AIDA - Abstraction for Advanced In-Database Analytics

Joseph Vinish D’silva
joseph.dsilva@mail.mcgill.ca

Florestan De Moor
florestan.demoor@mail.mcgill.ca

Bettina Kemme
kemme@cs.mcgill.ca

School of Computer Science, McGill University
Montréal, Canada

ABSTRACT

With the tremendous growth in data science and machine
learning, it has become increasingly clear that traditional re-
lational database management systems (RDBMS) are lack-
ing appropriate support for the programming paradigms re-
quired by such applications, whose developers prefer tools
that perform the computation outside the database system.
While the database community has attempted to integrate
some of these tools in the RDBMS, this has not swayed the
trend as existing solutions are often not convenient for the
incremental, iterative development approach used in these
fields. In this paper, we propose AIDA - an abstraction for
advanced in-database analytics. AIDA emulates the syntax
and semantics of popular data science packages but trans-
parently executes the required transformations and compu-
tations inside the RDBMS. In particular, AIDA works with
a regular Python interpreter as a client to connect to the
database. Furthermore, it supports the seamless use of both
relational and linear algebra operations using a unified ab-
straction. AIDA relies on the RDBMS engine to efficiently
execute relational operations and on an embedded Python
interpreter and NumPy to perform linear algebra operations.
Data reformatting is done transparently and avoids data
copy whenever possible. AIDA does not require changes to
statistical packages or the RDBMS facilitating portability.

PVLDB Reference Format:

Joseph Vinish D’silva, Florestan De Moor, Bettina Kemme. AIDA
- Abstraction for Advanced In-Database Analytics. PVLDB,
11(11): 1400-1413, 2018.

DOI: https://doi.org/10.14778/3236187.3236194

1. INTRODUCTION

The tremendous growth in advanced analytical fields such
as data science and machine learning has shaken up the
data processing landscape. The most common current ap-
proach to develop machine learning and data science appli-
cations is to use one of the many statistical languages such
as R [21], MATLAB, Octave [13], etc., or packages such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.

Proceedings of the VLDB Endowment, Vol. 11, No. 11

Copyright 2018 VLDB Endowment 2150-8097/18/07.

DOL: https://doi.org/10.14778/3236187.3236194

1400

pandas [31], NumPy [55], theano [52], etc., meant to aug-
ment a general purpose language like Python with linear
algebra support. Should the data to be used reside in an
RDBMS, the first step in these programs is to retrieve the
data from the RDBMS and store them in user space. From
there, all computation is done at the user end. Needless
to say, user systems do not possess huge memory capacity
nor processing power unlike servers running an RDBMS po-
tentially forcing them to use smaller data sets. Thus, users
sometimes resort to big data frameworks such as Spark [58]
that load the data into a compute cluster and support dis-
tributed computation. But even when enough resources are
available, users might choose smaller data sets, in particular
during the exploration phase, as transfer costs and latencies
to retrieve the data from the database system can be huge.
This data sub-setting can be counterproductive, as having
a larger data set can reduce algorithm complexity and in-
crease accuracy [12]. Additionally, once the data is taken
out of the RDBMS, all further data selection and filtering,
which is often crucial in the feature engineering phase of a
learning problem, needs to be performed within the statisti-
cal package [18]. Therefore, several statistical systems have
been enhanced with some relational functionality, such as
the DataFrame concepts in pandas [31], Spark [3], and R.
This has the database community pondering about the
opportunities and the role that it needs to play in the grand
scheme of things [47, 56]. In fact, many approaches have
been proposed hoping to encourage data science users to
perform their computations in the database. One such ap-
proach is to integrate linear algebra operators into a conven-
tional RDBMS by extending the SQL syntax to allow linear
algebra operations such as matrix multiplication [60, 27, 2].
However, the syntactical extension to SQL that is required,
is quite cumbersome compared to what is provided by sta-
tistical packages, and thus, has not yet been well adopted.
Both the mainstream commercial [37, 57] and open source
[38, 44, 51] RDBMS have been cautious of making any hasty
changes in their internal implementations — tuned for rela-
tional workloads — to include native support for linear alge-
bra. Instead, most have been content with just embedding
host programming language interpreters in the RDBMS en-
gine and providing paradigms such as user defined functions
(UDFs) to interact with them. However, the use of UDFs to
perform linear algebraic computation has been aptly noted
as not a convenient abstraction for users to work with [44].
In fact, a recent discussion on the topic of the intersection
of data management and learning systems [24], points out
that even among the most sophisticated implementations

which try to tightly couple RDBMS and machine learning
paradigms, the human-in-the-loop is not well factored in.
Among the machine learning community, there is already a
concern that research papers are focusing solely on accuracy
and performance, ignoring the human effort required [12].
Further, [12] also points out that human cycles required is
the biggest bottleneck in a machine learning project and
while difficult to measure, easiness and efficiency in experi-
menting with solutions is a critical aspect.

Therefore, unsurprisingly, despite efforts from the database
community, studies have consistently shown Python and
R being the top favorites among the data science commu-
nity [40, 10]. In light of these observations, in this paper,
we propose an abstraction akin to how data scientists use
Python and R statistical packages today, but one that can
perform computations inside the database. By providing
an intuitive interface that facilitates incremental, iterative
development of solutions where the user is agnostic of a
database back-end, we argue that we can woo data science
users to bring their computation into the database.

We propose AIDA - abstraction for Advanced in-database
analytics, a framework that emulates the syntax and seman-
tics of popular Python statistical packages, but transpar-
ently shifts the computation to the RDBMS. AIDA can work
with both linear algebra and relational operations simul-
taneously, moving computation between the RDBMS and
the embedded statistical system transparently. Most impor-
tantly, AIDA maintains and manages intermediate results
from the computation steps as elegantly as current procedu-
ral language based packages, without the hassles and restric-
tions that UDF's and custom SQL-extension based solutions
place. Further, we demonstrate how AIDA is implemented
without making modifications to either the statistical sys-
tem or the RDBMS engine. We implement AIDA with Mon-
etDB as the RDBMS back-end. We show that AIDA has a
significant performance advantage compared to approaches
that transfer data out of the RDBMS. It also avoids the
hassles of refreshing data sets in the presence of updates.

In short, we believe that AIDA is a step in the right direc-
tion towards democratizing advanced in-database analytics.
The main contributions of this paper are that we:

e identify the shortcomings of current RDBMS solutions
to integrate linear algebra operations (such as UDF's and
stored procedures) and propose a new interface for in-
teractive and iterative development of such projects that
fit more elegantly with current programming paradigms.
implement an RMI approach to push computation to-
wards the data, keeping it in the database.
implement a common abstraction, TabularData, to rep-
resent data sets on which both relational and linear al-
gebra operations can be executed.
exploit an embedded Python interpreter to efficiently ex-
ecute linear algebra operations, and an RDBMS (Mon-
etDB) to execute relational operators.
transparently provide data transfer between both sys-
tems, avoiding data copy whenever possible.
allow host language objects to reside in the database
memory throughout the lifetime of a user session.
develop a database adapter interface that facilitates the
use of different RDBMS implementations with ATDA.
provide a quantitative comparison of our approach with
other in-database and external approaches.

2. BACKGROUND

In this section, we briefly cover the attempts made by
statistical packages to offer declarative query support and
by RDBMS to facilitate statistical computations. We do
not cover specialized DBMS implementations intended for
scientific computing such as [5, 50, 28, 7] as our starting
point is that data resides in a traditional RDBMS.

2.1 Relational Influence in Statistical Systems

In their most basic form, statistical systems load all data
they need into their memory space. Assuming that the data
resides in an RDBMS, this results in an initial data transfer
from the RDBMS to the client space.

However, incremental data exploration is often the norm
in machine learning projects. For instance, determining
what attributes will contribute to useful features can be a
trial and error approach [12]. Therefore, while statistical
systems are primarily optimized for linear algebra, many of
them also provide basic relational primitives including se-
lection and join. For example, the DataFrame objects in
R [42], pandas [31] package for Python, and Spark support
some form of relational join. Although not as optimized
as an RDBMS or as expressive as SQL, the fact that lin-
ear algebraic operations usually occupy a lion’s share of the
computation-time makes this an acceptable compromise.

There has been some work done in pushing relational op-
erations into the database, such as in Spark [9]. However,
while this is useful at the beginning, when the first data is
retrieved from the database, it is less powerful later in the
exploration process where users might have already loaded
significant amount of data into the statistical framework. In
such situation, it might be more beneficial to just load the
additional data into the framework and perform, say a join
inside the framework rather than performing a join in the
database and reloading the entire data result, which can be
even more time consuming should the result set be large [45].

As a summary, users typically either fetch more attributes
than would be necessary and then do relational computa-
tions locally, or they have to perform multiple data trans-
fers. Given that the exploration phase is often long and
cumbersome, both approaches do not seem appealing.

2.2 Extending SQL for Linear Algebra

SQL already provides many functionalities required for
feature engineering such as joins and aggregations. Thus,
exploiting them in the exploration phase is attractive.

