
Robustness Metrics for Relational Query Execution Plans

Florian Wolf
TU Ilmenau, SAP SE

florian.wolf@tu-ilmenau.de

Michael Brendle
University of Konstanz, SAP SE

michael.brendle@uni.kn

Norman May
SAP SE

norman.may@sap.com

Paul R. Willems
SAP SE

paul.willems@sap.com

Kai-Uwe Sattler
TU Ilmenau

kus@tu-ilmenau.de

Michael Grossniklaus
University of Konstanz

michael.grossniklaus@uni.kn

ABSTRACT
The quality of query execution plans in database systems
determines how fast a query can be executed. It has been
shown that conventional query optimization still selects sub-
optimal or even bad execution plans, due to errors in the
cardinality estimation. Although cardinality estimation er-
rors are an evident problem, they are in general not con-
sidered in the selection of query execution plans. In this
paper, we present three novel metrics for the robustness of
relational query execution plans w.r.t. cardinality estimation
errors. We also present a novel plan selection strategy that
takes both, estimated cost and estimated robustness into ac-
count, when choosing a plan for execution. Finally, we share
the results of our experimental comparison between robust
and conventional plan selection on real world and synthetic
benchmarks, showing a speedup of at most factor 3.49.

PVLDB Reference Format:
Florian Wolf, Michael Brendle, Norman May, Paul R. Willems,
Kai-Uwe Sattler, and Michael Grossniklaus. Robustness Metrics
for Relational Query Execution Plans. PVLDB, 11(11): 1360-
1372, 2018.
DOI: https://doi.org/10.14778/3236187.3236191

1. INTRODUCTION
The goal of query optimization in database systems is to

find a good query execution plan among the set of equiv-
alent plans for a given declarative query, according to a
cost model. Although query optimization is a well-studied
problem with numerous approaches being proposed and de-
veloped since Selinger’s seminal work [23], finding a good
plan is still a challenge, even for mature commercial sys-
tems. Typically, two major problems arise in this context:
(1) significantly increased query execution times, if the cho-
sen query execution plan turns out to be sub-optimal or even
bad, and (2) unpredictable execution time behavior due to
small changes in the database, which can cause the selec-
tion of a fundamentally different query execution plan with
a very different execution time.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 11
Copyright 2018 VLDB Endowment 2150-8097/18/07.
DOI: https://doi.org/10.14778/3236187.3236191

Both are problems of robustness, which has become an im-
portant research question in query processing. It is discussed
in multiple Dagstuhl seminars on Robust Query Processing,
organized by Graefe and colleagues [10, 11, 12]. Although
robust query processing has several aspects ranging from
query planning to execution and scheduling, both problems
share a common issue related to query robustness: errors in
cardinality estimation as a core component of a cost model.

Recent work by Leis et al. [17, 18] has shown that rather
than the cost model, cardinality estimation is the weak spot.
Even simple cost models result in a strong correlation be-
tween true cost and query execution time. Lohman quan-
tifies the performance impact of the cost model to at most
30% [20]. In contrast, errors in cardinality estimation are
in principle unbounded, and studies have shown up to six
orders of magnitude estimation errors [16, 17, 18].

In a nutshell, the root causes for cardinality estimation
errors are wrong assumptions on: (1) data distribution, (2)
column correlation, (3) join relationship, and (4) inaccu-
racy of statistics. Although the value frequencies in real-
world data are frequently skewed, a usual assumption in
cardinality estimation is uniform data distribution. Also,
the assumption of Attribute Value Independence (AVI) for
the correlation between columns in a table is not generally
valid [20]. For joins, some cardinality estimators assume the
principle of inclusion [18], which is only guaranteed to hold
for foreign key joins. In the presence of data modifications,
statistics for cardinality estimation can become stale or too
expensive to be updated at each transaction. As a result
the accuracy of statistics is often lower than expected.

Several approaches have been proposed to improve cardi-
nality estimation. Histograms or sampling can handle differ-
ent data distributions better than assuming uniformity, and
column group statistics can improve the precision for col-
umn correlation in a table. However, cardinality estimation
is still the main problem in query optimization [17, 18].

Although the issues of cardinality estimation are evident,
the majority of query optimizers still chooses the estimated
cheapest plan based on the cost model as optimal plan.
Potential cardinality estimation errors are not taken into
account when choosing a plan. Lohman advocated that
“robust and adaptable query plans are superior to optimal
ones” [19]. In this paper, we present novel metrics for the
robustness of query execution plans towards estimation er-
rors. They can assign a numeric value for the robustness of a
plan, which can be considered next to the estimated cost in
the selection of a plan. Compared to competing approaches
for robustness metrics [1, 2], we can assign robustness values

1360

independent of other query execution plans. In summary,
our contributions are:

• a formal problem description and consistency require-
ments for plan robustness metrics (Section 3),

• three new metrics to quantify the robustness of rela-
tional query execution plans, supporting all kinds of
operators, operator implementations, query execution
plan trees, and monotonically increasing and differen-
tiable cost functions (Section 4),

• a new plan selection strategy for query processing based
on our plan robustness metrics (Section 5), and

• an experimental evaluation for runtime and robustness
of our plan selection strategy using synthetic and real
world data benchmarks (Section 6).

2. RELATED WORK
Open research questions in robust query processing are

regularly discussed in Dagstuhl seminars organized by Graefe
and colleagues [10, 11, 12]. One approach to robust query
processing is robust plan selection as classified in a recent
survey [25]. The design space for robust plan selection strate-
gies has similarities to the design space of a conventional
query optimization. We argue that the design space of ro-
bust plan selection strategies has three dimensions: (1) on-
line selection vs. offline analysis, (2) robust plan candidates,
and (3) robust plan selection. A robust plan can either be
selected at optimization time (online), or identified in a more
expensive offline analysis. The set of candidates for robust
plans can be limited, e.g., to plans that are only optimal,
for certain cardinalities [7, 15], plans that have costs close
to the estimated optimal plan [1], or plans with a certain
tree structure, e.g., only left-deep trees [2]. There are nu-
merous approaches to choose the most robust plan in the set
of candidates, e.g., a plan that is optimal for multiple car-
dinality and selectivity combinations [4], or the most robust
plan according to a robustness metric [1, 2].

Robust Plan Diagram Reduction [7] and Plan Bouquets [8]
reduce parametric optimal sets of plans (POSP) [14]. Ro-
bust Plan Diagram Reduction is a graphical plan space anal-
ysis that identifies robust plan clusters. Plan Bouquets iter-
atively explore different plans through execution, give a for-
mal upper bound for execution time compared to the fastest
plan, and do not rely on cardinality estimation. Enumerat-
ing POSPs and identifying the Plan Diagram or the Plan
Bouquets causes a very high pre-calculation effort, and is
not feasible with updates and ad-hoc queries. Our approach
is based on estimations, and enables the specification of an
upper bound for cost w.r.t. the estimated optimal plan. Due
to the small pre-calculation effort, it can be applied at op-
timization time, and supports updates and ad-hoc queries.

Risk Score [15] is a metric for plan robustness, and indi-
cates how fragile a plan during different execution conditions
is. Since different execution times are necessary, a Risk Score
cannot be predicted during optimization time. The robust
plan candidates set is again limited to the POSP.

All following approaches perform online selection. Proac-
tive Re-Optimization [4] searches the optimal plan for the
estimated and two heuristically chosen cardinalities for each
cardinality estimate. From the three plans, it tries to iden-
tify the optimal, a robust, or a switchable plan. If no such
plan exists, it triggers a runtime re-optimization.

