
Efficient Document Analytics on Compressed Data:
Method, Challenges, Algorithms, Insights

Feng Zhang †‡�, Jidong Zhai �, Xipeng Shen #, Onur Mutlu ?, Wenguang Chen �
† Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE, China

‡ School of Information, Renmin University of China
� Department of Computer Science and Technology, Tsinghua University, China

Computer Science Department, North Carolina State University, USA
? Department of Computer Science, ETH Zürich, Switzerland

fengzhang@ruc.edu.cn zhaijidong@tsinghua.edu.cn xshen5@ncsu.edu
onur.mutlu@inf.ethz.ch cwg@tsinghua.edu.cn

ABSTRACT
Today’s rapidly growing document volumes pose pressing
challenges to modern document analytics, in both space us-
age and processing time. In this work, we propose the con-
cept of compression-based direct processing to alleviate issues
in both dimensions. The main idea is to enable direct doc-
ument analytics on compressed data. We present how the
concept can be materialized on Sequitur, a compression al-
gorithm that produces hierarchical grammar-like represen-
tations. We discuss the major challenges in applying the
idea to various document analytics tasks, and reveal a set of
guidelines and also assistant software modules for develop-
ers to effectively apply compression-based direct processing.
Experiments show that our proposed techniques save 90.8%
storage space and 77.5% memory usage, while speeding up
data processing significantly, i.e., by 1.6X on sequential sys-
tems, and 2.2X on distributed clusters, on average.

PVLDB Reference Format:
Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, Wenguang
Chen. Efficient Document Analytics on Compressed Data: Method,
Challenges, Algorithms, Insights. PVLDB, 11(11): 1522-1535,
2018.
DOI: https://doi.org/10.14778/3236187.3236203

1. INTRODUCTION
Document analytics refers to data analytics tasks that de-

rive statistics, patterns, insights or knowledge from textual
documents (e.g., system log files, emails, corpus). It is im-
portant for many applications, from web search to system
diagnosis, security, and so on. Document analytics applica-
tions are time-consuming, especially as the data they process
keep growing rapidly. At the same time, they often need a
large amount of space, both in storage and memory.
A common approach to mitigating the space concern is

data compression. Although it often reduces the storage us-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236203

age by several factors, compression does not alleviate, but
actually worsens, the time concern. In current document
analytics frameworks, compressed documents have to be de-
compressed before being processed. The decompression step
lengthens the end-to-end processing time.
This work investigates the feasibility of efficient data an-

alytics on compressed data without decompressing it. Its
motivation is two-fold. First, it could avoid the decompres-
sion time. Second, more importantly, it could save some
processing. Space savings by compression fundamentally
stems from repetitions in the data. If the analytics algo-
rithms could leverage the repetitions that the compression
algorithm already uncovers, it could avoid unnecessary re-
peated processing, and hence shorten the processing time
significantly. Compression takes time. But many datasets
(e.g., government document archives, electronic book collec-
tions, historical Wikipedia datasets [2]) are used for various
analytics tasks by many users repeatedly. For them, the
compression time is well justified by the repeated usage of
the compression results.
This paper presents our systematic exploration of docu-

ment analytics on compressed data. We base our study on a
specific compression algorithm named Sequitur [35] for the
hierarchical structure of its compression results (Section 2).
We introduce the concept of compression-based direct pro-

cessing, and analyze its challenges (Section 3). Through
studies on a set of core algorithms used in document ana-
lytics, we discover a set of solutions and insights on tackling
those challenges. These insights range from algorithm de-
signs to data structure selections, scalable implementations,
and adaptations to various problems and datasets. We draw
on several common document analytics problems to explain
our insights, and provide the first set of essential guide-
lines and techniques for effective compression-based docu-
ment analytics (Section 4).
Our work yields an immediately-usable artifact, the

CompressDirect library, which offers a set of modules to ease
the application of our guidelines. Our library provides im-
plementations of six algorithms frequently used in document
analytics, in sequential, parallel, and distributed versions,
which can be directly plugged into existing applications to
generate immediate benefits.
Our evaluation validates the efficacy of our proposed tech-

niques for saving both space and time. Compared to data
analytics on the original uncompressed datasets, our tech-

1522

niques reduce storage usage by 90.8% and memory usage
by 77.5%. At the same time, they speed up the analytics
by 1.6X for sequential runs, and by 2.2X for Spark-based
distributed runs.
A prior work, Succinct [3], offers a way to enable efficient

queries on compressed data. This work complements it by
making complex document analytics on compressed data ef-
ficiently. Data deduplication [30] saves storage space, but
does not save repeated processing of the data.
Overall, this work makes the following contributions:

• It presents the first method for enabling high perfor-
mance complex document analytics directly on com-
pressed data, and realizes the method on Sequitur.

• It unveils the challenges of performing compression-
based document analytics and offers a set of solutions,
insights, and guidelines.

• It validates the efficacy of the proposed techniques,
demonstrates their significant benefits in both space
and time savings, and offers a library for supporting
common operations in document analytics.

2. PREMISES AND BACKGROUND
2.1 Sequitur Algorithm
There are many compression algorithms for documents,

such as LZ77 [53], suffix array [32], and their variants. Our
study focuses on Sequitur [35] since its compression results
are a natural fit for direct processing.
Sequitur is a recursive algorithm that infers a hierarchi-

cal structure from a sequence of discrete symbols. For a
given sequence of symbols, it derives a context-free gram-
mar (CFG), with each rule in the CFG reducing a repeat-
edly appearing string into a single rule ID. By replacing the
original string with the rule ID in the CFG, Sequitur makes
it output CFG more compact than the original dataset.
Figure 1 illustrates Sequitur compression results. Figure 1

(a) shows the original input, and Figure 1 (b) shows the out-
put of Sequitur in a CFG form. The CFG uncovers both the
repetitions in the input string and the hierarchical structure.
It uses R0 to represent the entire string, which consists of
substrings represented by R1 and R2. The two instances of
R1 in R0 reflect the repetition of “a b c a b d” in the input
string, while the two instances of R2 in R1 reflect the repeti-
tion of “a b” in the substring of R1. The output of Sequitur
is often visualized with a directed acyclic graph (DAG), as
Figure 1 (c) shows. The edges indicate the hierarchical re-
lations among the rules.

R2:

R1:

R0:

R0 → R1 R1 R2 a
R1 → R2 c R2 d
R2 → a b

a b c a b d a b c a b d
a b a

Input: Rules:

(a) Original data (b) Sequitur compressed data (c) DAG Representation

R1 R1 R2

R2 c R2 d

a b

a: 0 b: 1 c: 2 d: 3
R0: 4 R1: 5 R2: 6

(d) Numerical representation

4 → 5 5 6 0
5 → 6 2 6 3
6 → 0 1

(e) Compressed data in numerical form

a

Figure 1: A compression example with Sequitur.

Dictionary encoding is often used to represent each word
with a unique non-negative integer. A dictionary stores the
mapping between integers and words. We represent each

rule ID with a unique integer greater than N , where N is
the total number of unique words contained in the dataset.
Figure 1 (d) gives the numerical representations of the words
and rules in Figure 1 (a,b), while Figure 1 (e) shows the CFG
in numerical form.
Sequitur provides compression ratios similar to those of

other popular algorithms (e.g., Gzip) [33]. Its compression
process is relatively slow, but our technique is designed for
datasets that are repeatedly used by many users. For them,
compression time is not a main concern as the compression
results can be used many times by different users for various
tasks. Such datasets are common, ranging from book col-
lections to historical Wikipedia pages [2], government doc-
ument archives, archived collections (e.g., of a law firm),
historical news collections, and so on.
Sequitur has several properties that make it appealing for

our use. First, the CFG structure in its results makes it
easy to find repetitions in input strings. Second, its output
consists of the direct (sequences of) input symbols rather
than other indirect coding of the input (e.g., distance used
in LZ77 [53] and suffix array [32]). These properties make
Sequitur a good fit for materializing the idea of compression-
based direct processing.

2.2 Typical Document Analytics
Before presenting the proposed technique, we first de-

scribe three commonly-performed document analytics tasks.
They each feature different challenges that are typical to
many document analytics, offering examples we use in later
sections for discussion.
Word Count Word count [5, 39, 4] is a basic algorithm
in document analytics, which is widely used in applications
like document classification, clustering, and theme identifi-
cation. It counts the total appearances of every word in a
given dataset, which may consist of a number of files.

• Input: {file1, file2, file3, file4, file5, ...}
• Output: <word1, count1>, <word2, count2>, ...

Inverted Index Inverted index [4, 13, 47] builds a word-
to-file index for a document dataset. It is widely used in
search engines. The input of inverted index is a set of files,
and the output is the mappings between words and files.
Unlike word count, inverted index distinguishes between files
on its output.

• Input: {file1, file2, file3, file4, file5, ...}
• Output: <word1, <file1>>, <word2, <file13>>, ...