Recent research proposes to integrate linear algebra con-
cepts natively into RDBMS by adding data types such as
vector and matrix and extending SQL to work with them
[60, 27]. However, they might not fare that well in terms
of usability. For example, most linear algebra systems use
fairly simple notations for matrix multiplication such as:

res = A X B

1401

In contrast, the SQL equivalents as described in [60, 27]
require several lines of SQL code which might not be as in-
tuitive. Another inconvenience, which is not obvious at first
sight but equally important, is the lack of proper support to
store and maintain the results of intermediate computations
in above proposals, as users need to explicitly create new ta-
bles to store the results of their operations, adding to the
lines of code required. This is akin to how in standard SQL
one has to create a table explicitly if the result of a query

is to be stored for later use. However, unlike SQL applica-
tions, learning systems often go through several thousands
of iterations of creating such temporary results, making this
impractical. Additionally, RDBMS generally treat objects
as persistent. This is an extra overhead for such temporary
objects and burdens the user to perform explicit cleanup?.
Procedural high-level languages (HLL) such as Python and
R, on the other hand, provide much simpler operational syn-
tax and transparently perform object management by auto-
matically removing any objects not in use. In short, data
science applications require many HLL programming fea-
tures lacking in SQL and as pointed out in [15], SQL was
never intended for such kind of use.

2.3 UDF-ing the Problem

User-defined functions (UDFs) have been proposed as a
promising mechanism to support in-database analytics in-
cluding linear algebra operations [26, 44]. However, so far,
they have not found favor in such applications. We believe
this has to do with their usability. As mentioned before,
learning is a complex process and can have a considerable
exploration phase. This can include a repetitive process of
fine-tuning the data set, training and testing an algorithm,
and analyzing the results. The user is actively involved in
each step as a decision maker, often having to enrich/trans-
form the data set to improve the results, or changing the
algorithm and/or tweaking its parameters for better results.

UDF's are not cut out for such incremental development
for several reasons. The only way to interact with a UDF is
via its input parameters and final output results, and all host
language objects inside a UDF are discarded after execution.
If they are required for further processing, they need to be
stored back into the database as part of the UDF. Similar
to the SQL extensions described above, the user needs to
write code to write the objects to a database table [43], and
additional UDFs for later retrieval. This is an overhead and
a significant development effort that is not related to the
actual problem that the users are attempting to solve, but
attributed to the framework’s limitation.

UDFs are also often confined in terms of the number and
data types of its input and output parameters. This hinders
users from developing generic UDF-based solutions to their
learning problems [44]. In contrast, high-level languages
(HLL) such as Python are much more flexible. Further,
as SQL is designed to be embedded into an HLL to build
more sophisticated applications [15], there is little incentive
for the users to take the HLL — DBMS — UDF approach,
especially if the UDF is to be written in the same HLL and
comes with many hassles. Therefore, while efficient, in their
rudimentary form, we believe that UDFs are not the most
convenient approach to adapt.

3. MOTIVATION & APPROACH

AIDA’s philosophy is to provide an abstraction that is
high in usability in terms of programming paradigms and at
the same time takes advantage of the data storage, manage-
ment and querying capacities of RDBMS.

3.1 Opverall Architecture

Figure 1 depicts a high-level conceptual layout for AIDA.
AIDA resides in the embedded Python interpreter of the

While many RDBMS have the concept of a temporary ta-
ble [4, 49], they only address a small part of the problem.

1402

Client System RDBMS
Python Embedded Python Interpreter
Interpreter «* NumPy
= ” TabularData I
User | | AIDA -
AIDA SQL Engine
Code | |Client I
Space| | API Database Tables
L
Mmpd—l T

Figure 1: AIDA - conceptual layout

RDBMS, thus sharing the same address space as the RDBMS.
This makes AIDA easily portable since embedded Python

interpreters are becoming increasingly common in modern

RDBMS. Embedded interpreters also help us leverage some

of the RDBMS optimizations already available in this area,

as we will later discuss. Users connect to AIDA using a reg-

ular Python interpreter and AIDA’s client API. Below we

will take a brief look at some of the key ideas behind AIDA

before delving deeper in the later sections.

Many contemporary analytical systems provide intuitive
interfaces for iterative and interactive programming. AIDA’s
objective is to be on par with such approaches. For AIDA’s
client API, we decided to leverage the Python interpreter,
as it is ubiquitously available and often used to work with
statistical packages such as NumPy and pandas. Using such
a generic tool also provides opportunities to the users for in-
tegrating other Python-based packages into their programs.

However, data transformations and computations are not
executed on the client side. Instead, AIDA’s client API
sends them transparently to the server and receives a remote
reference which represents the result that is stored in AIDA.
We implement this interaction between client and server in
the form of remote method invocations (RMI), whose details
we cover in Section 5. RMI is a well-established communi-
cation paradigm and known to work in practice. It will also
allow us in the future to easily extend AIDA to be part of a
fully distributed computing environment where data might
be distributed across many RDBMS.

3.2 A Unified Abstraction

[24] lists a seamless integration of relational algebra and
linear algebra as one of the current open research problems.
They highlight the need for a holistic framework that sup-
ports both the relational operations required for the feature
engineering phase and the linear algebra support needed for
the learning algorithms themselves. AIDA accomplishes this
via a unified abstraction of data called TabularData, provid-
ing both relational and linear algebra support for data sets.

TabularData. TabularData objects reside in AIDA, and
therefore in the RDBMS address space. They remain in
memory beyond individual remote method invocations. Tab-
ularData objects can work with both data stored in database
tables as well as host language objects such as NumPy ar-
rays. Users perform linear algebra and relational operations
on a TabularData object using the client API, regardless
of whether the actual data set is stored in the database or
in NumPy. Behind the scenes, AIDA utilizes the underly-
ing RDBMS’s SQL engine to execute relational operations
and relies on NumPy to execute linear algebra. When re-
quired, AIDA performs data transformations seamlessly be-
tween the two systems (see Figure 2) without user involve-
ment, and as we will see later, can often accomplish this
without the need to copy the actual data.

Embedded Python Interpreter RDBMS

TabularData

NumPy

column I
[NumPyArray| % ata — E

Materialize Matrix DB Table /Resultset

Linear .

= |virtual columns| | Relational

Algebra lj__l Operators

Operators | Table UDF Mok ..
+*@ ..)

Figure 2: TabularData Abstraction

Linear algebra and relational operations. AIDA cashes
in on the influence of contemporary popular systems for its
client API. For linear algebra, it simply emulates the syntax
and semantics of the statistical package it uses: NumPy.

For relational operators, we decided to not use pure SQL
as it will make it difficult to provide a seamlessly unified
abstraction. Instead, we resort to object-relational map-
pings (ORMs) [33], which allow an object-oriented view and
method-based access to the data in database tables. While
not as sophisticated as SQL, ORMs are fairly versatile. ORMs
have shown to be very useful for web-developers, who are fa-
miliar with object-oriented programming but not with SQL.
ORMs make it easy to query the database from a proce-
dural language without having to write SQL or work with
the nuances of JDBC/ODBC APIs. By borrowing syntax
and semantics from ORM — we mainly based our system on
Django’s ORM module, a popular framework in Python [6] —
we believe that data scientists who are familiar with Python
and NumPy but not so much with SQL, will be at ease writ-
ing database queries with ATDA.

3.3 Overview Example

Let’s have a look at two very simple code snippets that can
be run in a client-based Python interpreter using AIDA’s
client API. The first code snippet represents a relational
operator as it accesses the supplier table of the TPC-H
benchmark [53] to calculate the number of suppliers and
their total account balance. supplier is an object refer-
ence to the underlying database table and agg indicates an
aggregation method with appropriate input:

si = supplier.agg ((,{COUNT("'x"):
,{SUM('s_acctbal '):

'"numsup '}
"totsbal '}))

The client APIT ships this relational transformation to AIDA
which returns a remote reference to the client for a Tab-
ularData object that represents the resultset. The client
program stores this reference in the variable si.

The second code snippet converts the number of suppliers
to thousands and the total account balance to millions via
a linear algebra division using a NumPy vector:

res = Si1

/ numpy.asarray ([1000,1000000]);

The client API ships this linear algebra transformation
again to AIDA, including the NumPy vector and the refer-
ence of si, and receives the object reference to the result of
this division, which it stores in the local variable res.

At the server side, AIDA executes the relational opera-
tion (first code snippet) by first generating the SQL query

to perform the required aggregation and then using the SQL
engine of the RDBMS to execute it. The TabularData ob-
ject represented by si will point to the result set created
by the RDBMS (see right top resultset format in Figure 2).
As this object becomes the input of a linear algebra oper-
ation (second code snippet), AIDA will transform it to a
matrix (see the top left matrix in Figure 2), and perform
the division operation using NumPy. It then encapsulates
the resulting matrix in a TabularData object, returning a
remote reference to the client, which stores it in res.

Should res become the input of a further relational oper-
ation, AIDA needs to provide the corresponding data to the
SQL engine for execution. AIDA achieves this by transpar-
ently exposing the data through a table UDF to the RDBMS
(see the bottom of Figure 2). Table UDFs are a standard
RDBMS mechanism that allows embedded host language
programs to expose non-database data sets to the SQL en-
gine as if they were database tables.

