
2SCENT: An Efficient Algorithm for Enumerating All
Simple Temporal Cycles

Rohit Kumar
Université Libre de Bruxelles

Brussels, Belgium
Universitat Politécnica de Catalunya

(BarcelonaTech)
Barcelona, Spain

rohit.kumar@ulb.ac.be

Toon Calders
Universiteit Antwerpen

Antwerp, Belgium
Université Libre de Bruxelles

Brussels, Belgium

toon.calders@uantwerpen.be

ABSTRACT
In interaction networks nodes may interact continuously and
repeatedly. Not only which nodes interact is important,
but also the order in which interactions take place and the
patterns they form. These patterns cannot be captured by
solely inspecting the static network of who interacted with
whom and how frequently, but also the temporal nature of
the network needs to be taken into account. In this paper we
focus on one such fundamental interaction pattern, namely
a temporal cycle. Temporal cycles have many applications
and appear naturally in communication networks. In finan-
cial networks, on the other hand, the presence of a temporal
cycle could be indicative for certain types of fraud, and in
biological networks, feedback loops are a prime example of
this pattern type. We present 2SCENT, an efficient algo-
rithms to find all temporal cycles in a directed interaction
network. 2SCENT consist of a non-trivial temporal exten-
sion of a seminal algorithm for finding cycles in static graphs,
preceded by an efficient candidate root filtering technique
which can be based on Bloom filters to reduce the memory
footprint. We tested 2SCENT on six real-world data sets,
showing that it is up to 300 times faster than the only ex-
isting competitor and scales up to networks with millions of
nodes and hundreds of millions of interactions. Results of
a qualitative experiment indicate that different interaction
networks may have vastly different distributions of temporal
cycles, and hence temporal cycles are able to characterize an
important aspect of the dynamic behavior in the networks.

PVLDB Reference Format:
Rohit Kumar and Toon Calders. 2SCENT: An Efficient Al-
gorithm to Enumerate All Simple Temporal Cycles. PVLDB,
11(11): 1441-1453, 2018.
DOI: https://doi.org/10.14778/3236187.3236197

The extended version of this paper is available
as [13]. Implementation of all algorithms can be
found at https://github.com/rohit13k/CycleDetection.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236197

1. INTRODUCTION
Analyzing the temporal dynamics of a network is becom-

ing very popular. In 2011, Pan et al. [17] studied temporal
paths in empirical networks of human communication and
air transport, and came to the conclusion that the tempo-
ral dynamics of networks are poorly captured by their static
structures: “Nodes that appear close from the static network
view may be connected via slow paths or not at all.” This
observation motivated research into temporal patterns in
dynamic graphs as an addition to the abundance of works
that characterize networks based on their static structures
and motifs only. Recently, Paranjape et al. [18] introduced
an algorithm for counting the number of occurrences of a
given temporal motif in a temporal network. In their paper
the authors show that datasets from different domains have
significantly different motif counts, thus observing that tem-
poral motifs are able to capture differences in the dynamic
behavior of temporal networks. Inspired by this line of work,
our paper extends it to temporal cycles of any length.

Figure 1b illustrates our notion of a temporal cycle in the
temporal graph given in Figure 1a: a sequence of interac-
tions, increasing in time, that starts and ends in the same
node. Cycles appear naturally in many problem settings:
(1) In stock trading, cyclic patterns could indicate attempts
to artificially create high trading volumes; (2) In financial
transaction data, specific types of fraud lead to cycles in the
interactions [6], and recently, Giscard et al. [5] used simple
cycles to evaluate balance in social networks. (3) In biolog-
ical and neural networks [4], temporal cycles could indicate
feedback loops. Notice that in these applications it is es-
sential that the temporal order is respected in the cycles.
Consider for instance the last example; feedback loops in a
neural network. In order to identify all possible feedback
loops in a neural network, a logical first step would be to
identify all cycles of interactions between neurons. To have
a proper feedback loop it is important that the order of the
interactions is consistent with the order in the cycle.

We consider temporal cycles as a essential basic pattern
type for temporal networks, and in this paper we study the
problem of identifying them all in huge databases of inter-
actions. To avoid spurious cycles stretched out over time we
bound the window in which a cycle has to occur to ω. Fig-
ure 1c contains some examples of cycles in the static graph
which are not considered as they either (i) extend over a too
long time window (we used ω = 10), (ii) the interactions do
not respect temporal order, or (iii) the cycle is not simple

1441

b

5,8

��

c

11
��

a

1,7

??

d
13

VV

7,10
oo

9
��

8

��
f

12

^^

e

10

OO

(a) Temporal network with time stamped edges

(i) b
5

��
a

1
??

d
7

oo

(ii) b
5

��
a

1
>>

d
10

oo

(iii) b
8

��
a

1
==

d
10

oo

(iv) b
8

��
a

7
==

d
10

oo

(v) b
8

��
a

7
>>

d

9��
f

12

``

(vi) c
11

}}
d

8 ""
e

10

OO

(b) Instances of Simple Temporal cycles for ω = 10

(i) b
5

��
a

1
??

d

9��
f

12

``

(ii) b
8

��
a

7
>>

d
7

oo

(iii) b
5

��

c

11��
d

13

SS

8

��
e

10

OO

(c) Instances of patterns which are not Simple Temporal cycles
for ω = 10

Figure 1: Example temporal network

in the sense that there are repeated vertices. As we will
detail in the related work section, however, the vast litera-
ture on finding cycles in static graphs does not easily extend
to temporal networks. Therefore we propose a new efficient
two-phase algorithm, (2SCENT), for enumerating all simple
temporal cycles of bounded timespan.

In the first phase, called the Source Detection Phase, we
gather candidate root nodes for cycles. The root node of a
temporal cycle is the unique node in which the cycle starts
and ends. For instance, for the simple cycle shown in Fig-
ure 1b(iv), the root node is a. Surprisingly, root nodes of
cycles can be found very efficiently in one pass over the data.
As a side-result we also get for each cycle its start and end
time and a superset of the nodes that appear in the cycle.

In the second phase, for every quadruple of root node,
start time, end time, and set of candidate nodes, we run a
constrained Depth First Search (cDFS) algorithm. This al-
gorithm is inspired by the seminal algorithm of Johnson [9].
cDFS performs a depth-first search with backtracking, start-
ing from the root node. In order to avoid unnecessary
multiple explorations of the same parts of the interaction
graph, for every visited node a so-called closing time is main-
tained that allows to prune previously unsuccessful depth-
first traversal paths. In this way we can output all simple
cycles rooted at the given node in time O(c(n + m)) where
c is the number of cycles and n and m are respectively the
number of nodes in the candidate set of the root node and
the number of interactions among these nodes in the given

time interval. Also this phase sometimes suffers from the
peculiarities of interaction networks. To handle the special
case of networks with multiple, highly repetitive activities
resulting in many similar cycles only differing in a few time
stamps, we introduce so-called path bundles. A path bundle
maintains multiple temporal paths between the same nodes.
The cycle finding algorithm is adapted to deal with these
path bundles directly, instead of with each of the paths in
the bundle individually. In this way we can reduce the num-
ber of depth-first traversal paths exponentially.

To validate the algorithm, we ran it on 6 real world data
sets. The Experiments consistently show the performance
improvements of the extensions and an improvement of two
orders of magnitude over our only competitor, the algorithm
of Kumar and Calders [11]. As a qualitative experiment, we
study if temporal cycles can be used to quantify the dy-
namic behavior of interaction networks. More specifically,
we monitor the distribution of frequency and size of simple
temporal cycles in different kinds of interaction networks.
We find that cycles of higher length are more frequent in
data sets such as twitter as compared to the SMS or Face-
book data sets. This observation hints that different kinds of
information exchange patterns occur in open social networks
where people can interact with anyone without a friendship
link as compared to closed social network of friends.

2. RELATED WORK
Simple Cycles in a Static Graph. The classical prob-

lem of enumerating all simple cycles in a graph has been
studied since the early 70s [20, 16, 28, 19, 31, 25, 9, 26].
One algorithm that stands out both in elegance and effi-
ciency is that of Johnson [9]. Johnson’s algorithm explores
a directed graph depth-first but at the same time uses a
combination of blocking and unblocking of vertices to avoid
fruitless traversal of paths which will not form a cycle for
the currently traversed path. For instance, if during a depth-
first exploration to find cycles rooted at a, it is found that
there is no path from b to a, b can be blocked such that in
other depth-first explorations the paths originating from b
are not explored in vain. When backtracking, however, some
nodes can become unblocked again. Johnson’s algorithm [9]
is based upon postponing the unblocking of a node as much
as possible. Using an ingenious system of cascading unblock-
ing operations, Johnson’s algorithm is able to guarantee a
worst case complexity of O((n + m)(c + 1)) for enumerat-
ing all cycles in a directed graph, where n, m, and c denote
respectively the number of nodes, the number of edges, and
the number of simple cycles in the graph. Up to the current
date, Johnson’s algorithm is one of the most efficient algo-
rithms for directed graphs. For undirected graphs, recently
Ferreira et.al [2] presented a more optimal algorithm.