Robust Cardinality Estimation [3] instead uses random
sampling to generate a probability density function for op-
erator output cardinality. Based on the probability density
function and a user defined risk level for the probability den-
sity function, it estimates the maximum output cardinality
of an operator, and searches the optimal plan for it.

In contrast to Proactive Re-Optimization and Robust Car-
dinality Estimation, our approach defines a specific robust-
ness value for different plans that allows to compare two
plans w.r.t. their robustness. We also consider non-optimal
plans in the robust plan candidates set, since a robust plan
does not require optimality for certain cardinalities.

Minmax Regret Rule [2] is similar to Proactive Re-Optimi-
zation, but considers more plans and has a different robust
plan selection criteria. It compares the costs of the plans
at different cardinalities. Selected is the plan that has the
smallest maximum cost difference to the optimal plans, over
all cardinalities. Due to the increased number of plans, it
is limited to left-deep trees. Since this limitation excludes
possible robust plans, we consider all plan trees in our work.

An extension to the Minmax Regret Rule are Cost-Stable
Plans [1], which choose the plan with the smallest average
cost difference to the optimal plans, over all cardinalities. In
addition, it limits the number of plans, e.g., by early pruning
of outliers with a large cost difference to the optimal plan.

Due to its efficiency, our approach can be appliedatoptimi-
zation time (online selection). Compared to other approach-
es, we are not limited to certain tree structures [2] or plans
that are optimal for some cardinalities [3, 4, 7, 15]. We
limit the number of robust plan candidates to the cheapest
plans encountered during the initial query optimization. In
contrast to competing approaches [1, 2], we can assign ro-
bustness values independent of other query execution plans.
Finally, we define a robustness metric that works with clas-
sical single point estimation and is not bound to more ex-
pensive cardinality estimation techniques [1, 2, 3, 4].

3. PROBLEM STATEMENT
Due to estimation errors, the estimated optimal plan cho-

sen by conventional query optimizers frequently fails to be
the fastest plan. We argue that choosing a robust plan can
result in faster query execution times in the presence of car-
dinality estimation errors. We formalize the problem of find-
ing a plan that is robust w.r.t. estimation errors, denoting
the estimated cardinality as f̂ and the estimated cost as ĉ.

Definition 1. The true cardinality
◦
f is the exact car-

dinality for an edge in the query execution plan, collected
during execution. The true cost

◦
c is calculated using the

true cardinalities
◦
f instead of the estimated cardinalities f̂ .

Definition 2. The cost error factor cerr is the absolute
quotient of estimated and true cost.

cerr = { ◦
c/ĉ if

◦
c ≥ ĉ

ĉ/ ◦
c otherwise

Definition 3. The most robust plan is the plan with
the smallest cost error factor cerr within the set of robust
plan candidates.

Since true costs
◦
c are unknown at optimization time, the

cost error factor cerr cannot be calculated. Therefore, we
have to define a robustness metric.

1361

C
os
t
E
rr
or

F
ac
to
r
c e

rr

Robustness Value

R

E

1

2

3

E estimated optimal plan

R most robust plan

other robust plan candidates

Figure 1: Illustrations of consistency requirements
for robustness metrics, showing candidate plans
with their assigned robustness value and their cerr.

Definition 4. A robustness metric assigns a robustness
value to each robust plan candidate. Ideally, the robustness
value is an approximation for the upper bound of cerr.

Figure 1 illustrates the behavior of an ideal robustness
metric. The robustness value assigned by the robustness
metric is denoted on the x-axis. The y-axis denotes the cost
error factor cerr (see Definition 2). Furthermore, Figure 1
shows all robust plan candidates with an assigned robustness
value and their cost error factor cerr. The estimated optimal
plan is highlighted as E . The most robust plan according
to the robustness metric, i.e., the leftmost plan, is depicted
as R . We argue that an ideal robustness metric should fulfill
the following three consistency requirements.

1 Cost Error Factor Improvement: Compared to
the estimated optimal plan the most robust plan ac-
cording to the robustness metric should always achieve
a smaller cost error factor cerr.

2 Cost Error Factor Dominance: The most robust
plan according to the robustness metric dominates all
robust plan candidates w.r.t. the cost error factor cerr.
This means there should be no plan with a smaller cost
error factor cerr than the most robust plan, e.g., the
empty circle plans in Figure 1.

3 Correlated Cost Error Factor Limit: The robust-
ness metric should give an upper bound for the cost er-
ror factor cerr of a plan. Plans with a large robustness
value can have a large cerr, and plans with a small ro-
bustness value should have a small cerr. Plans, such as
the square plan in Figure 1 indicate a suboptimal ro-
bustness metric, because the metric classified the plan
to be much more robust than it is. The upper bound
of cerr should be proportional to the robustness value,
but cerr itself does not have to be proportional to the
robustness value, because the cardinality estimations
can always be precise and result in a smaller cerr.

In practice, there is a trade-off between plan robustness
and query execution time. On the one hand, a robust plan
is less sensitive to estimation errors, but not necessarily fast.
On the other hand, a fast plan is not necessarily robust. In
Section 5, we define a robust plan selection strategy that
balances plan robustness and query execution time.

3.1 Robust Plan Example
We consider Q17 of the Join Order Benchmark (JOB) [17]

as a pure join query with a filter on all movie id columns
(cf. Section 6). Of course, we support all kinds of opera-
tors and operator implementations. In this example we use
the Cout [22] cost function, which accumulates the operator
output cardinalities:

Cout(T) = {∣R∣ if T = R∣T ∣ + Cout(T1) + Cout(T2) if T = T1 ⋈ T2

Cout has a strong correlation to our query execution en-
gine [24]. Next to Cout, we support every kind of mono-
tonically increasing and differentiable cost function such as
Cmm [18], which we use for the experimental evaluation. It is
an extension of Cout and considers different operators and
operator implementations. Next, we define the estimated
selectivity ŝ, the true selectivity

◦
s, the absolute cardinality

error ∆f , the absolute cost error ∆c, and the q-error [21],
i.e., the absolute quotient of estimated and true cardinality.

∆f =
◦
f − f̂

∆c = ◦
c − ĉ

q-error = { ◦
f/f̂ if

◦
f ≥ f̂

f̂/ ◦
f otherwise

Figure 2 shows the query execution plan for the estimated
optimal plan of JOB Query 17, identified by our query op-
timizer. We argue in Section 6 that our join optimizer’s
estimated optimal plan choice is very similar to the choice
of popular free and commercial systems, due to its enumera-
tion algorithm, cardinality estimator and cost function. Ev-
ery edge in the query execution plan represents an inter-
mediate result with estimated and true statistics. The true
statistics of the final edge D shows that the true cardinality
of the estimated optimal plan is underestimated by a factor
of 20.27 (q-error), and the true costs by a factor of 3.03 (cerr).
In more detail, we see that the cardinality estimator under-
estimates two edges in the query execution plan, i.e., the
dashed edges A and C . The first join A is a m:n join be-
tween movie keyword and movie companies. The estimated
cardinality on the outgoing edge of this join is 25, 305. After
executing this plan, it turns out that this is an expanding
join, and the cardinality was underestimated, due to missing
information about the data distribution. The true cardinal-
ity is 179, 425, which results in a q-error of 7.09 and in a cerr

of 2.22. The second underestimation occurs in the join be-
tween subtree B and the cast info table. Beside a foreign
key join, there are two m:n joins involved. Again, this is
an expanding join and the output cardinality is underes-
timated: the estimated output cardinality is 347, 793, but
the true cardinality is 7, 050, 333. Accordingly, the q-error
is 20.27 and the cerr is 4.06. All other plan edges are esti-
mated correctly, since the q-error is not growing w.r.t. the
child edges. The reason is that all those joins are foreign key
joins, for which the cardinality estimation is more precise.

