3). In Figure 12, we compare
uniform and non-uniform variants of the scalar k-ary search.
We show results with k from 3 to 9, since the performance
quickly declines for larger k. The k plotted in Figure 12 are
the ones yielding the best performance for each variant.

0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

ti
m

e
 i
n
 n

s

(a) Smaller Arrays (Linear Scale)

branching non-uniform k = 8
branchless non-uniform k = 4
branching uniform k = 9
branchless uniform k = 3

212 214 216 218 220 222 224 226 228

size in elements

0

100

200

300

400

500

600

ti
m

e
 i
n
 n

s

(b) Larger Arrays (Log Scale)

branching non-uniform k = 9
branchless non-uniform k = 9
branching uniform k = 9
branchless uniform k = 9

Figure 12: Runtimes of non-uniform and uniform
k-ary search with and without branches in the loop.

For arrays of up to 217 keys, the branchless uniform ternary
search is the fastest algorithm. On larger arrays, the branch-
ing uniform 9-ary search becomes faster. Similar to the
binary search, the branching implementations profit from
speculative execution and hardware prefetching, giving them
better performance on larger arrays.

Note that the cache aliasing effects observed in the binary
search also apply to the k-ary search, so powers of two are
a bad choice for k on larger arrays. On smaller arrays of
less then 216 keys however, the branching non-uniform k-
ary search works well with k = 4 or 8, because they lead to
simpler index computations.

4.3.1 Loop Unrolling
Concerning loop unrolling, we only considered the inner

loop over the k − 1 separator elements. In all cases, this
loop was automatically unrolled by the compiler, but we also
tried to manually unroll these loops. For the uniform k-ary
search this did not improve runtimes. However, the man-
ually unrolled non-uniform binary search is slightly faster
than the automatic unrolling by the compiler. The graphs
in Figure 12 show the automatically unrolled uniform and
the manually unrolled non-uniform implementations.

4.3.2 Prefetching
We augmented the branchless uniform k-ary search with

software prefetching. Each iteration, the keys potentially
needed for the next search step are prefetched. Figure 13
shows the results. It is clear, that for larger k there is sim-
ply too much prefetching. In fact, k = 3 is the only case,
where prefetching improves the runtime. The improvements
only occur for arrays larger than about 216 keys, but are
quite substantial. The comparison between the 3-ary search
with software prefetching and the 9-ary search without ad-
ditional prefetching is interesting, because they both load
eight search keys in each iteration: Two keys are loaded for
comparisons and six are prefetched in the prefetching 3-ary
search, whereas in the non-prefeching 9-ary search eight keys
are directly loaded for comparisons. As we can see k = 3
with software prefetching is faster than k = 9 just relying
on the hardware prefetcher. This could be due to a limit in
line fill buffers on modern processors [1].

4.3.3 Exact-Match Search
We compared exact-match search implementations, ter-

minating the search as soon as the search key has been
seen, and implementations based on the lower bound mov-
ing the equality tests out of the search loop, like we did
for the binary search in Section 4.2.4. For this evaluation

1558



0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

30

35

40

45

50

55

60

65

70
ti

m
e
 i
n
 n

s
(a) Smaller Arrays (Linear Scale)

k = 3
k = 3 (prefetch)
k = 5
k = 5 (preftech)
k = 9

212 214 216 218 220 222 224 226 228

size in elements

0

100

200

300

400

500

600

700

800

900

ti
m

e
 i
n
 n

s

(b) Larger Arrays (Log Scale)

k = 3
k = 3 (prefetch)
k = 5
k = 5 (preftech)
k = 9

Figure 13: Scalar branchless uniform k-ary search
with software prefetching.

in Figure 14, we tested k = 3 and 5, since these give consis-
tent performance across all implementations and array sizes.
Note, that the search keys are drawn from the array being
searched in so that all searches are successful (see Section 3).

Remember that the lower-bound-based exact-match bi-
nary search needs about one iteration more than the di-
rect exact-match implementation. For the k-ary search we
expect this difference to be lower, because the conceptual
search tree has up to k times more leaves than internal
nodes. This means, the search is more likely to only dis-
cover the search key in the last iteration, the greater k is.
For the uniform k-ary search we measured about 0.5 iter-
ations difference if k = 3 and 0.25 iterations difference if
k = 5. The differences for the non-uniform k-ary search are
slightly larger with on average 0.6 and 0.4.