These algorithms work very well for static graphs but can-
not be used directly on interaction networks. First of all, cy-
cles in interaction graphs need to respect the temporal order
of the interactions, which leads to more complexity.In this
paper we provide an extension of Johnson’s algorithm for an
interaction network. Furthermore, in static networks edges
are never repeated while in interaction networks repetitions
of interactions are very common. Not taking this aspect of
interaction networks into account leads to highly inefficient
solutions, a problem we handle by using path bundles.

Patterns in temporal graphs. Temporal graphs, also
know as interaction [14, 23] or temporal networks [7], are

1442

being studied using multiple approaches. One approach is
to extend global properties from static graph theory such
as page rank [8, 22], shortest path [17, 24, 29], or centrality
measures [1, 21] to temporal networks and to introduce ef-
ficient algorithms to compute them. Other works focus on
better understanding the nature and evolution of such tem-
poral graphs. Recent studies use temporal motifs [10, 18]
and their frequency distributions to analyze and character-
ize temporal graphs. The algorithms in these two papers,
however, cannot be used directly for our cycle detection al-
gorithm. For the first paper by Kovanen et al. [10], motifs
are considered at a higher level of abstraction. Whereas in
our setting all sequences of interactions that form temporal
cycles are enumerated, Kovanen et al. [10] would consider a
generic temporal cycle of length k as a pattern and count the
number of embeddings of this generic pattern. The second
paper by Paranjape et al. [18] on the other hand, assumes
the same setting as we do. Their work, however, concen-
trates on efficiently counting the frequency of a specific given
pattern. In order to apply their algorithm for finding cycles,
we would have to run it once for each cycle length. Whereas
this is certainly possible in theory, it has a number of dis-
advantages, such as not knowing for which lengths we need
to run the algorithm on the one hand, and the fact that
the algorithm of Paranjape et al. [18] requires to first find
all embeddings of the pattern in the static graph, without
any temporal order or window being considered. A head-
to-head comparison with our algorithm, however, would not
be fair; the authors are well-aware of this deficiency and for
several special cases, such as triangles Paranjape et al. pro-
pose efficient adaptations avoiding this costly first step. For
cycles, however, no such optimization is described and there
is no straightforward solution. The closest to our work is the
work by Kumar and Calders [11], who study the same prob-
lem, and propose the idea of using simple temporal cycles
and their frequency distribution to characterize the infor-
mation flow in temporal networks. Kumar and Calders [11]
introduce a naive algorithm which enumerates all possible
temporal paths in a window to find cycles. For interac-
tion networks with large number of temporal paths this al-
gorithm does not scale well. In the empirical evaluation
2SCENT outperforms the algorithm of [11] by a factor of
300 in terms of time. This gain in performance is because
it is much more efficient to find roots of cycles than to find
the cycles themselves, and once the roots are known, many
temporal paths no longer have to be considered.

3. PRELIMINARIES
Let V be a given set of nodes. An interaction is defined

as a triplet (u, v, t), where u, v ∈ V , and t is a strictly pos-
itive natural number representing the time the interaction
took place. Interactions are directed and could denote, for
instance, the sending of a message in a communication net-
work. Please note that multiple interactions can appear at
the same time. A temporal network G(V, E) is a set of nodes
V , together with a set E of interactions over V . n = |V |
denotes the number of nodes in the temporal graph, and
m = |E| the number of interactions.

Definition 1. A temporal path between two nodes u, v ∈
V is a sequence of interactions p = 〈(u, n1, t1), (n1, n2, t2),
.., (nk−1, v, tk)〉 such that t1 < t2 < .. < tk and all interac-
tions in p appear in E . Often we will use the more compact

Algorithm 1 GenerateSeeds

Require: Threshold ω, interactions E
Ensure: All nodes s, time stamps ts and te, and a set C

such that there exists a loop from s to s using only nodes
in C starting at ts and ending at te.

1: function GenerateSeeds(ω, E)
2: for (a, b, t) ∈ E , ordered ascending w.r.t. t do
3: if S(b) does not exist then
4: S(b)← {}
5: S(b)← S(b) ∪ {(a, t)}
6: if S(a) exists then
7: S(a)← S(a) \ {(x, tx) ∈ S(a) | tx ≤ t− ω}
8: S(b)← S(b) ∪ S(a)
9: for (b, tb) ∈ S(b) do

10: C ← {c | (c, tc) ∈ S(a), tc > tb} ∪ {b}
11: Output (b, [tb, t], C)
12: S(b)← S(b) \ {(b, tb)}
13: if time to prune then
14: for all summaries S(x) do
15: S(x)← S(x)\{(y, ty) ∈ S(x) | ty ≤ t−ω}

notation u
t1→ n1

t2→ n2 . . .
tk→ v. dur(p) := tk − t1 denotes

the duration of the path, len(p) := k its length.
A temporal path p is called a simple temporal path if no

node appears more than once in p. p is valid for a given
time window ω if dur(p) ≤ ω.

For example, in the temporal graph of Figure 1a, b
5→

d
8→ e

10→ c
11→ d is a temporal path, but it is not a simple

temporal path as node d appears more than once in the path.

The duration of the path is 11− 5 = 6. b
5→ d

8→ e
10→ c is a

simple temporal path with duration 5.

Definition 2. A temporal cycle with root node u is a tem-
poral path from u to itself. The cycle is called simple if each
internal node in the cycle occurs exactly once. More specif-
ically, a simple temporal cycle c with root node u consist

of a simple temporal path u
t1→ n1 . . .

tk−1→ v followed by an
interaction (v, u, tk) with tk > tk−1. We consider a simple
temporal cycle to be valid for time window ω if the duration
of the cycle is less than or equal to ω.

For example, the cycle in Figure 1c(i) is a simple temporal
cycle but is not valid for ω = 10. Please note there could be
multiple cycles from the same root node of different length
and duration. For example, Figure 1b (i)-(iv) represents
4 different temporal cycles with the same root node a of
the same length but with different durations. The cycles in
Figure 1b (ii) and (iii) have the same duration and length
but still represent different cycles.

Definition 3. Simple Cycle Enumeration (SCE)
Given a temporal network G(V, E) and a time window ω,
enumerate all simple temporal cycles C with dur(C) ≤ ω.

In Figure 1a, the solution of SCE with ω = 10 are the

cycles of Figure 1b plus b
5→ d

13→ b and b
8→ d

13→ b.

4. SOURCE DETECTION PHASE
In this and the next two sections, we will address the

problem of efficiently finding all simple temporal cycles in

1443

a given temporal network. As temporal networks are gen-
erally very large graphs, performing a DFS (Depth First
Search) or BFS (Breadth First Search) scan for every node
in the network would be very time consuming. Hence, we
present a two-phase approach to efficiently find all simple
cycles. In the first phase, we pass once over the interactions
of the given temporal network to identify the root nodes and
the start and end times of all cycles. We also get a set of
candidate nodes which form a superset of the nodes present
in the cycle. We call this phase the Source Detection phase.
The details of this phase are given in this section. We also
present a memory efficient variation of the source detection
phase using Bloom Filters, which requires two passes over
the data but is more memory and time efficient for partic-
ular cases in which there are many temporal paths. In the
second phase, which we will discuss in Section 5, we use the
identified root nodes from the first phase to find temporal
cycles using a constrained DFS. The details of this phase are
given in Section 5. Finally, in Section 6 we present an op-
timization of our two-phase algorithm for special cases with
many repeated interactions.

4.1 Reverse Reachability Summary
We find the source node and candidate sets by maintaining

a so-called reverse-reachability summary S(u) for all u in V .
The reverse reachability summary of u at time t, denoted
St(u), is defined as the set of pairs (x, tx) such that there is
a temporal path p from x to u starting at time tx and with
tx ≥ t − ω within the set of interactions up to time stamp
t. Maintaining the summary is straightforward; whenever

an interaction a
t→ b is processed we add (a, t) to S(b) as it

captures the path of length 1 due to this new interaction.
Also, every path to a is now extended to b, hence we add all
pairs in S(a) to S(b). We remove paths which are older than
ω; that is, pairs (x, tx) such that tx < t − ω. We call this
old path pruning. Whenever there is a path from b to b after

processing the new interaction a
t→ b; that is, there is a pair

(b, tb) ∈ S(a), we know there is a cycle with b as source node,
that starts at tb and ends at t. Furthermore, every node x

in this cycle which was completed by a
t→ b is connected to

a and hence there must be a pair (x, tx) ∈ S(a). In this way
we can also construct a candidate set {x | ∃(x, tx) ∈ S(a) :
tb < tx < t}.