Figure 3 shows the estimated robust plan for JOB Q17,
chosen by our approach. While the estimated optimal plan
in Figure 2 has smaller estimated cost (6, 908, 427 compared
to 8, 018, 758), the plan chosen by our approach has a lower
execution time in the presence of cardinality estimation er-
rors. The major difference between the estimated optimal
plan (Figure 2) and the estimated robust plan (Figure 3) is
the deferred execution of m:n joins. Therefore, the first car-
dinality estimation error does not occur at the first join, as in
the estimated optimal plan (see A in Figure 2). In contrast,

1362

there are no cardinality estimation errors in the subtrees H

and E of the estimated robust plan. Their foreign key joins
are estimated correctly. The first underestimation occurs
when subtree E is joined with cast info (see F). While
the estimated cardinality is 705, 030, the true cardinality
is 1, 646, 933. Hence, the q-error is 2.34 and the cerr is 1.41.
The second underestimation occurs at the final join between

G and H , where the last two m:n joins are involved. As a
result, the q-error is 20.30 and the cerr is 2.07.

Comparing the two plans, shows that the cerr of the es-
timated robust plan (2.07) is smaller than of the estimated
optimal plan (3.03). Also, the true cost of the estimated ro-
bust plan (16, 605, 629) is smaller than of the estimated op-
timal plan (20, 929, 987). Therefore, the estimated robust
plan (475 ms) achieves a speedup of factor two compared to
the estimated optimal plan (995 ms). In Section 6, we show
more complex queries with larger speedups in the presence
of cardinality estimation errors.

4. ROBUSTNESS METRICS
In this section we answer the question: can we define ro-

bustness metrics that quantify the robustness for query ex-
ecution plans before executing the plans? After running the
query, robustness for a query execution plan or a sub-plan
can be quantified by the q-error or the cerr. In order to quan-
tify the robustness of a plan before execution, defining the
Parametric Cost Function (PCF) is the first building block
for our robustness metrics. We previously used PCFs as a
building block in the calculation of optimality ranges [24].

Definition 5. A Parametric Cost Function (PCF) is
the cost of a query execution plan or sub-plan, modeled as
function of one cost parameter.

Figure 4 shows the PCF modeled as function of cardinality
on a single edge in the plan for a volatile (PCFvol) and for a
robust plan (PCFrob). The cardinality of the edge is denoted
on the x-axis and the cost of a plan on the y-axis. It also

shows the estimated cardinality f̂ and the true cardinality
◦
f .

Furthermore, it shows the estimated cost ĉ and the true
cost

◦
c for both plans. Since a robust plan is not necessarily

optimal at f̂ , a volatile plan might have smaller estimated
costs ĉ. In the presence of estimation errors, the true cost of
a volatile plan can rapidly increase or decrease. In contrast,
the true cost for a robust plan are close to the estimated cost
in the presence of cardinality estimation errors, i.e., a more
moderate slope of PCFrob compared to PCFvol. Therefore,
the slopes of PCFs around the estimated cardinality indicate
the sensitivity of a plan towards estimation errors. If the

true cardinality is underestimated, as
◦
f in Figure 4, picking

the robust plan will also lead to runtime speedups.
Conventional query optimizers select the plan with the

smallest estimated cost, but do not consider the cost be-
havior in the presence of estimation errors. Consequently,
the estimated optimal plan is not necessarily a robust plan.
We argue that considering the cost behavior, i.e., the slopes
of a PCF, in the plan selection, results in identifying more
robust plans. Modeling the Cout cost of a plan as a func-
tion of one cost parameter for example, results in a linear
PCF, i.e., a PCF with the same slope at every cardinality.
In contrast, using a cost function other than Cout can re-
sult in a non-linear PCF. We support non-linear PCFs that
are monotonically increasing and differentiable, i.e., have no
jumps and there is a slope value at each point.

ŝ: 0.00000024⋈ ◦
s: 0.00000024

n.n id ⋈ ci.ci person id

NAME

ŝ: 0.00001000⋈ ◦
s: 0.00002859

ci.ci movie id ⋈ t.t id
ci.ci movie id ⋈ mc.mc movie id
ci.ci movie id ⋈ mk.mk movie id

CAST INFO
ŝ: 0.00000426⋈ ◦

s: 0.00000426
cn.cn id ⋈ mc.mc company id

COMPANY NAME

ŝ: 0.00001000⋈ ◦
s: 0.0000100

t.t id ⋈ mk.mk movie id
t.t id ⋈ mc.mc movie id

TITLE
ŝ: 0.00000745⋈ ◦

s: 0.00000745
k.k id ⋈ mk.mk keyword id

KEYWORD
ŝ: 0.00001002⋈ ◦

s: 0.00007101
mk.mk movie id ⋈ mc.mc movie id

MOVIE KEYWORD MOVIE COMPANIES

f̂ : 347,793 /
◦

f : 7,050,333
∆f : +6,702,540 / q-error: 20.27
ĉ: 6,908,427/

◦
c: 20,929,987

∆c ∶ +14, 021, 560 / cerr: 3.03

f̂ : 4,167,491
◦

f : 4,167,491
ĉ: 4,167,491

◦
c: 4,167,491

f̂ : 347,793 / f̊ : 7,050,333
∆f : +6,702,540 / q-error: 20.27
ĉ: 2,393,143/ c̊: 9,712,163
∆c: +7,319,020 / cerr: 4.06

f̂ : 1,374,410
◦

f : 1,374,410
ĉ: 1,374,410

◦
c: 1,374,410

f̂ : 25,305 /
◦

f : 179,425
∆f : +154,120 / q-error: 7.09
ĉ: 670,940/

◦
c: 1,287,420

∆c: +616,480 / cerr: 1.92

f̂ : 234,997
◦

f : 234,997
ĉ: 234,997

◦
c: 234,997

f̂ : 25,305 /
◦

f : 179,425
∆f : +154,120 / q-error: 7.09
ĉ: 410,638 /

◦
c: 872,998

∆c: +462,360 / cerr: 2.12

f̂ : 100,000
◦

f : 100,000
ĉ: 100,000

◦
c: 100,000

f̂ : 25,305 /
◦

f : 179,425
∆f : +154,120 / q-error: 7.09
ĉ: 285,333 /

◦
c: 593,573

∆c: +308,240 / cerr: 2.08

f̂ : 134,170
◦

f : 134,170
ĉ: 134,170

◦
c: 134,170

f̂ : 25,305 / f̊ : 179,425
∆f : +154,120 / q-error: 7.09
ĉ: 125,858 / c̊: 279,978
∆c: +154,120 / cerr: 2.22

f̂ : 51,297
◦

f : 51,297
ĉ: 51,297

◦
c: 51,297

f̂ : 49,256
◦

f : 49,256
ĉ: 49,256
◦
c: 49,256

A

B

C

D

Figure 2: Estimated optimal plan for JOB Query 17,
chosen by conventional plan selection strategy.

