
An Experimental Evaluation of Task Assignment
in Spatial Crowdsourcing

Peng Cheng, Xun Jian, Lei Chen
Hong Kong University of Science and Technology, Hong Kong, China

{pchengaa, xjian, leichen}@cse.ust.hk

ABSTRACT
Recently, with the rapid development of mobile devices and the
crowdsourcing platforms, the spatial crowdsourcing has attracted
much attention from the database community. Specifically, spatial
crowdsourcing refers to sending a location-based request to work-
ers according to their positions, and workers need to physically
move to specified locations to conduct tasks. Many works have
studied task assignment problems in spatial crowdsourcing, how-
ever, their problem settings are different from each other. Thus,
it is hard to compare the performances of existing algorithms on
task assignment in spatial crowdsourcing. In this paper, we present
a comprehensive experimental comparison of most existing algo-
rithms on task assignment in spatial crowdsourcing. Specifically,
we first give general definitions about spatial workers and spatial
tasks based on definitions in the existing works such that the exist-
ing algorithms can be applied on the same synthetic and real data
sets. Then, we provide a uniform implementation for all the tested
algorithms of task assignment problems in spatial crowdsourcing
(open sourced). Finally, based on the results on both synthetic and
real data sets, we discuss the strengths and weaknesses of tested
algorithms, which can guide future research on the same area and
practical implementations of spatial crowdsourcing systems.

PVLDB Reference Format:
Peng Cheng, Xun Jian and Lei Chen. An Experimental Evaluation of Task
Assignment in Spatial Crowdsourcing. PVLDB, 11 (11): 1428-1440, 2018.
DOI: https://doi.org/10.14778/3236187.3236196

1. INTRODUCTION
With the ubiquity of smart devices equipped with various sen-

sors (e.g., GPS) and the convenience of wireless mobile networks
(e.g., 5G), nowadays people can easily participate in spatial tasks
requiring to be conducted at specified locations that are close to
their current locations, such as taking photos/videos [6], delivering
packages [7], and/or reporting waiting times of hot restaurants [4].
As a result, a new framework, namely spatial crowdsourcing [21],
which enables spatial workers to conduct spatial tasks, has emerged
in both academia (e.g., the database community) and industry (e.g.,
Uber[8]). In spatial crowdsourcing systems (e.g., gMission [10, 5]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236196

and MediaQ [23]), the active workers can only conduct spatial tasks
close enough to them such that they can physically move to the re-
quired locations before the deadlines of tasks. Therefore, studying
and designing effective strategies for helping workers to conduct
spatial tasks to maximize the overall utility (defined in Section 2)
of systems is the major goal of the existing studies in spatial crowd-
sourcing [21, 22, 29, 16, 25, 12, 13, 18, 27, 19].

In a spatial crowdsourcing platforms, spatial tasks are keeping
on arriving and being completed, and workers are free to join or
leave. In addition, the platforms have no information about the
future arrival tasks and workers. In general, there are two modes
to assign workers to tasks: 1) batch-based mode [21, 29, 12, 19],
where the platforms periodically assign the available workers to the
opening tasks in the current timestamps; 2) online mode [16, 25],
where the platforms immediately assign suitable tasks to the worker
when he/she joins in the platform (In platforms with more workers
than tasks, when a new task is created, the system will assign the
most suitable worker to it). Specifically, we illustrate the spatial
crowdsourcing with the following examples:

Example 1. (Car-hailing Services) Car-hailing services allow rid-
ers to post their travel requests to the system, then suitable cabs
will be dispatched to them based on the locations of riders and
cabs. Many industrial applications (e.g., Uber [8] and DiDi Chux-
ing [3]) provide car-hailing services. In car-hailing systems, a cab
and a travel request can be treated as a worker and a task, respec-
tively. Car-hailing systems usually try to match a travel request
with a closest cab such that the travelling distance for the cab to
pick up the rider is minimized and the waiting time of the rider is
also minimized. The existing car-hailing systems can either work
on batch-based mode (i.e., assigning available cabs to travel re-
quests every 2 seconds) or online mode (i.e., assigning the most
suitable cab to the travel request immediately when it appears).
Thus, task assignment in car-hailing services can be modeled as a
spatial crowdsourcing problem.

Example 2. (Mobile Audit Services) Mobile audit services allow
companies to create their location-specific in-store audit projects,
which can be reporting the on-shelf status of commodities, check-
ing the prices of goods inside stores, and surveying the thinking of
shoppers towards particular products. Then, shoppers with Mo-
bile audit Apps (e.g., Field Agent [4]) installed (noted as agent)
will be assigned to proper tasks (e.g., closest tasks) and contribute
their efforts. Since the agents are not totally correct, some quality
control mechanisms (.e.g, Majority Voting [22]) are used to aggre-
gate the answers from different agents for the same task such that
the returned answers are credible. With the returned answers, the
business companies can analyze the almost real-time results and
react quickly. The mobile audit system also can process the tasks

1428

on batch-based mode or online mode, which can also be modeled
as a task assignment problem in spatial crowdsourcing.

To handle the task assignment problems in spatial crowdsourc-
ing, existing studies proposed various algorithms to overcome the
dynamics of the spatial tasks and workers, and to address problems
with different utility definitions. For example, in [21, 22, 29, 16,
25, 30] the utility of the spatial crowdsourcing system is defined as
the number of finished task while in [13] it is defined as the reli-
ability and diversity of finished tasks. However, no existing work
has compared the algorithms tailored for different settings in spatial
crowdsourcing, thus the results in different works cannot be com-
pared directly and it is difficult for users to know which algorithm
to apply in the real applications.

In this paper, we provide a fair comparison study over the ex-
isting algorithms under a general spatial crowdsourcing definition
to show their pros and cons. Currently, there is no highly cus-
tomizable spatial crowdsourcing platforms to run comparison ex-
periments for all the existing spatial crowdsourcing algorithms. We
utilize an open source simulation tool to generate data sets either
following given distributions (e.g., Normal distribution, Zipf distri-
bution, Skewed distribution and Uniform distribution) or based on
real spatial/temporal data sets (e.g., Gowalla and Twitter), which
can help to compare algorithms with different parameters more ac-
curately. In addition, we set up a common experiment setting for
all the existing notable methods, and show the performances of
the methods on important spatial crowdsourcing metrics, such as
running time, numbers of finished tasks, and average moving dis-
tance. As a result, our uniform implementation [2, 1] can avoid
the “noises” from implementation skills (e.g., Java v.s. C++), set-
tings and metrics, which enable us to report the true contributions
of algorithms.

To summarize, we try to make the following contributions:

• We propose a general definition for task assignment in spatial
crowdsourcing in Section 2, which can be a footstone for the
future studies in this area.

• We provide uniform baseline implementations for the most
notable algorithms in both batch-based and online mode. These
implementations adopt common basic operations and offer a
benchmark for comparing with future studies in this area.

• We propose an objective and sufficient experimental evalua-
tion and test the performances of the most notable algorithms
over extensive benchmarks in Section 5.

• We discuss the advantages and disadvantages of two task as-
signment modes (batch-based mode and online mode) based
on the results of our experimental evaluation in Section 5.3.

Section 3 and Section 4 introduce existing algorithms in batch-
based mode and online mode respectively. Section 6 concludes this
paper.

2. PROBLEM DEFINITION
In this section, we give a general definition of task assignment in

spatial crowdsourcing, which is based on the definitions in existing
studies [21, 22, 16, 13].

Definition 1. (Dynamic Moving Workers) Let W = {w1, w2,
..., wn} be a set of n workers. Each worker wi (1 ≤ i ≤ n) is
located at position li(p) at timestamp p, can move with velocity
vi, specifies a square working area with side length ai, and has a
reliability value ri ∈ [0, 1] and a capacity value ci. �

In Definition 1, worker wi can move dynamically with speed
vi in any direction, and at each timestamp p, he/she is located at
location li(p). He/she prefers to conduct the tasks within his/her
square working area centering at the spatial place li(p) with side
length of ai. Based on the historical performance of each worker,
we can estimate his/her reliability values ri ∈ [0, 1], which indi-
cates the probability that he/she can correctly finish the assigned
task. Moreover, each worker may accept at most ci tasks at the
same time and conduct them one by one. In spatial crowdsourcing
systems, a worker wi can be either available or busy. Here being
available means the worker can be assigned with more tasks while
being busy indicates the number of assigned tasks to worker wi

reaches the his/her capacity ci and no more tasks can be assigned
unless he/she finishes or rejects some assigned tasks.