As AIDA transparently handles the complexity of moving
data sets back and forth between the RDBMS SQL-engine
and the NumPy environment and hides the internal repre-
sentation of TabularData objects, it allows client programs
to use relational and linear algebra operations in a unified
and seamless manner. Programmers are not even aware of
where the execution actually takes place.

In the following, we will discuss in Section 4 in detail the
TabularData abstraction and the co-existence of different in-
ternal representations, how and when exactly linear algebra
and relational operations are executed, how AIDA is able to
combine several relational operators into a single execution,
and how and when it is able to avoid data copying between
the execution environments. In Section 5, we then present in
more detail the overall architecture and its implementation.

4. A TABULAR DATA ABSTRACTION

All data sets in AIDA are represented as a TabularData
abstraction, that is conceptually similar to a relational ta-
ble with columns, each having a column name, and rows.
Thus, it is naturally suited to represent database tables
or query results. Also, two-dimensional data sets such as
matrices that are commonly used for analytics can be con-
ceptually visualized as tables with rows and columns where
the column positions can serve as virtual column names. A
TabularData object is conceptually similar to a DataFrame
instance in Pandas and Spark but can be accessed by two ex-
ecution environments: Python interpreter and SQL engine.
Using a new abstraction instead of extending the existing
DataFrame (such as pandas) implementations also avoids
the metadata overhead that these systems have in order to
support relational operations on their own. TabularData ob-
jects are immutable and applying a linear algebra/relational
operation on a TabularData object will create a new Tabu-
larData object. We will discuss the internal implementation
details of TabularData objects in Section 4.3.

4.1 Relational Operations on TabularData

As mentioned before, to support relational operations,
AIDA borrows many API semantics from contemporary ORM
systems. AIDA’s TabularData abstraction supports SQL/re-
lational operations such as selection, projection, aggrega-
tion and join. Listing 1 shows a code snippet on a TPC-H
database that returns for each customer their name (c_name),
account balance (c_acctbal), and country (n_name).

1403

TUk W N~

O UL W N

The program first establishes a connection to the database
(line 1), then creates references to TabularData objects that
represent the customer and nation tables in the database,
and stores these references in the variables ct and nt re-
spectively. Line 4 joins these two TabularData objects, de-
scribing the columns on which the join is to be performed.
The result is a new TabularData object, whose reference is
stored in t1. Further, a projection operation on t1 retrieves
only the columns of interest, resulting in t2.

Listing 1: TabularData : Join and Projection

db = aida.connect(user="tpch', pass='rTA#2.p')

ct = db.customer

nt = db.nation

t1l = nt.join(ct,('n_nationkey ') ,('c_nationkey '))
t2 = tl1.project (('n.name','c_name','c_acctbal "))

While the code in listing 1 is using a variable for each in-
termediate TabularData object, users can use method chain-
ing [16] to reduce the number of statements and variables
by chaining the calls to operators, as shown below.

t tbll.<opl>(...). <op2>(...).<op3>(...)

Though the original code listing is easier to read and de-
bug, intermediate variables keep intermediate objects alive
longer than needed and may hold resources such as memory.
However, we will see that in case of relational operators,
AIDA automatically groups them using a lazy evaluation
strategy to allow for better query optimization and to avoid
the materialization of intermediate results.

As another example, the source code listing 2 finds coun-
tries with more than one thousand customers and their total
account balance by first aggregating and then filtering.

Listing 2: TabularData : Aggregation and Selection

to processing results using JDBC/ODBC APIs. They do
not support any further relational transformations on these
resultsets. AIDA, on the other hand, transforms a Tab-
ularData object into another TabularData object, provid-
ing endless opportunities to continue with transformations.
This is important for building complex code incrementally.

4.2 Linear Algebra on TabularData

TabularData objects support the standard linear algebra
operations that are required for vector/matrix manipula-
tions. We do so using the overloading mechanism of Python.
These overloaded methods then ship the operation using
RMI to the corresponding TabularData objects. For those
operators that are not natively supported in Python, we fol-
low the NumPy API syntax. This is the case, e.g., with the
transpose operator for matrices. Similar approaches have
been used by others [61]. Therefore, users can apply the
same operator on a TabularData object for a given linear
algebra operation as they would in NumPy. AIDA will
then invoke the corresponding operation on its underlying
NumPy data structures. For example, in the code listing
below, where continuing off from the previous section, we
compute the average account balance per customer for each
country in t4, using linear algebra.

t5 t4 [['totabal ']]

/ t4[['numcusts ']] ‘

Further, we can also generate the total account balance
across all the countries contained in t4, by performing a
matrix multiplication operation as shown below 2.

t6

t4[['totabal ']] @ t4[['totabal ']].T ‘

t3

t2.agg (('n_name'
,{COUNT('+ '): 'numecusts'}
,{SUM('c_acctbal '"): 'totabal'})
,('n_name'))

t4 = t3.filter (Q('numcusts',

print (t4.cdata)

1000, CMP.GT))

Conditions in AIDA are expressed using QQ objects, similar
to Django’s API. Q objects take the name of an attribute,
a comparison operator, and a constant literal or another
attribute with which the first attribute needs to be compared
with. Q objects can be combined to denote complex logical
conditions with conjunctions and disjunctions, such as those
required to express the AND and OR logic in SQL.

The last line displays the columns of the result set refer-
enced by t4. cdata is a special variable that refers to the
dictionary-columnar representation of the object (more on
data representations in Section 4.3). This is the point when
AIDA actually transfers data to the client. Often, users are
interested only in a small sample of data records or some ag-
gregated information on it, such as in the example we just
presented. This significantly reduces the size of actual data
that needs to be transferred to the client.

Discussion: It is perhaps important to mention that
most ORM implementations require the user to specify a
comprehensive data model that covers the data types and
relationships of the tables involved. AIDA does not im-
pose such restrictions and works with the metadata avail-
able in the database. Another important distinction is that
relational operations on an ORM produce a resultset, akin

1404

Where @ is the Python operator for matrix multiplication
that is overloaded by TabularData and T is the name of
the method in TabularData used for generating a matrix’s
transpose, a nomenclature we adopt from NumPy for main-
taining familiarity. As we saw in the examples in Section 3.2,
TabularData objects can also work with numeric scalar data
types and NumPy array data structures also commonly used
by data scientists for statistical computations.

4.3 One Object, Two Representations

There are two different internal representations for a Tab-
ularData object, and it may have zero, one, or both of these
representations materialized at any time. One of the internal
representations is a matrix format, i.e., a two-dimensional
array representation where the entire data set is located in a
single contiguous memory space (see Figure 2, left-top rep-
resentation). AIDA uses NumPy to perform linear algebra,
which requires this format for some operations such as ma-
trix multiplication and transpose.

The second representation is a dictionary-columnar for-
mat used to execute relational operators (see Figure 2, left-
top representation). This is essentially a Python dictionary
with column names as keys and the values being the col-
umn’s data in NumPy array format. While each array is
in contiguous space, in contrast to the matrix format, the
different columns might be spread out in memory. The ra-
tionale behind this approach is that AIDA is optimized to
work with columnar RDBMS implementations such as Mon-
etDB that offer zero-copy data transfer of query results from

2Tt is important to note that t4[['totabal']] itself results
in a TabularData object with just one column, viz., totabal.

the database memory space to the embedded language in-
terpreter [25]. This means that the RDBMS passes query
results to an embedded host language program without hav-
ing to copy the data into application-specific buffers or per-
form data conversions®. This is made possible by having
database storage structures that are fundamentally identi-
cal to the host language data structures. Thus, the host
language only needs to have the appropriate pointers to the
query result to be able to access and read it. In particu-
lar, MonetDB creates resultsets where each result column is
stored in a C' programming language array. NumPy uses the
same format for arrays. MonetDB thus returns a Python
dictionary with column names as the keys and references
to the underlying data wrapped in NumPy objects. We
leverage this optimization as it reduces the CPU/memory
overhead. Therefore, the result of relational operators has a
dictionary-column format as default.

Thus, the internal data structures used by TabularData
are conventional NumPy/Python structures. Users can ac-
cess these internal representations if required. For example,
in listing 2, we access the dictionary-columnar data repre-
sentation of t4 through the special variable cdata. Sim-
ilarly, the matrix representation can be accessed by using
the special variable matrix. This allows users to use AIDA
in conjunction with other Python libraries that work with
NumPy data structures. A TabularData object will ma-
terialize a particular internal data representation the first
time that representation is requested. That happens when
the user accesses it through its special variable or from one
of AIDA’s internal methods. Once materialized, the inter-
nal representation will exist for the lifetime of the object,
reused for any further operations as required. AIDA’s data
structures are essentially memory resident. In the future,
we plan to implement a memory manager that can move
least used TabularData objects into regular database tables
to reduce memory contention. The data in a database ta-
ble itself is treated by AIDA as though they are material-
ized in a dictionary-columnar format for all practical pur-
poses. Therefore, in listing 1, the variables ct and nt refer
to TabularData objects that represent customer and nation
tables respectively.