ŝ: 0.00001000⋈ ◦
s: 0.00008691

t.t id ⋈ ci.ci movie id
t.t id ⋈ mk.mk movie id

mc.mc movie id ⋈ ci.ci movie id
mc.mc movie id ⋈ mk.mk movie id

ŝ: 0.00000024⋈ ◦
s: 0.00000024

n.n id ⋈ ci.ci person id

NAME
ŝ: 0.00001000⋈ ◦

s: 0.00002336
ci.ci movie id ⋈ mk.mk movie id

CAST INFO
ŝ: 0.00000745⋈ ◦

s: 0.00002336
mk.mk keyword id ⋈ k.k id

KEYWORD MOVIE KEYWORD

ŝ: 0.00000426⋈ ◦
s: 0.00000426

cn.cn id ⋈ mc.mc company id

COMPANY NAME
ŝ: 0.00001000⋈ ◦

s: 0.00001000
t.t id ⋈ mc.mc movie id

TITLE MOVIE
COMPANIES

f̂ : 347,268 / f̊ : 7,050,333
∆f : +6,702,065 / q-error: 20.30
ĉ: 8,018,758/ c̊: 16,605,629
∆c ∶ +8, 586, 871 / cerr: 2.07

f̂ : 705,030 /
◦

f : 1,646,933
∆f : +941,903 / q-error: 2.34
ĉ: 7,188,725 /

◦
c: 9,072,531

∆c: 1,883,806 / cerr: 1.26

f̂ : 4,167,491
◦

f : 4,167,491
ĉ: 4,167,491

◦
c: 4,167,491

f̂ : 705,030 / f̊ : 1,646,933
∆f : +941,903 / q-error: 2.34
ĉ: 2,316,204 / c̊: 3,258,107

∆c: 941,903 / cerr: 1.41

f̂ : 1,374,410
◦

f : 1,374,410
ĉ: 1,374,410

◦
c: 1,374,410

f̂ : 51,297
◦

f : 51,297
ĉ: 236,764

◦
c: 236,764

f̂ : 134,170
◦

f : 134,170
ĉ: 134,170

◦
c: 134,170

f̂ : 51,297
◦

f : 51,297
ĉ: 51,297

◦
c: 51,297

f̂ : 49,256
◦

f : 49,256
ĉ: 482,765

◦
c: 482,765

f̂ : 234,997
◦

f : 234,997
ĉ: 234,997

◦
c: 234,997

f̂ : 49,256
◦

f : 49,256
ĉ: 198,512

◦
c: 198,512

f̂ : 100,000
◦

f : 100,000
ĉ: 100,000
◦
c: 100,000

f̂ : 49,256
◦

f : 49,256
ĉ: 49,256
◦
c: 49,256E

F

G H

I

Figure 3: Estimated robust plan for JOB Query 17,
chosen by our approach.

1363

C
o
st

c

Cardinality f

PC
Fvo

l

PCFrob

f̂

ĉrob
ĉvol

◦

f

◦
crob

◦
cvol

Figure 4: Cost behavior of a volatile plan and a
robust plan in the presence of estimation errors.

Next, we give an example for the calculation of a PCF.
We consider the estimated robust plan Prob for Query 17 of
the Join Order Benchmark in Figure 3. For the Cout cost
function and the given statistics, Prob has estimated costs
of 8, 018, 758. We assume that the output cardinality of
edge F in Figure 3 is not 705, 030 but an arbitrary value. Let
us denote this variable as fCI,K,MK for the output cardinality
of joining cast info (CI), keyword (K), and movie keyword

(MK). Let us model the Cout costs of Prob as a PCF on the
variable fCI,K,MK, i.e., not set fCI,K,MK = 705, 030 but leave
it as parameter when calculating the Cout costs of Prob:

Cout(Prob) = fCI,K,MK + f̂N,CI,K,MK + f̂N,CI,K,MK,T,MC,CN

+ f̂K + f̂MK + f̂K,MK + f̂CI + f̂N

+ f̂T + f̂MC + f̂T,MC + f̂CN + f̂T,MC,CN

= 2.49 ⋅ fCI,K,MK + 6, 261, 430 (1)

We see that for each output tuple on the edge fCI,K,MK the
total cost of Prob increases by 2.49. While fCI,K,MK is the

deepest edge containing a m:n join for Prob, the edge A , de-
noted as fMK,MC, is the deepest edge containing a m:n join
of the estimated optimal plan Popt in Figure 2. In order to
consider the sensitivity of fMK,MC, we calculate the costs of
Popt as a PCF on the variable fMK,MC:

Cout(Popt) = 31.49 ⋅ fMC,MK + 6, 111, 621 (2)

Consequently, one additional tuple for fMK,MC increases
the total cost of Popt by 31.49. Therefore, the edge fMK,MC

in Popt has a steeper slope than the edge fCI,K,MK in Prob.

4.1 Cardinality-Slope Robustness Metric
To define a robustness metric on PCFs for an online selec-

tion approach, we argue that the following design consider-
ations have to be taken into account: (1) calculation effort,
(2) potential cardinality estimation errors for different types
of operators, and (3) potential propagation of cardinality es-
timation errors. A low calculation effort is mandatory for an
online selection approach. The risk of cardinality estimation
errors for different types of operators has to be considered
in the robustness metric, since it has been shown that the
precision of statistical models varies for different types of
operators [5, 17, 20]. Finally, it has to be considered that
cardinality estimation errors on deep edges (greater depth
in the plan tree [6]) can be propagated to the cardinality es-
timations on higher edges (smaller depth in the plan tree).
Consequently, cardinality estimation errors on deep edges
can have a stronger impact on cerr compared to higher edges.

First, we denote a query execution plan P = (OP , EP),
where OP is the set of operators and EP the set of edges.

We take the PCFs for all edges in a query execution plan into
account. The next building block for the cardinality-slope
robustness metric is the definition of a cardinality-slope value
for an edge e ∈ EP based on a PCF of cardinality f on e.

Definition 6. The cardinality-slope value δf,e for an
edge e ∈ EP is the slope of PCFf ,e at the estimated cardi-

nality f̂ , where PCFf ,e is the PCF that models the cost of
a plan P as a function of cardinality f on e.

In theory, estimation errors can occur on all edges in the
query execution plan. In practice, the precision of statistical
models for cardinality estimation varies for different types
of operators. For example, edges after foreign key joins can
be estimated more precisely than after m:n joins, due to
the constraint on keys [5, 17]. Also edges after base table
scans can be estimated more precisely than edges after filter
predicates. To consider the different risks for estimation
errors, we define an edge weighting function ϕ as the next
building block for the cardinality-slope robustness metric.

Definition 7. An edge weighting function ϕ ∶ EP →[0.0, 1.0] assigns each edge e ∈ EP an error-sensitivity value
between 0.0 (not sensitive) and 1.0 (very sensitive).

An edge after a m:n join should get a larger error-sensiti-
vity value (e.g., 1.0) than an edge after a foreign key join
(e.g., 0.0). The definition of the cardinality-slope robustness
metric combines these building blocks.

Definition 8. The robustness value rδf of the cardinality-
slope robustness metric for a plan P is defined as the sum
over the products of δf,e and ϕ(e) for each edge e ∈ EP :

rδf (P) = ∑
e∈EP

ϕ(e) ⋅ δf,e
Consequently, the smaller the robustness value, the more

robust the plan. In Section 6, we experimentally evaluate
the cardinality-slope robustness metric w.r.t. the consistency
requirements of Section 3. The cardinality-slope robust-
ness metric also follows our design considerations: Section 6
shows the low calculation overhead for rδf . Potential cardi-
nality estimation errors for different types of operators are
weighted by ϕ. Finally, Definition 8 implicitly considers
the potential propagation of cardinality estimation errors.
As Theorem 1 shows, cardinality estimation errors on deep
edges in query execution plans can have a stronger impact
on the total cost and therefore the robustness value rδf , com-
pared to higher edges. This is not the case, when there is
a very selective operator between the deep and the higher
edge: a very selective operator can decrease the number of
output tuples to almost zero. The cardinality estimation er-
rors in the underlying sub-plan have almost no impact on the
total cost and therefore on the robustness value rδf anymore.
We formalize and prove this observation in Theorem 1.