Definition 2. (Spatial Tasks) Let T = {t1, t2, ..., tm} be a set
of time-constrained spatial tasks. Each task tj (1 ≤ j ≤ m) is
published at timestamp sj , locate at a specific location lj , and is
associated with a deadline ej . To guarantee the quality, task tj may
require bj answers and specify a required quality level qj . �

Usually, a task requester creates a time-constrained spatial task
tj at timestamp sj , which requires workers to physically reach a
specific location lj before its deadline ej . In order to tackle the in-
trinsic error rate (unreliability) of workers, different accuracy con-
trol techniques are used in existing studies [13, 22, 15, 20]. With-
out loss of generality and for the ease of presentation, in this paper,
we consider the spatial tasks with binary (Yes/No) choices and use
Majority Voting [22] to aggregate the answers from different work-
ers such that the expected quality scores of tasks are satisfied. (To
avoid draws, we can require bj to be an odd number.) For exam-
ple, to check the stock status of a particular product (e.g., Coke
Cola) in a store, the question of a spatial crowdsourcing task can
be “Whether the coke cola in the store has enough stock?” and the
answer could be “Yes” or “No”. Specifically, for a task tj with bj
answers, we report the majority answer choice (selected by no less
than bj+1

2
workers) as the final result for task tj . Let the set Wj

be the workers that answer task tj . We can compute the expected
accuracy of a task as follows:

Pr(Wj) =

bj∑
x=

bj+1

2

∑
Wx

j

(∏
wi∈Wx

j

rij
∏

wi∈Wj−Wx
j

(1− rij)
)
, (1)

where W x
j indicates the subsets with exact x workers out of the

worker set Wj who answered task tj . Particularly, Pr(Wj) can
represent the probability that the final answer of task tj is correct.

Definition 3. (Assignment Instance Set) At timestamp p, an as-
signment instance set, denoted by Ip, is a set of worker-and-task
assignment pairs in the form 〈wi, tj〉, where a spatial task tj is as-
signed to a worker wi while satisfying the constraints of workers
and tasks. The utility of worker-and-task pair 〈wi, tj〉 is noted as
U(wi, tj). �

Here, each worker-and-task pair 〈wi, tj〉 in Ip indicates the re-
quired location lj of task tj is in the working area of worker wi

and he/she can reach lj before its arrival deadline ej . Moreover,
the capacity constraint of worker wi is satisfied, which means the
number of assigned tasks for worker wi is not larger than his/her
capacity ci. Assigning worker wi to task tj has utility U(wi, tj),
which can be defined in different forms. For example, in [21], it is
simply defined as U(wi, tj) = 1, which means only the number of
assigned tasks is concerned.

Now we give the formal definition of the task assignment in gen-
eral spatial crowdsourcing (TA-GSC) problem as follows:

1429

Table 1: Symbols and Descriptions
Symbol Description
W a set of dynamically moving workers
T a set of time-constrained spatial tasks
li(p) the position of worker wi at timestamp p
ai the side length of the working area of worker wi

vi the moving velocity of worker wi

ri the reliability value of worker wi

ci the capacity of worker wi

sj the timestamp of creating task tj
ej the deadline of arriving at the location of task tj
lj the position of task tj
bj the number of required answers of task tj
qj the required quality level of task tj
〈wi, tj〉 the worker-and-task assignment pair
U(wi, tj) the utility value of the worker-and-task assignment pair 〈wi, tj〉

Definition 4. (TA-GSC Problem) Given a set of dynamic moving
workers W and a set of spatial tasks T , the TA-GSC problem is to
find a task assignment instance set I to maximize the total utility∑
〈wi,tj〉∈I U(wi, tj) such that the following constraints are satis-

fied:

• Working Area Constraint: worker wi can only be assigned to
tasks located within his/her working area;

• Deadline Constraint: workerwi can only be assigned to tasks
that he/she can arrive at before their deadlines;

• Capacity Constraint: at any time, worker wi can be assigned
with at most ci tasks;

Under this definition, we tested the notable existing algorithms
to solve the task assignment problems in general spatial crowd-
sourcing. Figure 1 shows a taxonomy of the tested algorithms. We
present them one-by-one in the following two sections.

Table 1 summarizes the commonly used symbols.

Figure 1: Taxonomy of Task Assignment Algorithms for General Spa-
tial Crowdsourcing.

3. ALGORITHMS IN BATCH-BASED MODE
In this section, we introduce the typical batch-based algorithms

for TA-GSC problems, which periodically assign the “current” avail-
able workers to unfinished spatial tasks. The general framework of
batch-based algorithm for TA-GSC problems is shown in Algo-
rithm 1. In each iteration of the framework, it uses the batch-based
algorithms to match the available workers to unfinished tasks, then
notifies the workers to conduct their assigned tasks.

From the perspective of the number of required answers of each
task, the batch-based algorithms can be categorized into two groups:
1) Single-worker per task algorithms, where each task needs one
worker to answer; 2) Multi-worker per task algorithms, where each
task needs more than one worker to answer. The batch problem in
each iteration of Algorithm 1 (lines 2 - 8) of the first group algo-
rithms can be reduced to the maximum flow problem while that is

Algorithm 1: The Framework of Batch-based Algorithms
Input: A time interval Φ
Output: A set of worker-and-task assignment pairs within the time

interval Φ
1 while current time ϕ is in Φ do
2 retrieve all the available spatial tasks to T
3 retrieve all the available workers to W
4 foreach wi ∈W do
5 obtain a set, Ti, of valid tasks for worker wi

6 use batch-based task assignment algorithms to obtain a
good assignment set I

7 foreach 〈wi, tj〉 ∈ I do
8 inform worker wi to conduct task tj

NP-hard for the second group of algorithms. We introduce them
one-by-one in the rest of this section.

3.1 Single-Worker Per Task algorithms
For single-worker per task algorithms introduced in this section,

the utility function of assigning worker wi to task tj is defined
as U(wi, tj) = 1, which indicates the algorithms wants to max-
imize the assigned number of tasks. Then, the TA-GSC problem
in each batch/iteration can be reduced to the maximum flow prob-
lem. We first represent the reduction of the maximum flow problem
when each task only needs one worker to answer, then introduce the
single-worker per task algorithms.

3.1.1 Reduction to Maximum Flow Problem
When each task needs only one worker, the problem to maximize

the number of assigned tasks in each batch/iteration can be reduced
to the maximum flow problem. For a set of available workers W
and a set of available tasks T , we can create a flow network graph
G = (V,E) with V as the set of vertices, and E as the set of
edges. The set V contains |W |+ |T |+ 2 vertices. Each worker wi

maps to a vertex wi and each task tj maps to a vertex tj in graph
G. In addition, we create a src vertex and a dest vertex. We first
connect src vertex and every worker vertex wi and set the capacity
for each of these edges as the capacity ci of worker wi since each
worker can buffer at most ci tasks. Each task vertex tj is linked
to the dest vertex and the capacity is set to 1, as each task only
needs one worker to perform. What is more, as each worker wi

can only accept the tasks located inside their working areas ai, for
every worker vertex wi we add edges to all the tasks vertices that
the corresponding tasks are inside the spatial working area ai, and
set the capacity of each edge to 1.

(a) An Example ofW and T (b) Flow Network graphG = (V,E)

Figure 2: An Example of the Reduction of Maximum Flow Problem.

Figure 2 illustrates an example of this reduction. In Figure 2(a),
each worker wi has a capacity value ci and a round working area
around him/her. At the same time, Figure 2(b) shows the reduced
maximum flow network graph. One link from worker vertex wi

1430

to task vertex tj exists only when the task tj is located inside the
working area ai of worker wi. For example, worker vertex w3 is
connected to task vertex t6 as task t6 locates inside the working
area of worker w3.

With the reduction of the maximum flow problem, existing max-
imum flow algorithms can be used to solve these task assignment
problem for each batch/iteration. The Ford-Fulkerson algorithm
[24] is one well-known algorithm to compute the maximum flow.
The idea behind Ford-Fulkerson algorithm is that it starts sending
flow from the source vertex to the destination vertex, as long as
there is a path between the two with available capacity. Note that,
greedily applying the Ford-Fulkerson algorithm for each batch in
Algorithm 1 (denoted as G-greedy) does not necessarily result in
a globally optimal answer for the entire time span Φ [21]. Two
heuristic algorithms are designed to improve the results obtained
by G-greedy.

3.1.2 Least Location Entropy Priority Algorithm
Least location entropy priority algorithm (G-llep) [21] gives higher

priority to the tasks located in worker-sparse areas (areas with low
workers densities). The intuition of this algorithm is that for a task
located in worker-sparse areas, it is less likely that the task can have
a potential worker to select in future timestamps. In other words, if
a task located in worker-dense area is not assigned to any workers
at the current timestamp, it has a higher possibility to be assigned
to some other worker in the future timestamps compared with tasks
in worker-sparse areas.

The algorithm utilizes location entropy [14] to measure the total
number of workers in a location as well as the relative proportion
of their future visits to that location. A location with high loca-
tion entropy indicates many workers visit that location with equal
proportions. In other words, for a given location, if only a small
number of workers often visit it, its location entropy is low.

For a given location l, let Ol be the set of visits to it, Wl be the
set of distinct workers that visited l, and Ow,l be the set of visits
belonging to worker w. Note that, here one visit of worker wi to a
location l means worker wi appears around location l with distance
dis(wi, l) ≤ ai. Then, the location entropy for l is calculated as
follows:

Entropy(l) = −
∑

w∈Wl

Pl(w) · logPl(w), (2)

where Pl(w) =
|Ow,l|
|Ol|

is the fraction of total visits to l made by
worker w. The location entropies will be updated every batch and
one visit of worker wi to location l here means the worker’s work-
ing area covers location l at the moment when the batch process
starts. According to the suggestions in [21], we can discretize the
whole spatial space into a grid with small cells (e.g., 30 meters ×
30 meters), then just update the location entropy of each cell (when
the working area of worker wi overlaps with a cell in one batch,
we count that as a visit of worker wi to the cell) and use each cell’s
location entropy as that of the tasks located in the cell.