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0.8

0.9

1.0

1.1

1.2

1.3

1.4

sp
e
e
d
u
p
 f

a
ct

o
r

(a) Ternary Search

branching
branchless
uniform branching
uniform branchless

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0.8

0.9

1.0

1.1

1.2

1.3

1.4

sp
e
e
d
u
p
 f

a
ct

o
r

(b) 5-ary Search

branching
branchless
uniform branching
uniform branchless

Figure 14: Speedup obtained by a lower-bound-
based exact-match search over a direct execution.

A noticeable performance improvement obtained by using
a lower-bound-based exact-match search occurs in the uni-
form branchless k-ary search. On arrays of up to 220 keys,
the lower-bound-based approach is significantly faster than
the direct implementation. However, for the non-uniform k-
ary search, the direct implementation is slightly faster. For
the branching uniform k-ary search, there is no preference.

4.3.4 Vectorization
In Figure 15, we compare the vectorized k-ary search us-

ing AVX2 with the corresponding scalar branchless uniform
k-ary search. We include runtimes on arrays with the usual
32-bit keys (int32), but also with 64-bit keys (int64). The k
of the scalar search is chosen to match the vectorized search
with 256-bit AVX registers. In all cases, the vectorized
search is slower than the scalar variant, due to its expensive
fetching of separator keys into registers. Note, a linearized
k-ary tree improves its performance drastically [13].

4.3.5 Best k-ary Search Algorithms
The fastest k-ary search algorithm in our evaluation is

the scalar branchless uniform k-ary search. On arrays of

22 24 26 28 210 212 214 216 218 220 222 224 226 228

size in elements

0

100

200

300

400

500

600

700

800

ti
m

e
 i
n
 n

s

vectorized (int32)
scalar k = 9 (int32)
vectorized (int64)
scalar k = 5 (int64)

Figure 15: Comparison of the vectorized and the
scalar branchless uniform k-ary search.

Table 4: Best lower-bound k-ary search algorithms.
Keys Best Lower-Bound k-ary Search

≤ 214 Branchless uniform 3-ary search

> 214 Branchless uniform 3-ary search with prefetching

214 or fewer it obtains its top performance with k = 3. If
the array is larger, software prefetching should be used with
the same algorithm and the same k. The runtime plots of
these algorithms can be found in Figure 13. In Table 4, we
summarize our results.

5. INTER-ALGORITHM EVALUATION
In this section, we want to determine the best combination

of search algorithm and optimizations for searching in sorted
arrays. To this end, we compare the runtimes of the best
sequential, binary and k-ary search algorithms determined
in the previous sections.

0 20 40 60 80 100
size in elements

20

30

40

50

60

70

80

ti
m

e
 i
n
 n

s

scalar branching sequential
scalar branchless sequential
vectorized branching sequential (unrolled 4 times)
vectorized branchless sequential
uniform branchless binary (unrolled)
uniform branchless 3-ary

Figure 16: Fastest sequential, binary and k-ary
search algorithms on small arrays.

In Figure 16, we consider small arrays of less than 100
keys, where sequential search algorithms might be superior
to the more complicated binary and k-ary algorithms. This
is the case for the vectorized branchless sequential search,
which is the fastest algorithm for up to 48 elements. For
larger arrays, the uniform branchless ternary search is faster.

Figure 17 shows the runtimes of the fastest binary and
k-ary search implementations on arrays of up to 4096 keys.
Again, the uniform branchless ternary search performs best.
Other promising algorithms are the unrolled branchless uni-
form binary search and the uniform branchless 5-ary search.
Since the runtime of the uniform implementations increases
in steps, both can be sometimes slightly faster than the
ternary search.Between 213 keys (32 KiB, size of the L1

1559



0 500 1000 1500 2000 2500 3000 3500 4000
size in elements

20

30

40

50

60

70

80

90

100

ti
m

e
 i
n
 n

s
uniform branchless binary (unrolled)
uniform branchless binary pref. 4 keys (unrolled)
offset binary search 3:5 (prefetch)

uniform branchless 3-ary
uniform branchless 5-ary
uniform branchless 3-ary (prefetch)