4.3.1 Relational Operations & Data Representations

Relational operations on a TabularData object are always
performed lazily, i.e., the resulting TabularData object’s in-
ternal representation is not immediately materialized. They
are materialized only when the user explicitly requests one
of the internal data representations through the special vari-
ables we just discussed or when a linear algebra operation
is invoked on it. This means that by default, the new Tab-
ularData object contains only the reference to its source —
which can be a database table, one TabularData object or
two TabularData objects in case of a join — and the informa-
tion about the relational transformation it needs to perform
on the source. This approach is very similar to the lineage
concept that is followed by Spark [58] for their data sets and
transforms. The source TabularData object itself may not
be materialized yet or can have materialized data in any of
the two formats that we discussed.

3 Apache ecosystem has recently introduced the Apache Ar-
row [11] platform which can facilitate data movement be-
tween applications by using shared memory data structures.

When such a TabularData object needs to materialize its
internal data representation, it will first request its imme-
diate source to provide its object’s SQL equivalent. Using
this SQL, it will apply its own relational transformation logic
over this source SQL. This is accomplished by using the con-
cept of derived tables in SQL [34] which allows nesting of
SQL logic, an approach also used in other implementations
such as [29]. Once a TabularData object is materialized, it
will discard the references to its source and transformation
logic. We can distinguish three cases for the source.

Database table. First, if the source represents an actual
database table, this is as simple as returning a SELECT query
on the table with all the columns and no filter conditions.

Non-materialized source. Second, if the immediate source
TabularData object itself is not materialized, then it would
request its own source for the SQL equivalent, apply its
transformation on top of it (but will not use it to materialize
itself) and return the combined SQL logic. It is easy to
envision this approach going down to arbitrary depths to
build a complex SQL query, as shown in the example below.
Here, first, we create tx by performing an aggregation on a
table in the database, dtbl. Next, we filter tx by applying
a filter to generate ty.

tx

dtbl.agg(('cl', {SUM('c2'):

(telt))
tx. filter ((Q('c2total ',

'c2total '})

ty 100, CMP.GT) ,))

If we chose to materialize ty at this point, it will request
tx for its equivalent SQL. tx then applies its filter operation
over this SQL and ends up generating the SQL given below,
that is then executed by the RDBMS SQL engine, material-
izing itself using the resultset in dictionary-columnar format.

select cl, c2total from

(select cl, sum(c2) as c2total from

(select cl, c2, ¢3 from dtbl)t group by cl)tx
where c2total > 100

1405

Lazy evaluation techniques, while allowing users to build
complex logic incrementally, ensures that optimization is
not sacrificed. By nesting multiple relational transforms to-
gether, it can skip the need to materialize the intermediate
TabularData objects, such as tx in the above example.

Materialized source. As a third case, the source might al-
ready be materialized in one or both of the internal represen-
tations. This data now needs to be provided to the RDBMS
SQL engine for it to perform the relational operation. As
mentioned in Section 3.3, AIDA exposes this data by means
of a table UDF to the database (see the bottom of Figure 2).
Table UDFs need to expose the dictionary-columnar repre-
sentation for the SQL engine to execute queries. This is
again because columnar-RDBMS like MonetDB share iden-
tical data structures, making data conversions and copies
unnecessary. In case the source TabularData object has
only a matrix representation so far, it can still provide the
dictionary-columnar representation by an abstraction that
represents a particular column’s data as a column-wise slice
of the matrix relevant to that column without making an
actual copy of the data. The SQL equivalent of the source
is again a simple SELECT query on this table UDF that will
return all the data in the source TabularData object.

4.3.2 Linear Algebra & Data Representations

Unlike relational operations, linear algebra operations are
computed and materialized immediately. This is primarily

because NumPy do not perform any significant optimiza-
tions when multiple computational operations are combined.

Scalar Operations. Linear algebra transformations involv-
ing scalar operations (e.g., dividing all elements in the data
set by 1000) can be performed on either data representa-
tion because performing a scalar operation (e.g., division by
1000) on each column’s data in dictionary-columnar repre-
sentation is the same as performing it on the entire matrix.
Therefore, such transformations will first check if the data is
available in the matrix form and use it to perform the trans-
formation. The resulting TabularData object will have its
internal data in matrix representation. Matrices are given
preference because, as we saw in Section 4.3.1, a dictionary-
columnar representation can be built from it without making
another copy, whereas the reverse is not possible.

Alternatively, if it has only the dictionary-columnar repre-
sentation, it will apply the transform on each of the columns
to build the new TabularData object whose internal repre-
sentation will also be dictionary-columnar representation.

Finally, if there is not yet an internal representation due
to lazy-evaluation of relational operations as discussed in
the previous section, it will at this point materialize it. As
this will be naturally a dictionary-columnar representation
as the relational operations are executed by the SQL engine,
it will work with this representation.

In summary, if there is no matrix representation available,
we do not build a matrix just because of a scalar operation.
First, matrix construction takes time and is less versatile
when it comes to supporting different data types for different
columns as we need to upgrade all columns in the data set
to a data type that can store all data elements. This can
be an overkill as many operations do not need a uniform
data type across the entire data set. Besides, having an
additional matrix representation takes up memory.

Vector Operations. For linear algebra transformations in-
volving vector operations, such as matrix-matrix multipli-
cation and matrix transpose, the TabularData object will
need the matrix format representation. If it currently has
no internal data representation due to the lazy evaluation
of relational operators, it will first materialize it, which will
have dictionary-columnar representation. It then builds the
matrix representation from it. The transformation is then
applied to this matrix and the resulting new TabularData
object will have a matrix internal representation.

Optimizations: AIDA employs some clever optimiza-
tions to share data between multiple TabularData objects,
attributed to their immutable nature. This is possible when
a transformation is requesting a subset of columns from a
TabularData object’s data set. If the TabularData set has
a dictionary-columnar representation, then it will generate
the new TabularData object in the same format, but with
only the requested subset of columns in its dictionary. The
data arrays for these columns will be just references to the
original data set. For example, remembering that t4 is ma-
terialized when we printed its dictionary-columnar data rep-
resentation, next, the expression t4[['totabal']] results in
a temporary tabular data object that has only the totabal
column of t4 and hence can be shared with t4.

4.3.3 Practicality of Dual Representations

Although the need for dual representation of data sets is
primarily attributed to the fact that the RDBMS and statis-

tical packages often have different internal representations,
an often overlooked reality is that each of these systems is
optimized for their own functional domain. Therefore, any
compromise will come at a cost to one or both the systems.
For example, as we saw with the case of NumPy, a statisti-
cal package would often need compact two-dimensional data
structures such as matrices for computational efficiency that
exploits CPU cache, code locality, etc. On the other hand,
such a data structure would make data growth and updates
(especially the nuances required to deal with variable data
types and such) extremely inefficient and impractical for an
RDBMS implementation. However, optimizations in inte-
grating these systems, such as MonetDB’s zero-copy opti-
mization is still of significance in bridging these two worlds.

4.4 User Extensions

Custom Transformations. AIDA provides a rich client API
capable of performing relational operations such as join,
selection (filtering), projection, aggregation, etc., as well
as prominent linear algebra operations like addition, sub-
traction, multiplication, division, exponentiation with both
scalar and vector operands, to name a few. However, users
often need to perform custom transformations not provided
by the framework. As we recapped previously, RDBMS’
attempts to support this via UDFs lack usability. AIDA’s
TabularData objects support this feature through the _U op-
erator that is very easy to use. In the example below, we
use this approach to create a TabularData object from t2
which contains only the first name of the customers.

def cTrans(td):
cn = td.cdata['c_name']
fn = np.asarray ([n.split ()[0] for n in cn])
return {'c_name': fn };

t7 = t2._U(cTrans);

Custom transformations are expressed using regular Python
functions. They accept a TabularData object and any ad-
ditional user provided arguments, and must return a data
set in one of the formats that TabularData supports in-
ternally. Custom transformations are materialized imme-
diately. In our example, the custom transformation cTrans
returns a dictionary. It reads the customer names from the
source TabularData object and uses Python’s string manip-
ulation function to parse them and create an array of only
first names. The dictionary that it returns is then used to
construct the new TabularData object, whose reference is
stored in t7. AIDA’s client API ships the transformation
logic (cTrans function in our example) transparently to the
server side using RMI to be executed at the server. We can
perform additional relational or linear algebra operations on
t7 as is the case with any other TabularData objects.

Remote Execution. Many advanced analytics applications
such as learning algorithms often need to do repeated itera-
tions of certain computations to fine tune the algorithm pa-
rameters, often to the extent of several thousand repetitions.
Using AIDA, this can easily translate to a large amount of
RMI messages and may pose a non-negligible overhead for a
large number of iterations. Under such circumstances, users
can make use of the remote execution operator (X) func-
tionality to shift the iteration logic to the server side and
bypass the RMI overhead. Unlike other operators in AIDA,
which are part of the TabularData abstraction, the remote

1406

execution operator allows code execution that is not tightly
coupled to a particular TabularData object. Instead, AIDA
attaches it to the database workspace object, which is as-
sociated with a user session. The details of the workspace
object are discussed in Section 5. The example below com-
putes the n'” power of each element in t6, where n > 0.

def exp(td, n):
r td
for i in range(0, n):
r r x td
return r

res = db._X(exp, t6,
print (res.cdata)

10)

The user function, exp takes as arguments a TabularData
object td and n, the power for exponentiation, performs the
computation and returns the result. The remote execution
operator _X executes the function on the server side, pass-
ing it the required arguments, and thus bypasses the RMI
overhead for each iteration. The resulting TabularData ob-
ject’s stub is then returned to the client who displays it in
this example. The remote execution operator is a suitable
alternative to the stored procedure concept of RDBMS, but
fits neatly into the host language, without the hassles and
restrictions of UDF's and stored procedures.