Example 1. Consider the interaction in the example Fig-
ure 1a. Before processing the interaction (d, a, 8), the sum-
maries of nodes a and d are S(a) = {} and S(d) = {(a, 1),
(b, 5)} respectively. While processing (d, a, 8) the summary
of a is updated to S(a) = {(b, 5), (d, 8)} and as there is
(a, 1) in the summary of d it generates a seed candidate as
(a, [1, 8], {b, d}). This seed candidate actually corresponds
to the simple cycle in Figure 1b(i).

The details of the algorithm are given in Algorithm 1.
One detail that still needs clarification is the inactive node
pruning (steps 13-15). In this step, at regular time instances
all pairs (x, tx) such that tx ≤ t − ω is removed from the
memory. In this way we ensure that memory does not get
filled with summaries of nodes which are no longer active.
In all our experiments we noticed that the overhead of this
step was negligible because when executed regularly, only
nodes which were active within the past window of size ω
will have a summary, but the memory saving were huge.

Theorem 1. Let m = |E|, n = |V |, W be the number
of interactions in a window of size ω, and c the number
of valid temporal cycles. Algorithm 1 generates one tuple
(a, ts, te, C) for each cycle c that starts and ends in a with
respectively an interaction at time ts and one at time te.
All nodes of the cycle are in C. Furthermore, for each tuple
(a, ts, te, C) output by the algorithm, a corresponding cycle
exists. The time complexity for handling one interaction is
bounded by O((m + c)W), and the memory complexity is
O(min(n,W)W).

4.2 Improvements using Bloom Filters
Despite the regular pruning, the summaries may still grow

very large for large window lengths or large networks, caus-
ing out-of-memory problems. This problem occurs for in-
stance when there are many long temporal paths within the
window of length ω. Therefore, for such extreme cases, we
further refine the source detection phase by using a Bloom
filter [3] as summary. A Bloom filter is a compact data
structure for representing sets which allows for membership
queries. It consists of an array B of q bits and uses k inde-
pendent hash functions h1, . . . , hk that hash the elements
to be stored in the set uniformly over the set of valid indices
1 . . . q for B. Initially all bits in the bitmap index are 0.
Whenever a new element a arrives, all bits h1(a), . . . , hk(a)
are set to 1. Whenever we need to know if an element x
is in the set represented by B, we test if all entries h1(x),
. . . , hk(x) are 1. If x was added to the Bloom filter at some
point, for sure these bits must all be 1. Notice that there
may be false positives if the combined bits set to 1 by the
other elements in the set cover all the bits for x. False neg-
atives, however, are impossible. For the exact details on the
Bloom filter and how to select optimal values for q and k in
function of the number of elements to store in the set and
the false positive probability, we refer to [3]. If we have two
Bloom filters representing sets S1 and S2, we can construct
the Bloom filter for their union by taking the bitwise OR of
the two Bloom filters. Taking the intersection of two Bloom
filters can be done by taking the bitwise AND. In contrast
to the union, however, the Bloom filter for the intersection
cannot be constructed exactly with this construction. We
will denote the bitwise AND (respectively OR) of two Bloom
filters B1 and B2 with B1 ∩B2 (respectively B1 ∪B2).
S(a) will hence be replaced by a Bloom filter B(a), that

represents the set of all nodes that can reach a. Whenever

an interaction a
t→ b is processed, we test if b is a hit for

the Bloom filter of a. If so, b will be listed as a potential
cycle source node. Then we union the Bloom filter of B(a)
with that of B(b) to get the new Bloom filter for b. Using
the Bloom filter approach we guarantee that all summaries
have equal (restricted) length and cannot grow unbound-
edly. Notice, however, that this schema has a number of
disadvantages as well. We list them in increasing order of
severity: (1) There may be false positives when we test for
b ∈ S(a). This will incorrectly lead to the conclusion that
there is a cycle rooted at b. These spurious root nodes,
however, will be eliminated in the second phase of the al-
gorithm that will be discussed later. False positives do not
affect the correctness of the complete 2SCENT algorithm
although they will affect the efficiency. (2) we can no longer
apply the old path pruning because the Bloom filter does
not contain the information when elements were added to
it. We handle this problem by inactive nodes pruning. In

1444

Algorithm 2 GenerateSeedsBloom

Require: Threshold ω, interactions E
Hash functions h1, . . . , hk, Bloom filter size q.

Ensure: Candidate root nodes s with start and end time of
the cycle and a bloom filter representing the candidate
set. It is guaranteed that for each temporal simple cycle
there will be such a four-tuple.

1: function GenerateSeedsBloom(ω, E)
2: fwSeeds ← ∅
3: for (a, b, t) ∈ E , ordered ascending w.r.t. t do
4: fwSeeds ← fwSeeds∪ processEdge(a,b,t,ω)

5: Remove all bloom filters
6: bwSeeds ← ∅
7: for (a, b, t) ∈ E , ordered descending w.r.t. t do
8: bwSeeds ← bwSeeds∪ processEdge(b,a,t,ω)

9: Output all (a, [ts, te], (Bf ∩ Bb)) s.t. there exists
(a, te, Bf) ∈ fwSeeds and (a, ts, Bb) ∈ bwSeeds with 0 <
te − ts ≤ ω

10: function processEdge(a,b,t,ω)
11: seeds ← {}
12: if B(b) does not exist or |Last(b)− t| > ω then
13: B(b)← [0, . . . , 0] . Empty bloom filter

14: Set bits h1(a), . . . hk(a) to 1 in B(b)
15: Last(b)← t . Update last modified time stamp
16: if B(a) exists and |Last(a)− t| > ω then
17: if h1(b), . . . , hk(b) all 1 in B(a) then
18: seeds ← {(b, t, B(a))}
19: B(b)← B(b) ∪B(a) . Bitwise or

20: if time to prune then
21: for all summaries B(x) do
22: if |Last(x)− t| > ω then remove B(x)

23: return seeds

inactive nodes pruning, we keep for every node a the last
time, denoted Last(a), that B(a) was updated. In this way
we can prune all nodes that have not been active within the
current window. This pruning mechanism is less effective,
but at least bounds the number of summaries that simul-
taneously need to be held in memory. (3) The last, most
severe disadvantage is that because of the use of a Bloom
filter we are no longer able to capture the starting time of
cycles. Indeed, where S(a) contains pairs (b, tb), B(a) can
only be used to test if there is a pair (b, ?) in S(a). This
problem can be resolved with an additional pass through
the data. This additional pass is based on the observation
that every cycle rooted at node v that starts at ts and ends
at te becomes the root node of a cycle starting at te and
ending at ts if we reverse time and the direction of all inter-

actions. E.g., the temporal cycle a
1→ b

2→ c
3→ a becomes

the inverse temporal cycle a
3→ c

2→ b
1→ a. In the end

we generate candidates by combining the inverse temporal
cycle roots with the normal cycle roots.

Combining these elements we get Algorithm 2. The func-
tion processEdge is similar to the function GenerateSeeds
in Algorithm 1 with a difference that instead of the exact
set summary S(a), a bloom filter B(a) is maintained and
updated. Also, instead of pruning individual nodes in the
summary set of S(a) based on the time of addition in the set
we reset the bloom filter B(a) if it has not been updated in a

window of size ω. As processEdge is used for both a forward
scan and a backward scan while checking for last update we
take an absolute difference of current time and update time
in steps 12, 16, and 22. In the end, to find all root nodes with
start time, end time, and the bloom filter consisting of the
candidate nodes, the interactions are scanned both forward
and backwards. In steps 2-4 the forward scan is performed
by processing every interaction (a, b, t) to find the end time,
root nodes, and candidate sets of all cycles, which are stored
in fwSeeds. Then in steps 6-8 a backward scan is performed
by processing edges in reverse to find the start time, root
node, and candidate set for each cycle, which are stored in
bwSeeds. Finally, in step 9 we merge fwSeeds and bwSeeds
to generate the final seed candidates.