Sequence Count Sequence count [4, 49, 24] counts the
number of appearances of every l-word sequence in each file,
where l is an integer greater than 1. In this work, we use l=3
as an example. Sequence count is very useful in semantic,
expression, and sequence analysis. Compared to word count
and inverted index, sequence count not only distinguishes
between different files, but also discerns the order of con-
secutive words, which poses more challenges for processing
(Section 3).

• Input: {file1, file2, file3, file4, file5, ...}
• Output: <word1_word2_word3, file1, count1>, ...

3. COMPRESSION-BASED DIRECT PRO-
CESSING AND ITS CHALLENGES

In this section, we present the concept of compression-
based direct processing, including its basic algorithms and
the challenges for materializing it effectively.

1523

3.1 Compression-Based Direct Processing
The basic concept of compression-based document ana-

lytics is to leverage the compression results for direct pro-
cessing, while avoiding unnecessary repeated processing of
repeated content in the original data.
The results from Sequitur make this basic idea easy to ma-

terialize. Consider a task for counting word frequencies in
input documents. We can do it directly on the DAG from Se-
quitur using a postorder (children before parents) traversal,
as Figure 2 shows. After the DAG is loaded into memory,
the traversal starts. At each node, it counts the frequency
of each word that the node directly contains and calculates
the frequencies of other words it indirectly contains—in its
children nodes. For instance, when node R1 in Figure 2 is
processed, direct appearances of “c” and “d” on its right-
hand-side (rhs) are counted, while, the frequencies of words
“a” and “b” are calculated by multiplying their frequencies
in R2 by two—the number of times R2 appears on its rhs.
When the traversal reaches the root R0, the algorithm pro-
duces the final answer.

<a, 2×2 + 1 +1> = <a, 6>
<b, 2×2 + 1> = <b, 5>

<c, 1×2 > = <c, 2>
<d, 1×2 > = <d, 2>

<a,2>, <b,2>
<c,1>, <d,1>

<a,1>, <b,1>

3

2

1

R0: R1 R1 R2 a

R1: R2 c R2 d

R2: a b

<a, 1×2> = <a, 2>
<b, 1×2> = <b, 2>

<c, 1>
<d, 1>

<a,6>, <b,5>
<c,2>, <d,2>

CFG Relation
Information Propagation

Figure 2: A DAG from Sequitur for “a b c a b d a b c a b
d a b a”, and a postorder traversal of the DAG for counting
word frequencies.

Because the processing leverages the compression results,
it naturally avoids repeated processing of repeated content.
The repeated content needs to be counted only once. For
instance, even though the substring “a b” (R2) appears five
times in the original string, the processing only counts its
frequency once. It is counted when the algorithm processes
R2; the results are reused for the two appearances of R2
when R1 is processed; similarly, R1’s results (and also R2’s)
are reused when R0 is processed.
The example illustrates the essence of the general algo-

rithm of our compression-based direct processing method:
Let G be the graph representing Sequitur compression results.

Conduct a traversal of G, during which, at each node, do the following:

(1) Local Processing:

 Process local info;

(2) Data Integration:

 Integrate the local info with results passed to this node during the traversal;

(3) Data Propagation:

 Pass the integrated info to other nodes while continuing the traversal.

We name the three main operations local processing, data
integration, and data propagation respectively. Document
analytics is converted into a graph traversal process. Such a
traversal process leverages the structure of the input doc-
uments captured by Sequitur, and embodies information
reuse to avoid repeated processing of repeated content.
In terms of application scope, compression-based direct

processing is designed for document analytics applications
that can be expressed as DAG traversal-based problems on
the compressed datasets, where the datasets do not change

frequently. Such applications would fit and benefit most
from our approach.

3.2 Challenges
Effectively materializing the concept of compression-based

direct processing on document analytics faces a number of
challenges. As Figure 3 shows, these challenges center around
the tension between reuse of results across nodes and the
overheads in saving and propagating results. Reuse saves
repeated processing of repeated content, but at the same
time, requires the computation results to be saved in mem-
ory and propagated throughout the graph. The key to effec-
tive compression-based direct processing is to maximize the
reuse while minimizing the overhead.

SOLUTION TECHNIQUESAdaptive
traversal order and

information for propagation

Compression-time
indexing

Double
compression

Load-time
coarsening

Two-level table with
depth-first traversal

Coarse-grained parallel
algorithm and automatic

data partitioning

Double-layered
bit vector for

footprint minimization

CHALLENGES

Unit
sensitivity

Parallelism
barriers

Order
sensitivity

Data
attributes

Reuse
of results across nodes

Overhead
in saving and propagating

Figure 3: Overview of the challenges and solutions.

Our problem is complicated by the complexities imposed
by the various analytics problems, the large and various
datasets, and the demand for scalable performance. We
summarize the most common challenges as follows:

• Unit sensitivity. Word count regards the entire in-
put dataset as a single bag of words. Yet, in many
other document analytics tasks, the input dataset is
regarded as a collection of some units (e.g., files). For
instance, inverted index and sequence count try to get
some statistics in each file. The default Sequitur com-
pression does not discern among files. How to support
unit sensitivity is a question to be answered.

• Order sensitivity. The way that results are propagated
in the example of word count in Figure 2 neglects the
appearance order of words in the input documents. A
challenge is how to accommodate the order for appli-
cations (e.g., sequence count) that are sensitive to the
order. This is especially tricky when a sequence of
words span across the boundaries of multiple nodes
(e.g., the ending substring “a b a” in Figure 1 spans
across nodes R2 and R0).

• Data attributes. The attributes of input datasets, such
as the number of files, the sizes of files, and the num-
ber of unique words, may sometimes substantially af-
fect the overhead and benefits of a particular design
for compression-based direct processing. For instance,
when solving inverted index, one method is to propa-
gate through the graph the list of files in which a word
appears. This approach could be effective if there are
a modest number of files, but would incur large prop-
agation overheads otherwise, since the list to propa-
gate could get very large. Thus, datasets with different
properties could demand a different design in what to
propagate and the overall traversal algorithm.

1524

• Parallelism barriers. For large datasets, parallel or dis-
tributed processing is essential for performance. How-
ever, compression-based direct processing introduces some
dependencies that form barriers. In Figure 2, for in-
stance, because nodes R1 and R0 require results from
the processing of R2, it is difficult for them to be pro-
cessed concurrently with R2.

A naive solution to all these challenges is to decompress
data before processing. However, doing so loses most bene-
fits of compression. We next present our novel solutions to
the challenges.

4. GUIDELINES AND TECHNIQUES
This section presents our guidelines, techniques, and soft-

ware modules for easing programmers’ jobs in implementing
efficient compression-based direct processing.

4.1 Solution Overview
The part outside the challenge circle in Figure 3 gives an

overview of the solutions to the challenges. Because of the
close interplay between various challenges, each of our so-
lution techniques simultaneously relates with multiple chal-
lenges. They all contribute to our central goal: maximizing
reuse while minimizing overhead.
The first solution technique is about the design of the

graph traversal algorithm, emphasizing the selection of the
traversal order and the information to propagate to adapt
to different problems and datasets (Section 4.2). The sec-
ond is about data structure design, which is especially use-
ful for addressing unit sensitivity (Section 4.2). The third
is on overcoming the parallelism barriers through coarse-
grained parallel algorithm design and automatic data par-
tition (Section 4.3). The fourth addresses order sensitivity
(Section 4.4). The other three are some general optimiza-
tions to be applied at compression time and graph loading
time, useful for both reducing the processing overhead and
maximizing the compression ratio (Section 4.5). For these
techniques, we have developed some software modules to
assist programmers in using the techniques.
In the rest of this section, we describe each of the tech-

niques along with the corresponding software modules.

4.2 Adaptive Traversal Order
The first of the key insights we learned through our ex-

plorations is that graph traversal order significantly affects
the efficiency of compression-based direct processing. Its in-
fluence is coupled with the information that the algorithm
propagates through the graph during the processing. The
appropriate traversal order choice depends on the character-
istics of both the problems and the datasets.
In this part, we use inverted index as an example to ex-

plain our insights. We also describe some basic ideas for
handling unit sensitivity.
Recall that the goal of inverted index is to build a map-

ping from each word to the list of files in which it appears.
Before we discuss the different traversal orders, we note that
the objective of this analytics task requires discerning one
file from another. Therefore, in the Sequitur compression
results, file boundaries should be marked. To do so, we
introduce a preprocessing step, which inserts some special
markers at file boundaries in the original input dataset. As
these markers are all distinctive and differ from the original
data, in the Sequitur compressed data, they become part of
the root rule, separating the different files, as the “spt1” and

“spt2” in Figure 4 illustrate. (This usage of special markers
offers a general way to handle unit sensitivity.)

R1 R2 w1 spt1 R2 w2 spt2 R3

root node

… w4 …

…
level-2 nodes

file0 file1 file2

w5 R4R1: R4R2:

w6 w7R4: w8

R4 R5R3:

w9 w6R5: w8

…

…

w5

w3

Figure 4: Sequitur compression result with file separators
(“spt1” and “spt2” are two file separators).