Theorem 1. Assuming a deep plan edge i with estimated
cardinality f̂i and cardinality-slope value δf,i, as well as a

higher plan edge j with estimated cardinality f̂j and cardi-
nality-slope value δf,j . Then, for Cout it holds:

δf,i ≥ δf,j ⇔
f̂j

f̂i
≥
δf,j − S
1 + δf,j

, (3)

where S ≥ 0 depends on the estimated cardinalities and
selectivities between the deep edge i and the higher edge j.

1364

opn−1

Tn
opj

Tj

opj−1

Tj

opi+1

Ti opi

Ti

opi−1

TiTi

+1

−1−2

−1

−1

f
′
i−2 f

′
i−1

si−1
fi f

′
i

si

f
′
i+1=1

fi+1

si+1
fj−1f

′
j−1

sj−1fjf
′
j

sj

f
′
n−1fn−1

sn−1fnP = {i, . . . , n}

Figure 5: Arbitrary path in a query execution plan.

Proof. Figure 5 shows an example of an arbitrary path P
from edge i over edge j to the root edge n, in an arbitrary
query execution plan. The arbitrary execution plan can have
arbitrary operators and an arbitrary tree structure. The
path contains unary and binary operators. We denote the
cardinality of an edge e as fe, and the selectivity of an oper-
ator op as sop . It also shows non-path edges e

′ ∉ P with an
arbitrary sub-tree Te. The cardinality of an edge e ∈ P \ {i}
is defined as fe = fe−1 ⋅ f

′
e−1 ⋅ se−1. For a more convenient

notation we define for edge i that fi = f ′i−1 ⋅ f
′
i−2 ⋅ si−1. For

unary operators such as filters, there is only one input edge,
and therefore we add w.l.o.g. a second invisible input edge
with cardinality 1 (see f

′
i+1 in Figure 5). Therefore, we can

rewrite the estimated cardinality on an edge e ∈ P :

f̂e =
e−1

∏
k=i−2

f̂
′
k ⋅

e−1

∏
k=i−1

ŝk (4)

We assume an edge j ∈ P (cf. Figure 5) such that i < j,
i.e., the edge i is deeper than the edge j. To see the impact
of the estimated cardinality of the deeper edge f̂i, we rewrite
the estimated cardinality of the higher edge f̂j as:

f̂j = f̂i ⋅
j−1

∏
k=i
f̂
′
k ⋅

j−1

∏
k=i
ŝk = f̂ ′i ⋅X (5)

Before using Equation 5, we use Equation 4 to rewrite
Cout (cf. Section 3.1). Cout is the sum over the estimated
cardinalities of all edges, i.e., all edges e ∈ P , and all other
edges e

′ ∉ P including all edges from their sub-tree Te.

Cout =
n

∑
l=i

(l−1

∏
k=i−2

f̂
′
k ⋅

l−1

∏
k=i−1

ŝk) + n−1

∑
k=i−2

f̂
′
k +

n−1

∑
k=i−2

Cout(Tk) (6)

Next, we construct a PCF that models the Cout costs as a
function of fi, i.e., PCF f,i . To do so, we factor out f̂i from

Equation 6 and use variable fi instead of the estimation f̂i.

Cout=fi⋅ [n∑
l=i

(l−1

∏
k=i
f̂
′
k ⋅

l−1

∏
k=i
ŝk)]

dependent on fi (δf,i)
+

n−1

∑
k=i−2

f̂
′
k +

n−1

∑
k=i−2

Cout(Tk)
independent of fi (cconst,i)

(7)

We observe from Equation 7 that costs dependent on fi
are the cardinality-slope value δf,i for the edge i. Next, we
construct the PCF f ,j for the higher edge j. Therefore, we

also have to separate the sum over edges of P from Equa-
tion 6 into edges higher and deeper than j.

Cout=fj⋅[n

∑
l=j

(l−1

∏
k=j
f̂
′
k ⋅
l−1

∏
k=j
ŝk)]

dependent on fj (δf,j)
+
j−1

∑
l=i
f̂l +

n−1

∑
k=i−2

f̂
′
k +

n−1

∑
k=i−2

Cout(Tk)
independent of fj (cconst,j)

(8)

Now, we reformulate the part of Equation 7 that depends
on fi, to quantify the impact of δf,j on δf,i. We separate the
sums into one running from i to j− 1 and another from j to
n, and factor out X (cf. Equation 5) from the latter sum.

δf,i=
j−1

∑
l=i

(l−1

∏
k=i
f̂
′
k ⋅
l−1

∏
k=i
ŝk)+

S +X

j−1

∏
k=i
f̂
′
k ⋅
j−1

∏
k=i
ŝk⋅

X

[n

∑
l=j

(l−1

∏
k=j
f̂
′
k ⋅
l−1

∏
k=j
ŝk)]

δf,j

(9)

We observe that the product, denoted asX, is the last term
of S +X. Let us presume δf,i ≥ δf,j :

δf,i ≥ δf,j
(9)
⇐⇒ S +X ⋅ (1+δf,j) ≥ δf,j (10)

⇐⇒ X ≥
δf,j − S
1 + δf,j

(5)
⇐=⇒

f̂j

f̂i
≥
δf,j − S
1 + δf,j

(11)

By inserting δf,i into Equation 10, we factored out X.
From Equation 10 to 11, we first subtracted S and second
divided it by 1 + δf,j . Finally, Equation 5 is inserted.

From Theorem 1, we observe that the right hand side term
of Equation 3 is always less than 1, since cardinalities and
selectivities are non-negative. Therefore, if the estimated
cardinality of the deep edge is smaller or equal to the esti-
mated cardinality of the higher edge (f̂j / f̂i ≥ 1), then the
deep edge has a larger cardinality-slope value (δf,i > δf,j).
In contrast, if there is a highly selective operator between
the deep and the higher edge (f̂j / f̂i < 1), then the right
hand side term of Equation 3 is a tight bound for δf,i ≥ δf,j ,
i.e., for a highly selective operator δf,i < δf,j can hold. Fur-
thermore, Theorem 1 can be extended and proved for cost
functions other than Cout. The reason is that cost functions
in general have dependencies on cardinalities, and the car-
dinality of an edge is always a parameter in the following
cardinality estimations towards the root.

Let us again consider JOB Query 17. Figure 6 shows
the robustness value calculation of the cardinality-slope ro-
bustness metric for the estimated optimal plan Popt and the
estimated robust plan Prob, i.e., the plan with the minimum
robustness value rδf from the robust plan candidates. For
simplicity, we use an edge weighting function ϕ that assigns
weight 1.0 to all m:n join edges and weight 0.0 to all for-
eign key and base table scan edges. For both plans, the
dashed edges are the edges that include m:n joins, i.e., the
edges that are more sensitive to estimation errors. The cor-
responding PCF, including the δf value, is shown right of
those edges. For example, the cardinality-slope value δf,eF
for edge eF of Prob is 2.49, i.e., the slope of PCFf ,eF as cal-
culated in Equation 1. As a result, the robustness value rδf
for Popt is 33.49 and for Prob 3.49. Therefore, Prob is more
robust according to the cardinality-slope robustness metric
than Popt. The true statistics in Figure 2 and 3 result in a
smaller cerr for Prob compared to Popt. Executing both plans
on the real-world database of the JOB shows an execution
time speedup of factor two for Prob compared to Popt.