Example 2. Consider again the example of Figure 1a. Af-
ter the initial forward scan, we will have candidate roots
with end time and a Bloom filter for the candidates. For this
simple example, fwSeeds will contain at least the following
candidates: {(a, 8, B4), (a, 10, B5), (a, 12, B6), (d, 11, B7)}. Af-
ter the subsequent backward scan the set of backward seeds
will be {(a, 1, B1), (a, 7, B2), (d, 8, B3)}. The next table lists
the compatible pairs and the resulting candidate set:

nr fwSeeds bwSeeds Candidate
1 (a, 8, B4) (a, 1, B1) (a, [1, 8], B1 ∩B4)
2 (a, 8, B4) (a, 7, B2) (a, [7, 8], B2 ∩B4)
3 (a, 10, B5) (a, 1, B1) (a, [1, 10], B1 ∩B5)
4 (a, 10, B5) (a, 7, B2) (a, [7, 10], B2 ∩B5)
5 (a, 12, B6) (a, 7, B2) (a, [7, 12], B2 ∩B6)
6 (d, 11, B7) (d, 8, B3) (d, [8, 11], B3 ∩B7)

In the second step of our algorithm the candidates will gener-
ate the following cycles of Figure 1b: Candidate 1 generates
(1), candidate 2 is a false positive due to the merging oper-
ation and will not generate any cycle (issue (3) mentioned
above). Candidate 3 generates (ii) and (iii), candidate 4,
(iv), candidate 5, (v), and finally candidate 6, (vi).

Theorem 2. Let q be the size of the bloom filters, W
be the maximal number of interactions in a window of size
ω. The complexity of processing one interaction with pro-
cessEdge is O(q). The time complexity of Generate-
SeedsBloom is O(q(m + c′)) where c′ denotes the number
of cycle candidates that are generated by the merge of for-
ward and backward candidates. The memory complexity is
O(q min(W,n)).

4.3 Combining Root Node Candidate Tuples
An essential last step before we can proceed to the exact

cycle finding, is combining seeds for efficiency, and avoid-
ing overlapping seeds. Suppose for instance that there ex-
ist 3 cycles rooted at a, with start and end times respec-
tively [100, 110], [106, 110], and [105, 120]. GenerateSeeds
will produce three seeds (s, [100, 110], C1), (s, [106, 110], C2),
and (s, [105, 120], C3). The second cycle, however, is in-
cluded in all three seeds and will be generated three times
by the cDFS algorithm we will introduce in the next sec-
tion. Furthermore, we can merge some of the highly over-
lapping candidates. Consider again the example of Figure 1.
For all the cycles rooted at a Figure 1b(i)-(v), the cor-
responding seeds are (a, [1, 7], {b, d}), (a, [1, 10], {b, d, e, f}),
(a, [7, 10], {b, d, e, f}), and (a, [7, 12], {b, d, e, f}). The first
three seeds could be combined into a single seed given as

1445

(a, [1, 10], {b, d, e, f}). A cDFS run on this single seed will
generate all the cycles rooted at a; i.e., cycles 1b(i)-(iv),
by considering interactions only in interval [1, 10] between
the candidate nodes {b, d, e, f}. Furthermore, additionally
we will also record the starting time of the next seed with
the same root and add this information in the seed nodes
to obtain the extended candidates: (a, [1, 10], 7, {b, d, e, f})
and (a, [7, 12], 12, {b, d, e, f}) (The value 12 in the second
seed is a dummy value as there is no next seed). cDFS will
use these extended candidates (s, [ts, te], tn, C) to generate
exactly those cycles rooted at s, consisting only of vertices
in C, starting in the interval [ts, tn[, and ending the latest
at time te. By adding the restriction on tn we avoid du-
plicate cycle generation. The algorithm to combine seeds
rooted at a single node s is given in Algorithm 3. It starts
with sorting all candidates on start time ascending and end
time descending. Subsequently it gets the first non-merged
candidate and merges it with all following compatible candi-
dates. This procedure is repeated until all candidates have
been processed. In this way we are often able to compress
the list of candidates considerably.

Algorithm 3 Combining Root Node Candidate

Require: List of cycle seeds C for a root node s. Each seed
is of the form (s, [ts, te], C), window length ω

Ensure: Combined candidates
1: function CombineSeeds(C,ω)
2: Sort C on ts ascending, then te descending.
3: while C not empty do
4: Let (s, [ts, te], C) be first in C
5: Let Compatible be the maximal prefix of C such

that for all (s, [t′s, t
′
e], C′) ∈ Compatible it holds that

t′e < ts + ω
6: C ← C \ Compatible
7: if C is empty then tn ← ts + ω
8: else
9: Let (s, [t′s, t

′
e], C′) be first in C

10: tn ← t′s
11: tmax ← max{t′e | (s, [t′s, t

′
e], C′) ∈ Compatible}

12: Call ←
⋃
{C′ | (s, [t′s, t

′
e], C′) ∈ Compatible}

13: Output (s, [ts, tmax], tn, Call)

Theorem 3. Algorithm 3 ensures that for every temporal
cycle rooted at s, which start at ts and end at te, there is
exactly one extended seed (s, [t′s, t

′
e], tn, C) that contains the

cycle; that is: all nodes of the cycle are in C, ts ∈ [t′s, tn[,
and te ∈ [t′s, t

′
e].

5. CONSTRAINED DFS
After finding candidates, we find the exact cycles. For

each extended candidate (s, [ts, te], tn, C) we run our con-
strained Depth-First Search to find all cycles represented by
this candidate. Algorithm 7 gives the complete procedure.
We will now step by step describe how this procedure works.

We apply a depth-first procedure to find all temporal
paths in a dynamic graph. If the path reaches a node which
is the same as the start node, we output it as a cycle. We
start with a given node s and a start time ts. All edges
that branch out of s at this time stamp are now recursively
explored. A pure depth-first exploration, however, has the
disadvantage that some unsuccessful paths will be explored

Algorithm 4 Unblock

Require: Node v that gets a new closing time tv.
Global: interactions E , closing times ct(v) and unblock
list U(v) for all nodes v ∈ V .

Ensure: Recursive unblocking of the nodes.
1: function Unblock(Node v, time stamp tv)
2: if tv > ct(v) then
3: ct(v)← tv
4: for (w, tw) ∈ U(v) do
5: if tw < tv then
6: U(v)← U(v) \ {(w, tw)}
7: T [w, v] = {t | (w, v, t) ∈ E}
8: T ← {t ∈ T [w, v] | tv ≤ t}
9: if T 6= ∅ then

10: U(v)← U(v) ∪ {(w,min(T))}
11: tmax ← max{t ∈ T [w, v] | t < tv}
12: Unblock(w,tmax)

Algorithm 5 Add to unblock list

Require: Unblock list U(v) of node v, pair (w, t) to be
added

Ensure: New unblock list U(v) with (w, t) added.
1: function Extend(U(v),(w, t))
2: if there is an entry (w, t′) ∈ U(v) then
3: if t′ > t then U(v)← U(v) \ {(w, t′)} ∪ {(w, t)}
4: else U(v)← U(v) ∪ {(w, t)}

over and over again. Consider for instance the example in
Figure 2 without the dotted lines. As there exist 2 paths from
a to c, an exhaustive depth-first exploration of all paths will
visit node c two times, and each time the subgraph formed
by h, j, and k will be explored again. In order to avoid
such fruitless repeated explorations, we will keep track of
the success status of different nodes in earlier depth-first
explorations of the dynamic network. This information is
stored in the form of a so-called “closing time” of a node.
Intuitively, node v having closing time ct(v) indicates that
there do not exist paths back to a from node v that start at
time ct(v) or later. Hence, if during the depth-first explo-
ration, we arrive at a node on or after its closing time, then
we can abort our search. So, while exploring node h, arriv-
ing there at 11, we will notice that there are no paths from
h back to a and hence its closing time will become 11 and h
will never be expanded again. Similarly, after the first time
we visit node c, we will notice that the last path from c back
to a starts at timestamp 7, so its closing time will become
7. Due to this update in closing time of c any depth-first
exploration of c will be aborted from timestamp 7 onwards.

Let’s illustrate the principle with our example graph. For
the subsequent steps we will show how the closing times of
the nodes evolve and how this saves us costly repetitions
of useless explorations. For now the reader does not need
to worry about how the closing times are affected by back-
tracking to find additional solutions as this will be treated
in detail right after the example.

• a
1→ b: ct(b) becomes 1; this node cannot be used to ex-

tend the path without violating the simplicity condition;

• b
5→ c: ct(c) becomes 5;

1446

Algorithm 6 Algorithm AllPaths

Require: Prefix path s
t1→ v1

t2→ . . .
tk→ vk that starts in

target node s.
Ensure: All simple temporal paths in G(V, E) from v1 to

s, starting with the given prefix are output. The return
value is false if no such path exists, otherwise it is true.