We next explain both preorder and postorder designs for
inverted index. In the preorder design, the first step propa-
gates the set of the IDs of the files that contain the string
represented by the node, instead of the frequencies of rules.
For instance, in Figure 4, the fileSet of rule R2 is {file0,
file1}, and rule R3 is {file2}. Because both rule R2 and
R3 have rule R4 as one of their subrules, during the pre-
order graph traversal, the fileSet of rule R4 is updated to
the union of their fileSets as {file0, file1, file2}. So, after
the first step, every rule’s fileSet consists of the IDs of all
the files containing the string represented by that rule. The
second step goes through each rule and builds the inverted
indices by outputting the fileSet of each word that appears
on the right-hand side of that rule.
The postorder design recursively folds the set of words

covered by a node into the word sets of their parent node.
The folding follows a postorder traversal of the graph and
stops at the immediate children of the root node (called
level-2 nodes.) The result is that every level-2 node has a
wordSet consisting of all the words contained by the string
represented by that node. From the root node, it is easy to
label every level-2 node with a fileSet—that is the set of files
that contain the node (and hence each word in its wordSet).
Going through all the level-2 nodes, the algorithm can then
easily output the list of containing files for each word, and
hence yield the inverted indices.
The relative performance of the two designs depends on

the dataset. For a dataset with many small files, the pre-
order design tends to run much slower than postorder (e.g.,
1.2X versus 1.9X speedup over processing the original dataset
directly on dataset D in Section 6.1, NSF Research Award
Abstracts dataset [25]), because the file sets it propagates
are large. On the other hand, for a dataset with few large
files, the preorder design tends to be a better choice as the
postorder design has to propagate large wordSets.
It is worth noting that word count can also be imple-

mented in both preorder and postorder, and preorder is a
more efficient choice (see [51] for details).

Guidelines and Software Module
Our experience leads to the following two guidelines for

implementing compression-based direct processing.
Guideline I: Try to minimize the footprint size of the

data propagated across the graph during processing.
Guideline II: Traversal order is essential for efficiency.

It should be selected to suit both the analytics task and the
input datasets.
These guidelines serve as principles for developers to fol-

low during their implementations of the solutions for their
specific analytics tasks.

1525

Traversal order is worth further discussion. The execution
time with either order mainly consists of the computation
time tcompute and the data propagation time tcopy . The for-
mer is determined by the operations performed on a node,
while the latter by the amount of data propagated across
nodes. Their values in a given traversal order are affected
by both the analytics task and the datasets. Directly mod-
eling tcompute and tcopy analytically is challenging.
We instead provide support to help users address the chal-

lenge through machine learning models. For a given analyt-
ics problem, the developer may create multiple versions of
the solution (e.g., of different traversal orders). We use a
decision tree model to select the most suitable version. To
build the model, we specify a list of features that poten-
tially affect program performance. According to the decision
tree algorithm, these features are automatically selected and
placed on the right place of the decision tree via the training
process. For training data, we use some small datasets that
have similar characteristics to the target input.
We develop a software module, OrderSelector, which helps

developers to build the decision tree for version selection.
The developer can then specify these versions in the con-
figuration file of OrderSelector as candidates, and provide a
list of representative inputs on which the program can run.
They may also specify some (currently Python) scripts for
collecting certain features of a dataset that are potentially
relevant to the selection of the versions. This step is op-
tional as OrderSelector has a set of predefined data feature
collection procedures, including, for instance, the size of an
original dataset, the size of its Sequitur CFG, the number of
unique words in a dataset, the number of rules, and the num-
ber of files. These features are provided as metadata at the
beginning of the Sequitur compressed data or its dictionary,
taking virtually no time to read. With the configuration
specified, OrderSelector runs all the versions on each of the
representative input to collect their performance data (i.e.,
running time) and dataset features. It then invokes an off-
the-shelf decision tree construction tool (scikit-learn [38]) on
the data to construct a decision tree for version selection.
The decision tree is then used in the production mode of
OrderSelector to invoke the appropriate version for a given
compressed dataset.
Figure 5 shows the decision tree obtained on inverted in-

dex based on the measurements of the executions of the dif-
ferent versions of the program on 60 datasets on the sin-
gle node machine (Table 2). The datasets were formed by
sampling the documents contained in the five datasets in
Section 6. They have various features: numbers of files
range from 1 to 50,000, median file sizes range from 1KB
to 554MB, and vocabulary sizes range from 213 to 3.3Mil-
lion. The decision tree favors postorder traversal when the
average file size is small (<2860 words) and preorder oth-
erwise. (The two versions of preorder will be discussed in
Section 4.5). In five-fold cross validation, the decision tree
predicts the suitable traversal order with a 90% accuracy.

Average Size of Words

File CountPostorder

≤2860 >2860

Preorder using Double-
Layered Bitmap

Files #

≤800

Preorder using
Regular Bitap

Preorder using
2levBitMap

>800

Min Size
≤64

>64

Preorder using
regular BitMap

≤14 >14

≤1.3*10

Figure 5: Decision tree for choosing traversal order.

4.3 Coarse-Grained Parallelism and
Data Partitioning

To obtain scalable performance, it is important for
compression-based direct processing to effectively leverage
parallel and distributed computing resources. As Section 3
mentions, some dependencies are introduced between pro-
cessing steps in either preorder or postorder traversals of
CFGs, which cause extra challenges for a parallel implemen-
tation.
We have explored two ways to handle such dependencies

to parallelize the processing. The first is fine-grained parti-
tioning, which distributes the nodes of the DAG to different
threads, and inserts fine-grained communication and syn-
chronization among the threads to exchange necessary data
and results. This method can potentially leverage existing
work on parallel and distributed graph processing [17, 40,
9, 28, 27, 46]. For instance, PowerGraph [17], exploits the
power-law property of graphs for distributed graph place-
ment and representation, and HDRF [40] is a streaming
vertex-cut graph partitioning algorithm that considers ver-
tex degree in placement.
The second is a coarse-grained partitioning method. At

compression time, this method partitions the original input
into a number of segments, then performs compression and
analytics on each segment in parallel, and finally assembles
the results if necessary.
The coarse-grained method may miss some compression

opportunities that exist across segments (e.g., one substring
appears in two segments). However, its coarse-grained parti-
tioning helps avoid frequent synchronization among threads.
Our experimental results show that on datasets of non-trivial
sizes, the coarse-grained method significantly outperforms
the fine-grained method in both performance and scalabil-
ity. It is also easier to implement, for both parallel and
distributed environments. For a parallel system, the seg-
ments are distributed to all cores evenly. For a distributed
system, they are distributed to all nodes evenly, and then
distributed to the cores within each node.
Load balance among threads or processes is essential for

high parallel or distributed performance. Thus, the coarse-
grained method requires balanced partitioning of input datasets
among threads or processes. The partitioning can be done
at the file level, but it sometimes requires even finer gran-
ularity such that a file is split into several sections, where
each section is assigned to a thread or process.

Guideline and Software Module
Our experience leads to the following guideline.
Guideline III: Coarse-grained distributed implementa-

tion is preferred, especially when the input dataset exceeds
the memory capacity of one machine; data partitioning for
load balance should be considered, but with caution if it
requires the split of a file, especially for unit-sensitive or
order-sensitive tasks.
Dataset partitioning is important for balancing the load

of the worker threads in coarse-grained parallelization. Our
partitioning mechanism tries to create subsets of files rather
than splitting a file because there is extra cost for handling a
split file, especially for unit-sensitive or order-sensitive tasks.
To assist with this process, we develop a software module.
When the module is invoked with the input dataset (a col-
lection of files) and the intended number of worker threads,
it returns a set of partitions and a metadata structure. The

1526

metadata structure records the mapping relations among
RDDs, files, and file sections. In the workload partitioning
process, file splitting is considered only when a file exceeds
a size threshold, hsplit, and causes significant load imbal-
ance (making one partition exceed the average workload per
worker by 1/4). hsplit is defined as Stotal/2nw, where Stotal

is the total dataset size, and nw is the number of work-
ers. The module 1) ensures that all workers process similar
amounts of work and 2) avoids generating small fragments
of a file by tolerating some disparity in the partition sizes.
For applications that require additional file or word sequence
information, our partitioning mechanism records some extra
information, such as which file a section belongs to, the se-
quence number of the section in the file, and so on. Such
information is necessary for a thread to know which section
of which file it is processing, which is useful for a later stage
that merges the results.