Figure 17: Binary and k-ary search variants on ar-
rays of up to 4096 keys.

cache) and 216 keys (256 KiB, size of the L2 cache) the
uniform branchless ternary search with prefetching becomes
faster than the variant without prefetching. As shown in
Figure 18, it is the fastest algorithm for more than 216 keys.
Neither the optimized offset binary nor the uniform 5-ary
search, that have a very similar runtime, reach its perfor-
mance. It is noteworthy that between 216 and 223 keys (ap-
prox. size of the L3 cache) the unrolled branchless uniform
binary search with prefetching is slightly faster than the off-
set binary and uniform 5-ary search, but on larger arrays it
does not use the cache efficiently and performs much worse.

212 214 216 218 220 222 224 226 228

size in elements

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 i
n
 n

s

uniform branchless binary (unrolled)
uniform branchless binary pref. 4 keys (unrolled)
offset binary search 3:5 (prefetch)
uniform branchless 3-ary
uniform branchless 5-ary
uniform branchless 3-ary (prefetch)

Figure 18: Fastest search algorithms on large arrays.

In Figure 19, we look at the number of L3 cache misses
caused by the best performing search algorithms. Since the
number of last level cache misses corresponds to the main
memory bandwidth consumed by the algorithm it might be
preferable to select an algorithm with few L3 cache misses.
Looking at the cache misses we can differentiate between the
offset binary search with prefetching and the uniform 5-ary
search, that have almost the same runtime. Since the 5-ary
search reaches this runtime with fewer cache misses than the
prefetching offset binary search, it is the better algorithm.

There are some noteworthy differences considering search
keys generated by the better cacheable Scheme 2 instead of
Scheme 1: For up to 216 keys, uniform binary search vari-
ants are faster than the uniform branchless ternary search.
The unrolled branchless binary search is the fastest imple-
mentation. Furthermore, the prefetching uniform branchless
ternary search has no advantage over the non-prefetching k-
ary search variants. For large arrays of more than 217 keys,
the unrolled uniform k-ary search algorithms work best, es-
pecially the unrolled uniform 9-ary search. Binary search

212 214 216 218 220 222 224 226 228

size in elements

0

10

20

30

40

50

60

70

80

LL
C

 m
is

se
s

uniform branchless binary (unrolled)
uniform branchless binary pref. 4 keys (unrolled)
offset binary search 3:5 (prefetch)
uniform branchless 3-ary
uniform branchless 5-ary
uniform branchless 3-ary (prefetch)

Figure 19: Number of last level cache misses caused
by optimized binary and k-ary search algorithms.

variants are still far behind on large arrays. Table 5 sum-
marizes which variants perform best on different array sizes.
It also names variants almost as fast as the best algorithm,
which might be worth considering.

Table 5: Best lower-bound search algorithms.
Keys Best Lower-Bound Search

≤ 48 • Vectorized branchless sequential search

49 – 216

• Branchless uniform 3-ary search
Alternatives:
• Unrolled branchless binary search (esp. Scheme 2)
• Branchless uniform 5-ary search

216 – 223

• Branchless uniform 3-ary search with prefetching
Alternatives:
• Unrolled branchless uniform binary search

prefetching separator keys two iterations ahead
• Branchless uniform 5-ary search

> 223

• Branchless uniform 3-ary search with prefetching
Alternatives:
• Branchless uniform 5-ary search
• Branchless uniform 9-ary search (for Scheme 2)

5.1 Cache Warm-Up
Until now, we only considered runtimes after 10,000 warm-

up iterations. Now, we describe the behavior of the best bi-
nary and k-ary search algorithms recommended in Table 5
during the warm-up phase. Note that the search keys were
generated using Scheme 1 to capture the worst case of ran-
dom accesses over the whole array. If there is more locality
to the accesses, there can be much shorted warm-up periods.