1: function AllPaths(pr = s
t1→ v1 . . .

tk→ vk)
2: vcur ← vk, tcur ← tk
3: ct(vcur)← tcur, lastp← 0
4: Out← {(vcur, x, t) ∈ E | tcur < t}
5: N ← {x ∈ V | (vcur, x, t) ∈ Out}
6: if s ∈ N then
7: for (vcur, s, t) ∈ Out do
8: if t > lastp then lastp← t

9: Output pr · 〈(vcur, s, t)〉
10: for x ∈ N \ {s} do
11: Tx ← {t | (vcur, x, t) ∈ Out}
12: while Tx 6= ∅ do
13: tm ← min(Tx)
14: pass← False
15: if ct(x) ≤ tm then pass← False
16: else pass← AllPaths(pr · 〈(vcur, x, tm)〉)
17: if not pass then
18: Tx ← ∅
19: Extend(U(x),(vcur, tm))
20: else
21: Tx ← Tx \ {tm}
22: if tm > lastp then lastp← tm

23: if lastp > 0 then Unblock(vcur,lastp)

24: return (lastp 6= 0)

• We explore recursively all paths that start with c
11→ h.

No paths are found, hence during this recursion ct(h),
ct(j), and ct(k) become respectively 11, 13, and 14;
• Via recursive calls we find a path from c that start with

c
7→ e and c

6→ d. We hence derive that the latest path
leaving c starts at time 7. Hence, when backtracking,
ct(c) becomes 7, and during the recursive calls also the
closing times of the other nodes are updated.

In order to find additional paths, we backtrack and find the
next solution. Suppose now that we already explored the

subspace of all cycles that start with a
1→ b. At this point

in time the closing times are as follows:

a b c d e f h j k
− 5 7 8 10 12 11 13 14

• a
5→ c can be explored next, because 5 < ct(c) = 7.

• From c we cannot go to node h because 11 6< ct(h).
• From there on we continue to find our last 2 paths.

So far so good, but until now we have been ignoring a major
problem with the closing times when backtracking to find
the next solution: while backtracking, the path becomes
shorter again, and nodes become available again which on
its turn may affect the correctness of the closing times. We
illustrate this problem by slightly extending the example in
Figure 2 by adding the dotted lines. When exploring all

paths starting with the edge a
1→ b, the node b temporarily

gets ct(b) = 1 to force that our cycles are simple. As a

b

5,8,10

��

17

��

h
13 //

14
��

j

16

||

a

1

@@

5 // c
7
//

6
��

11

88

e

10

��

k

15

OO

d

8

__

f

12

WW

Figure 2: Example temporal network with simple cycles

Algorithm 7 Dynamic Depth-First Simple Cycle Search

Require: Source node s ∈ V
Global: Interaction network G(V, E); closing time ct(v)
and unblock list U(v) for all nodes v ∈ V ; Timestamp
ts,te and tn; Set of candidates C ⊆ V

Ensure: All simple temporal cycles in E rooted at s start-
ing in interval [ts, tn[and ending before te, using only
vertices of C.

1: function Cycle(s)
2: E ← {(u, v, t) ∈ E | u, v ∈ C, t ∈ [ts, te]} . Reduce G
3: V ← C
4: for x ∈ C do
5: ct(x)←∞, U(x)← ∅
6: for (s, x, t) ∈ E|t < tn do

7: AllPaths(s
t→ x)

result, when recursively exploring all paths with prefix a
1→

b
5→ c, we will conclude there is no path from h, k, and

j back to a and set their closing times to 11, 13, and 14
respectively. As a result, later on, when exploring all paths

with prefix a
1→ b

8→ c and a
1→ b

10→ c, we will correctly
abort exploration of the branch below h. However, when the
search continues, at a certain point we will have explored

all paths starting with a
1→ b, and we are back at node

a. The closing time of b is set to 17 because of the cycle

a
1→ b

17→ a. We continue exploring all paths that start

with a
5→ c. It is at this very moment that things start

becoming ugly. Indeed, at this point in time, we do have
to explore the branch below h, because now there is a cycle

that involves h, namely a
1→ c

11→ h
13→ j

16→ b
17→ a! So, what

went wrong? The first time we visited node h, node b was
blocked as it appeared on the path from a to h. Therefore,
we correctly concluded that h should be blocked, too. This
situation remained until the point that b became unblocked
because of backtracking. At that point, in fact, the closing
time of h should have been reconsidered. The mechanism to
realize the correct update of the closing times is as follows:
whenever we limit the closing time of a node, at the same
time we also evaluate under which conditions the closing
time of the node can increase again. In the case of node j,
we see that there is an outgoing edge with time stamp 16

1447

s x y

t

pblock

pr.x

Figure 3: Illustration of the concepts introduced in the
proof of completeness of AllPaths.

to node b with closing time 1. Hence, from the moment on
that the closing time of b increases to above 16, the closing
time of j should increase to 16. For this purpose, we add
for every node an “unblock list” U(v) that contains a list
of nodes and thresholds (w, t). From the moment on that
the closing time of v exceeds again the threshold t, for each
pair (w, t) in U(v), the closing time of node w will have to
be adapted as well. In our example this amounts to adding
(j, 16) to U(b). Whenever we increase the closing time of
any node v in the graph, we will go over its unblock list and
unblock the other nodes as needed. Notice that unblocking a
node may result in a cascade of unblock operations; indeed,
in our example, unblocking b causes j to become unblocked,
which on its turn causes h and k to become unblocked. The
pseudo code of the algorithm is given in Algorithms 4, 6,
and 7.

Theorem 4. Correctness. Cycle(s) returns all simple
cycles rooted at s starting in interval [ts, tn[and ending be-
fore te.

Proof Sketch First of all, it is important to realize that the
cDFS algorithm is a truncated depth-first search: all paths
are explored from a node s that a normal depth-first search
would also explore, except for paths that (a) do not respect
the temporal order, (b) contain duplicate nodes other than
s, or (c) paths that are blocked because of a closing time that
is too low. The fact that it is a depth-first search together
with (a) and (b) guarantees the correctness of each simple
temporal cycle that is output. For completeness, from (a)
and (b) it is easy to see that these cases do not restrict
the completeness of the algorithm. Hence, what is left to
show is that whenever there exists a simple temporal cy-

cle a1
t1→ a2 . . .

tn→ an
tn→ a1, none of the edges ai−1

ti→ ai

is blocked because of the closing time of ai at the moment

that a1
t1→ a2 . . .

ti−1→ ai−1 is explored in the depth-first
search. Suppose, for the sake of contradiction, that never-

theless at some point in the algorithm, the interaction x
t→ y

is blocked while there exists an extension of the current pre-
fix to s that uses this edge. Let py→s be this path such that

pr · x t→ y · py→s is the simple temporal cycle that is not
found. Furthermore, we can assume without loss of gener-

ality that this is the first time this happens. x
t→ y must

have gotten blocked in another path pblock that reached y
(only the closing times of the last nodes on a path can de-
crease). This situation is depicted in Figure 3. It is clear
that pblock · py→s is a temporal cycle. This temporal cycle
is either simple, in which case y won’t get blocked, or the

path is not simple, which means that pblock contains at least
one of the nodes of py→s. In the full proof [13] it is shown,
however, that in such case there is a chain of unblock opera-
tions which will be invoked when the depth-first exploration
back tracks from the path pblock, and it can be shown that
when the last common node between pblock and py→s gets

unblocked, x
t→ y must be free again (that is: ct(y) > t).

This contradicts our earlier assumption that the interaction

x
t→ y is blocked and hence proves the theorem. An impor-

tant invariant that facilitates the full proof is the following
consistency between closing times and unblock lists that is
guaranteed at crucial times: whenever there is a path from
y to s that starts at time t and does not intersect the cur-
rent prefix, ct(y) > t. In all other cases, ct(y) ≤ t, and
(x, t′) ∈ U(y) with t′ ≤ t. 2

Theorem 5. Complexity. Let m = |E| and n = |V |.
We can implement Cycle(s) in such a way that in between
two cycles being output, Cycle(s) takes at most O(m + n)
steps. Hence, if there are c cycles in the network, the total
time complexity to find all of them is O((c + 1)(m + n)).

Proof Sketch The proof of this theorem is based on the ob-

servation that the only way to unblock an edge x
t→ y; that

is, lower the closing time of y to lower than t, is by a call
to Unblock, which only happens when a cycle is output.