4.4 Handling Order Sensitivity
As Section 3 mentions, tasks that are sensitive to the ap-

pearance order of words pose some special challenges. Se-
quence count, for instance, requires extra processing to han-
dle 1) sequences that may span across multiple Sequitur
rules (i.e., nodes in the DAG) and 2) order of words covered
by different rules. The order sensitivity challenge (detailed
in Section 3.2) 1) calls for certain constraints on the visiting
order of the rules in the Sequitur grammar, and 2) demands
the use of extra data structures to handle sequences across
rules.
In our explorations, we found that the order sensitivity

challenge can be addressed through a two-level table design
with a depth-first graph traversal. The depth-first traversal
of the graph ensures that the processing of the data observes
the appearing order of words in the original dataset. During
the traversal, we use a global table to store the results that
require cross-node examinations, and a local table to record
the results directly attainable from the right hand side of
the rule in a node. Such a design allows the visibility of
results across nodes, and at the same time, permits reuse of
local results if a rule appears many times in the dataset.
We take sequence count as an example to illustrate our

solution. Algorithm 1 shows the pseudo-code. The depth-
first graph traversal is embodied by the recursive function
seqCount (lines 10 and 15 in Algorithm 1). It uses an l-
element first-in first-out queue (q) to store the most-recently-
seen l words. In function process, the most recent word is
pushed into q, and then this newly formed sequence in q
is processed, resulting in the incrementing of the counters
in either the local table (locTbl (line 27)) if the sequence
does not span across rules, or otherwise, in the global table
gloTbl (line 24). The traversal may encounter a rule multi-
ple times if the rule or its ancestors are referenced multiple
times in the DAG. The Boolean variable locTblReady of a
rule tracks whether the locTbl of the rule has been built
such that rebuildings can be avoided.
Figure 6 demonstrates how Algorithm 1 works on an input

word sequence whose DAG is shown in Figure 4. The words
in the first 3-word sequence 1 correspond to two different
rules in the DAG (R1 and R4). This sequence is a cross-node
sequence and the algorithm stores its count into a global
table. The next 3-word sequence 2 corresponds to only
R4, and is hence counted in a local table. The next two
sequences 3 , 4 both correspond to two instances of R4,
and are both cross-node sequences. Thus, they are counted

Algorithm 1 Count l-word Sequences in Each File
1: G = LoadData(I). load compressed data I; each rule has an

empty locT bl and a false boolean locT blReady
2: allocate gloTbl and an l-element long FIFO queue q
3: for each file f do
4: s = segment(f,G.root). Get a segment of the right-hand

side of the root rule covering file f (e.g., first three nodes in
Figure 4 for file0)

5: seqCount(s)
6: calfq(s) . calculate the frequency fq of each rule in s
7: cmb(s) . integrate into gloTbl the locTbl (times fq) of

each rule subsumed by s
8: output gloTbl and reset it and q
9: end for
10: function seqCount(s)
11: for each element e in s from left to right do
12: if e is a word then
13: process(e, s)
14: else
15: seqCount(e) . recursive call that materializes

depth-first traversal of G
16: end if
17: end for
18: rule.locT blReady = true
19: end function
20: function process(e, r)
21: q.enqueue(e, r) . evict the oldest if full
22: return if q is not full . Need more words to form

an l-element sequence
23: if words in q are from multiple rules then
24: gloTbl[q.content] + +
25: else
26: if !r.locTblReady then . avoid repeated processing
27: r.locTbl[q.content] + +
28: end if
29: end if
30: end function

in the global table. The bottom sequence 5 is the same as
the second sequence 2 ; the algorithm does not recount this
sequence, but directly reuses the entry in the local table of
R4.
The key for the correctness of Algorithm 1 is that the

depth-first traversal visits all words in the correct order,
i.e., the original appearance order of the words. We prove it
as follows (“content of a node” means the text that a node
covers in the original document.)
Lemma 1 : If the content of every child node of a rule r is

visited in the correct order, the content of r is visited in the
correct order.
Proof: Line 11 in Algorithm 1 ensures that the elements in

rule r are visited in the correct order. The condition of this
lemma ensures that the content inside every element (if it is
a rule) is also visited in the correct order. The correctness
of the lemma hence follows.
Lemma 2 : The content of every leaf node is visited in the

correct order.
Proof: A leaf node contains no rules, only words. Line

11 in Algorithm 1 ensures the correct visiting order of the
words it contains. The correctness hence follows.
Lemma 3 : The depth-first traversal by Algorithm 1 of

a DAG G visits all words in an order consistent with the
appearance order of the words in the original document G.
Proof: A basic property of a DAG is that it must have

at least one topological ordering. In such an ordering, the
starting node of every edge occurs earlier in the ordering
than the ending node of the edge. Therefore, for an arbitrary

1527

R4 R4R4

from same rule instance

R4 R4R4

R4 R4R4

from different rule instances

R4 R4R4

R4 R4R1

from same rule instance

reuse without recounting

from different rule instances

store count into global table

store count into global table

store count into local table

from two different rules

store count into global table

w6 w7w5 w8 w6 w7 w8 w5 w1

w6 w7w5

rule#:

input sequence:

pattern:

action:

w7 w8w6

rule#:

pattern:

action:

w8 w6w7

rule#:

pattern:

action:

w6 w7w8

rule#:

pattern:

action:

w7 w8w6

rule#:

pattern:

action:
… …

…

1

2

3

4

5

Figure 6: Illustration of how Algorithm 1 processes an in-
put sequence (DAG in Figure 4) for counting 3-word long
sequences.

node in G, its children nodes must appear after that node in
the topological ordering of G. Let n−1 be the last non-leaf
node in the ordering. Lemma 2 entails that all the nodes
after n−1 must be visited in the correct order as they are
all leaf nodes, and Lemma 1 entails that the content of n−1

must be visited in the correct order. The same logic leads to
the same conclusion on the second to the last non-leaf node,
then the third to the last, and so on, until the first node—
that is, the root node. As the content of the root node is
the entire document, Lemma 3 follows, by induction.
With Lemma 3, it is easy to see that all l-long sequences

in the original document goes through the FIFO queue q in
Algorithm 1. The algorithm uses the two tables locTbl and
gloTbl to record the counts of every sequence in q. Function
cmb folds all information together into the final counts.
The computational complexity of Algorithm 1 depends

mainly on two functions, seqCount and process. The com-
plexity of seqCount is determined by the total number of
times rules are visited, which is also the total number of
times edges are traversed in the DAG. In reality, especially
with coarsening to be described in Section 4.5, the overhead
of seqCount is much smaller than the overhead of process.
The complexity of Algorithm 1 is practically dominated by
process, which has a complexity of O(w). w is the number
of words in the input documents. The time savings of Algo-
rithm 1 over the baseline of direct processing on the original
data (i.e., without using our method) comes from avoiding
repeatedly counting the sequences that do not span across
rules. Thus, the amount of savings is proportional to m/n,
where m is the number of repeated local sequences and n
is the total number of sequences. The space complexity of
Algorithm 1 is O(s + g + k ∗ l), where, s is the size of the
DAG, g is the global table size, k is the number of nodes in
the DAG, and l is the average size of the local tables.

Guideline
Guideline IV: For order-sensitive tasks, consider the use

of depth-first traversal and a two-level table design. The
former helps the system conform to the word appearance
order, while the latter helps with result reuse.

The global and local tables can be easily implemented
through existing template-based data structures in C++ or
other languages. Hence, there is no specific software module
for the application of this guideline. The coarsening module
we describe next provides important performance benefits
on top of this guideline.

4.5 Other Implementation-Level Optimizations
We introduce three extra optimizations. They are mostly

implementation-level features that are useful for deploying
compression-based direct processing efficiently.
Double-layered bitmap. As Guideline I says, minimizing
the footprint of propagated data is essential. In our study,
we find that when dealing with unit-sensitive analytics (e.g.,
inverted index and sequence count), double-layered bitmap
is often a helpful data structure for reducing the footprint.
Double-layered bitmap is a data structure that has been

used in many tasks. Our contribution is in recognizing its
benefits for compression-based direct processing.
Recall that in the preorder design of inverted index in Sec-

tion 4.2, we need to propagate file sets across nodes. One
possible design is that each node uses a set structure to store
file IDs. However, frequent querying of and insertions to the
set limit the performance of graph traversal. An alternative
is that each node uses a bit-vector, with each bit correspond-
ing to a file: 1 for file presence, 0 otherwise. Although a bit
vector representation converts slow set operations with fast
bit operations, it incurs large space overhead when there are
many files, as every node needs such a vector, and the length
of the vector equals the total number of files.
We find a double-layered bitmap to be effective in ad-

dressing the problem. It is inspired by the use of simi-
lar data structures in page table indexing of operating sys-
tems [42] and indexing mechanisms for graph query [8]. As
Figure 7 illustrates, level two contains a number of N -bit
vectors (where N is a configurable parameter) while level
one contains a pointer array and a level-1 bit vector. The
pointer array stores the starting address of the level-2 bit
vectors, while the level-1 bit vector is used for fast checks to
determine which bit vector in level 2 contains the bit cor-
responding to the file that is queried. If a rule is contained
in only a subset of files, whose bits correspond to some bits
in several level-2 vectors, then the level two of the bitmap
associated with that rule would contain only those several
vectors, and most elements in the pointer array would be
null. The number of elements in the first-level arrays and
vectors of the double-layered map is only 1/N of the number
of files.