For each location l, the entropy of it can be treated as its cost
value, then the optimization goal of this algorithm is to assign as
many tasks as possible with minimum total cost associated to the
assigned tasks in each timestamp, which can be reduced to the
minimum-cost maximum flow problem [9]. To solve the minimum-
cost maximum flow problem, one of the well-known techniques [9]
is to first find the maximum flow in the network, then use linear
programming method to minimize the total cost of the flow. Let
Gp = (V,E) be the flow network graph for timestamp p. For each
edge (u, v) ∈ E, the capacity is c(u, v) > 0, the flow f(u, v) ≥ 0,
and the cost is a(u, v) ≥ 0. The cost of sending the flow f(u, v) is
f(u, v) · a(u, v). Denote the maximum flow sent from src vertex

to dest vertex as fmax, then the linear programming to minimize
the total cost can be represented as below:

minimize
∑

(u,v)∈E

f(u, v) · a(u, v)

s.t. f(u, v) ≤ c(u, v),

f(u, v) = −f(v, u),∑
w∈V

f(u,w) = 0 for all u 6= src, dest

∑
w∈V

f(src, w) = fmax and
∑
w∈V

f(w, dest) = fmax

G-llep maximizes the number of assigned tasks first, then mini-
mizes the total cost guaranteeing that the total number of assigned
tasks is maximized.

3.1.3 Nearest Neighbor Priority Algorithm
Nearest neighbor priority algorithm (G-nnp) [21] first maximizes

the number of assigned tasks first, then minimizes the total moving
distance of workers. The intuition of G-nnp is that if the moving
distances can be reduced, workers can finish their assigned tasks
faster as the moving distances are shorter, then the overall number
of finished tasks can be potentially improved.

In G-nnp, the travel cost d(w, t) of worker w to task t is de-
fined as the Euclidean distance between them. In the network flow
graph, each edge between a worker vertex and a task vertex is as-
sociated with a weight equaling the travel cost of the worker to
the task. Then the problem turns into the minimum-cost maximum
flow problem and the technique in Section 3.1.2 with a different
cost function can be applied to it.

3.2 Multi-Worker Per Task Algorithms
In real systems, workers may make mistakes or submit wrong

answers deliberately such that the received answers are not totally
reliable. To guarantee the reliability of tasks, existing works assign
more than one worker to the same task (Multi-worker per task),
then aggregate the answers from workers to obtain a reliable final
answer for each task. In the rest part of this section, we introduce
three multi-worker per task algorithms.

3.2.1 Sampling-Based Algorithm
The sampling algorithm (RDB-sam) is proposed to solve re-

liable diversity based spatial crowdsourcing problem (RDB-SC)
[13], which tries to maximize the minimum reliability score of
tasks. RDB-SC is proved to be NP-hard, thus not tractable. RDB-
sam, as an approximation algorithm, can achieve a worker-and-
task assignment strategy with high reliable-and-diversity score on
the fly. We generally introduce the algorithm as follows. The al-
gorithm first estimates the number of sample size k, where each
sample is a possible assignment instance set (Definition 3). Then,
it randomly generates k samples and reports the one with the high-
est reliability score as the final result.

RDB-sam provides a method to estimate a sample size K such
that the “best” sample among the K samples can achieve a (ε, δ)-
bound, which means the “best” sample is within top ε of the entire
population with probability δ. For a given batch TA-GSC problem,
RDB-sam conducts a binary search within

(
p·M·e−1+p
1−p+e·p ,M

]
, such

that K̂ is the smallest K value such that Pr{X ≤ (1− ε) ·N} ≤
1 − δ (variable X be the rank of the largest sample, SK , in the
entire population and N is the size of the entire population), where
p =

∏n
j=1

1
deg(wj)

, M = (1 − ε) · N , and e is the base of the
natural logarithm.

1431

3.2.2 Divide-and-Conquer Based Algorithm
When each task needs more than one worker to conduct, the

complexity of algorithms for TA-GSC problems will increase dra-
matically with the increase of the number of tasks and workers. To
improve the efficiency, the divide-and-conquer based (RDB-d&c)
algorithm [13] keeps dividing the whole problem instance into sev-
eral subproblem instances, solves the subproblems instances, then
merge the results of subproblem instances, which creates a trade-
off between efficiency and effectiveness.

Since a worker may exist in more than one subproblems and
RDB-d&c solves each subproblem without coordinating with other
subproblems, the total assigned tasks of a worker may exceed his/her
capacity of tasks. To satisfy the capacity constraint, RDB-d&c first
estimates the cost of replacing the worker in each subproblem, then
it greedily substitutes the worker having lower replacing cost with
the “best” available worker in the current situation. Here, the “best”
available worker is the worker who can most improve the overall
utility and is not fully assigned with tasks. If conflicts between
subproblems happens frequently, the time cost of reconciling con-
flicts will be enlarged and the running time will increase.

3.2.3 Heuristic-Enhanced Greedy Algorithm
Heuristic-Enhanced Greedy Algorithm (GT-hgr) [22] assumes

only when the aggregate reputation score ARS(ti) of a task ti is
higher than its required quality level qj , task tj is treated as a fin-
ished task. For a given task tj and its assigned workers Wj , its ag-
gregate reputation score (ARS(ti)) is the probability that at least
|Wj |+1

2
workers perform the task t correctly, which can be calcu-

lated with Equation (1).
The utility function U(wi, tj) of GT-hgr is defined as follows:

U(wi, tj) =

{ 1
|Wj |

, ARS(tj) ≥ qj
0, ARS(tj) < qj

(3)

where |Wj | is the number of workers assigned to task tj . The
idea of this definition is that only when the required quality level
qj of task tj is satisfied, the system utility can increase 1 (i.e.,∑

wi∈Wj
U(wi, tj) = 1, when ARS(tj) ≥ qj). In addition, TA-

GSC problem is proved NP-hard with the utility defined as Equa-
tion 3 by reducing from maximum 3-dimensional matching problem
(M3M) [26].

GT-hgr utilizes three heuristics to improve the result of a ba-
sic greedy algorithm (GT-greedy), which greedily assign a task
to one correct match until no further tasks can be assigned. Here
one correct match is a task-and-workers pair 〈tj ,Wj〉 whose ag-
gregate reputation score ARS(Wj) is not less than the required
quality level qj of task tj . The first heuristic is filtering heuris-
tic, which can reduce the size of correct matches by pruning the
dominated correct matches. For two correct matches 〈tj ,Wj〉 and
〈tj ,W ′j〉, if Wj ⊆ W ′j , match 〈tj ,Wj〉 dominates 〈tj ,W ′j〉. The
second heuristic is least worker assigned heuristic, which associates
a higher priority for matches with fewer workers. The last heuris-
tic is least aggregate distance heuristic, which prefers the match
with smaller summation of moving distances of the workers in that
match.

4. ALGORITHMS IN ONLINE MODE
In the online mode, the servers do not trace the locations of work-

ers and just recommend a task plan for each worker when he/she is
querying the suitable tasks, which indicates a route for the worker
to go and conduct as many tasks as possible by the way [16, 17].
The utility function for the online mode algorithms discussed in
this section is simply defined as U(wi, tj) = 1.

Algorithm 2: The Framework of Online Algorithms
Input: An available worker wi

Output: A set of suitable tasks for worker wi to conduct
1 Obtain a set of valid tasks for worker wi

2 Use online task assignment algorithms to obtain a set, Ti, with
the most number of suitable tasks for worker wi

3 Notify worker wi to conduct tasks in Tj

The framework of the TA-GSC algorithms in online mode is
shown in Algorithm 2. One example is shown in Figure 3 [16],
where the worker is located at (6, 5) and five tasks A to E are lo-
cated at five different locations with their deadlines. The result of
this example is that the worker can finish at most four tasks follow-
ing the order A→ E → C → D.

Figure 3: Running example of MTS.

The TA-GSC problem in online mode can be reduced from a
specialized version of Traveling Salesman Problem (TSP) called
sTSP, which is a NP-hard problem [16]. Exact algorithms, such as
dynamic programming algorithm and branch-and-bound algorithm
[16], can solve the problem for each single worker exactly. How-
ever, for the entire time period, exact algorithms still achieve only
approximated results. In addition, to improve the efficiency, some
heuristic algorithms and progressive algorithms are proposed [16,
17]. In the rest of this section, we will briefly introduce them.

4.1 Exact Algorithms
As the server in online mode tries to provide the longest tasks se-

quence for each worker such that he/she can conduct as many tasks
as possible. Although this problem is proved NP-hard, the dynamic
programming algorithm and the branch-and-bound algorithm [16]
can solve small scale problems.

4.1.1 Dynamic Programming Algorithm
The dynamic programming algorithm (DP) [16] iteratively ex-

pands the sets of tasks in the ascending order of set sizes, and ig-
nores the order of task sequence but examines the sets of tasks.
Given a worker w, and a set of tasks T , let opt(T, j) be the max-
imum number of tasks that worker w can complete under the con-
straints of tasks and starts from the current locations of w and ends
at the tasks tj , andR be the corresponding task sequence to achieve
the optimum value. In addition, they denote the second-to-last task
in R as task tx. Then, the recurrent formula is given as below

opt(T, tj) =

{
1, if |T | = 1

max
ti∈T,tx 6=tj

{opt(T − {tj}, tx) + δxj}, otherwise

(4)

δxj =

{
1, if tx can be finished after connecting tj in the end ofR′

0, otherwise

1432

where R′ is a task sequence without task tj . With the recurrent
formula in Equation 4, the algorithm can be implemented based on
existing dynamic programming framework.