Custom transformations and the remote execution opera-
tor are mechanisms to ship entire functions to the server side
to be executed in server space. Thus, they are well suited
for the development of learning algorithms, as they allow
data scientists to integrate their favorite packages such as
Scikit-learn [39] into the AIDA computation framework.

S. LEAVE DATA BEHIND

A key design philosophy of AIDA is to push computation
to the RDBMS, near the data. Data transfer to the client is
only needed when explicitly requested, i.e., when aggregated
information or final results need to be viewed and analyzed;
thus, the expectation is that this is only a small fraction of
the overall data accesses needed for computations.

This execution model necessitates to retain any computa-
tional objects in the RDBMS memory, ship the computation
primitives to these objects from the client, and transfer data
from the server to the client side when required.

The high-level architecture of AIDA that supports this
model is depicted in Figure 3 and discussed in this section.
A bootstrap stored procedure loads AIDA’s server-side pro-
cesses when the database starts up.

Database Memory Resident Objects. As discussed in
section 2.3, even though modern RDBMS implementations
support embedded programming language interpreters, they
only expose limited capabilities. Specifically, host language
objects only live within the scope of the UDF source code. In
order to work around this problem, we introduce the concept
of a database memory resident object or DMRO. A DMRO
stays in the RDBMS memory (the embedded Python inter-
preter memory to be precise), outside of the scope of a UDF
or a stored procedure. Users can perform operations on
these objects using AIDA’s client APIs. The most common
DMROs are TabularData objects, the computational com-
ponent discussed in the previous section. We will encounter
a few others shortly.

1407

Distributed Object Communication. The distributed ob-
ject communication layer (DOC) allows AIDA’s client API
to invoke computational primitives on the TabularData ob-
jects residing in the RDBMS memory via RMI. AIDA’s DOC
layer follows the conventional architecture popularized by
implementations such as Java RMI [41] with minor adap-
tations to suit AIDA’s needs. On the server side, we have
an instance of a remote object manager server, which is a
DMRO created by the bootstrap stored procedure. The
manager acts as a repository to which AIDA’s server-side
modules can register objects that are to be made available
for remote access. The client invokes methods on a stub
object residing on the client side, which marshals the in-
put parameters and sends them to a skeleton object on the
server side. The skeleton object will unmarshal this infor-
mation, execute the intended method on the actual object,
and marshal and return the results back to the client side
stub. For the sake of simplicity, we have omitted skeleton
objects from Figure 3. We extend dill [30], a popular module
for marshaling objects in Python, with some customization
for AIDA. In particular, if the result of an RMI is of type
TabularData (such as when a transformation on a Tabular-
Data returns the resulting TabularData object), we do not
send the actual data but the stub information for the object.

The Database Adapter Interface. Modern RDBMS im-
plementations with embedded interpreters allow UDF's writ-
ten in a host-language to query the database directly with-
out an explicit database connection. However, each vendor
implements their own API. As AIDA relies on these internal
APIs to interact with the RDBMS it is embedded in, we de-
fine a database adapter interface to standardize interaction,
and to keep remaining AIDA packages independent of the
RDBMS. Therefore, akin to JDBC/ODBC applications, by
implementing a database adapter package conforming to this
interface, one can easily port AIDA to that specific RDBMS.
A database adapter interface implementation must be able
to authenticate, read database metadata, execute a SQL
query and return results in dictionary-columnar format, and
facilitate the creation of table UDFs.

As discussed in Section 4.3, we exploit the zero-copy opti-
mization of MonetDB to return resultsets stored in Tabular-
Data objects. Many RDBMS, especially row-based RDBM-
Ses, do not offer such optimized data transfers as their phys-
ical storage model has no resemblance to the data structures
of the embedded language. Therefore, in order to work with
such systems, the database adapter interface will have to
convert the resultset returned by the RDBMS into one of
the internal representations of the TabularData object.

The Connection Manager. The connection manager is a
DMRO created by AIDA’s bootstrap procedure that is re-
sponsible for managing client sessions. When a client makes

a connection request, the connection manager uses the database

adapter to authenticate with the database. On success, it
creates a database workspace object (discussed in next sec-
tion) and sends its stub back to the client. Referring back
to the first line of code listing 1, db is such a stub.

Database Workspace. This is another kind of DMRO, cre-
ated for each authenticated client connection in AIDA. Pri-
marily, it provides access to database tables via the Tabular-
Data abstraction. For example, db.nation provides a refer-
ence to a TabularData object that encapsulates the nation
table in the database. Such TabularData objects and any

Client System
Python Interpreter

Marshaling Module

AIDA Client API

RMI

RDBMS

)

Embedded Python Interpreter

Marshaling Module AIDA

RMI

% Remote Object Manager }-

NumPy

TabularData ‘

Database,
Adapter

Database

Connection Manager

\

Database

T 7

Database
Workspace Stub

User Code Space

TabularData Stub
TabularData Stub

7 Workspace Tables
TabularData 7 ﬁ
,’l TabularData i
{{ TabularData II :ﬁ

Figure 3: High Level Architecture of AIDA

new TabularData objects created from them by applying re-
lational or linear algebra operations have a reference to the
database workspace object that created the first source Tab-
ularData object. A TabularData object utilizes its database
workspace (which in turn uses the database adapter) when
it needs to execute any relational operations in the RDBMS.

Life Span of a DMRO. Remote object manager and con-
nection manager objects are the only DMROs that exist
throughout AIDA’s uptime. Database workspace objects are
discarded when the corresponding client disconnects. Tabu-
larData objects get discarded if (i) no client stub references
it, (i) no database workspace has a reference to it (e.g., set
via a remote execution function), (iii) and it is not a source
for any TabularData instance that has not been materialized
yet, which in itself is not selected to be discarded.

6. EVALUATION

Our testing objectives are: (i) to understand the cost ben-
efits of keeping data at the server compared to transfer-
ring it to the client and processing it there; (ii) to compare
AIDA'’s performance for linear algebra operations with exe-
cutions on the client side using a standard statistical pack-
age; (iii) to observe how statistical packages fare when it
comes to executing relational operations compared to AIDA,
which pushes them into the optimized RDBMS; (iv) to mea-
sure AIDA’s framework overhead compared to a rudimen-
tary database UDF-based solution; (v) and finally, to com-
pare the performance of AIDA against these systems for an
end-to-end learning problem.

We evaluate the following systems. AIDA is our base
AIDA implementation. We also analyze variations of AIDA
(e.g., with and without using remote execution functional-
ity). DB-UDF is a UDF-based solution that, just as AIDA,
performs execution within the RDBMS. Furthermore, we
implemented three solutions that transfer data out of the
RDBMS for execution at the client using the following frame-
works: (i) NumPy, (ii) pandas and (iii) Spark.

6.1 Test Setup

We run the client and the RDBMS on identical nodes
(Intel® Xeon® CPU E3-1220 v5 @ 3.00GHz and 16 GB
DDR4 RDIMM main memory, running on Ubuntu 16.04.).
The nodes are connected via a Dell " PowerConnectTM 2848
switch that is part of a Gigabit private LAN. In practical
implementations, the RDBMS would be likely on a high-
end server with much larger resources compared to a client’s

computer, and the interconnect would be less powerful. How-
ever, keeping the two systems similar ensures fairness in the
performance metrics that we are comparing.

For software, we use MonetDB v11.29.3, pymonetdb 1.1.0,
Python 3.5.2, NumPy 1.13.3, pandas 0.21.0, and Spark 2.3.0
using MonetDB JDBC driver 2.27. Unless explicitly spec-
ified, default settings are used for all software. In all our
experiments we only start measuring once a warm-up phase
has completed and average over several executions.

6.2 Loading Data to Computational Objects

In this test case, we try to understand the cost benefits
of not having to transfer data for computation from the
database into the client space. We experiment with tables
ranging from 1 to 1 million rows. There are 100 columns
consisting of randomly generated floating point numbers.

For NumPy and pandas, we use pymonetdb, MonetDB’s
Python DB-API [23] implementation to fetch data from the
database and build a NumPy array resp. a pandas DataFrame.
As the performance of retrieving data is dependent on the
connection buffer size in pymonetdb, we test with the de-
fault buffer size of 100 but also an optimized buffer size of 1
million, reflecting the size of our largest data set. The latter
setting is recorded as NumPyOpt and pandasOpt in the perfor-
mance figures. For Spark, we load the data using the JDBC
connection to build a Spark matrix. The default fetch size
of JDBC is set to 1 million. For DB-UDF, we use a Python
UDF to load data from the database into a NumPy ma-
trix. For AIDA, we build a TabularData object. AIDA by
default materializes the result of a relational data load in
dictionary-columnar representation. We also measure the
cost for additionally building the matrix representation of
the data, indicated as AIDA-Matrix in the chart.