NULLP1 P3 P4 NULLP5 P7 …

bit2bit1 bit3 bit4 bit6bit5 bit7 …Bit array

Pointer array P0

bit0

bit0

bit1

…
bit N-1

…

Level 1:

Level 2:

N bits

bit0

bit1

…
bit N-1

bit0

bit1

…
bit N-1

bit0

bit1

…
bit N-1

bit0

bit1

…
bit N-1

bit0

bit1

…
bit N-1

Figure 7: A double-layered bitmap for footprint minimiza-
tion and access efficiency.

Time-wise, the double-layered bitmap provides most of
the efficiency benefits of the one-level bit vector compared
to the use of the set mechanism. Even though it incurs one

1528

possible extra pointer access and one extra bit operation
compared to the use of one-level bit vectors, its total memory
footprint is much smaller, which contributes to better cache
and TLB performance. As Figure 5 shows, the selection
between the use of single-layer bitmap and double-layered
bitmap can be part of the traversal order selection process.
The decision tree in Figure 5 favors double-layered bitmap
when the average file size is greater than 2860 words and
the number of files is greater than 800. (The benefits are
confirmed experimentally in Section 6).
It is easy to see that the double-layered bitmap can be

used in other applications with unit sensitivity as well. If
the unit is a class of articles, for instance, one just needs to
change the semantics of a bit to represent the class.

Double compression. Double compression is an optimiza-
tion we find helpful for the compression step. Compared
to some other compression algorithms, our Sequitur-based
method is based on words and it does not always get the
highest compression rates. To solve this issue, we first com-
press the original dataset with Sequitur and then run “gzip”
(or other methods with high compression rates) on the out-
put of Sequitur. The result is often even more compact
than the “gzip” result on the original dataset. To process
the data, one only needs to decompress the “gzip” result to
recover the Sequitur result. Because Sequitur result is usu-
ally much smaller than the original dataset, it takes much
less time to recover the Sequitur result than the original
dataset does. The decompression of the “gzip” result adds
only a very small marginal overhead, as shown later.

Coarsening. The third optimization relates to data load-
ing time. It is called coarsening, a transformation to the Se-
quitur DAG. Through it, the nodes or edges in the graph can
represent the accumulated information of a set of nodes or
edges. Specifically, we have explored two coarsening meth-
ods: edge merging and node coarsening. Edge mergingmerges
the edges between two nodes in the DAG into one, and uses
a weight of the edge to indicate the number of original edges.
Merging loses the order of words, but helps reduce the size
of the graph and hence the number of memory accesses in
the graph traversal. It is helpful to analytics tasks that
are insensitive to word order (e.g., word count and inverted
index). Node coarsening inlines the content of some small
rules (which represent short strings) into their parent rules;
those small nodes can then be removed from the graph. It
reduces the size of the graph, and at the same time, reduces
the number of substrings spanning across nodes, which is a
benefit especially important for analytics on word sequences
(e.g., sequence count). Coarsening adds some extra opera-
tions, but the time overhead is negligible if it is performed
during the loading process of the DAG. On the other hand,
it can save memory usage and graph traversal time, as re-
ported in the next section.

Guideline and Software Module
Guideline V: When dealing with analytics problems with

unit sensitivity, consider the use of double-layered bitmap if
unit information needs to be passed across the CFG.
To simplify developers’ job, we create a collection of double-

layered bitmap implementations in several commonly used
languages (Java, C++, C). Developers can reuse them by
simply including the corresponding header files in their ap-
plications.

Besides double-layered bitmap, another operation essen-
tial for handling unit sensitivity is the insertion of special
markers into the documents to indicate unit boundaries when
we do the compression as Section 4.2 mentions.

Guideline VI: Double compression and coarsening help
reduce space and time cost, especially when the dataset con-
sists of many files. They also enable that the thresholds be
determined empirically (e.g., through decision trees).
We create two software modules to assist developers in

using our guideline. One module is a library function that
takes original dataset as input, and conducts Sequitur com-
pression on it, during which, it applies dictionary encoding
and double compression automatically. In our implementa-
tion, this module and the partitioning module mentioned in
Section 4.3 are combined into one compression module such
that the input dataset first gets integer indexed, then par-
titioned, and finally compressed. The combination ensures
that a single indexing dictionary is produced for the entire
dataset; the common dictionary for all partitions simplifies
the result merging process.
Our other module is a data loading module. When this

module is invoked with coarsening parameters (e.g., the min-
imum length of a string a node can hold), it loads the input
CFG with coarsening automatically applied.

4.6 Short Summary
The six guidelines described in this section capture the

most important insights we have learned for unleashing the
power of compression-based direct processing. They provide
the solutions to all the major challenges listed in Section 3.2:
Marker insertion described in Section 4.2 and Guideline V
together address unit sensitivity, Guideline IV order sensi-
tivity, Guideline II data attributes challenge, Guideline III
parallelism barriers, while Guidelines I and VI provide gen-
eral insights and common techniques on maximizing the ef-
ficiency. The described software modules are developed to
simplify the applications of the guidelines. They form part
of the CompressDirect library, described next.

5. CompressDirect LIBRARY
We create a library named CompressDirect for two pur-

poses. The first is to ease programmers’ burden in apply-
ing the six guidelines when developing compression-based
direct processing for an analytics problem. To this end, the
first part of CompressDirect is the collection of the soft-
ware modules described in the previous section. The second
purpose is to provide a collection of high performance imple-
mentations of some frequently-performed document analyt-
ics tasks, which can directly help many existing applications.
Specifically, the second part of CompressDirect consists

of six high-performance modules. Word count [4] counts the
number of each word in all of the input documents. Sort [20]
sorts all the words in the input documents in lexicographic
order. Inverted index [4] generates a word-to-document
index that provides the list of files containing each word.
Term vector [4] finds the most frequent words in a set of
documents. Sequence count [4] calculates the frequencies
of each three-word sequence in every input file. Ranked
inverted index [4] produces a list of word sequences in de-
creasing order of their occurrences in each document. These
modules are essential for many text analytics applications.
For each of these modules, we implement three versions:

sequential, parallel, and distributed. The first two versions

1529

are written in C/C++ (with Pthreads [37] for paralleliza-
tion), and the third is in Scalar on Spark [48]. Our imple-
mentation leverages the functions contained in the first part
of the library, which are the software modules described in
Section 4. A DAG is loaded into memory before it is pro-
cessed. Large datasets are partitioned first with each parti-
tion generating a DAG that fits into the memory. The data
structures used for processing are all in memory. Using a
Domain Specific Language may further ease the program-
ming difficulty, as elaborated in a separate work [52]. We
next report the performance of our implementations.

6. EVALUATION
Using the six algorithms listed at the end of the previous

section, we evaluate the efficacy of the proposed Sequitur-
based document analytics for both space and time savings.
The baseline implementations of the six algorithms come
from existing public benchmark suites, Sort from HiBench [20]
and the rest from Puma [4]. We report performance in both
sequential and distributed environments. For a fair compar-
ison, the original and optimized versions are all ported to
C++ for the sequential experiments and to Spark for the
distributed experiments.
The benefits are significant in both space savings and time

savings. Compared to the default direct data processing on
uncompressed data, our method speeds up the data process-
ing by more than a factor of two in most cases, and at the
same time, saves the storage and memory space by a factor
of 6 to 13. After first explaining the methodology of our ex-
perimental evaluation, we next report the overall time and
space savings, and then describe the benefits coming from
each of the major guidelines we have described earlier in the
paper.

6.1 Methodology
Evaluated Methods We evaluate three methods for each
workload-dataset combination. The “baseline” method pro-
cesses the dataset directly, as explained at the beginning of
this section. The “CD” method is our version using compression-
based direct processing. The input to “CD” is the dataset
compressed using “double compression” (i.e., first compressed
by Sequitur then compressed by Gzip). The “CD” method
first recovers the Sequitur compression result by undoing the
Gzip compression, and then processes the Sequitur-compressed
data directly. The measured “CD” time covers all the opera-
tions. The “gzip” method represents existing decompression-
based methods. It uses Gzip to compress the data. At pro-
cessing time, it recovers the original data and processes it.

Datasets We use five datasets for evaluations, shown in Ta-
ble 1. They consist of a range of real-world documents of
varying lengths, structures and content. The first three, A,
B, C, are large datasets from Wikipedia [2], used for tests on
clusters. Dataset D is NSF Research Award Abstracts (NS-
FRAA) from UCI Machine Learning Repository [25], con-
sisting of a large number (134,631) of small files. Dataset
E is a collection of web documents downloaded from the
Wikipedia database [2], consisting of four large files.
The sizes shown in Table 1 are the original dataset sizes.

They become about half as large after dictionary encoding
(Section 2.1). The data after encoding is used for all exper-
iments, including the baselines.