To further reduce the running time of the dynamic programming
algorithm, the Apriori principle [31] can be utilized to remove the
invalid sets such that the problem space can be smaller. The obser-
vation is that if a task set is invalid, then all of its supersets must
be invalid. When exploring the task sets, if one invalid task set is
founded, all its supersets can be safely removed. However, when
most of the task sets are valid, the optimization strategy may not be
effective as the cost of generating candidate sets may surpass the
benefits from removing invalid task sets.

4.1.2 Branch-and-Bound Algorithm
The branch-and-bound algorithm (BB) [16] searches the whole

problem space with pruning and directing. The search space of
branch-and-bound algorithm can be represented as a tree, then the
algorithm conducts a depth-first search with effective directing and
pruning. Specifically, for each node, the algorithm expands it to a
set of candidate task nodes. One observation is that a node’s candi-
date task set in the search tree is the subset of its parent’s candidate
task set, which can improve the speed of expanding nodes. With
the candidate task set of node r, the algorithm can estimate the up-
per bound ub r of the maximum task sequence along the node r in
the search tree in the equation below

ub r = level(r) + |cand r| (5)

where level(r) indicates the level of node r in the search tree, and
|cand r| represents the size of the candidate task set of node r.
Then the algorithm can safely prune the branch of node r when
its upper bound ub r is smaller than the best current known solu-
tion curMax. To determine the best searching order, the algorithm
sorts the current searching branches by their upper bounds (ub) or
lower bounds (lb), which can be estimated with approximation al-
gorithms in Section 4.2. In addition, if the upper bound of a node
r is less than the lower bound of any other node, the node r can be
safely pruned.

Figure 4: An overview of branch-and-bound algorithm.

Figure 4 displays an overview of the branch-and-bound algo-
rithm of solving the example shown in Figure 3. On level 1, the
five nodes are ordered by their upper bounds and node B can be
pruned as its upper bound is less than the lower bound of node A.
Then after visiting node D on level 4, the algorithm finds the cur-
rent best known result curMax = 4. When curMax = 4, the
algorithm prunes all other nodes as their upper bounds are all less
than 4.

4.2 Heuristic Algorithms
Exact algorithms give the exact result for each single worker’s

request but not the entire time period, and their time complexities
and memory consumption increase exponentially as the number of
tasks grows such that they are not efficient enough for real-world

applications. In this section, we briefly introduce three heuristics to
return results to the workers quickly [16].
Least expiration time heuristic (LEH). The LEH constructs a
task sequence by greedily appending the task with the least expi-
ration time to the end of current task sequence. It first orders the
tasks by their expiration time, then check each task on the ascend-
ing order of their expiration time. If one task can be conducted by
the worker, which means the worker can arrive at the location of
the task before its deadline, then the algorithm adds the task to the
end of the current task sequence. Finally, the task sequence is sent
to workers to conduct one by one.
Nearest neighbor heuristic (NNH). The NNH utilizes the spa-
tial proximity between tasks through keeping selecting the nearest
valid task to the last added task in the current task sequence, where
the valid task means the worker can arrive at its location before its
deadline. The heuristic greedily adds more tasks to the end to the
task sequence until no more tasks can be selected, then it returns the
task sequence to the worker who is querying the available tasks.
Most promising heuristic (MPH). The MPH is a heuristic for the
branch-and-bound algorithm in Section 4.1.2 to choose the most
promising branches when it is exploring the search tree, where the
most promising branch for each level can be the branch having the
nodes with the highest upper bound at that level. In addition, MPH
just reports the first found candidate task sequence.

As the heuristic algorithms run fast, on real-world application,
the system can run the three heuristic algorithms at the same time,
noted as Heuristic Algorithm (HA), and just reports the best result
to improve the utility of the final result but without harming the
user experience of workers.

4.3 Progressive Algorithms
The idea of progressive algorithms (PRS) is to report a small

number of spatial tasks to a worker quickly at the beginning, and
then to keep incrementally building the rest of the task sequence
off-line and report the newly added tasks to the worker before he/she
finishes all the tasks already reported to them. Under this frame-
work, one progressive algorithm can use approximation algorithms
to response one worker very fast at the beginning, then utilizes one
exact algorithm to progressively construct the rest task sequence.

The advantage of progressive algorithms is that they can response
a worker faster than exact algorithms and report more accurate re-
sults than heuristic ones. On the other hand, the potential tasks for
a worker may be promoted to other workers when they are conduct-
ing the initial tasks, and they cannot see the entire task sequence at
the beginning which may lead to a worse user experience compared
to that of the other online algorithms.

5. EXPERIMENTAL STUDY

5.1 Experiments Setup
Data Sets. We use both real and synthetic data to test task assign-
ment methods in batch-based mode and online mode.

For real data set, we utilize the data provided by DiDi Chuxing
[3]. Specifically, the real data set includes the temporal locations of
taxis and orders, which is retrieved from the time period between
7:30 am and 8:30 am in a normal day in the urban area of Bei-
jing (with latitude from 39.7558◦ to 40.0229◦ and longitude from
116.1996◦ to 116.5457◦). There are more than 10,000 orders and
13,000 taxis in the data set. Figure 5 shows the distribution of 7K
sampled taxis and orders, where the locations of orders and taxis
are represented by red and blue points, respectively. Note that,
when drawing Figure 5, we added a random disturbance to each
location of taxis and orders for privacy protection. For simplicity,

1433

Table 2: Algorithms Comparison
Algorithms Time Complexity Assignment Mode Maximizing Goal Randomization
MaxFlow Greedy (G-greedy) [21] O(Emax |f |) Batch-based the number of assigned tasks Deterministic
MaxFlow with least location entropy priority (G-llep) [21] O(Emax |f |) Batch-based the number of assigned tasks Heuristic
MaxFlow with nearest neighbor priority (G-nnp) [21] O(Emax |f |) Batch-based the number of assigned tasks Heuristic
Trustworthy greedy (GT-greedy) [22] - Batch-based the number of correct matches Randomized
Heuristic-enhanced greedy (GT-hgr) [22] - Batch-based the number of correct matches Heuristic
Divide and conquer (RDB-d&c) [13] O(m · n2) Batch-based the minimum reliability Heuristic
Sampling (RDB-sam) [13] - Batch-based the minimum reliability Randomized
Dynamic programming (DP) [16] O(n ·m2 · 2m) Online the number of scheduled tasks Deterministic
Brach and bound (BB)[16] O(n ·m!) Online the number of scheduled tasks Deterministic
Heuristic ensemble algorithm (HA) [16] O(n · log(m)) Online the number of scheduled tasks Heuristic
Progressive algorithm (PRS) [16] - Online the number of scheduled tasks Heuristic

we first linearly map locations from DiDi Chuxing into a [0, 1]2

data space. Then, we use the taxi records to initialize locations
and timestamps of workers, and utilize the order records to set up
the required locations and creation timestamps of spatial tasks. In
the experiments, we treat every φ seconds as a time slot (i.e., the
temporal unit in the experiments).

116.2 116.25 116.3 116.35 116.4 116.45 116.5

Longitude

39.8

39.85

39.9

39.95

40

L
a

ti
tu

d
e

Figure 5: Real data distribution (orders:red points, taxis:blue points).
For synthetic data, we generate locations of workers and tasks

in a 2D data space [0, 1]2 following Uniform (UNIF), Gaussian
(GAUS), Skewed (SKEW), as different distributions may affect
the validation relationships of worker-and-task pairs (i.e., satisfy-
ing working area constraint and deadline constraint). For Uniform
distribution, we uniformly generate the locations of tasks in the 2D
data space. For Gaussian distribution, we generate the locations
of tasks/workers in a Gaussian cluster (with mean µ and variance
σ2). Similarly, we also generate the tasks/workers with the Skewed
distribution through locating 90% of them into Λ Gaussian clusters
(with mean of 0.5, variance of 0.052 and randomly chosen cen-
ters), and distributing the rest workers/tasks uniformly in the 2D
data space. We present the illustrations of the distributions with
different parameters in Appendix A of our technical report [11].
For each synthetic dataset, we generate 50 time slots.