For less than 213 keys (32 KiB, size of the L1 cache), there
is only a very short warm-up phase of less than 50 iterations.
As the array becomes larger, the number of warm-up iter-
ations increases. For up to 218 keys the implementations
employing prefetching reach their stable performance faster
than other algorithms. Figure 20a shows the runtime of a
single search after a certain number of preceding search runs
starting from a cold cache. Even though the non-prefetching
3-ary and 5-ary search reach an almost identical runtime to
the prefetching 3-ary search, they only achieve it after about
three times as many searches.

On larger arrays, the algorithms exhibit a similar num-
ber of warm-up iterations, but there is still a difference in
the number of cache misses. Figure 20b shows the average
number of L3 cache misses during a single search. Imple-
mentations utilizing software prefetching or enabling more
hardware prefetching like the 5-ary search, initially have a

1560



0 500 1000 1500 2000 2500 3000
searches

50

100

150

200

250

300

350

400
ti

m
e
 i
n
 n

s
(a) Runtimes searching in 216 keys

uniform branchless binary (unrolled)
uniform branchless binary pref. 4 keys (unrolled)
offset binary search 3:5 (prefetch)
uniform branchless 3-ary
uniform branchless 5-ary
uniform branchless 3-ary (prefetch)

0 5000 10000 15000 20000
searches

0

5

10

15

20

LL
C

 m
is

se
s

(b) Cache misses searching in 221 keys

uniform branchless binary (unrolled)
uniform branchless binary pref. 4 keys (unrolled)
offset binary search 3:5 (prefetch)
uniform branchless 3-ary
uniform branchless 5-ary
uniform branchless 3-ary (prefetch)

Figure 20: Runtime and LLC misses over the total
number of search runs.

higher number of cache misses, but reach almost no cache
misses after 15,000 search runs.

Arrays of 223 and more keys are larger than the L3 cache
(20 MiB), so LLC misses become unavoidable. Due to the in-
efficent cache usage of the non-offset binary search especially
with power of two array sizes, it has is almost no warm-up
phase anymore and immediately reaches a stable number of
LLC misses. The other algorithms reach stable runtimes af-
ter about 10,000 searches, though slight improvements can
be observed after even more searches.

Nevertheless, the general algorithm performance is not
affected by the warm-up phase with the uniform branchless
ternary search being the best algorithm for 216 keys.

5.2 Hardware Differences
Since our results are specific to the used hardware, the

break-even points have to be re-determined for different CPU
architectures. However, compared to our previous evalua-
tion [13] using an Intel Core i7 3610QM, the overall algo-
rithm behavior is the same, although the clock frequency of
the machines differs by a factor of 1.47. Still, they share
the same L1 and L2 cache size while their L3 cache size also
differs by a factor of 3.33.

Comparing our former results to the results in this pa-
per, there are two interesting observations: (1) comparing
corresponding experiments, the plots share the same peaks
to a large extent, and (2) peaks or break-even points are
shifted by a factor of around 1.5 for the sequential search or
by factors between 4 and 8 for binary and k-ary searches.

The first observation indicates, that the peaks are no out-
liers or only specific to a machine but an algorithmic artifact
due to its overall design (e.g., access pattern) and will prob-
ably persists over processor generations. The second one
indicates that the sequential scan is mainly accelerated by
the higher clock frequency. The increased cache size seems
to have a rather marginal impact. Instead, binary and k-
ary search seem to additionally benefit from bigger L3 cache
sizes. This seems logical, because there will be more sepa-
rator elements cached reducing costly DRAM accesses.

6. IMPLICATIONS TO THE DATABASE
DOMAIN

A key result of our evaluation is that the best search algo-
rithm clearly depends on the expected size of the array to be
searched in. From this result, we see direct implications to
two different levels of database research: (1) hybrid searches
in sorted lists and (2) index structures.

Hybrid Search Algorithms. In an abstract sense, the smal-
ler the remaining array to be searched in, the less separator
keys should be examined to find a promising partition and
vice versa. Given this observation and rather stable break-
even points, it is a good idea to adapt a search algorithm to
use a mix of the proposed optimized search algorithms. The
idea is to start a ternary search as long as the remaining
partition is large enough. Afterwards, the search follows a
binary search till the remaining partition is in the 10s of keys
such that a sequential search is more beneficial. Notably,
given a specific array size, a code generator could wire the
steps of the search algorithms to cause minimal overhead.