Platforms The configurations of our experimental plat-
forms are listed in Table 2. For the distributed experiments,

Table 1: Datasets (“size”: original uncompressed size).
Dataset Size File # Rule # Vocabulary Size
A 50GB 109 57,394,616 99,239,057
B 150GB 309 160,891,324 102,552,660
C 300GB 618 321,935,239 102,552,660
D 580MB 134,631 2,771,880 1,864,902
E 2.1GB 4 2,095,573 6,370,437

we use the Spark Cluster, a 10-node cluster on Amazon
EC2, and the three large datasets. The cluster is built with
an HDFS storage system [6]. The Spark version is 2.0.0
while the Hadoop version is 2.7.0. For the sequential exper-
iments, we use the Single Nodemachine on the two smallest
datasets.

Table 2: Experimental platform configurations.
Platform Spark Cluster Single Node
OS Ubuntu 16.04.1 Ubuntu 14.04.2
GCC 5.4.0 4.8.2
Node# 10 1
CPU Intel E5-2676v3 Intel i7-4790
Cores/Machine 2 4
Frequency 2.40GHz 3.60GHz
MemorySize/Machine 8GB 16GB

6.2 Time Savings
6.2.1 Overall Speedups
Figure 8 reports the speedups that the different methods

obtain compared to the default method on the three large
datasets A, B, C, all run on the Spark Cluster.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

w
ordC

ount
sort
invertedIndex
term

V
ector

sequenceC
ount

rankedInvertedIndex

A
V
G

w
ordC

ount
sort
invertedIndex
term

V
ector

sequenceC
ount

rankedInvertedIndex

A
V
G

w
ordC

ount
sort
invertedIndex
term

V
ector

sequenceC
ount

rankedInvertedIndex

A
V
G

S
p
e
e
d
u
p

gzip
CD

dataset Cdataset Bdataset A

Figure 8: Performance of different methods on large datasets
running on the Spark Cluster, normalized to the perfor-
mance of the baseline method.

The size of a file in these datasets, in most cases, ranges
from 200MB to 1GB. In the implementations of all methods,
each file’s data form a processing unit (an RDD in Spark),
resulting in coarse-grained parallelism. In both the baseline
and CD methods, each machine in the cluster automatically
grabs the to-be-processed RDDs one after another, processes
them, and finally merges the results. The two versions dif-
fer in whether an RDD is formed on the uncompressed or
compressed data, and how an RDD is processed. Because
the total size of the uncompressed datasets B and C exceeds
the aggregate memory of the cluster, a newly-loaded RDD
reuses the memory of an already-processed RDD.
Word count and sort use the preorder traversal, inverted

index and term vector use the postorder traversal, and
sequence count and ranked inverted index use the depth-
first traversal and the two-level table design of Guideline IV
in Section 4.4. Because the three datasets all consists of

1530

Table 3: Time breakdown (seconds) and memory savings.
Memory I/O Time Init Time Compute Time Total Time

Benchmark gzip (MB) CD savings (%) gzip CD gzip CD gzip CD gzip CD
word count 1157.0 88.8 4.0 2.6 14.1 4.5 0.4 0.3 18.5 7.4

dataset D sort 1143.0 88.7 4.0 2.6 15.0 6.1 0.4 0.3 19.4 8.9
data size: 0.9 GB inverted index 1264.7 79.5 4.0 2.6 13.4 4.0 11.1 6.2 28.5 12.8
CD size: 132 MB term vector 1272.1 71.0 4.0 2.6 13.3 7.4 4.1 3.3 21.4 13.2
storage saving: 84.7% sequence count 1734.3 47.3 4.0 2.6 13.8 4.1 50.4 58.3 68.1 65.0

ranked inverted index 1734.3 47.3 4.0 2.6 13.9 4.4 138.7 141.5 156.6 148.4
word count 177920.0 89.5 571.5 131.5 3120.0 840.0 900.0 780.0 4591.5 1751.5

dataset C sort 177920.0 89.5 511.5 131.5 2940.0 780.0 1500.0 1200.0 4951.5 2111.5
data size: 144.4 GB inverted index 180638.0 88.1 596.1 120.0 4140.0 600.0 1380.0 480.0 6116.1 1200.0
CD size: 11 GB term vector 184138.0 86.5 571.5 131.5 3540.0 660.0 1560.0 780.0 5671.5 1571.5
storage saving: 92.4% sequence count 205117.8 77.6 672.9 320.0 5820.0 3780.0 1380.0 1500.0 7872.9 5600.0

ranked inverted index 205117.8 77.6 672.9 260.0 7020.0 5280.0 3600.0 3480.0 11292.9 9020.0

very large files, the data-sensitivity of order selection does
not affect our methods of processing.1 All the programs use
the coarse-grained parallelization. For the coarsening op-
timization, word count, sort, inverted index, and term
vector use edge merging, because they do not need to keep
the order of words. Sequence count and ranked inverted
index use node coarsening, because node coarsening reduces
the number of substrings spanning across nodes, thereby in-
creasing the reuse of local data. We empirically set 100 as
the node coarsening threshold such that each node contains
at least 100 items (subrules and words) after coarsening.
The average speedups with our CD method are 2.08X,

2.12X, and 2.59X on the three datasets. Programs inverted
index and term vector show the largest speedups. These
two programs are both unit sensitive, producing analytics
results for each file. CD creates an RDD partition (the main
data structure used in Spark) for the compressed results of
each file, but the baseline method cannot because some of
the original files exceed the size limit of an RDD partition
in Spark—further partitioning of the files into segments and
merging of the results incur some large overhead. Programs
word count and sort are neither unit sensitive nor order
sensitive. Sort has some extra code irrelevant to the CD
optimizations, and hence shows a smaller overall speedup.
Programs sequence count and ranked inverted index are
both about word sequences in each file; the amount of re-
dundant computations to save is the smallest among all the
programs.
In contrast to the large speedups obtained with the CD

method, the gzip method provides 1-14% slowdown due
to the extra decompression time. The decompression time
could be partially hidden if a background thread does the
decompression while the main thread processes the already-
decompressed parts. However, doing so does not make the
gzip method faster than the baseline as the data processing
part is still the same as that in the baseline method.
Figure 9 reports the overall speedups on the two smaller

datasets on the single-node server. CD provides significant
speedups on them as well, while the gzip method causes
even more slowdown. The reason is that the computation
time on the small datasets is little and hence the decom-
pression overhead has a more dominant effect on the overall
time. We discuss the time breakdowns in more detail next.

6.2.2 Time Breakdowns
The right eight columns in Table 3 report the time break-

downs on datasets D and C, the smallest and the largest

1Section 6.5 shows the sensitivity on the other two datasets,
D and E.

 0

 0.5

 1

 1.5

 2

 2.5

w
ordCount

sort
invertedIndex
term

Vector
sequenceCount

rankedInvertedIndex

AVG

w
ordCount

sort
invertedIndex
term

Vector
sequenceCount

rankedInvertedIndex

AVG

S
p
e
e
d
u
p

gzip
CD

dataset Edataset D

Figure 9: Performance of different methods normalized to
the baseline method on the Single Node machine.

ones. Execution on D happens on the Single-Node server
and that on C on the Spark Cluster. The time breakdown
shows that CD experiences a much shorter I/O time than
gzip does. This is because CD needs to load only the com-
pressed data into memory while gzip needs to load the de-
compressed data.
Even if I/O time is not counted, CD still outperforms gzip

substantially. This is reflected in CD’s shorter times in all
other parts of the time breakdowns. For instance, CD’s ini-
tialization step takes about 1/3 to 1/2 of that of gzip. This
is because gzip requires significant time to produce the com-
pletely decompressed data.
In most cases, the actual data processing part of CD (i.e.,

the “compute time” column in Table 3) is also much shorter
than that of gzip, thanks to CD’s avoidance of the repeated
processing of content that appears multiple times in the
input datasets.2 The exceptions are sequence count and
ranked inverted index on dataset D. These two programs
are both unit and order sensitive. Dataset D, which con-
sists of many small files, does not have many repeated word
sequences, so obtaining performance improvement on it is
even harder. However, even for these two extreme cases, the
overall time of CD is still shorter than that of gzip because of
CD’s substantial savings in the I/O and initialization steps.
We conclude that our CD method greatly reduces execution
time on many workloads and datasets.

6.3 Space Savings
Table 4 reports the compression ratio, which is defined

as size(original)/size(compressed). In all methods that use
compression, the datasets are already dictionary-encoded.
2The processing time in gzip is the same as in the baseline
method since they both process the decompressed data.

1531

Compression methods apply to both the datasets and the
dictionary. The CD- row shows the compression ratios from
Sequitur alone. Sequitur’s compression ratio is 2.3–3.8, con-
siderably smaller than the ratios from Gzip. However, with
the double compression technique, CD’s compression ratio is
boosted to 6.5–14.1, which is greater than the Gzip ratios.
Gzip results cannot be used for direct data processing, but
Sequitur results can, which enables CD to bring significant
time savings as well, as reported in Section 6.2.