1365

4.2 Selectivity-Slope Robustness Metric
The cardinality-slope value δf for an edge e ∈ EP ex-

presses the impact of one additional tuple on the total cost.
Apart from the edge weighting function ϕ for potential car-
dinality estimation errors for different types of operators and
the implicitly considered propagation of cardinality estima-
tion errors, the edges in rδf are not further weighted. In
order to explain a derived robustness metric, we first de-
note f̂max as the estimated maximum output cardinality of
an operator. Taking a binary join as an example, f̂max is the
product of its estimated input cardinalities (cross-product).
We argue that edges with a potentially larger absolute car-
dinality error ∆f , i.e., the absolute difference between the
estimated and the true cardinality, can have a stronger im-
pact on the final cerr. Since ∆f cannot be calculated before
executing the plan, the derived robustness metric in this
section considers the risk of a large ∆f , by taking f̂max into
account. The larger f̂max, the larger the potential impact on
the final cerr. Next, we define the selectivity-slope value δs
and the corresponding selectivity-slope robustness metric.

Definition 9. The selectivity-slope value δs,op for an
operator op ∈ OP is the slope of PCFs,op at the estimated
selectivity ŝ, where PCFs,op is the PCF that models the cost
for a plan P as a function of the selectivity s on op.

Definition 10. The robustness value rδs of the selectivity-
slope robustness metric for a plan P is the sum over the
products of δs,op and φ(op) for each operator op ∈ OP :

rδs(P) = ∑
op∈OP

φ(op) ⋅ δs,op ,
where φ ∶ OP → [0.0, 1.0] is a weighting function for opera-
tors, instead for edges as ϕ.

We show that the selectivity-slope robustness metric im-
plicitly weights the cardinality-slope value δf,e for the out-

going edge e ∈ EP of an operator op ∈ OP by f̂max.

Theorem 2. For Cout, the selectivity-slope value δs,op of

an operator op ∈ OP is the product of f̂max and δf,e on the
outgoing edge e ∈ EP of op.

Proof. Without loss of generality, consider the edge i
in Figure 5 with the cardinality fi. From Equation 7 in
the proof of Theorem 1, we see that the PCFf ,i for edge i
consists of costs independent of fi, denoted as cconst,i , and
costs dependent on fi, i.e., the cardinality-slope value δf,i.

Cout = fi ⋅ δf,i + cconst,i (12)

As in Figure 5, we denote si−1 as the selectivity of opera-
tor opi−1, i.e., the operator before edge i. Furthermore, we
denote f

′
i−1 and f

′
i−2 as the input cardinalities of opi−1. The

cardinality of edge i is the product of both input cardinali-
ties of opi−1 and the selectivity si−1, i.e., fi = f ′i−1 ⋅f

′
i−2 ⋅si−1.

Note that for unary operators having only one input edge
such as filters, we added in Theorem 1 without loss of gen-
erality a second invisible input edge with cardinality 1 (see

f
′
i+1 in Figure 5). Therefore, we rewrite Equation 12 as:

Cout = f
′
i−1 ⋅ f

′
i−2 ⋅ si−1 ⋅ δf,i + cconst,i (13)

In order to rewrite Equation 13 into a PCF with si−1 as a
single cost parameter (PCFs,i−1), the cardinality variables

rδf (Popt) = 33.49

N

CI

CN

T

K

MK MC

eC

eA

feC

c 2.00

feA

c
31
.4
9

(a) Estimated Optimal Plan

rδf (Prob) = 3.49

N

CI

K MK

CN

T MC

eI

eF

feI

c
1.00

feF

c
2.49

(b) Estimated Robust Plan

Figure 6: Robustness values rδf assigned to robust
plan candidates for JOB Query 17.

for the input edges f
′
i−1 and f

′
i−2 are set to the corresponding

estimated cardinalities f̂
′
i−1 and f̂

′
i−2.

Cout = f̂ ′i−1⋅f̂
′
i−2⋅δf,i⋅si−1+cconst,i = δs,i−1⋅si−1+cconst,i (14)

Since cconst,i is independent of fi, it has no cost depending
on si−1. Therefore, δs,i−1 for the operator opi−1 is the prod-

uct of f̂max = f̂ ′i−1 ⋅ f̂
′
i−2 and the cardinality-slope value δf,i

of the outgoing edge i of the operator opi−1. Note that for
unary operators having only one input edge such as filters,
f̂
′
i−2 or f̂

′
i−1 is set to 1, and therefore has no impact.

In Section 6, we experimentally evaluate the selectivity-
slope robustness metric w.r.t. the consistency requirements
of Section 3. The selectivity-slope robustness metric also
follows our design considerations: the calculation effort is
small, potential cardinality estimation errors are weighted,
and the propagation of cardinality estimation is considered.
A proof for the latter can be constructed analogous to the
proof of Theorem 1 by adding the additional weight of f̂max.
In summary, the selectivity-slope robustness metric addi-
tionally considers the risk of a large ∆f on all edges, com-
pared to the cardinality-slope robustness metric.

4.3 Cardinality-Integral Robustness Metric
The next robustness metric is a trade-off between plan

robustness and estimated costs. Both the cardinality-slope
and the selectivity-slope robustness metric use the slopes of
PCFs as the robustness indicator. However, a plan with
a steep slope could still have smaller costs for a significant
range of cardinality values, compared to a plan with a more
moderate slope. Figure 7(a) shows PCFA and PCFB of two
different plans as a function of cardinality on a single plan
edge. The cardinality of the edge is denoted on the x-axis
and the cost on the y-axis. Furthermore, it shows f̂ , f̂↓,

and f̂↑, where f̂↓ is the lower bound for the estimated car-

dinality of an edge e ∈ EP , and f̂↑ is the upper bound for
the estimated cardinality of e ∈ EP . We argue that a lower
and a upper bound for the estimated cardinality can make
the robustness metric more precise. In practice, histograms,
sampling, or bounds for cardinality estimation [21] can give

estimations for f̂↓ and f̂↑. In the evaluation in Section 6, we

set f̂↓ to 0, and f̂↑ to f̂max. Note that PCFA and PCFB have

the same estimated costs ĉ at f̂ . Since PCFB has a more
moderate slope than PCFA, the cardinality-slope robustness

1366

C
os
t
c

Cardinality f

f̂↓ f̂ f̂↑

ĉ PCFB

PC
FA

(a) ∫ f̂↑
f̂↓

PCFA < ∫ f̂↑
f̂↓

PCFB

C
os
t
c

Cardinality f

f̂↓ f̂ f̂↑

ĉ PCFC

PC
FD

(b) ∫ f̂↑
f̂↓

PCFC > ∫ f̂↑
f̂↓

PCFD

Figure 7: Conceptual comparison between slope and
integral robustness indicator.

metric would assign PCFB a smaller robustness value than
PCFA. By considering the costs between f̂↓ and f̂↑, a ro-
bustness metric that is a trade-off between plan robustness
and estimated costs would consider PCFA to be more ro-
bust than PCFB. The reason is that PCFA has significant
less cost for a majority of cardinalities between f̂↓ and f̂↑,

i.e., PCFA has significantly less cost between f̂↓ and f̂ than

PCFB, and is competitive to PCFB between f̂ and f̂↑. To
model plan robustness and estimated costs in a single value,
we consider the integral of the PCF between f̂↓ and f̂↑. In
Figure 7(a), the integral of PCFA is smaller than the integral
of PCFB. Next, we define the cardinality-integral value ∫

f
as

a trade-off between plan robustness and cost, and afterwards
the cardinality-integral robustness metric.