Index Structures. There is a multitude of index structures
that rely on sorted node entries and searching the right node
entry to follow is an important operation. Improving this
search by choosing the right search algorithm within the
node will add a constant speedup to the overall tree search.
There are two kinds of trees: (1) those having rather ho-
mogeneous node sizes (e.g., B-Tree [5, 11]) and (2) having
variable-length node sizes (e.g., Elf [3], Learned Index [8],
Adaptive Radix Tree [9]). For the former, a search algorithm
for the whole tree can be determined. However for the lat-
ter, it is necessary to switch between the search algorithms
depending on the size of the node.

7. CONCLUSION
In this paper, we evaluated a large number of optimized

search algorithms based on sequential, binary and k-ary
searching. We showed that a combination of algorithmic
variations and hardware-sensitive optimizations yields sig-
nificant performance improvements over a standard imple-
mentation. Which combination of algorithm and optimiza-
tions offers the best performance is first and foremost de-
pendent on the dataset size. Vectorized sequential searching
is best suited to the smallest arrays, while uniform binary
and ternary searching work best for medium sizes. For the
largest arrays, software prefetching and k-ary search algo-
rithms with larger k become worthwhile. Another important
factor in choosing the best algorithm is the distribution of
the search keys. If a small subset of keys is accessed dispro-
portionally often, less keys need to be held in the processor
caches. Therefore, the boundaries of an algorithm’s pre-
ferred array sizes shift and different cache usage patterns
become advantageous. What exact array sizes and search
key distributions are favored by which class of algorithms
and optimizations will depend on hardware factors like the
available SIMD bandwidth and size of the processor caches.
Nevertheless, our results should provide a guideline to op-
timize search algorithms taking the properties of modern
hardware into account.

Acknowledgements. We thank the reviewers for their
valuable feedback. This work was partially funded by the
DFG (grant no.: SA 465/50-1 & SA 465/51-1).

1561



8. REFERENCES
[1] Intel 64 and IA-32 Architectures Optimization

Reference Manual, Nov. 2016.

[2] Intel 64 and IA-32 Architectures Software Developer’s
Manual, Dec. 2016.

[3] D. Broneske, V. Köppen, G. Saake, and M. Schäler.
Accelerating multi-column selection predicates in
main-memory - the Elf approach. In International
Conference on Data Engineering (ICDE), pages
647–658. IEEE, 2017.

[4] D. Broneske and G. Saake. Exploiting capabilities of
modern processors in data intensive applications. it -
Information Technology, 59(3):133–140, 2017.

[5] G. Graefe and P.-A. Larson. B-tree indexes and CPU
caches. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 349–358. IEEE,
2001.

[6] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, fifth edition, 2011.

[7] D. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
second edition, 1998.

[8] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and
N. Polyzotis. The case for learned index structures. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 489–504,
2018.

[9] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory
databases. In Proceedings of the International
Conference on Data Engineering (ICDE), pages
38–49. IEEE, 2013.

[10] R. Lesuisse. Some lessons drawn from the history of
the binary search algorithm. The Computer Journal,
26(2):154–163, 1983.

[11] J. Rao and K. A. Ross. Making b+-trees cache
conscious in main memory. In ACM SIGMOD Record,
volume 29, pages 475–486. ACM, 2000.

[12] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search
on modern processors. In Proceedings of the
International Workshop on Data Management on New
Hardware (DAMON), pages 52–60. ACM, 2009.

[13] L.-C. Schulz. Searching in sorted lists on modern
processors. Bachelor’s thesis, University of
Magdeburg, 2017. Available online at
http://wwwiti.cs.uni-magdeburg.de/iti_db/

publikationen/ps/auto/thesisSchulz17.pdf.

[14] S. Zeuch, F. Huber, and J.-C. Freytag. Adapting tree
structures for processing with SIMD instructions. In
Proceedings of the International Conference on
Extending Database Technology (EDBT).
OpenProceedings.org, 2014.

[15] J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In Proceedings of
the International Conference on Management of Data
(SIGMOD), pages 145–156. ACM, 2002.

1562


	Bild12_af_image: 