To simulate the synthetic data and the other properties of real
data, we use a toolbox, SCAWG [28], to generate data records for
each time slot. For both real and synthetic data sets, we simulate
the working ranges each worker as squares whose centers are at the
locations of workers, and the length of sides of the squares are gen-
erated with Gaussian distribution within range [a−, a+] [21, 29]. In
addition, we set the velocity of each worker as v. When the work-
ers are idle, they move randomly within their working areas. Each
worker will locate at the position of his/her latest task after finishing
it. For the count of required answers to each task and the capacity
of each worker, we generate them following the Gaussian distribu-

Table 3: Experiments Settings
Parameters Values

number of tasks,m 7.5K, 10K, 12.5K, 15K, 17.5K
number of workers, n 7.5K, 10K, 12.5K, 15K, 17.5K
task duration range, [rt−, rt+] [1, 2], [2, 3], [3, 4], [4, 5]
required answers range, [b−, b+] [1, 3], [3, 5], [5, 7], [7, 9]
capacity range, [c−, c+] [2, 3], [3, 4], [4, 5], [5, 6]
required quality level range, [q−, q+] [0.65, 0.7], [0.75, 0.8], [0.8, 0.85], [0.85, 0.9]
reliability range, [r−, r+] [0.65, 0.7], [0.75, 0.8], [0.8, 0.85], [0.85, 0.9]
side length range, [a−, a+] [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], [0.2, 0.25]
worker velocity, v 0.01, 0.05, 0.1, 0.15
time slot length, φ 30, 60, 120, 180
mean of Gaussian distribution, µ 0.1, 0.3, 0.5, 0.7, 0.9
variance of Gaussian distribution, σ2 0.012, 0.032, 0.052, 0.072, 0.12

number of Gaussian distributed 1, 3, 5, 7
clusters in the skewed distribution, Λ

tions within the range [b−, b+] and the range [c−, c+], respectively
[21, 29]. Meanwhile, for the required confidence of each task and
the reliability of each worker, we produce them following the Gaus-
sian distributions within the range [q−, q+] and the range [r−, r+],
respectively [22]. For temporal constraints on tasks, we also gen-
erate the deadlines for tasks according to the range [rt−, rt+] of
the duration of tasks with Gaussian distribution [12, 13, 16]. Here,
for Gaussian distributions, we linearly map data samples within
[−1, 1] of a Gaussian distributionN (0, 0.22) to the target ranges.
Evaluation Metrics. To evaluate the efficiency and effectiveness
of the tested approaches, we report the most important metrics for
spatial crowdsourcing systems as follows:

• Average moving distance of each worker (AvgMD). For workers,
they want to accomplish maximum number of tasks with mini-
mum moving distance. Then, higher average moving distance of
each worker may harm the benefit of workers, which should be
avoided. Thus, algorithms achieving results with lower AvgMDs
are better.
• Number of fully assigned tasks (NFT). For the spatial crowd-

sourcing platforms, they want to fully assign as many tasks as
possible, which can reflect their effectiveness. Here, one fully
assigned task means it is assigned with the required number of
workers. Higher NFT is better.
• Number of confidently assigned tasks (NCT). Only when the ex-

pected accuracy (calculated with Equation 1) of the assigned
workers Wj of task tj is higher than the required quality level
qj , task tj is considered as a confidently assigned task. When
the total number of tasks is fixed, algorithms achieving higher
NCTs are better.
• Running time (RT). The running time represents the total execu-

tion time of the tested algorithm for resolving a given TA-GSC
problem. Lower RT is better.

Tested Approaches. Table 3 depicts our experimental settings,
where the default values of parameters are in bold font. In each

1434

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

0.06

0.07

0.08

0.09

A
v
g
M

D

(a) Moving Distances

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

3000

3500

4000

4500

5000

N
F

T

(b) Fully Assigned Tasks

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

2500

3000

3500

4000

N
C

T

(c) Confidently Assigned Tasks

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Times

Figure 6: Effects of Task Duration rt (Batch-based Mode, Real).

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

0.07

0.08

0.09

0.1

0.11

A
v
g
M

D

(a) Moving Distances

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

2500

3000

3500

4000

4500

5000

N
F

T

(b) Fully Assigned Tasks

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

2000

2500

3000

3500

4000

N
C

T

(c) Confidently Assigned Tasks

[1,2] [2,3] [3,4] [4,5]

task duration [rt
-
, rt

+
]

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Times

Figure 7: Effects of Task Duration rt (Online Mode, Real).

set of experiments, we vary one parameter, while setting other pa-
rameters to their default values. For each experiment, we report
the measured metrics of all tested approaches, which includes the
algorithms for batch-based mode: maximum flow based greedy al-
gorithm (G-greedy), maximum flow with least location entropy
priority heuristic algorithm (G-llep), maximum flow with nearest
neighbor priority heuristic algorithm (G-nnp), greedy algorithm
for trustworthy query (GT-greedy), heuristic-en-hanced greedy al-
gorithm for trustworthy query (GT-hgr), sampling-based algorithm
(RDB-sam) and divide-and-conquer-based algorithm (RDB-d&c),
and the algorithms in online mode: dynamic programming algo-
rithm (DP), branch-and-bound algorithm (BB), heuristic ensemble
algorithm (HA, here we run three heuristic algorithms, LEH, NNH
and MPH, introduced in Section 4.2 and report the best result of
the results of them) and progress algorithm (PRS). Table 2 sum-
marizes all the tested algorithms, where E is the number of valid
worker-and-task pairs, max |f | is the size of the maximum flow, m
is the number of tasks and n is the number of workers.

All our experiments were run on an Intel Xeon X5675 CPU
@3.07 GHZ with 32 GB RAM in Python. The source code to gen-
erate the testing data sets and implementations of tested algorithms
can be found on our GitHub repositories [2, 1].

5.2 Experimental Results

5.2.1 Experiments on Real Data
In this subsection, we show the results on the real data set and

vary the range of task durations rt, the range [a−, a+] of the side
length workers’ working areas, the range [q−, q+] of tasks’ re-
quired quality levels, the range [r−, r+] of workers’ reliabilities,
the range [b−, b+] of tasks’ required answers, the range [c−, c+] of
workers’ capacities, the velocity v of workers and the length of the
time slot φ.
Effect of the range, [rt−, rt+], of tasks’ durations. We show the
effect of the range, [rt−, rt+], of tasks’ durations on the perfor-
mances of tested approaches through varying [rt−, rt+] from [1,
2] to [4, 5] (the unit is time slot).

Figure 6 illustrates the results of batch-based algorithms. In
Figure 6(a), AvgMDs of the results of batch-based algorithms al-
most do not change when tasks’ durations increase, because in each
batch workers are assigned with tasks whose numbers reach their
capacities in the real data set (tasks and workers are well mixed as
shown in Figure 5). G-llep causes workers to move the longest av-
erage distances, as it prefers to assign workers to tasks positioned at
farther locations but with lower location entropies. GT-greedy and
GT-hgr only assign correct matches (one correct match is a task-
and-workers pair 〈tj ,Wj〉whose expected accuracy Pr(Wj) is not
less than the required quality level qj of task tj), thus the two al-
gorithms will use limited workers to confidently finish fewer tasks.
As a result, the AvgMDs of results of GT-greedy and GT-hgr are
small. As for G-nnp, it assigns workers to their nearest tasks, thus
AvgMDs of its results are smaller than GT-greedy but higher than
GT-hgr. G-greedy, RDB-d&c and RDB-sam tend to assign as
many worker-and-task pairs as possible thus have high AvgMDs.
In Figure 6(b), when the tasks’ durations increase, all the batch-
based approaches can fully assign more tasks, as each task will last
for more batches such that more workers will be available for it. G-
llep can fully assign the most number of tasks, which shows the ef-
fectiveness of its least location entropy priority strategy. G-greedy
and G-nnp can fully assign fewer tasks than G-llep but more tasks
than other batch-based algorithms. GT-greedy and GT-hgr can
fully assign fewer tasks than other algorithms, as they just assign
correct matches. In addition, RDB-d&c and RDB-sam can fully
assign more tasks than GT-greedy and GT-hgr but fewer than other
batch-based algorithms. When we consider the quality of assigned
workers to tasks as shown in Figure 6(c), GT-greedy and GT-hgr
can confidently assign most tasks than other algorithms, as they are
proposed to handle the quality issues of tasks. The other batch-
based algorithms keep their ranks in Figure 6(b). Note that many
fully assigned tasks are in fact not confidently assigned. In Figure
6(d), when the tasks’ durations increase, all the batch-based algo-
rithms need more time to resolve the problems, because the average
number of tasks in each batch increases, which leads to the prob-
lem space increases. G-greedy, G-llep and G-nnp use more time
than other batch-based algorithms, because they all need to invoke

1435

[2,3] [3,4] [4,5] [5,6]

worker capacity [c
-
, c

+
]

0.06

0.08

0.1

0.12

0.14

A
v
g
M

D

(a) Moving Distance

[2,3] [3,4] [4,5] [5,6]

worker capacity [c
-
, c

+
]

2000

3000

4000

5000

6000

7000

N
F

T

(b) Fully Assigned Tasks

[2,3] [3,4] [4,5] [5,6]

worker capacity [c
-
, c

+
]

2000

3000

4000

5000

N
C

T

(c) Confidently Assigned Tasks

[2,3] [3,4] [4,5] [5,6]

worker capacity [c
-
, c

+
]

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Times
Figure 8: Effects of Worker Capacity c (Real).

[0.05,0.1] [0.1,0.15] [0.15,0.2] [0.2,0.25]

side length [a
-
, a

+
]

0.05

0.1

0.15

0.2

0.25

A
v
g
M

D

(a) Moving Distance

[0.05,0.1] [0.1,0.15] [0.15,0.2] [0.2,0.25]

side length [a
-
, a

+
]

2000

3000

4000

5000

6000

7000

N
F

T

(b) Fully Assigned Tasks

[0.05,0.1] [0.1,0.15] [0.15,0.2] [0.2,0.25]

side length [a
-
, a

+
]

2000

3000

4000

5000

6000

N
C

T

(c) Confidently Assigned Tasks

[0.05,0.1] [0.1,0.15] [0.15,0.2] [0.2,0.25]

side length [a
-
, a

+
]

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Times
Figure 9: Effects of Range of Side Length of Worker Working Area a (Real).

the time-consuming Ford-Fulkerson algorithm or its variants. GT-
greedy runs fastest among the batch-based algorithms. As RDB-
sam just quickly sample worker-and-task pairs, it runs fast but still
slower than GT-greedy. RDB-d&c is slower than RDB-sam but
faster than GT-hgr.