Figure 4 shows loading time in logarithmic scale. As a
first observation, our Spark implementation performs worse
than any other solution by orders of magnitude, including
the other client-based solutions. We would like to note that
Spark is optimized for large-scale distributed batch com-
putations; that is, it has quite different target applications.
Also, MonetDBs pymonedb driver used for NumPy and pan-
das, is highly optimized, providing data-transfer rates sev-
eral times faster than many other database implementa-
tions [45], likely including the JDBC driver used for Spark.

Clearly, for small data sets less than 100 rows, AIDA has
no real advantage over the other client-based solutions. In
fact, for a 1-row table, AIDA needs twice as long as NumPy,
and 13% longer than pandas. However, this is still in the

1408

s B DB-UDF NumPyOpt .
g 10°7 mmm AIDA mm pandas
3 mmm AIDA-Matrix pandasOpt
& 104 mmm NumPy mmm Spark H
o
5 3] - - m [| =N I I I
£ [
v 1021 u
= | oo anl JIE 1l
® 104 | el J I
o

100 | |

10° 10! 102 103 104 10° 106
number of rows

Figure 4: Time to load data.

range of a few milliseconds, and thus, not noticeable for an
interactive user. But as the data size increases to 100 rows,
the trend changes with AIDA now having an upper hand
over client based approaches. At 100 rows, AIDA takes only
40% of the time compared to loading with NumPy and pan-
das. This trend continues as data set size increases. At
1 million rows, AIDA is roughly 440 times faster than the
default connection for NumPy and pandas, and 240 times
faster if we use optimized connection for NumPy and pan-
das. Even if we force AIDA to build matrices after loading
data, it is still able to load data about 188 times faster
than the optimized connections with NumPy and pandas.
In absolute numbers, while NumPy and pandas took about
a minute and a half to load 1 million rows with an optimized
connection, AIDA manages to load data and also build an
additional matrix representation of its data under half a sec-
ond. This is impressive, given that MonetDB has a highly
optimized data transfer [45].

DB-UDF, being server-based and having no framework
overhead, is the fastest across all table sizes. For small ta-
bles, it is around 4x faster than AIDA, and with larger sizes,
it takes around 65% of AIDA’s time. Thus, for a simple data
load, AIDA has no benefit over a UDF-based solution.

6.3 Linear Algebra Operations

To measure the overhead of the AIDA framework on lin-
ear algebra operations, we multiply a matrix with a vector.
The primary matrix is built again from the same table as in
the previous test case, with 100 columns and up to 1 mil-
lion rows. The vector is represented as a matrix with 100
columns stored as one row. Therefore, the vector is trans-
posed before performing the multiplication. The operation
can be visualized in code as shown below.

res = ml Q m2.T

The test measures the cost of performing a total of 100
matrix multiplications after the initial objects are loaded.
Iterative scenarios are very common in learning algorithms
as parameters are continuously adjusted to bring the error
rate down. In order to observe the overhead due to RMI
calls, we also implement this iteration using the remote ex-
ecution functionality of AIDA’s database workspace where
the iteration logic is executed within the server (recorded
as AIDA-RWS). That is, AIDA-RWS has only one RMI call
compared to 100 RMIs with AIDA.

Figure 5 shows the execution time in logarithmic form.
Again, Spark performs significantly worse. The difference
in programming paradigms might have an impact.

106
N DB-UDF
105 { MEm AIDA-Matrix

I AIDA-RWS pandasOpt
NumPyOpt mm Spark

104
103
10?
10!
10°

T
[1 1 | |
T
[1 1 ||
T

[[[[[]
T

[[1 1 |]

| P

[1 1 | |
R

[[I | | | |
RN

[I 1 I [[|

107t

computation time in ms. (log. scale)

1072

C)

10° 10t 102 103 104 10° 10
number of rows

Figure 5: Matrix x Vector perf.

Having little or no framework overhead, NumPy and DB-
UDF (which is using NumPy) are the fastest, showing sim-
ilar performance for all data sizes. AIDA-RWS and pandas
also have similar performance (with AIDA-RWS being up to
20% better than pandas) but they are worse than NumPy
or DB-UDF. Both have the overhead of meta-information
for their TabularObject resp. DataFrame. At a data size
of 1 row, this has a huge impact, and they are around 250
times slower than DB-UDF or NumPy. But as this is still in
the range of a few milliseconds, it will not have a significant
impact to an interactive user. As the number of rows in
the matrix increases, the cost is shifting to the computation
itself making metadata and framework overhead a smaller
fraction, barely noticeable once we reach 100K rows and
execution times in the hundreds of milliseconds. AIDA per-
forms worse than AIDA-RWS and pandas due to the RMI
overhead (100 calls vs. 1 call), as each RMI call adds around
2-3 ms. Again, with increasing number of rows, this fixed
overhead has less and less impact as computation becomes
the predominant factor. At 1 million rows AIDA performs
only a bit more than 10% worse than the other approaches.

6.4 Relational Joins On Matrices

In this section we compare the join implementations in
client-based pandas and Spark with server-based AIDA and
DB-UDF, that can leverage MonetDB’s optimized join im-
plementation. The results shown do not show connection
or load times between client and server. We use two data
sets with 11 integer columns and one million rows each. In
the test, we gradually add more columns to the join con-
dition. One of the columns is unique and identical in both
data sets, functioning as the key. A given key’s remaining
columns may differ between the two data sets with a small
probability. With this, the key column join between the
two data sets produces all the million rows in the output,
while adding more columns into the join condition reduces
the result’s cardinality. The output contains all columns.

For AIDA, we test two scenarios that it might have to
face. In the first case, the data is in RDBMS tables and
AIDA, therefore, executes a SQL internally in the RDBMS
to produce the result. In the second case, the data is mate-
rialized in a TabularData object in dictionary-columnar for-
mat. AIDA exposes this via table UDFs to the RDBMS and
has it execute a SQL performing a join on the table UDFs.
This approach is denoted as AIDA-TableUDF. DB-UDF exe-
cutes an SQL join over the tables inside the database and
loads the contents into a NumPy array.

Figure 6 shows (non-logarithmic) response times (left axis)
and cardinality of the result (right axis). The two AIDA im-
plementations and DB-UDF perform much better than pan-

1409

4000

30001 106
2000 [1 10° _
1 | 40
4 8907 DB-UDF \ 10 K]
€ mmm AIDA @
£ 600 | ™= AIDA-TableUDF \ 103
g pandasOpt \ :0,
= mmm Spark g
.5 4001 —°* result cardinality \ 102 §
ol 11 . :
%200 10t 2
©
£ <
o el
= 04 L | 100 E
1 2 3 4 5 6 7 8 9 10 11 o

number of join columns

Figure 6: Joining two data sets.

das and Spark as they can leverage the underlying RDBMS’
optimizations. Response times for AIDA and DB-UDF are
always less than 150 ms showing that MonetDB is well
equipped to handle complex joins and/or large result sets.
Execution times first decrease with increasing number of
join columns as there are less and less records in the result
set to be materialized but then increase again as the join
computation time becomes larger with more join columns.
Both client-based solutions are significantly less efficient.
Pandas takes nearly twice the time for the 1-column join,
and around 8 times longer with more than 7 join columns
compared to the server-side solutions. Spark is even worse,
in particular with few join columns. It looks like it struggles
with large results sets more than with complex joins as its
performance improves with smaller result sets.

6.5 Performing Linear Regression

Finally, to understand the performance and usability of
AIDA on a real learning problem, we have developed solu-
tions for a more complex test case. The data set is based on
the city of Montréal’s public bicycle sharing system, Bixi®.
The learning objective is to predict the duration of a trip
given the distance between start and end points of the trip.
This lends itself well to the application of a linear regres-
sion algorithm. We do not use any built-in libraries such as
Scikit-learn or Spark MLIib [35] to avoid any bias from the
implementation differences of these libraries. Instead, the
linear regression algorithm is written using relational and
linear algebra operations on the computational structures
(DataFrames for Spark and pandas, matrices for DB-UDF,
TabularData for AIDA), as would be the case when a user
develops their own algorithm from scratch.

Workflows. We have built two workflows depicting how a
data scientist could explore the problem. The implemen-
tations of these workflows for each of systems (DB-UDF,
ATDA, pandas, Spark) are available on github®. For ATDA
and pandas they are depicted in Jupyter notebooks, a widely
used tool that supports interactive development and source
code exchange. For Spark and DB-UDF, we formatted the
source code of their implementations using github’s mark-
down file format which allows for reading the source code
along with the output results.

A first short workflow does not perform any data explo-
ration but assumes the data scientist knows exactly the data
set and features required and the best model for training. An
important aspect is that the client-based solutions (pandas,
Spark) can retrieve from the database at the beginning of

“https://www.kaggle.com/aubertsigouin /biximtl
®See https://github.com /joedsilva/v1db2018

1410

800] F14000

600 [] = [| r12000
$ 4001 mm Data Load + 10000
s 2001 mmm Feature Eng 8000 .
b === Model Training h ﬂ g
2 1501 === Model Testing +6000 3
P =21 Character Count ﬂ ‘ I H [‘ I ‘ i I Ii 2
£ 1004 £4000 »
= 9]
: W REETT T
2 50 - g1 L2000 &
8 I
=] <
a]
€ 0 0
5]
o

Short Workflow Long Workflow

Figure 7: Linear regression on Bixi data set.

the workflow exactly the data that is needed using a join be-
tween the trip and map data which contains road distances
between GPS coordinates. This offers a best-case scenario
for these systems. Any further operations in the workflow
are primarily linear algebra, and this can be efficiently per-
formed by the client-side statistical framework.