Definition 11. The cardinality-integral value ∫
f,e

for

an edge e is ∫ f̂↑
f̂↓

PCFf ,e .

Definition 12. The robustness value r∫f of the cardinality-

integral robustness metric for a plan P is defined as the
sum over the products of ∫

f,e
and ϕ(e) for each edge e ∈ EP :

r∫f (P) = ∑
e∈E

ϕ(e) ⋅ ∫
f,e

A second scenario in Figure 7(b) shows PCFC and PCFD.

The integral between f̂↓ and f̂↑ of PCFD is slightly smaller
compared to PCFC. Hence, the cardinality-integral robust-
ness metric considers PCFD to be more robust than PCFC.
In contrast to Figure 7(a), both plans in Figure 7(b) have
smaller cost for a wide cardinality range. PCFD has smaller
cost from f̂↓ to f̂ and PCFC from f̂ to f̂↑. Furthermore,
the difference between the estimated and the true cost for
all cardinalities from f̂↓ to f̂↑ is smaller for PCFC than
for PCFD (cf. Figure 4). This means that PCFC should
get a smaller robustness value than PCFD. Note that the
cardinality-slope robustness metric assigns PCFC a smaller
robustness value than PCFD, because of the more moderate
slope of PCFC. Both scenarios in Figure 7 show how a lower
and a upper bound, f̂↓ and f̂↑, for the estimated cardinality
of an edge e ∈ EP can impact the robustness of a plan.

Calculating the integral makes the metric independentof f̂
and the slope at this point. In addition, we can support
arbitrary PCF shapes, because integrals can always be ap-
proximated numerically [13]. Section 6 shows the experi-
mental evaluation of the cardinality-integral robustness met-
ric w.r.t. the consistency requirements of Section 3. The
cardinality-integral metric follows two design considerations:
it has a low calculation effort, and potential cardinality es-
timation errors are weighted. Since the cardinality-integral

C
os
t
c

Cardinality f

f̂

PCF

∆f
∆c

(a) Card.-Slope

C
os
t
c

Selectivity s

ŝ 1

PCF

∆s
∆c

(b) Selectiv.-Slope

C
os
t
c

Cardinality f

f̂f̂↓ f̂↑

PCF

(c) Card.-Integral

Figure 8: Cardinality-slope, selectivity-slope and
cardinality-integral robustness metric.

metric calculates integrals to balance plan robustness and
costs, it considers high plan edges stronger than deeper plan
edges. This is because plan edges always contain the cost
of their sub-plans. Consequently, the integrals are larger
on high plan edges compared to the deeper plan edges, and
therefore have a higher impact on the robustness value.

4.4 Robustness Metrics Overview
Figure 8 summarizes the three robustness metrics. The

cardinality-slope metric (Figure 8(a)) reflects the expected
difference between estimated and true cost for cardinality
estimation errors on all edges in the query execution plan.
Furthermore, it implicitly considers the potential propaga-
tion of cardinality estimation errors, and takes the potential
cardinality estimation errors for different types of operators
into account. In addition, the selectivity-slope metric (Fig-
ure 8(b)) considers the risk of a large absolute cardinality
error ∆f on all edges. Therefore, it models the PCFs as
function of operator selectivity, compared to the cardinality-
slope metric. In contrast to the cardinality-slope and the
selectivity-slope metric, the cardinality-integral metric (Fig-
ure 8(c)) does not purely focus on plan robustness, but also
takes estimated costs into consideration. Furthermore, it
can consider a more realistic range for the cardinality of
an edge, instead of considering all numerically possible car-
dinalities. All three metrics support any kind of operator,
operator implementation and query execution plan trees be-
cause the cost of a plan can always be modeled as a PCF
of cardinality. In addition, the metrics can be extended to
consider estimation errors in other cost parameters, such
as consumed memory. We also experimented with a fourth
metric, namely selectivity-integral, but found no substantial
improvement over the cardinality-integral metric.

5. PLAN CANDIDATES AND SELECTION
Our novel robust plan selection strategy has three phases:

First, we enumerate the set of robust plan candidates. Ev-
ery robust plan candidate is a plan for the entire query, and
not a sub-plan. Second, we calculate the robustness value
for each robust plan candidate by applying one of the three
robustness metrics. Third, we select the estimated most ro-
bust plan, i.e., the robust plan candidate with the smallest
robustness value for execution. Apart from robustness, se-
lecting a cheap query execution plan is still a major opti-
mization goal. Consequently, our first criteria for the robust
plan candidates is that they have to be the k-cheapest plans:

Definition 13. The k-cheapest plans are the k query
execution plans with the smallest estimated cost.

1367

The k -cheapest plans significantly reduce the number of
plan candidates, and give a tight upper bound for the num-
ber of plans independent of the plan space. In addition, the
k -cheapest plans can be utilized to apply additional con-
straints, such as memory consumption, on the plan set. Sec-
tion 6 shows that k = 500 has a low optimization overhead.
Furthermore, we show that the estimated robust plan inside
k = 500 is competitive w.r.t. an estimated robust plan with
larger k. Enumerating the k -cheapest plans is just a small
modification in the optimizer. The trivial approach in a dy-
namic programming enumerator is to keep the k -cheapest
plans in each plan class, instead of the cheapest plan. The
k -cheapest plans of two plan classes can be combined to cre-
ate plans of another plan class. We show in Section 6 that
enumerating the k -cheapest plans is a reasonable overhead.

Since the k -cheapest plans can contain expensive plans for
small queries, and only the cardinality-integral robustness
metric takes plan cost into consideration, we further limit
the robust plan candidates for the cardinality-slope and the
selectivity-slope robustness metric to near-optimal plans:

Definition 14. The near-optimal plans are a sub-set of
the plan space, containing the query execution plans with
estimated cost at most λ-times larger than the estimated
cost of the estimated optimal plan.

The near-optimal plans guarantee that robust plan can-
didates are competitive to the optimal plan. Cost-Stable
Plans [1] argue for λ = 1.2, which we confirm in Section 6.

In sum, our plan selection strategy has very low risks:
First, we enumerate the k -cheapest plans. Second, we cal-
culate the robustness value for each robust plan candidate.
Though it is a reasonable overhead, it can be significant in
very short running queries. It is not significant in our real-
world experiments in Section 6.1. In addition, dynamic pro-
gramming enumeration is no limitation, but shows that our
approach can be integrated into enterprise class optimizers.

6. EVALUATION
We implemented the three robustness metrics in our dy-

namic programming join optimizer. We use the same op-
timizer to determine the baseline plan for each query, i.e.,
the estimated cheapest or optimal plan. Our join optimizer
relies on dynamic programming [23], such as DB2 [9] and
Postgres [17]. As Postgres, it exhaustively searches the plan
space including bushy trees. We have shown that its cardi-
nality estimator is competitive [24]. In addition, we use the
Cmm [18] cost function, which is an extension of Cout that
considers different operator types and operator implementa-
tions. It also has a strong correlation to our main-memory
execution engine

1
, which we use to determine query execu-

tion times. Therefore, we argue that our join optimizer’s
choice of the estimated optimal plan is very similar to the
choice of popular commercial and free systems, for the con-
sidered join queries. We denote its estimated optimal plan
choice as conventional plan, and consider it as the baseline.