Table 4: Compression ratios.
Dataset

Version A B C D E AVG
default 1.0 1.0 1.0 1.0 1.0 1.0
gzip 9.3 8.9 8.5 5.9 8.9 8.3
CD 14.1 13.3 13.1 6.5 11.9 11.8
CD- 3.1 3.2 3.8 2.3 2.8 3.0

CD-: Sequitur without double compression.

The “Memory” columns in Table 3 report the memory
savings by “CD” compared to the memory usage by the gzip
method. Because CD loads and processes much less data, it
reduces memory usage by 77.5%. This benefit is valuable
considering the large pressure modern analytics pose to the
memory space of modern machines. The smaller memory
footprint also helps CD to reduce memory access times.

6.4 When Inverted Index is Used
In some cases, practitioners store an inverted index [50,

45, 29] with the original dataset. Doing so helps acceler-
ate some analytics tasks. This approach can be combined
with our compression-based direct processing by attaching
an inverted index of the original documents with the Se-
quitur compression result. We call these two schemes Orig-
inal+index and CD+index. For tasks where inverted index
can be used (e.g., the first four benchmarks), some interme-
diate results can be obtained directly from inverted index
to save time. For the other tasks (e.g., sequence count,
ranked inverted index), Original+index has to fall back
to the original text for analysis, and CD+index provides
1.2X-1.6X speedup due to its direct processing on the Se-
quitur DAG. Besides its performance benefits, CD+index
saves about 90% space over the Original+index as Table 5
reports.

Table 5: Space usage of the original datasets and CD with
inverted-index.

Usage Dataset A B C D E
Memory Original+Index 32,455 92,234 184,469 1,387 1,406
(MB) CD+Index 3,693 10,405 20,806 413 197
Storage Original+Index 37,990 78,438 154,214 1,115 1,559
(MB) CD+Index 2,873 6,066 11,965 211 140

6.5 More Detailed Benefits
In this part, we briefly report the benefits coming from

each of the major guidelines we described in Section 4.
The benefits of adaptive traversal order (Guideline I and

II) are most prominent on benchmarks inverted index and
term vector. Using adaptive traversal order, the CDmethod
selects postorder traversal when processing dataset D and
preorder on datasets A, B, C, E. We show the performance
of both preorder and postorder traversals for inverted index
and term vector in Figure 10. Using decision trees, CD suc-
cessfully selects the better traversal order for each of the
datasets. For instance, on inverted index, CD picks pos-
torder on dataset D, which outperforms preorder by 1.6X,

and it picks preorder on dataset E, which outperforms pos-
torder by 1.3X.

 0

 1

 2

 3

 4

 5

dataset A
dataset B
dataset C
dataset D
dataset E

dataset A
dataset B
dataset C
dataset D
dataset E

S
p

e
e
d

u
p

term vectorinverted index
Figure 10: Performance of preorder and postorder for
inverted index and term vector.

Double compression (Guideline VI) provides substantial
space benefits as we have discussed in Section 4.5. However,
since double compression needs to recover the Sequitur re-
sults from the compressed data before processing, it incurs
some overhead. Our experiments show that this overhead is
outweighed by the overall time benefits of CD.
We tried to implement a fine-grained parallel version of

CD for benchmark word count. It breaks the CFG into a
number of partitions and uses multiple threads to process
each partition in parallel. Even though this version took us
several times the effort we spent on the coarse-grained paral-
lel version (Guideline III), its performance was substantially
worse (e.g., 50% slower on dataset D).
Double-layered bitmap (Guideline V) helps preorder pro-

cessing on datasets that contain many (>800) files of medium
size (>2860 words per Figure 5.) Among the 60 datasets in-
volved in the decision tree experiments in Section 4.2, 10
of them works best with double-layered bitmap based pre-
order. They get 2%-10% performance benefits compared
to single-layered bitmap based preorder traversal. Besides
double-layered bitmap, we experiment with other alternative
data structures, including red-black tree [12], hash set [12],
and B-tree [1]. Table 6 reports the performance of pre-
order inverted index when these data structures are used
in place of double-layered bitmap in each of the DAG node.
The experiment uses dataset D and the Single-Node server
in Table 2. Double-layered bitmap is fast to construct as
it uses mainly bit operations. The query time for double-
layered bitmap has a complexity of O(1). Some of the al-
ternative data structures (e.g., B-tree) yield a shorter pro-
cessing time, but suffer a longer construction process (i.e.,
initialization in Table 6).

Table 6: Performance and time breakdown of different data
structure achieves for inverted-index.
Data Structure Initialization (s) Computation (s) Total (s)
2LevBitMap 14.96 3.08 18.04
redBlackTree 39.33 3.56 42.89

hash set 25.34 4.32 29.67
B-tree 18.87 2.29 21.16

Finally, coarsening (Guideline VI) shows clear benefits for
CD on benchmarks ranked inverted index and sequence
count. For instance, compared to no coarsening, it enables
the CD-based ranked inverted index program to achieve
5% extra performance improvement on dataset E. The ben-
efits of Guideline IV has been reported in Section 4.4 and
are hence omitted here.

1532

6.6 Compression Time and Applicability
The time to compress the datasets using sequential Se-

quitur ranges from 10 minutes to over 20 hours. When dou-
ble compression is employed, Sequitur and Gzip take 94%
and 6% of the compression time on average. Using paral-
lel or distributed Sequitur with accelerators can potentially
shorten the compression time substantially. We repeat that
our technique is designed for datasets that are repeatedly
used by many users. For them, compression time is not a
main concern as the compression results can be used for
many times by different users for various analytics tasks.
Our discussion has focused on applications that normally

require scanning the entire dataset. In general, our method
is applicable if the text analytics problem can be turned
into a DAG traversal-based problem, as illustrated by the
six analytics problems used in our evaluation.
Another type of common tasks involve queries that require

random accesses to some locations in the dataset. Such tasks
are much simpler to support, e.g., by adding some appro-
priate index to the Sequitur results. Such tasks are already
be supported by other recent techniques (e.g., Succinct [3]),
and hence are not the focus of our paper.
In general, our technique is designed for document analyt-

ics that can be expressed as a DAG traversal-based problem
on datasets that do not change frequently. It is not designed
for regular expression queries or scenarios where data fre-
quently changes. We note that the proposed technique can
benefit advanced document analytics as well. The initial
part of many advanced document analytics is to load doc-
uments and derive some representations (e.g., natural lan-
guage understanding) to characterize the documents, such
that later processing can efficiently work on these represen-
tations. An example is email classification, where compression-
based direct processing can help accelerate the construction
of the feature vectors (e.g., word frequency vectors) required
for classification.

7. RELATED WORK
To our knowledge, this is the first work to enable efficient

direct document analytics on compressed data. The work
closest to CompressDirect is Succinct [3], which enables ef-
ficient queries on compressed data in a database. These two
techniques are complementary to each other. Succinct is
based on index and suffix array [32], an approach employed
in other works as well [3, 7, 16, 18, 15]. CompressDirect and
these previous studies differ in both their applicability and
main techniques. First, Succinct is mainly for the database
domain while CompressDirect is for general document an-
alytics. Succinct is designed mainly for search and random
access of local queries. Even though it could possibly be
made to work on some of the general document analytics
tasks, its efficiency is much less than CompressDirect on
such tasks as those tasks are not its main targets. For in-
stance, word count on dataset E takes about 230 seconds
with Succinct, but only 10.3 seconds with CompressDirect,
on the single node machine in Table 2. Second, Succinct and
CompressDirect use different compression methods and em-
ploy different inner storage structures. Succinct compresses
data in a flat manner, while CompressDirect uses Sequitur
to create a DAG-like storage structure. The DAG-like struc-
ture allows CompressDirect to efficiently perform general
computations for all items in the documents, even in the
presence of various challenges from files or word sequences,
as described in Section 3.2.

Other prior work tries to enable query processing over en-
crypted data [43] for security. They do not detect or avoid
processing repeated elements in documents. In storage sys-
tems, deduplication is a technique used for minimizing the
storage of repeated contents [19, 30, 31]. Since deduplication
is a technique that works only at the storage level, it does not
help document analytics to avoid repeatedly processing the
content. For space savings, CompressDirect and deduplica-
tion work at two different computing layers, and are hence
complementary to each other, applicable together. When
multiple data sources need to be integrated (e.g., in data
warehouses), data cleaning may detect and remove some
redundant data present in different sources [41]. Recent
work [14] eliminates redundant computations in document
clustering and top-K document retrieval through the appli-
cation of triangle inequality. However, none of these tasks
compress data or support analytics on compressed data.
Since its development [34, 35, 36], Sequitur has been ap-

plied to various tasks, including program and data pattern
analysis [10, 11, 21, 22, 23, 26, 44]. We are not aware of prior
usage of Sequitur to support direct document analytics on
compressed data.