Figure 7 shows the results of online algorithms. In Figure 7(a),
when tasks’ durations increase, AvgMDs of results of online algo-
rithms will increase, because workers can arrive at tasks located at
farther locations leading to that online algorithms schedule work-
ers to farther tasks. PRS achieves results with the highest Avg-
MDs. PRS first assigns one task to each worker then use BB to
plan other valid tasks. In the first step of PRS, some tasks may
already be fully assigned with workers. Then in the second step of
PRS, workers may be scheduled with farther tasks compared with
using DP or BB directly. HA will result in larger AvgMDs than BB
but smaller AvgMDs than other tested online algorithms. In Figure
7(b), when the tasks’ durations increase, similarly, all the tested on-
line approaches also can fully assign more tasks. PRS fully assigns
the least tasks among online algorithms while DP fully assigns the
most tasks. Similar ranking of results achieved by the tested on-
line approaches can be observed when the quality levels of tasks
are considered, as shown in Figure 7(c). However, the number of
confidently assigned tasks is less than the number of fully assigned
tasks for all the results achieved by the tested online algorithms. In
Figure 7(d), when the tasks durations increase, all the tested online
algorithms consume more time to achieve results. HA and PRS
are the fastest and slowest approaches among the tested online al-
gorithms, respectively. In addition, BB is faster than DP.

To compare the algorithms in batch-based mode and online mode
together, we select three algorithms performing well from each cat-
egory and place the results of them in the same figures to compare
clearly. Specifically, we select G-llep, GT-hgr and RDB-sam from
algorithms in batch-based mode, and select BB, DP and HA from
algorithms in online mode. In the following discussion, we just
show the results of the six selected algorithms.
Effect of the range, [c−, c+], of workers’ capacities. Figure 8
shows the effect of the range of workers’ capacities on the perfor-
mances of tested approaches through varying [c−, c+] from [2, 3]
to [5, 6]. As the running time of DP increases dramatically, we

do not report the results of DP when [c−, c+] is [4, 5] and [5, 6].
When the capacities of workers increase, each worker may need to
move longer to finish more tasks as shown in Figure 8(a). However,
we find G-llep in fact sacrifices the efficiency of moving distances
to fully assign more tasks. When some tasks are located in far po-
sitions with low location entropies, G-llep will assign these tasks
with higher priorities such that AvgMD will increase. In addition,
we find AvgMDs of the results of batch-based algorithms, except
for GT-hgr, are higher than that of online algorithms. The reason is
that online algorithms schedule the assigned tasks for each worker
with the minimum total travel cost. NFTs of the tested algorithms
are shown in Figure 8(b). When the capacities of workers increase,
NFTs of the tested algorithm increase. Moreover, batch-based al-
gorithms can fully assign more tasks than online algorithms. For
NCTs shown in Figure 8(c), batch-based algorithms can also confi-
dently assign more tasks than online algorithms. NCTs of GT-hgr
are higher than that of G-llep when the worker capacities are lower
than 4. However, when the worker capacities are higher than 4,
G-llep can confidently assign more tasks than GT-hgr. The reason
is that although G-llep does not consider the expected quality of
the fully assigned tasks, when NFT of G-llep is high enough, NCT
of G-llep can beat that of GT-hgr, the one particularly designed to
focus on the quality of tasks. For the running times of the tested ap-
proaches as shown in Figure 8(d), DP is the slowest when worker
capacities are higher than 4. BB and HA are faster than batch-based
algorithms. G-llep is slower than GT-hgr, as G-llep needs to keep
updating the entropies of many positions.
Effect of the range, [a−, a+], of the side length of workers’
working areas. When workers’ working areas get larger, there will
be more available tasks located in the working area of each worker
leading to the number of valid worker-and-task pairs increases. As
the running time of GT-hgr increases dramatically when workers’
working areas get larger, we do not report the results of GT-hgr
when [a−, a+] is [0.15, 0.2] and [0.2, 0.25].

In Figure 9(a), as the working areas get larger, AvgMDs of the
results achieved by all the tested approaches increase obviously,
because the worker can reach tasks located further. In Figure 9(b),
all the tested approaches can fully assign more tasks when the range
of side length of working areas a increases, as each task can be

1436

[1,3] [3,5] [5,7] [7,9]

required # of answers [b
-
, b

+
]

0.05

0.06

0.07

0.08

0.09
A

v
g
M

D

(a) Moving Distance

[1,3] [3,5] [5,7] [7,9]

required # of answers [b
-
, b

+
]

0

2000

4000

6000

8000

N
F

T

(b) Fully Assigned Tasks

[1,3] [3,5] [5,7] [7,9]

required # of answers [b
-
, b

+
]

0

2000

4000

6000

N
C

T

(c) Confidently Assigned Tasks

[1,3] [3,5] [5,7] [7,9]

required # of answers [b
-
, b

+
]

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Time
Figure 10: Effects of Required Answer Count b (Real).

[0.65,0.7] [0.75,0.8] [0.8,0.85] [0.85,0.9]

required task confidence [q
-
, q

+
]

0.06

0.07

0.08

0.09

A
v
g
M

D

(a) Moving Distance

[0.65,0.7] [0.75,0.8] [0.8,0.85] [0.85,0.9]

required task confidence [q
-
, q

+
]

2500

3000

3500

4000

4500
N

F
T

(b) Fully Assigned Tasks

[0.65,0.7] [0.75,0.8] [0.8,0.85] [0.85,0.9]

required task confidence [q
-
, q

+
]

0

1000

2000

3000

4000

5000

N
C

T

(c) Confidently Assigned Tasks

[0.65,0.7] [0.75,0.8] [0.8,0.85] [0.85,0.9]

required task confidence [q
-
, q

+
]

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Time

Figure 11: Effects of Required Quality Level q (Real).

reached by more workers and can be fully assigned with a higher
probability. Specifically, the increasing speed of NFT of the tested
online algorithms is higher than that of G-llep and RDB-sam. In
Figure 9(c), GT-hgr still can achieve the highest NCT than other
tested algorithms. When the range of side length of working areas
reaches [0.15, 0.2], online algorithms can achieve similar or even
higher NCT than RDB-sam, as far workers be scheduled to farther
tasks by online algorithms. In Figure 9(d), the running time of all
the tested approaches increases when the range of ai increases, as
more valid worker-and-task pairs need to process. When [a−, a+]
is higher than [0.1, 0.15], GT-hgr needs much more time than other
tested approaches. Running time of DP increases faster than other
approaches except for GT-hgr, as for each worker the computation
complexity of DP is O(m2 · 2m).
Effect of the range, [b−, b+], of the number of tasks’ required
answers. When the range [b−, b+] increases, AvgMDs achieved
by the tested approaches increase simultaneously shown in Figure
10(a). The reason is the worker labor does not increase, when a
task tj needs more workers, the platform will to schedule farther
workers to join. For the number of finished tasks as shown in
Figure 10(b), when the range [b−, b+] increases, NFTs of all ap-
proaches decrease as the worker labor does not increase. For NCTs
shown in Figure 10(c), different approaches performed quite differ-
ent. When the range [b−, b+] increases, NCTs of GT-hgr decrease
monotonously, because workers are just enough for GT-hgr to fully
assign fewer tasks. For other approaches not caring the correctness
of the assignment, when the range [b−, b+] is too small, like (1, 3),
each tasks’ assigned workers will rarely satisfy its required qual-
ity level. When the range [b−, b+] increases a little, more fully
assigned tasks will become confidently assigned tasks. But when
the range [b−, b+] becomes larger, as NFTs decrease, NCTs also
decrease. When each task requires more workers, all the tested
algorithms need more time to achieve results, as shown in Figure
10(d). Specifically, the running time of GT-hgr increases dramati-
cally, as for a task tj , when more workers can be assigned to it, the
number of correct matches for tj will increase quickly.
Effect of the range, [q−, q+], of tasks’ required quality levels.
When the range of tasks’ required quality levels changes, only GT-
hgr will be affected in all the metrics and other algorithms will only

be affected in NCTs. In Figure 11(a), the required quality levels
does not affect the average moving distance of the results achieved
by the tested algorithms. In Figure 11(b), GT-hgr will assign fewer
workers when the range [q−, q+] gets higher, as the number of cor-
rect matches will decrease leading to NFT of GT-hgr decreasing.
In Figure 11(c), when the range of qj increases, NCTs of all the
tested approaches will decrease. We notice that although NCT of
G-llep is higher than that of GT-hgr when [q−, q+] is [0.65, 0.7],
GT-hgr can confidently assign more tasks when [q−, q+] becomes
larger (e.g., 0.75 to 0.9), which shows the effectiveness of the trust-
worthy query. In Figure 11(d), when [q−, q+] increases, only the
running time of GT-hgr increases, as it is harder to select a correct
match for each task from fewer correct matches.
Effect of the length of time slot φ. Figure 12 presents the effects
of the length of time slot φ on the performances of the tested ap-
proaches by varying φ from 30 seconds to 180 seconds.