Whenever a cycle a1
t1→ a2 . . .

tn→ an
tn→ a1 is found, Un-

block will be executed for an (for the prefix a1
t1→ a2 . . .

tn→
an), then for an−1 (for the prefix a1

t1→ a2 . . .
tn−1→ an−1), etc,

until it is called for a1 (for prefix a1). Each of the calls to
Unblock, however, unblock different interactions. Indeed,
it can be shown that, if we are in a call to AllPaths, and

the prefix is a1
t1→ a2 . . .

ti−1→ ai, a call to Unblock, only

unblocks interactions x
t→ y such that there is a temporal

path to the source node a1 that uses this interaction and ai,
and at the same time there is no path to the source node a1

that does not intersect te prefix anywhere. This seemingly
cumbersome condition is actually quite intuitive: Unblock
only unblocks interactions that at the moment cannot be
used in a path to the source node a1, but once ai becomes
available again, they can be used again. This condition im-
mediately leads to the conclusion that every interaction can
become unblocked at most once in between two cycles are
being output. Therefore, since the depth-first search blocks
the interactions it visits, every interaction can be traversed
at most twice in between two cycles are output. Hence, ei-
ther a cycle is output after O(m) steps, or all interactions
will be blocked and the algorithm stops. The term O(n) in
the theorem is for the initialization of the closing times of
all nodes at the start of the algorithm. We furthermore refer
to the full proof in the extended version of the paper [13]
for an in-depth discussion on the data structures that can
be used in order to guarantee that we can run the algorithm
without the need to inspect blocked edges. 2

6. PATH BUNDLES
The algorithm presented in the last section still has one

big disadvantage: especially in the presence of repeated
edges the same paths and cycles can be explored over and
over again. Consider for instance the example in Figure 4.
In this example there are 36 = 729 cycles and each of them

1448

will be generated separately. There will be one call starting
with a, 3 for a→ b, 9 for a→ b→ c, etc. A lot of this work
could be avoided though by combining the computations for
multiple edges and paths. It is exactly for this purpose that
we introduce the following notion of a path bundle.

Definition 4. A path bundle B in an interaction network
G(V, E) between nodes v1 and vk+1 consists of a sequence of
vertices v1, . . . , vk+1, and sets of timestamps T1, . . . , Tk such
that for all i = 1 . . . k, t ∈ Ti it holds that (vi, vi+1, t) ∈ E .

We will denote the path bundle B by v1
T1→ v2

T2→ . . .
Tk→ vk+1.

The set of temporal paths represented by B, denoted P(B)
is defined as:

P(B) := {v1
t1→ v2 . . .

tk→ vk+1 | ∀i : ti ∈ Ti & t1 < . . . < tk}

A path bundle is called minimal if for all i = 1 . . . k, t ∈ Ti

it holds that

P(v1
T1→ . . . vi

Ti\{t}−→ . . .
Tk→ vk+1) (

P(v1
T1→ . . . vi

Ti→ . . .
Tk→ vk+1)

Lemma 1. Let B be a path bundle. There exists a unique
minimal path bundle B′ such that P(B) = P(B′)

6.1 Expanding a Bundle
In order to extend our algorithm to work with path bun-

dles instead of individual paths, we need to extend all oper-
ations performed on paths in the algorithm to bundles. The
first operation we consider is extending the path with an ex-
tra edge. This operation is easy enough, as we can just add
the edge with all its timestamps to the bundle. We do want,
however, to keep the bundles minimal for efficiency reasons.
Algorithm 8 does exactly that; it extends a bundle with an
edge while maintaining the minimality of the bundle.

Let’s illustrate with an example. Suppose we have a path

bundle a
1,5,7→ b

3,8→ c which we want to extend with the
edges c

2,4,7→ d. Since there is no edge from b to c earlier
than timestamp 3, we can prune away 2 from the paths
between c and d. Furthermore, the last edge between c
and d has timestamp 7, so all edges between b and c later
than 7 should be removed. Only the edge with timestamp
3 remains between c and d which causes the timestamps 5
and 7 between a and b to be removed. Hence, the result of

the extension is: a
1→ b

3→ c
4,7→ d.

b

4

��5 //

6

@@ c 7

��

8

��9

11a

1 --

2

??

3

RR

d

10mm
11

��

12

��
f16

LL

17

^^
18

qq

e

13

__ 14
oo

15
��

Figure 4: Example temporal network with simple cycles
having multiple repeated edges

Lemma 2. Given a minimal bundle B between u and v
and a bundle v

T→ w, Algorithm 8 returns a minimal bundle
B′ such that P(B′) consists of all temporal paths from u to
w that can be constructed by extending a path from P(B)

with an edge from v
T→ w.

6.2 Extending the Algorithm to Bundles
By directly manipulating path bundles instead of individ-

ual paths we can significantly reduce the number of recur-
sions needed as well as output the cycles much more com-
pactly. In algorithm 9 we provide extensions of the algo-
rithm presented in 6 to consider the path bundle notion.
There is not much change in algorithm 7 except at step 7
where instead of looking for path from x to the root node
s using algorithm 6, a path bundle is searched using algo-
rithm 9. The output of the algorithm 9 is not all the simple
temporal cycles as we required, but a more compact repre-
sentation of cycles using the path bundles.

6.3 Counting the Number of Paths in a Bundle
For some applications we need the exact number of paths

represented by a bundle. This number, however, is not en-
tirely straightforward to obtain efficiently. Indeed, we may
easily come up with a recursive procedure that generates all
valid combinations of the timestamps, but that would some-
what defy the purpose of the bundles, which is exactly to
avoid such costly individual treatment of the paths.

Luckily it is not hard to develop a dynamic algorithm
to count the number of paths in a path bundle. We can

iteratively compute the number of paths in a bundle v1
T1→

. . .
Tk→ vk+1 by considering all the prefixes of the bundle in

increasing length. For each prefix Pi = v1
T1→ . . .

Ti→ vi+1, the
number of paths are stored on a heap Hi. For each end time
t of a path in Pi, the number of paths n ending at that time
or earlier is stored as a pair (t, n) on the heap. The heap
Hi+1 can easily be computed based on Ti and Hi. Due to
space constrained full details of this algorithm are provided
in the technical report [13].

7. EXPERIMENTS
We evaluated the performance of our algorithms on 6 dif-

ferent real world temporal networks. The performance re-
sults presented in this section are for a C++ implementa-
tion of our algorithm. All experiments were run on a simple
desktop machine with an Intel Core i5-4590 CPU @3.33GHz

Algorithm 8 Extending a path bundle with an edge bundle

Require: Minimal path bundle B = v1
T1→ . . .

Tk→ vk+1, edge

bundle E = vk+1

Tk+1→ vk+2

Ensure: Minimal path bundle with all valid paths com-
posed of B and an edge of E.

1: function Expand(v1
T1→ . . .

Tk→ vk+1,vk+1

Tk+1→ vk+2)
2: T ′k+1 ← {t ∈ Tk+1 | t > min(Tk)}
3: if T ′k+1 = ∅ then

4: return (v1
∅→ . . . vi

∅→ . . .
∅→ vk+2)

5: for i = k down to 1 do
6: T ′i = {t ∈ Ti | t < max(T ′i+1)}

7: return (v1
T ′1→ . . . vi

T ′i→ . . .
T ′k+1→ vk+2)

1449

Algorithm 9 Algorithm AllBundles

Require: Prefix bundle B starting in node s
Global: Interaction network G(V, E), closing times ct(v),
unblock list U(v) for all nodes v ∈ V , latest timestamp
te in E .

Ensure: All simple temporal paths in G(V, E) from x to ve,
prefixed with path.

1: function AllBundles(B = s
T1→ v1

T2→ . . .
Tk→ vk)

2: tcur ← minTk, vcur ← vk
3: ct(vcur)← tcur, lastp← 0
4: Out← {(vcur, x, t) ∈ E | tcur < t ≤ ct(x)}
5: N ← {x ∈ V | (vcur, x, t) ∈ Out}
6: if s ∈ N then
7: T ← {t | (vcur, s, t) ∈ Out}
8: t← max(T)
9: if t > lastp then lastp← t

10: Output Expand(B, vcur
T→ s)

11: for x ∈ N \ {s} do
12: Tx ← {t | (vcur, x, t) ∈ Out}
13: T ′x ← {t ∈ Tx | t < ct(x)}
14: if T ′x 6= ∅ then

15: lastx ← AllBundles(Expand(B, vcur
T ′x→ x))

16: if lastx > lastp then lastp← lastx

17: tm ← min {t ∈ Tx | t > lastx}
18: Extend(U(x),(vcur, tm))

19: if lastp > 0 then
20: Unblock(vcur,lastp)

21: return lastp

CPU and 16 GB of RAM, running the Linux operating sys-
tem. The code and instructions to run the experiments are
available online 1.

7.1 Dataset
All datasets except SMS [30], Facebook [27] and USElection

[12] were obtained from the SNAP repository [15]. The char-
acteristics of the datasets are given in Table 1. While run-
ning the experiments we choose smaller windows for the high
frequency dataset SMS, Facebook, USElection, and Higgs

whereas for the low frequency datasets Stackoverflow and
Wiki-talk a longer window size were considered.

The exact meaning of a temporal cycle a1
t1→ a2 . . . an

tn→
a1 is that there is an interactions from a1 to a2 at time t1,
followed by and itereaction at t2 from a2 to a3, and so on,
followed by an interaction at time tn from an back to a1.
For SMS, for instance, this means that a1 sms’ed a2 followed
by a2 sms’ed a3, etc., until an sms’ed back to a1. Such
pattern could be of interest for application-oriented follow-
up research such as sociological studies of communication
patterns; although speculative at this stage, we think that
these patterns could be indicators of feedback mechanisms
between peers in which opinions are formed, reinforced and
strengthened over time.