8. CONCLUSION
This paper proposes a new method, compression-based di-

rect processing, to enable high performance document an-
alytics on compressed data. By enabling efficient direct
processing on compressed data, the method saves 90.8%
storage space and 77.5% memory usage, while on average,
speeding up the analytics by 1.6X on sequential systems,
and 2.2X on distributed clusters. The paper presents how
the method can be materialized on Sequitur, a compression
method that produces hierarchical grammar-like represen-
tations. It discusses the major challenges in applying the
method to various document analytics tasks, and provides
a set of guidelines for developers to avoid potential pitfalls
in applying the method. In addition, we produce a library
named CompressDirect to help ease the required develop-
ment efforts. Our results demonstrate the promise of the
proposed techniques in various environments, ranging from
sequential to parallel and distributed systems.

9. ACKNOWLEDGMENTS
This work has been partly supported by the Chinese 863

project 2015AA015306, National Natural Science Founda-
tion of China (Grant No. 61732014, 61722208, 61472201,
and 61472427), and Tsinghua University Initiative Scientific
Research Program (20151080407). This material is based
upon work supported by DOE Early Career Award (DE-
SC0013700), the National Science Foundation (NSF) un-
der Grant No. CCF-1455404, CCF-1525609, CNS-1717425,
CCF-1703487. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of DOE
or NSF. This work is also supported by the China Post-
doctoral Science Foundation (2017M620992), and the Fun-
damental Research Funds for the Central Universities and
the Research Funds of Renmin University of China (No.
16XNLQ02, 18XNLG07). Onur Mutlu is supported by ETH
Zürich, SRC, and various industrial partners of the SA-
FARI Research Group, including Alibaba, Huawei, Intel,
Microsoft, and VMware. Jidong Zhai and Xipeng Shen are
the corresponding authors of this paper.

1533

10. REFERENCES
[1] C++ B-tree.

https://code.google.com/archive/p/cpp-btree/, 2017.
[2] Wikipedia HTML data dumps.

https://dumps.wikimedia.org/enwiki/, 2017.
[3] R. Agarwal, A. Khandelwal, and I. Stoica. Succinct:

Enabling queries on compressed data. In USENIX
Symposium on Networked Systems Design and
Implementation, 2015.

[4] F. Ahmad, S. Lee, M. Thottethodi, and
T. Vijaykumar. PUMA: Purdue MapReduce
Benchmarks Suite. 2012.

[5] J. E. Blumenstock. Size matters: word count as a
measure of quality on Wikipedia. In Proceedings of the
International Conference on World Wide Web, 2008.

[6] D. Borthakur. HDFS architecture guide. HADOOP
APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf, 2008.

[7] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. 1994.

[8] Q. Q. Cai, H. G. Cui, and H. Tang. Provenance graph
query method based on double layer index structure.
In AIP Conference Proceedings, 2017.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache Flink: Stream and
Batch Processing in a Single Engine. Bulletin of the
IEEE Computer Society Technical Committee on Data
Engineering, 2015.

[10] T. M. Chilimbi. Efficient Representations and
Abstractions for Quantifying and Exploiting Data
Reference Locality. In Proceedings of the Conference
on Programming Language Design and
Implementation, 2001.

[11] T. M. Chilimbi and M. Hirzel. Dynamic Hot Data
Stream Prefetching for General-purpose Programs. In
Proceedings of the Conference on Programming
Language Design and Implementation, 2002.

[12] T. H. Cormen. Introduction to algorithms. MIT press,
2009.

[13] D. Cutting and J. Pedersen. Optimization for
Dynamic Inverted Index Maintenance. In Proceedings
of the International SIGIR Conference on Research
and Development in Information Retrieval, 1990.

[14] Y. Ding, L. Ning, H. Guan, and X. Shen.
Generalizations of the Theory and Deployment of
Triangular Inequality for Compiler-Based Strength
Reduction. In Proceedings of the Conference on
Programming Language Design and Implementation,
2017.

[15] P. Ferragina, R. González, G. Navarro, and
R. Venturini. Compressed text indexes: From theory
to practice. Journal of Experimental Algorithmics
(JEA), 2009.

[16] P. Ferragina and G. Manzini. Indexing compressed
text. Journal of the ACM (JACM), 2005.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed graph-parallel
computation on natural graphs. In Symposium on
Operating Systems Design and Implementation, 2012.

[18] R. Grossi, A. Gupta, and J. S. Vitter. When indexing
equals compression: Experiments with compressing
suffix arrays and applications. In Proceedings of the

fifteenth annual ACM-SIAM symposium on Discrete
algorithms, 2004.

[19] F. Guo and P. Efstathopoulos. Building a
High-performance Deduplication System. In USENIX
Annual Technical Conference, 2011.

[20] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis. In New Frontiers
in Information and Software as Services. 2011.

[21] J. R. Larus. Whole Program Paths. In Proceedings of
the Conference on Programming Language Design and
Implementation, 1999.

[22] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and
B. Calder. Motivation for variable length intervals and
hierarchical phase behavior. In International
Symposium on Performance Analysis of Systems and
Software, 2005.

[23] J. Law and G. Rothermel. Whole Program
Path-Based Dynamic Impact Analysis. In Proceedings
of the International Conference on Software
Engineering, 2003.

[24] L. Lebart. Classification problems in text analysis and
information retrieval. In Advances in Data Science
and Classification. 1998.

[25] M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

[26] Y. Lin, Y. Zhang, Q. Li, and J. Yang. Supporting
efficient query processing on compressed XML files. In
Proceedings of the 2005 ACM symposium on Applied
computing, 2005.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the SIGMOD International Conference on
Management of Data, 2010.

[28] C. Martella, R. Shaposhnik, D. Logothetis, and
S. Harenberg. Practical Graph Analytics with Apache
Giraph. Springer, 2015.

[29] K. Mitsui. Information retrieval based on rank-ordered
cumulative query scores calculated from weights of all
keywords in an inverted index file for minimizing
access to a main database, 1993. US Patent 5,263,159.

[30] A. E. Monge, C. Elkan, et al. The Field Matching
Problem: Algorithms and Applications. In Proceedings
of the International Conference on Knowledge
Discovery and Data Mining, 1996.

[31] G. Navarro. A guided tour to approximate string
matching. ACM computing surveys (CSUR), 2001.

[32] G. Navarro. Compact Data Structures: A Practical
Approach. Cambridge University Press, 2016.

[33] C. G. Nevill-Manning. Inferring sequential structure.
PhD thesis, University of Waikato, 1996.

[34] C. G. Nevill-Manning and I. H. Witten. Compression
and explanation using hierarchical grammars. The
Computer Journal, 1997.

[35] C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical structure in sequences: A linear-time
algorithm. J. Artif. Intell. Res.(JAIR), 1997.

[36] C. G. Nevill-Manning and I. H. Witten. Linear-time,
incremental hierarchy inference for compression. In
Data Compression Conference, 1997.

1534

[37] B. Nichols, D. Buttlar, and J. Farrell. Pthreads
programming: A POSIX standard for better
multiprocessing. " O’Reilly Media, Inc.", 1996.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in Python. Journal of machine learning
research, 2011.

[39] J. W. Pennebaker, M. E. Francis, and R. J. Booth.
Linguistic inquiry and word count: LIWC 2001.
Mahway: Lawrence Erlbaum Associates, 2001.

[40] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and
G. Iacoboni. HDRF: Stream-based partitioning for
power-law graphs. In Proceedings of the International
on Conference on Information and Knowledge
Management, 2015.

[41] E. Rahm and H. H. Do. Data Cleaning: Problems and
Current Approaches. 2000.

[42] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating system concepts essentials. John Wiley &
Sons, Inc., 2014.

[43] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data.
PVLDB, 6(5):289–300, 2013.

[44] N. Walkinshaw, S. Afshan, and P. McMinn. Using
compression algorithms to support the comprehension
of program traces. In Proceedings of the Eighth
International Workshop on Dynamic Analysis, 2010.

[45] K.-Y. Whang, B.-K. Park, W.-S. Han, and Y.-K. Lee.
Inverted index storage structure using subindexes and
large objects for tight coupling of information retrieval
with database management systems, 2002. US Patent
6,349,308.

[46] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and
I. Stoica. GraphX: A resilient distributed graph system
on spark. In First International Workshop on Graph
Data Management Experiences and Systems, 2013.

[47] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. In Proceedings of the International
Conference on World Wide Web, 2009.

[48] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. HotCloud, 2010.

[49] U. Zernik. Lexical acquisition: exploiting on-line
resources to build a lexicon. Psychology Press, 1991.

[50] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. In
Proceedings of the SIGMOD International Conference
on Management of Data, 2001.

[51] F. Zhang, J. Zhai, X. Shen, and O. Mutlu. Potential of
a Method for Text Analytics Directly on Compressed
Data. Technical report, TR-2017-4, Computer Science
Department, North Carolina State University, 11 2017.

[52] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and W. Chen.
Zwift: A Programming Framework for High
Performance Text Analytics on Compressed Data. In
Proceedings of the International Conference on
Supercomputing, 2018.

[53] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 1977.

1535