When the length of the time slot increases, AvgMDs of all the
tested approaches increase as shown in Figure 12(a) and NFTs of
them also increase as shown in Figure 12(b). The reason is that
when the time slot length increases, during each time slot the num-
ber of workers will increase leading to more tasks can be fully as-
signed. As more tasks are fully assigned, AvgMDs of all the tested
algorithms will increase. We can still observe that GT-hgr has the
lowest AvgMDs as it only selects correct matches. In addition, as
G-llep may give higher priorities to far tasks located in positions
with low location entropies, workers may move farther to conduct
tasks in the results of G-llep. For NCTs shown in Figure 12(c), all
the tested algorithms can confidently assign more tasks when the
time slot length increases, as more tasks are fully assigned. Specif-
ically, when the time slot length is short (e.g., φ = 30), G-llep and
RDB-sam can confidently assign more tasks than GT-hgr. When
the time slot length is longer than 60 seconds, GT-hgr has the high-
est NCTs. As GT-hgr algorithms only assign correct matches, when
more workers are available, the number of correct matches will in-
crease exponentially leading to that NCT of GT-hgr increases sim-
ilarly. For the running times shown in Figure 12(d), when φ in-
creases, the running times of G-llep and GT-hgr increase dramati-
cally. Because the numbers of valid worker-and-task pairs and the
correct matches increase quickly when the numbers of workers and

1437

30 60 120 180

time slot length φ

0.06

0.08

0.1

A
v
g
M

D

(a) Moving Distance

30 60 120 180

time slot length φ

0

1000

2000

3000

4000

5000

N
F

T

(b) Fully Assigned Tasks

30 60 120 180

time slot length φ

0

1000

2000

3000

4000

5000

N
C

T

(c) Confidently Assigned Tasks

30 60 120 180

time slot length φ

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Time
Figure 12: Effects of Time Slot Length φ (Real).

150 200 250 300 350

number of tasks per time slot

0.2

0.3

0.4

0.5

0.6

A
v
g
M

D

(a) Moving Distance

150 200 250 300 350

number of tasks per time slot

100

200

300

400

500

N
F

T

(b) Fully Assigned Tasks

150 200 250 300 350

number of tasks per time slot

0

100

200

300

400

N
C

T

(c) Confidently Assigned Tasks

150 200 250 300 350

number of tasks per time slot

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Time
Figure 13: Effects of Number of Tasks Per Time Slot (Synthetic).

150 200 250 300 350

number of workers per time slot

0.2

0.4

0.6

0.8

A
v
g
M

D

(a) Moving Distance

150 200 250 300 350

number of workers per time slot

0

500

1000

1500

2000

N
F

T

(b) Fully Assigned Tasks

150 200 250 300 350

number of workers per time slot

0

500

1000

1500
N

C
T

(c) Confidently Assigned Tasks

150 200 250 300 350

number of workers per time slot

10
0

10
1

10
2

10
3

10
4

R
u
n
n
in

g
 T

im
e
 (

s
)

(d) Running Time
Figure 14: Effects of Number of Workers Per Time Slot (Synthetic).

tasks increase due to the increase of length of time slots.
We also conducted experiments on the real dataset with varied

workers’ reliabilities and workers’ velocities. In addition, we also
tested the algorithms when the working areas of workers are circles
whose diameters are configured with a Gaussian distribution within
range [a−, a+]. Due to the space limitation, we put the results in
Appendix B of our technical report [11].

5.2.2 Experimental Results on Synthetic Data
In this subsection, we show the performances of tested approaches

on synthetic dataset by varying the number of tasks m, and the
number of workers n when the locations of workers/tasks both
follow Uniform (UNIF) distribution. Due to the space limitation,
we put the results about the effects of the location distributions of
workers/tasks in Appendix C of our technical report [11].
Effect of the number of tasks, m. Figure 13 shows the effect
of the number m of spatial tasks on the performances of tested
approaches, where we vary m from 7.5K to 17.5K.

In Figure 13(a), the assigned workers of all the tested approaches
will have higher average moving distances for larger m. The rea-
son is that the approaches select tasks in perspectives different from
proximity of tasks. When the number of tasks per time slot in-
creases, they may select the most suitable tasks located further. In
addition, as the GT-hgr assigns much fewer workers, the average
moving distance of the results achieved by it is small. In Figure
13(b), except for GT-hgr, NFTs of the results achieved by all the
tested algorithms will decrease when the number of tasks per time

slot increases. Except for GT-hgr, other tested algorithms do not
concern the minimum required number of answers by each task.
When the number of tasks increases, the workers are distributed to
more tasks and the average number of workers for tasks will de-
crease, which leads to NCTs decrease. However, GT-hgr only as-
signs correct matches, which can guarantee that each assigned task
will have a set of workers to satisfy the required number of workers.
Meanwhile, when the number of tasks increases, GT-hgr will pro-
duce more correct matches as more suitable tasks are available to
be selected such that NFT of GT-hgr increases. In addition, we no-
tice that although some tasks in the results of G-llep and RDB-sam
algorithms are assigned with required number of workers, their ex-
pected accuracy values may be not satisfied (their aggregation rep-
utation scores may be smaller than their required quality levels).
The reason is that G-llep and RDB-sam algorithms only assign as
many worker-and-task pairs as possible without considering the re-
quired quality level. Similar results can be observed in Figure 13(c)
due to the same reason. In Figure 13(d), when each time slot has
more tasks, the running time of all the tested algorithms increases
slightly, as more tasks need to be checked and maintained. DP runs
much slower than other online algorithms.
Effect of the Number of Workers, n. Figure 14 shows the effect
of the number n of spatial workers on the performances of tested
approaches, where we vary n from 7.5K to 17.5K.

In Figure 14(a), when the number of workers in each time slot
increases, the average moving distance of workers in the results
achieved by all the tested algorithms also increases. The reason

1438

is that when there are more workers in each time slot, the work-
ing areas of workers can cover more tasks, to conduct more tasks
the AvgMDs will increase. In addition, we find that G-llep re-
quires workers to move more to conduct tasks. The reason is G-llep
gives higher priorities to the tasks created at locations with fewer
workers, then more far tasks are assigned to workers. As shown
in Figure 14(b), when m increases, all the tested approaches can
fully assign more tasks. Online algorithms can fully assign fewer
tasks than batch-based algorithms. G-llep algorithms can fully as-
sign more tasks than other algorithms. The reason is compared
to other algorithms, G-llep can finish more far tasks as explained
above. RDB-sam can finish many tasks but still slightly fewer than
that of G-llep. In Figure 14(c), all the approaches can achieve re-
sults with higher NCTs when there are more workers available in
each time slot. Moreover, the increasing rate of NCT of GT-hgr
is faster than other approaches. As GT-hgr only assigns correct
matches, when more workers are available, the number of correct
matches will increase exponentially leading to that NCT of GT-hgr
increases similarly. In Figure 14(d), the running time of G-llep al-
gorithms increases obviously when the number of workers per time
slot increases, as the complexity of maximum flow algorithm in-
creases linearly with respect to the number of edges of the graph,
which increases super-linearly w.r.t n. BB and HA are faster than
other algorithms, as BB can quickly assign enough tasks for each
worker and HA just assigns tasks based on very simple heuristics
(e.g., selecting next nearest neighbor). G-llep is slower than other
five algorithms.

5.3 Summary
With the experimental studies, we summarized one grade table

that describes the pros and cons of each algorithms under different
metrics. Specifically, for a set of experimental results, we grade
the performance of algorithm Ψj on metric Mi with Equation 6 as
follows:

G(Mi,Ψj) =

{
5 · Vij−Li

Ui−Li
, Mi ∈ {NFT,NCT}

5 · (1− Vij−Li

Ui−Li
), Mi ∈ {AvgMD,RT}

(6)

where Vij is the result value of algorithm Ψj on metric Mi, and
Ui and Li are the upper and lower values among all the tested al-
gorithms on metric Mi, respectively. For example, in Figure 8(a),
when [c−, c+] = [2, 3], AvgMD of GT-hgr is the lowest, then the
grade of GT-hgr on AvgMD is 5 in this set of experiments. Then,
in Table 4, we report the average grades of each tested algorithms
for the four metrics. Therefore, users can find a good option given
a TA-GSC application.

Another important issue is about location privacy of workers. In
batch-based mode, spatial crowdsourcing systems need to trace the
location of workers, which may scare away some potential workers.
However, in online mode, workers only need to reveal their loca-
tions when they are requesting the available tasks, which is much
more acceptable for most workers.

Online algorithms usually have good efficiency, which means the
spatial crowdsourcing systems can response to the worker requests
quickly, which leads to a better user experience than batch-based
mode. However, systems in batch-based mode also can reduce the
time interval between two adjacent batches such that they can also
response to the worker requests quickly.

We provide the following high-level suggestions for choosing
algorithms for TA-GSC applications.