7.2 Performance Evaluation
Effect of bloom filter: The efficiency and effectiveness

of the bloom filter depends on the Bloom filter size and
the number of hash functions used. For our experiments,

1Code: https://github.com/rohit13k/CycleDetection

Table 1: Characteristics of interaction network along with
the time span of the interactions as number of days.

Dataset n[.103] m[.103] Days
Facebook 46.9 877.0 1592
SMS 44.1 545 338
Higgs 304.7 526.2 7
Stackoverflow 2464.6 16266.4 2774
Wiki-talk 1140 7833.1 2320
USElection 233.8 1000 10 hours

Table 2: Time and Memory Comparison between Exact
set based and bloom filter approach to find root candidates.

Dataset ω
Time(seconds) Memory(MB)

Exact Bloom Exact Bloom

Facebook
1 hour 4 12 20 225
10 hours 6 17 24 375

SMS
1 hour 12 40 27 730
10 hours 50 59 112 972

Higgs
1 hour 4 8 114 170
10 hours 45 10 3048 325

Stackoverflow
1 day 78 399 26 1578
1 week 138 454 346 2309

Wiki-talk
10 hours 66 223 98 3541
1 day 147 344 269 5675

USElection
1 hour 20 21 157 315
10 hours - 27 - 700

Table 3: Effect of pruning (P) versus no pruning (NP) on
Time and Memory usage.

DataSet ω
Time(sec) Memory(MB)

P NP P NP

Facebook
1 hour 3.9 4.1 9 25
10 hours 4.9 5.1 11 28

SMS
1 hour 11.6 12.1 16 51
10 hours 45.6 46.1 41 90

Higgs
1 hour 4.1 3.8 103 177
10 hours 44.3 41.6 3037 3295

Stackoverflow
1 day 79.7 97.4 26 1441
1 week 112.3 130.8 343 2184

Wiki-talk
10 hours 58.5 62.5 98 1231
1 day 129 133.5 269 3174

we used a projected element count of 500 and false posi-
tive probability of 0.0001, which results in a filter of size
9592 using 13 hash functions. Using the bloom-filter-based
approach for the SD phase is not always efficient. This is
mostly because of two reasons: (1) in the Bloom Filter ap-
proach we have to scan the data twice; and (2) creating
bloom filters for data sets where the candidate set is very
small is an overkill. Hence, as long as the candidate set size
is not getting so large that it stresses memory usage and set
operations like union and cardinality test, the set-based ap-

1450

proach is faster than the bloom-filter-based approach. The
summary set size becomes very large for interaction net-
works in which the ratio of the number of interactions over
the number of nodes is high. This is the case for Higgs and
USElection with ω set to 10 hours. In this case, the Bloom-
filter-based approach is the best approach because of the
time and memory savings it provides. In our experiments,
for USElection, the Exact-set-based approach ran out of
memory after 18 minutes, whereas the Bloom-filter-based
approach finished within 27 seconds taking only 700 MB of
space. More results for time and memory consumption in
the SD phase are shown in table Table 2.

For deciding when to use Bloom filters, we remark that it
is clear that they become useful only when there are many
temporal paths to be maintained. This situation is more
likely to occur when the ratio of edges to nodes is high in the
windows. This property could be used to estimate whether
or not to use the optimization. Another, easier way to es-
timate, however, is by running the algorithm on a few win-
dows of the dataset. Alternatively, it is straightforward to
develop a hybrid version of the algorithm that switches auto-
matically to the use of Bloom filters whenever the memory
usage reaches a certain limit; e.g., 90% of available mem-
ory. It is, however, unlikely that such hybrid version would
be very useful given the ease with which we could run the
estimation on a part of the dataset.

Effect of Pruning: We also tested the effect of inactive
node pruning in the SD Phase. We ran pruning after pro-
cessing every batch of 100,000 interactions. As expected,
pruning has a huge impact on the memory requirements of
the SD Phase. For instance, the memory requirements re-
duced by a factor of 55 in case of Stackoverflow for a 1
day window. This is because there are too many source
nodes and most of them become inactive very quickly. As
such, removing their summaries from the memory resulted
in a huge gain in memory usage and runtime. In the case
of Higgs, however, the number of source nodes is very low
and they remain active throughout the whole duration of the
dataset resulting in much less memory savings and a modest
increase in runtime. In all other cases, however, there are
significant memory and time savings due to regular pruning.
The results are shown in Table 3.

Effect of Bundling: As expected, using the path bun-
dle approach is never slower than using the simple path ap-
proach. On the other hand, in cases where there are multiple
repeated edges such as Higgs for a window of 10 hours, we
get a speedup of up to 12 times thanks to the path Bundles.
The results are shown in Table 4.

Runtime for Complete Cycle Enumeration. Finally,
we also compare the total runtime of finding all cycles using
2SCENT with exact set and path bundles to the algorithm
presented by Kumar and Calders [11] (Naive algorithm).
As 2SCENT is a two-phase algorithm we compare the com-
bined time taken by both phases with the runtime of the
Naive algorithm. We observe that for small networks with
less frequent interactions, such as Facebook, or for medium-
sized networks with a small window length ω, such as SMS

with a window of 1 hour, or for large networks with very
infrequent interactions, such as Mathoverflow with a 1 day
window, the Naive algorithm outperforms 2SCENT and its
variants. This is because in these cases there are only few
temporal paths to be enumerated which easily fit in mem-
ory. Hence a brute force approach as proposed in [11] is

Table 4: Time comparison (in seconds) to find cycles using
Bundle path and without Bundle path.

Dataset ω Without
Bundle

With
Bundle

Facebook
1 hour 4.7 3.9
10 hours 9.4 7.3

SMS
1 hour 24.5 10.3
10 hours 104.6 21.34

Higgs
1 hour 2.65 2.26
10 hours 1526.5 136.6

Stackoverflow
1 day 62.7 63.3
1 week 147.7 118.4

Wiki-talk
10 hours 693.9 320.2
1 day 2356 828

Table 5: Time Comparison between Naive and 2SCENT
to find all cycles.

DataSet ω Naive 2SCENT

Facebook
1 hour 6.5 sec 12.2 sec
10 hours 9.3 sec 18.2 sec

SMS
1 hour 21.1 sec 34.8 sec
10 hours 15.7 hours 2.1 min

Higgs
1 hour 10.6 min 10.7sec
10 hours Crashed 3.6 min

Stackoverflow
1 day 3.2 min 3.7 min
1 week Crashed 6.6 min

Wiki-talk
10 hours Crashed 7.5 min
1 day Crashed 19 min

feasible. But when we run on larger interaction networks
or with larger window lengths, 2SCENT outperforms the
Naive algorithm with respect to runtime by a factor of up
to 300. The massive gain in performance is due to the fact
that the Naive algorithm maintains and updates all tempo-
ral paths whereas 2SCENT needs to enumerate only paths
from nodes that are the starting point of cycles, and does
so in a memory-efficient way; one by one, and using a con-
strained depth-first search. As a result 2SCENT is able
to deal with datasets such as Higgs, Stackoverflow, and
Wiki-talk, even for high window lengths, whereas the Naive
algorithm crashes due to the high number of temporal paths
it is maintaining in memory. The results are presented at
Table 5.

Effect of Window Length(ω): Finding the best ω for
a dataset is not straightforward, as it depends on the kind
of interaction. For example, in the case of a social network
where people respond quickly, an ω of 1 to 10 hours might
do, but for slow networks such as stack overflow, where peo-
ple generally respond after few days only, longer cycles of
length 1 day or 1 week could still be interesting. In biologi-
cal neural networks, ω could be in the range of milliseconds,
as feedback loops take place almost instantaneously.

We also study the effect of increasing the window length
on processing time and cycle count. We present the results
for the SMS dataset in Figure 5. We make two observations;

1451

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 10 20 30 40 50 60 70 80 90 10
0

 0

 5

 10

 15

 20

 25

 30

T
im

e(
se

co
nd

s)

C
ou

nt
(1

04)

window

cDFS Time
#Cycles

Figure 5: Effect of window length on processing time and
cycle count for SMS data set

first, as expected, the processing time and count of simple
cycles increases with an increase in window length, but af-
ter a certain window length both become constant. This
is because when the window is large enough, the temporal
characteristic of the network do not change any more. In
case of the SMS data set, this happens at a window length of
70 hours. Second, we see that the processing time increases
at first and then decreases slightly again before becoming
constant. This decrease in processing time is the result of
the higher compression of candidate nodes for larger win-
dows, resulting in fewer root candidates, but each with a
higher number of cycles, found in one cDFS scan.