The second example workflow depicts a more complex
path where a data scientist explores the data sets and builds
and analyzes different models before choosing a promising
approach. The data scientist first decides to build a distance
feature from the GPS coordinates available in the trip data
using a geodesics-based formula [54] and uses it to build a
model. He/she then explores the idea of using a map data
set that has road distances to enrich the trip data. For
Pandas and Spark this involves joining the map data in the
database to the trip data which is already at the client side.
For that, the additional, smaller (map) data set is retrieved
from the database and the join performed inside the statis-
tical framework. The data scientist then compares the error
rate of both approaches, and decides to settle for the later.

For both workflows we analyze execution times, and we
also want to understand how easy they are to implement for
the different systems. Figure 7 shows for each system with
the left bar computation time not including any think or
development time (non-logarithmic in seconds) and with the
right bar our attempt to measure source code complexity.
Complexity. Usability is very subjective, and it is diffi-
cult to measure the complexity of different programming
paradigms. As a simple approximation, we measure source
code complexity as the amount of source code for each imple-
mentation, using non-white space/no-comments character
count as the metric. We do not use the typical lines of code
(LOC) metric as it may not be able to accurately portray
the nature of different programming languages/paradigms®.
To be fair, we chose similar variable and function names for
all systems. With the exception of DB-UDF, all workflows
are written using a single programming language (Python or
Scala). In contrast, the DB-UDF implementations contain
a mix of Python UDF's and fairly complex SQL statements.

For the short workflow, source code complexity is simi-
lar for nearly all systems. This is because exploration and
the linear regression algorithm itself are straightforward.
Spark’s use of Scala and a slightly more “wordy” API re-
sults in a relatively larger source code complexity.

The long workflow has around 2x the source code com-
plexity than the short workflow for all systems except for

5n particular, a SQL statement can be written in one line
or spread over several lines.

DB-UDF where it is 3.5x that of the short workflow. Most of
this can be attributed to the fact that UDF's cannot interact
directly with each other and that the scope of the host lan-
guage objects built inside the UDF cannot outlive the UDF’s
execution itself. Due to this, UDF's have reduced reusability
of components, requiring the users to often duplicate some
aspects of the source code across multiple UDFs. Also, un-
like interactive systems like AIDA, there is no mechanism
in a UDF to keep reporting the changes in error rate as the
training progresses. Further, although our workflows do not
deliberately demonstrate this aspect, errors in an interactive
system only require the user to address and resubmit the er-
roneous statement. Errors in UDFs, on the other hand, are
hard to debug [19], and an error in the last statement in
a UDF can waste the computation performed in it up to
that step and would require the user to re-write the UDF,
increasing the user effort and programming complexity.

Performance. As before, DB-UDF always performs best.
Note that DB-UDF does not compute and report interme-
diate error rates during training, and thus performs slightly
less computation. AIDA-RWS has roughly 1.5 the execution
time of DB-UDF, and AIDA has 3-4x the execution time,
the bulk due to model training. Reducing RMI overhead by
pushing iterations to the server is benefiting AIDA-RWS.
For both DB-UDF and AIDA, there is no large performance
difference between short and long workflows because the
main extra part for the long workflow is feature engineer-
ing which takes little execution time at the server side.
AIDA and AIDA-RWS always perform better than pandas
and even the optimized pandas, and this by a very large
margin for the long workflow. This is mainly due to the
data load for pandas that AIDA avoids but also due to the
feature engineering as pandas relational operators are not
as efficient as MonetDB’s. Spark is again the slowest by far.
Although a pushdown of joins into the database has been
proposed for Spark, they are still not available in the current
release. Therefore, Spark has to perform its own relational
joins, which as we saw in Section 6.4 has a significant cost.

6.6 Summary

AIDA, by imitating the programming style of interac-
tive statistical frameworks, maintains their degree of usabil-
ity. Data scientists, who have experience with pandas and
NumPy should be able to learn AIDA fairly quickly. At
the same time, AIDA can provide significant performance
benefits compared to client-side packages.

Compared to a UDF-based solution, AIDA is generally
slower; this holds mainly for smaller data sets where AIDA’s
framework and meta-data overhead has more impact. But
in such cases, overall execution times are very small and the
differences are not likely to be noticeable for the user. In
contrast, we believe that UDF-based solutions are consider-
ably more difficult to implement for data scientists, as the
required SQL statements and the development steps can be
complex, as shown in our example workflows.

7. RELATED WORK

Specialized databases such as SciDB [50] and its predeces-
sors [5, 28] use array-based data structures and are aimed
specifically at scientific computing, providing their own query
languages. Recent studies have shown that contemporary
Big data solutions such as Spark perform better on more

generic scientific workloads to which many machine learn-
ing and data science projects belong [32, 46].

Recent works, EmptyHeaded [1], and it’s extension Level-
Headed [2] attempts to find an acceptable architectural com-
promise between relational and statistical systems. Linear
algebra is supported through a SQL-based syntax, similar
to prior works [60, 27] that integrated linear algebra into
RDBMS implementations. Joins are however possible only
over key columns, restricting the use of various analytical
SQL expressions such as subqueries.

Implementations such as BISMARCK [14] improvise on
the conventional UDF approach by standardizing and imple-
menting some of the specific learning algorithms as UDF's;
sparing the users from the hassles, but restricting them to
the algorithms exposed by the system. [7] is a schema-free
append-only database for machine learning. Although it
provides a SQL interface for querying the data, any learn-
ing algorithms must be written as stored procedures.

In [17], the authors use a shared memory approach to ex-
change data between an R process and SAP database. While
this reduces any serialization overhead for network transfer,
as [25] points out, still incurs data copying overhead. More
recently, Apache Arrow [11] uses shared memory to facilitate
applications that conform to its API to share data without
copying them. AIDA, being embedded into the RDBMS,
can leverage zero-copy optimizations between the two sys-
tems without a shared memory data structure.

Pushdown optimization was originally popularized by the
Business Intelligence (BI) and Extract, Transform and Load
(ETL) community [8, 36, 48, 22, 20] and has lately made in-
roads into statistical frameworks. RIOT-DB [59, 61] extends
R to leverage the I/O capabilities of an external RDBMS
back-end by translating expressions in R to operations in
SQL by creating view definitions. Push down join optimiza-
tions has been recently attempted in Spark [3, 9], though
it is still not available in the release. However, such two-
system approaches cannot perform pushdown joins if one of
the data sets is already in the framework and the other is
still in the database. As AIDA stores all its data sets in
the RDBMS memory, it can perform pushdown joins even
in such cases using table UDFs.

8. CONCLUSION & FUTURE WORK

In this paper, we proposed AIDA, a unified abstraction
that supports both relational and linear algebra operations
seamlessly using the familiar syntax and semantics of pop-
ular Python ORM and linear algebra implementations. Ex-
ecution is moved into the database system reducing data
transfer costs and facilitating the use of the SQL engine
whenever possible. AIDA allows users to write custom code,
but without the hassles of UDF implementations. We be-
lieve AIDA is a step in the right direction to facilitate user-
friendly computational interfaces to interact with an RDBMS.

Currently, AIDA works completely based on in-memory
data, similar to pandas and NumPy. We are studying a
least-recently-used (LRU) style memory manager module
that can off-load TabularData objects that are not being
actively used into database tables to reduce memory usage.
We are also working on a distributed version of AIDA that
could be used for very large data explorations. We also plan
to develop extensions to use AIDA with existing learning
and data visualization libraries.

REFERENCES

C. R. Aberger, A. Lamb, K. Olukotun, and C. Ré.
Mind the Gap: Bridging Multi-domain Query
Workloads with EmptyHeaded. PVLDB,
10(12):1849-1852, 2017.

C. R. Aberger, A. Lamb, K. Olukotun, and C. Ré.
LevelHeaded: A Unified Engine for Business
Intelligence and Linear Algebra Querying. In ICDE.
IEEE, 2018.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,

J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, et al. Spark SQL: Relational Data
Processing in Spark. In SIGMOD, pages 1383-1394.
ACM, 2015.

L. Ashdown, T. Kyte, et al. Oracle Database
Concepts, 12c Release 2 (12.2). Oracle, 2017.

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and
N. Widmann. The Multidimensional Database System
RasDaMan. In SIGMOD, pages 575-577. ACM, 1998.
L. Daly. Next-Generation Web Frameworks in Python.
O’Reilly Short Cut. O’Reilly Media, 2007.
Datacratic. The Machine Learning Database. White
paper, 2016.