1. When the expected accuracy of tasks is important for the plat-
forms (e.g., mobile audit services, such as Field Agent [4]), GT-
greedy or GT-hgr should be selected, as they can guarantee the

Table 4: Grades of algorithms for different metrics on our data sets.
The grade varies from zero to five, and a higher grade indicates that
the algorithm is better at the corresponding metric. B and O stand for
batch-based mode and online mode, respectively.

Algorithm Mode AvgMD NFT NCT RT
G-greedy B 1.6 3.6 3.1 0.5
G-llep B 1.4 5.0 4.5 0.7
G-nnp B 4.1 3.8 3.3 0.0
GT-greedy B 3.1 2.3 4.8 5.0
GT-hgr B 5.0 2.5 5.0 4.8
RDB-d&c B 1.6 2.6 2.2 4.9
RDB-sam B 1.7 3.2 2.7 5.0
DP O 1.2 3.3 2.9 5.0
BB O 2.6 1.9 1.6 5.0
HA O 2.5 2.8 2.5 5.0
PRS O 0.4 0.0 0.0 4.9

quality of tasks, especially for applications for tasks with high
required quality levels and workers with low reliabilities. On
the contrast, when the required quality levels of tasks are low,
the reliabilities of workers are high or the required numbers of
answers are high, the expected accuracy of tasks will be high,
then there is no need to particularly care the expected quality of
tasks. As a result, G-llep, RDB-sam and DP are good choices.

2. When the travel costs of workers is the key measure for the plat-
forms (e.g., Uber [8] and DiDi Chuxing [3]), GT-hgr and G-
nnp should be chosen. Moreover, GT-hgr can also guarantee
the quality of tasks.

3. When the responding speed for the workers is the key issue for
the platforms (e.g., car-hailing platforms, such as Uber [8]), the
maximum flow based algorithms, such as G-greedy, G-llep and
G-nnp, should be avoided due to their high running times.

6. CONCLUSION
In this paper, we present a comprehensive experimental com-

parison of most existing algorithms on task assignment in spatial
crowdsourcing. Specifically, we first give some general definitions
about spatial workers and spatial tasks based on definitions in the
existing works studying task assignment problems in spatial crowd-
sourcing such that the existing algorithms can be applied on the
same synthetic and real data sets. We uniformly implement tested
algorithms in both batch-based and online modes. With the ex-
perimental results of the tested algorithms on synthetic and real
datasets, we show the effectiveness and efficiencies of the algo-
rithms through their performances on five important metrics. Ac-
cording to the experimental results, we summarize the performance
of tested algorithms on synthetic and real data sets through grading,
which can guide users on selecting algorithms for real applications
under different situations.

7. ACKNOWLEDGMENT
This work is partially supported by Hong Kong RGC GRF Project

16207617, the National Grand Fundamental Research 1090 973
Program of China under Grant 2014CB340303, the National Sci-
ence Foundation of China (NSFC) under Grant No. 61729201, the
Science and Technology Planning Project of Guangdong Province,
China, No. 2015B010110006, Microsoft Research Asia Collabora-
tive Research and HKUST SSTP under Project FP305.

1439

8. REFERENCES
[1] [online] spatial crowdsourcing benchmark algorithms.

https://github.com/gmission/
SpacialCrowdsourcing, 2018.

[2] [online] spatial crowdsourcing dataset generator. https:
//github.com/gmission/SCDataGenerator,
2018.

[3] [online] DiDi Chuxing.
https://www.didichuxing.com, 2018.

[4] [online] Field Agent. https://www.fieldagent.net,
2018.

[5] [online] gMission. http://gmission.github.io,
2018.

[6] [online] GoogleMap Street View. https:
//www.google.com/maps/views/streetview,
2018.

[7] [online] TaskRabbit. http://crowdflower.com/,
2018.

[8] [online] uber. https://www.uber.com, 2018.
[9] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows.

Technical report, DTIC Document, 1988.
[10] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng,

C. C. Cao, and Y. Tong. gmission: A general spatial
crowdsourcing platform. PVLDB, 7(13):1629–1632, 2014.

[11] P. Cheng, X. Jian, and L. Chen. Task assignment on spatial
crowdsourcing (technical report).
http://arxiv.org/abs/1605.09675.

[12] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao. Task
assignment on multi-skill oriented spatial crowdsourcing.
TKDE, 2016.

[13] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and
J. Zhao. Reliable diversity-based spatial crowdsourcing by
moving workers. PVLDB, 8(10):1022–1033, 2015.

[14] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and N. Sadeh.
Bridging the gap between physical location and online social
networks. In Proceedings of the 12th ACM international
conference on Ubiquitous computing, pages 119–128. ACM,
2010.

[15] A. P. Dawid and A. M. Skene. Maximum likelihood
estimation of observer error-rates using the em algorithm.
Applied statistics, pages 20–28, 1979.

[16] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the
number of worker’s self-selected tasks in spatial
crowdsourcing. In Proceedings of the 21st SIGSPATIAL GIS,
pages 314–323, 2013.

[17] D. Deng, C. Shahabi, U. Demiryurek, and L. Zhu. Task
selection in spatial crowdsourcing from worker’s perspective.
GeoInformatica, 20:529–568, 2016.

[18] U. U. Hassan and E. Curry. A multi-armed bandit approach
to online spatial task assignment. In Ubiquitous Intelligence
and Computing, 2014 IEEE 11th Intl Conf on and IEEE 11th

Intl Conf on and Autonomic and Trusted Computing, and
IEEE 14th Intl Conf on Scalable Computing and
Communications and Its Associated Workshops
(UTC-ATC-ScalCom), pages 212–219. IEEE, 2014.

[19] H. Hu, Y. Zheng, Z. Bao, G. Li, J. Feng, and R. Cheng.
Crowdsourced poi labelling: Location-aware result inference
and task assignment. ICDE, 2016.

[20] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management
on amazon mechanical turk. In Proceedings of the ACM
SIGKDD workshop on human computation, pages 64–67.
ACM, 2010.

[21] L. Kazemi and C. Shahabi. Geocrowd: enabling query
answering with spatial crowdsourcing. In Proceedings of the
21st SIGSPATIAL GIS, pages 189–198, 2012.

[22] L. Kazemi, C. Shahabi, and L. Chen. Geotrucrowd:
trustworthy query answering with spatial crowdsourcing. In
Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, pages 314–323. ACM, 2013.

[23] S. H. Kim, Y. Lu, G. Constantinou, C. Shahabi, G. Wang, and
R. Zimmermann. Mediaq: mobile multimedia management
system. In Proceedings of the 5th ACM Multimedia Systems
Conference, pages 224–235. ACM, 2014.

[24] J. Kleinberg and É. Tardos. Algorithm design. Pearson
Education India, 2006.

[25] Y. Li, M. L. Yiu, and W. Xu. Oriented online route
recommendation for spatial crowdsourcing task workers. In
Advances in Spatial and Temporal Databases, pages
137–156. Springer, 2015.

[26] R. G. Michael and S. J. David. Computers and intractability:
a guide to the theory of np-completeness. WH Free. Co., San
Fr, 1979.

[27] L. Pournajaf, L. Xiong, V. Sunderam, and S. Goryczka.
Spatial task assignment for crowd sensing with cloaked
locations. In Mobile Data Management (MDM), 2014 IEEE
15th International Conference on, volume 1, pages 73–82.
IEEE, 2014.

[28] H. To, M. Asghari, D. Deng, and C. Shahabi. Scawg: A
toolbox for generating synthetic workload for spatial
crowdsourcing. In 2016 IEEE International Conference on
Pervasive Computing and Communication Workshops
(PerCom Workshops), pages 1–6. IEEE, 2016.

[29] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial
crowdsourcing framework. ACM Transactions on Spatial
Algorithms and Systems, 1(1):2, 2015.

[30] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen. Online
mobile micro-task allocation in spatial crowdsourcing. In
Data Engineering (ICDE), 2016 IEEE 32nd International
Conference on, pages 49–60. IEEE, 2016.

[31] M. J. Zaki. Scalable algorithms for association mining. IEEE
transactions on knowledge and data engineering,
12(3):372–390, 2000.

1440

https://github.com/gmission/SpacialCrowdsourcing
https://github.com/gmission/SpacialCrowdsourcing
https://github.com/gmission/SCDataGenerator
https://github.com/gmission/SCDataGenerator
https://www.didichuxing.com
https://www.fieldagent.net
http://gmission.github.io
https://www.google.com/maps/views/streetview
https://www.google.com/maps/views/streetview
http://crowdflower.com/
https://www.uber.com
http://arxiv.org/abs/1605.09675

	Introduction
	Problem Definition
	Algorithms in Batch-based Mode
	Single-Worker Per Task algorithms
	Reduction to Maximum Flow Problem
	Least Location Entropy Priority Algorithm
	Nearest Neighbor Priority Algorithm

	Multi-Worker Per Task Algorithms
	Sampling-Based Algorithm
	Divide-and-Conquer Based Algorithm
	Heuristic-Enhanced Greedy Algorithm

	Algorithms in Online Mode
	Exact Algorithms
	Dynamic Programming Algorithm
	Branch-and-Bound Algorithm

	Heuristic Algorithms
	Progressive Algorithms

	Experimental Study
	Experiments Setup
	Experimental Results
	Experiments on Real Data
	Experimental Results on Synthetic Data

	Summary

	Conclusion
	Acknowledgment
	References