Therefore, in cases where the application does not provide
a natural way to set ω, one could take the approach of start-
ing with a small window at first and iteratively increase it
until a sufficient number of interesting cycles is found. In
our experiments we take ω as 1 hour and 10 hours for fast
interaction network such as Twitter and Facebook and large
ω for slower interaction networks.

7.3 Qualitative Evaluation
Cycle Frequency Distribution: In figure 6, we present

the frequency distribution of the number simple cycles by
cycle length for the Facebook, SMS and Higgs data sets for
a window of 10 hours. The maximum cycle length is 5 and
11 respectively for the Facebook and SMS data set, and the
number of triangles is very high as compared to the num-
ber of longer cycles. In the Higgs data set, however, the
maximal cycle length is 20 and the cycle count distribution
is very different. We think this could be because the SMS

and Facebook data sets capture interactions between friends
whereas Higgs is an open interaction platform where follow-
ers are interested in similar topic of discussion.

8. CONCLUSION
We addressed the problem of enumerating simple tempo-

ral cycles that do not exceed a given time window length ω
in an interaction network. One of the applications we pro-
posed and explored in the paper is using the number and
length distribution of temporal cycles to characterize (part
of) the dynamic behaviour of the temporal network. This
is similar in spirit to using metrics such as clustering coef-
ficient or diameter to characterize static networks. In order
to visualize this distribution, it is necessary to enumerate,
or at least count the number of cycles of all lengths. We

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#C
yc

le
s/

T
ot

al
 C

yc
le

s

length

FB
SMS

Higgs

Figure 6: Distribution of simple cycle count and length for
ω = 10 hours.

presented an efficient algorithm, 2SCENT, which consists of
two phases. In the first phase all sources of cycles are de-
tected, which are then further expanded into the full cycles
in the second phase. The base version of 2SCENT was ex-
tended in two important ways: first, we introduced the use
of Bloom filters to reduce the memory consumption of the
source detection phase by replacing the reverse reachability
set by a reverse reachability filter. The second extension,
using path bundles, handles the common case of repeated
interactions leading to an explosion in the number of cycles.
In experiments, we found that 2SCENT with its extensions
runs up to 300 times faster than the only existing competi-
tor. The experiments show that the algorithm could scale
to millions of nodes and interactions using only commodity
hardware. While the focus of this paper was more on algo-
rithms and general aspects of temporal cycle enumeration,
we also presented a qualitative analysis of cycles in tempo-
ral networks and analyzed the temporal nature of different
real-world networks using the cycle count frequency distri-
bution. For closed versus open friendship networks we could
observe different cycle distributions, indicating different dy-
namic behaviours in these networks.

We consider two important avenues for future work. First,
more research is required to definitely answer the question
whether or not the temporal cycle distribution is a good way
to represent dynamic behaviour in networks. Moreover, for
the datasets used in this paper, we did not have access to
the actual content of the interactions such as the tweets
on the Twitter network. A qualitative study of the cycles
found and their meaning and significance from an applica-
tion perspective are of great interest. Secondly, it is also
important to take into account the frequency of interaction
between nodes when assessing the significance of the cycles
found. Indeed, for nodes that are closely collaborating and
interacting frequently, it is likely that accidental cycles may
emerge. Therefore, methods need to be developed to mea-
sure the probability of temporal cycles emerging by chance.

Acknowledgment
This work was supported by the Fonds de la Recherche
Scientifique-FNRS under Grant(s) no T.0183.14 PDR. The
student is also part of IT4BI DC program.

1452

9. REFERENCES

[1] E. Bergamini, H. Meyerhenke, and C. L. Staudt.
Approximating betweenness centrality in large
evolving networks. In 2015 Proceedings of the
Seventeenth Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 133–146. SIAM, 2014.

[2] E. Birmelé, R. Ferreira, R. Grossi, A. Marino,
N. Pisanti, R. Rizzi, and G. Sacomoto. Optimal listing
of cycles and st-paths in undirected graphs. In
Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 1884–1896.
Society for Industrial and Applied Mathematics, 2013.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] C.-Y. Dong, D. Shin, S. Joo, Y. Nam, and K.-H. Cho.
Identification of feedback loops in neural networks
based on multi-step granger causality. Bioinformatics,
28(16):2146–2153, 2012.

[5] P.-L. Giscard, P. Rochet, and R. C. Wilson.
Evaluating balance on social networks from their
simple cycles. Journal of Complex Networks, page
cnx005, 2017.

[6] F. Hoffmann and D. Krasle. Fraud detection using
network analysis, 2015. EP Patent App.
EP20,140,003,010.

[7] P. Holme and J. Saramäki. Temporal networks.
Physics reports, 519(3):97–125, 2012.

[8] W. Hu, H. Zou, and Z. Gong. Temporal pagerank on
social networks. In International Conference on Web
Information Systems Engineering, pages 262–276.
Springer, 2015.

[9] D. B. Johnson. Finding all the elementary circuits of a
directed graph. SIAM Journal on Computing,
4(1):77–84, 1975.

[10] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and
J. Saramäki. Temporal motifs in time-dependent
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2011(11):P11005, 2011.

[11] R. Kumar and T. Calders. Finding simple temporal
cycles in an interaction network. In Proceedings of the
Workshop on Large-Scale Time Dependent Graphs
(TD-LSG 2017) co-located with the European
Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML
PKDD 2017), Skopje, Macedonia, September 18,
2017., pages 3–6, 2017.

[12] R. Kumar and T. Calders. Information propagation in
interaction networks. In EDBT, pages 270–281, 2017.

[13] R. Kumar and T. Calders. 2SCENT: An Efficient
Algorithm for Enumerating All Simple Temporal
Cycles(Full version).
http://rohit13k.github.io/doc/2SCENT.pdf, 2018.
[Online; accessed 11-June-2018].

[14] R. Kumar, T. Calders, A. Gionis, and N. Tatti.
Maintaining sliding-window neighborhood profiles in
interaction networks. In Joint European Conference on
Machine Learning and Knowledge Discovery in
Databases, pages 719–735. Springer, 2015.

[15] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection, June 2014.

[16] P. Mateti and N. Deo. On algorithms for enumerating
all circuits of a graph. SIAM Journal on Computing,
5(1):90–99, 1976.

[17] R. K. Pan and J. Saramäki. Path lengths, correlations,
and centrality in temporal networks. Physical Review
E, 84(1):016105, 2011.

[18] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs
in temporal networks. In Proceedings of the Tenth
ACM International Conference on Web Search and
Data Mining, pages 601–610. ACM, 2017.

[19] J. Ponstein. Self-avoiding paths and the adjacency
matrix of a graph. SIAM Journal on Applied
Mathematics, 14(3):600–609, 1966.

[20] V. B. Rao and V. Murti. Enumeration of all circuits of
a graph. Proceedings of the IEEE, 57(4):700–701, 1969.

[21] M. Riondato and E. M. Kornaropoulos. Fast
approximation of betweenness centrality through
sampling. Data Mining and Knowledge Discovery,
30(2):438–475, 2016.

[22] P. Rozenshtein and A. Gionis. Temporal pagerank. In
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 674–689.
Springer, 2016.

[23] P. Rozenshtein, N. Tatti, and A. Gionis. Discovering
dynamic communities in interaction networks. In Joint
European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 678–693.
Springer, 2014.

[24] J. Tang, M. Musolesi, C. Mascolo, and V. Latora.
Temporal distance metrics for social network analysis.
In Proceedings of the 2nd ACM workshop on Online
social networks, pages 31–36. ACM, 2009.

[25] R. Tarjan. Enumeration of the elementary circuits of a
directed graph. SIAM Journal on Computing,
2(3):211–216, 1973.

[26] J. C. Tiernan. An efficient search algorithm to find the
elementary circuits of a graph. Communications of the
ACM, 13(12):722–726, 1970.

[27] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi. On the evolution of user interaction in
facebook. In Proceedings of the 2nd ACM workshop on
Online social networks, pages 37–42. ACM, 2009.

[28] J. T. Welch Jr. A mechanical analysis of the cyclic
structure of undirected linear graphs. Journal of the
ACM (JACM), 13(2):205–210, 1966.

[29] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu.
Path problems in temporal graphs. PVLDB,
7(9):721–732, 2014.

[30] Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J.
Schellnhuber. Evidence for a bimodal distribution in
human communication. Proceedings of the national
academy of sciences, 107(44):18803–18808, 2010.

[31] S. Yau. Generation of all hamiltonian circuits, paths,
and centers of a graph, and related problems. IEEE
Transactions on Circuit Theory, 14(1):79–81, 1967.

1453