U. Dayal, M. Castellanos, A. Simitsis, and

K. Wilkinson. Data Integration Flows for Business
Intelligence. In EDBT, pages 1-11. ACM, 2009.
Delaney, Ioana and Li, Jia. Extending Apache Spark
SQL Data Source APIs with Join Push Down, 2017.
[https://databricks.com/session/extending-apache-
spark-sql-data-source-apis-with-join-push-down,
accessed 20-April-2018].

N. Diakopoulos, S. Cass, and J. Romero. Data-Driven
Rankings: the Design and Development of the IEEE
Top Programming Languages News App. In
Symposium on Computation+ Journalism, 2014.

T. W. Dinsmore. In-Memory Analytics, pages 97-116.
Apress, Berkeley, CA, 2016.

P. Domingos. A Few Useful Things to Know About
Machine Learning. Communications of the ACM,
55(10):78-87, Oct. 2012.

J. W. Eaton, D. Bateman, and S. Hauberg. GNU
Octave. Free Software Foundation, 2007.

X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a
Unified Architecture for in-RDBMS Analytics. In
SIGMOD, pages 325-336. ACM, 2012.

E. C. Foster and S. Godbole. Database Systems: A
Pragmatic Approach. Apress, 2016.

M. Fowler. Domain-Specific Languages. Pearson
Education, 2010.

P. Grofie, W. Lehner, T. Weichert, F. Farber, and
W.-S. Li. Bridging Two Worlds with RICE Integrating
R into the SAP In-Memory Computing Engine.
PVLDB, 4(12):1307-1317, 2011.

I. Guyon and A. Elisseeff. An Introduction to Variable
and Feature Selection. Journal of Machine Learning
Research, 3(Mar):1157-1182, 2003.

P. Holanda, M. Raasveldt, and M. Kersten. Don’t
Hold My UDFs Hostage-Exporting UDFs For
Debugging Purposes. In International Conference on

Simpdsio Brasileiro de Banco de Dados (SSBD), 2017.
IBM. IBM InfoSphere DataStage Balanced

Optimization. White paper, June 2008.

(21]

(22]

[26]

(28]

29]

(30]

(31]

32]

(36]

R. Thaka and R. Gentleman. R: A Language for Data
Analysis and Graphics. Journal of Computational and
Graphical Statistics, 5(3):299-314, 1996.

Informatica Corporation. How to Achieve Flexible,
Cost-effective Scalability and Performance through
Pushdown Processing. White paper, November 2007.
A. M. Kuchling. The Python DB-API. Linuz Journal,
1998(49es):8, 1998.

A. Kumar, M. Boehm, and J. Yang. Data
Management in Machine Learning: Challenges,
Techniques, and Systems. In SIGMOD, pages
1717-1722. ACM, 2017.

J. Lajus and H. Miihleisen. Efficient Data
Management and Statistics with Zero-Copy
Integration. In International Conference on Scientific
and Statistical Database Management, pages
12:1-12:10. ACM, 2014.

V. Linnemann, K. Kiispert, P. Dadam, P. Pistor,

R. Erbe, A. Kemper, N. Stidkamp, G. Walch, and

M. Wallrath. Design and Implementation of an
Extensible Database Management System Supporting
User Defined Data Types and Functions. In VLDB,
pages 294-305, 1988.

S. Luo, Z. J. Gao, M. Gubanov, L. L. Perez, and

C. Jermaine. Scalable Linear Algebra on a Relational
Database System. In ICDE, pages 523-534. IEEE,
2017.

A. P. Marathe and K. Salem. Query Processing
Techniques for Arrays. In SIGMOD, number 2, pages
323-334. ACM, 1999.

D. Marten and A. Heuer. A Framework for
Self-Managing Database Support and Parallel
Computing for Assistive Systems. In International
Conference on PErvasive Technologies Related to
Assistive Environments, page 25. ACM, 2015.

M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and
M. A. Aivazis. Building a Framework for Predictive
Science. CoRR, abs/1202.1056, Feb. 2012.

W. McKinney. pandas: a Foundational Python
Library for Data Analysis and Statistics. Python for
High Performance and Scientific Computing, pages
1-9, 2011.

P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan,

A. Cheung, M. Balazinska, A. Rokem, A. Connolly,
J. Vanderplas, and Y. AlSayyad. Comparative
Evaluation of Big-Data Systems on Scientific Image
Analytics Workloads. PVLDB, 10(11):1226-1237,
2017.

S. Melnik, A. Adya, and P. A. Bernstein. Compiling
Mappings to Bridge Applications and Databases.
Transactions on Database Systems, 33(4):22, 2008.

J. Melton and A. R. Simon. SQL:1999: Understanding
Relational Language Components. Morgan Kaufmann
Series in Data. Morgan Kaufmann, 2002.

X. Meng, J. Bradley, B. Yavuz, E. Sparks,

S. Venkataraman, D. Liu, J. Freeman, D. Tsali,

M. Amde, S. Owen, et al. MLIlib: Machine Learning in
Apache Spark. The Journal of Machine Learning
Research, 17(1):1235-1241, 2016.

MicroStrategy. Architecture for Enterprise Business
Intelligence. White paper, MicroStrategy,
Incorporated, 2012.

[37]

[38]

[39]

[40]

T. Miller. Using R and Python in the Teradata
Database. White paper, Teradata, 2016.

H. Miihleisen and T. Lumley. Best of Both Worlds:
Relational Databases and Statistics. In International
Conference on Scientific and Statistical Database
Management, pages 32:1-32:4. ACM, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning
Research, 12(0ct):2825-2830, 2011.

G. Piatetsky. New Leader, Trends, and Surprises in
Analytics, Data Science, Machine Learning Software
Poll, 2017.

[https://www.kdnuggets.com/2017/05 /poll-analytics-
data-science-machine-learning-software-leaders.html,
accessed 07-December-2017].

F. Pl4sil and M. Stal. An Architectural View of
Distributed Objects and Components in CORBA,
Java RMI and COM/DCOM. Software-Concepts &
Tools, 19(1):14-28, 1998.

R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014.

M. Raasveldt. Voter Classification Using
MonetDB/Python, 2016.
[https://www.monetdb.org/blog/voter-classification-
using-monetdbpython, accessed

07-December-2017].

M. Raasveldt and H. Miihleisen. Vectorized UDFs in
Column-Stores. In International Conference on
Scientific and Statistical Database Management, pages
16:1-16:12. ACM, 2016.

M. Raasveldt and H. Miihleisen. Don’t Hold My Data
Hostage—A Case For Client Protocol Redesign.
PVLDB, 10(10):1022-1033, 2017.

L. Ramakrishnan, P. K. Mantha, Y. Yao, and R. S.
Canon. Evaluation of NoSQL and Array Databases for
Scientific Applications. In DataCloud Workshop, 2013.
C. Ré, D. Agrawal, M. Balazinska, M. Cafarella,

M. Jordan, T. Kraska, and R. Ramakrishnan.
Machine Learning and Databases: The Sound of
Things to Come or a Cacophony of Hype? In
SIGMOD, pages 283-284. ACM, 2015.

1413

(48]
(49]

[50]

[51]

[52]

SAP. SAP BusinessObjects Web Intelligence User’s
Guide. SAP SE, 2017.

R. D. Schneider. MySQL Database Design and
Tuning. Pearson Education, 2005.

M. Stonebraker, P. Brown, D. Zhang, and J. Becla.
SciDB: A Database Management System for
Applications with Complex Analytics. Journal of
Computing in Science & Engineering, 15(3):54-62,
2013.

The PostgreSQL Global Development Group.
Procedural Languages. In PostgreSQL 10.0
Documentation, 2017.

Theano Development Team. Theano: A Python
Framework for Fast Computation of Mathematical
Expressions. arXiv e-prints, abs/1605.02688, May
2016.

Transaction Processing Performance Council. TPC
Benchmark H, 2017.

T. Vincenty. Direct and Inverse Solutions of Geodesics
on the Ellipsoid with Application of Nested
Equations. Survey Review, 23(176):88-93, 1975.

S. v. d. Walt, S. C. Colbert, and G. Varoquaux. The
NumPy Array: A Structure for Efficient Numerical
Computation. Journal of Computing in Science &
Engineering, 13(2):22-30, 2011.

W. Wang, M. Zhang, G. Chen, H. Jagadish, B. C.
Ooi, and K.-L. Tan. Database Meets Deep Learning:
Challenges and Opportunities. SIGMOD Record,
45(2):17-22, 2016.

B. Woody, D. Dea, D. GuhaThakurta, G. Bansal,
M. Conners, and T. Wee-Hyong. Data Science with
Microsoft SQL Server 2016. Microsoft Press, 2016.
M. Zaharia, M. Chowdhury, M. J. Franklin,

S. Shenker, and I. Stoica. Spark: Cluster Computing
With Working Sets. HotCloud, 10(10-10):95, 2010.
Y. Zhang, H. Herodotou, and J. Yang. RIOT:
I/O-Efficient Numerical Computing without SQL. In
CIDR, 2009.

Y. Zhang, M. Kersten, and S. Manegold. SciQL: Array
Data Processing Inside an RDBMS. In SIGMOD,
pages 1049-1052. ACM, 2013.

Y. Zhang, W. Zhang, and J. Yang. I/O-Efficient
Statistical Computing with RIOT. In ICDE, pages
1157-1160. IEEE, 2010.