We experimentally evaluate the plan selection strategies
w.r.t. their end-to-end query execution times (Section 6.1),
and plan robustness (Section 6.2). The numbers we report
in Section 6.2 only depend on the robustness metrics im-
plementation and not on the machine the experiments run
on. Reported execution times were taken on a two socket

1
Finalist in the 2018 ACM SIGMOD Programming Contest

Intel Xeon E5-2660 v3 system with 128 GB of main memory,
running a Linux 4.4.120 kernel. Our engine

1
performs join

operators as hash join. The dynamic programming opti-
mizer and metric implementations are single-threaded. The
entire system is compiled with GCC 7.2.0 using option -O3.

Our first workload is based on the Join Order Bench-
mark (JOB) [17]. JOB uses real-world data from IMDb
with skew, correlations, and different join relationships that
cause estimation errors. We modified the original queries
to be pure join queries, which results in 33 complex queries
containing cycles and multiple join conditions between sub-
plans. Since pure join queries without any filters on base
tables create large results, we limit the movie id of the ta-
bles to 100, 000 rows. In the end, we ran 31 different queries.
Note that this does not limit the applicability of the results.

Our second benchmark is synthetic with generated data
and join queries. The query topologies are: chain, cycle,
and snowflake. All topologies join 10 tables. The snowflake
topology has a fact table with three dimension tables, and
each dimension again two sub-dimensions. For each topol-
ogy, we create one query and 100 different data sets. Fur-
thermore, we generate 100 queries with a random topology
and a corresponding data set. The random topology genera-
tor starts with a random connected query graph, into which
additional edges are randomly inserted to create cycles. The
random topologies also join 10 tables. For all generated data
sets, the base table cardinalities are uniform random num-
bers between 10, 000 and 100, 000. The data sets contain
skew and arbitrary correlations between columns to gener-
ate expanding and selective joins. There are foreign key and
m:n join relationships. The join cardinalities between two
base tables Ri and Rj are uniform random numbers between
max(∣Ri∣, ∣Rj∣) − 5000 and max(∣Ri∣, ∣Rj∣) + 5000.

Each experiment starts with enumerating the robust plan
candidates. For the cardinality-slope and the selectivity-
slope metric, the robust plan candidates are defined by the
near-optimal plans (λ = 1.2) and the k-cheapest plans (k =
500). For the cardinality-integral metric it is only the k-
cheapest plans (k=500). By definition, the k-cheapest plans
contain the estimated optimal plan, which is the baseline in
our experiments. To select the estimated robust plan, each
metric assigns a robustness value to every robust plan can-
didate. Both workloads contain only join queries with at
least one m:n join, and there are no estimation errors for
foreign key joins and base table scans in our setup. There-
fore, we define the weighting functions ϕ and φ to be 1.0 for
m:n joins, and 0.0 for foreign key joins and base table scans.

We compare our baseline, the estimated optimal plan (EO),
with the estimated most robust plan according to one of the
metrics: cardinality-slope (FS), selectivity-slope (SS), and
cardinality-integral metric (FI). We also perform a best-case
offline analysis to show the potential of robust plan selection.
We execute all robust plan candidates and denote the plan
with the lowest execution time as the fastest plan (FA).

6.1 Query Execution Time
Figure 9(a) shows the JOB queries plotted along the x-

axis. The y-axis shows the median end-to-end query exe-
cution time tp for a plan p in milliseconds (log-scale) over
101 executions. In addition, the y-axis shows the resulting
speedup (+ tEO/tp) or regression (− tp/tEO) of robust plan
selection w.r.t. conventional plan selection (EO). We show
typical results, including the queries with the best speedup

1368

101

102

103

104

105
E
x
e
c
u
ti
o
n

T
im

e
t p

[i
n

m
s]

optimization time
estimated optimal plan (EO)
fastest plan (FA)

+2

+3

S
p
e
e
d
u
p
(+

)

−3

−2

±1

Q
2
5

Q
3
3

Q
1
9

Q
1

Q
1
4

Q
4

Q
1
6

Q
2

Q
1
7

Q
7

(a) Join Order Benchmark

102

103

104

cardinality-slope metric (FS)
selectivity-slope metric (SS)
cardinality-integral metric (FI)

+2

+3

+4

−2

±1

Q
9
1

Q
8
1

Q
8
3

Q
4
6

Q
9
5

Q
9
8

Q
3
7

Q
9
4

Q
6
3

Q
5
7

(b) Random Topology

Σ ↑EO ↓EO

C
h
a
in

EO 18798 ms – –
FA 14562 ms +4.23× 1.00×
FS 16091 ms +3.31× −1.26×
SS 17061 ms +1.79× −1.36×
FI 16865 ms +3.49× −1.13×

C
y
c
le

EO 41084 ms – –
FA 25539 ms +2.94× 1.00×
FS 34587 ms +2.43× −1.21×
SS 32279 ms +2.43× −1.27×
FI 33193 ms +2.43× −1.25×

S
n
o
w

fl
a
k
e EO 53793 ms – –

FA 44843 ms +2.11× 1.00×
FS 54437 ms +1.53× −2.07×
SS 51579 ms +1.91× −1.36×
FI 53327 ms +1.78× −1.38×

(c) Other Topologies

Figure 9: Comparison of end-to-end query execution times for plan selection strategies.

+10

+100

c
e
rr

Im
p
ro

v
e
m
e
n
t
[∆

c
e
r
r
] fastest plan (FA)

cardinality-slope metric (FS)
selectivity-slope metric (SS)
cardinality-integral metric (FI)

0

−10

−30 Q
2
5

Q
9

Q
7

Q
1
9

Q
1

Q
4

Q
2

Q
1
4

Q
1
6

Q
1
7

(a) Join Order Benchmark

+10

+100
+200

0

−10

−30 Q
9
1

Q
8
7

Q
4
6

Q
9
5

Q
7
9

Q
6
3

Q
3
3

Q
1
0

Q
7
4

Q
5
7

(b) Random Topology

µ∆cerr
↑∆cerr

↓∆cerr

C
h
a
in

FA +0.85 +20.69 0.00
FS +0.80 +19.19 0.00
SS +0.73 +15.43 0.00
FI +0.55 +17.98 −0.20

C
y
c
le

FA +5.62 +25.71 0.00
FS +4.51 +25.04 0.00
SS +4.72 +24.87 0.00
FI +3.30 +20.02 −0.25

S
n
o
w

fl
a
k
e FA +2.19 +39.35 −2.03

FS +1.28 +18.07 −1.87
SS +1.48 +37.13 −2.87
FI +0.75 +13.47 −4.90

(c) Other Topologies

Figure 10: Comparison of cost error factor improvement for plan selection strategies.

(Q2 and Q7) and the worst regression (Q25 and Q33).
The best speedup is achieved for FS in Q2 (1.47), and for

SS and FI in Q7 (1.83). In contrast, the worst regression
for SS and FI is only 1.52 (Q33). For FS the worst regres-
sion is 2.98 (Q25), but the second worst regression is again
only 1.51 (Q33). By considering near-optimal plans and the
k-cheapest plans, the estimated most robust plan does not
necessarily have the minimum estimated costs and small re-
gressions for some queries can be the result. Comparing
the results of Q2 and Q7 to the fastest plan (FA), found in
a brute-force analysis, shows that all robust plan selection
strategies are close to the true optimum in these cases.

We show the results of the synthetic benchmark in Fig-
ures 9(b) and 9(c). Figure 9(b) shows typical results for ran-
dom topologies, including Q37, Q94, and Q98 with the best
speedup as well as Q81, Q83, and Q91 with the worst regres-
sion. Results for chain, cycle, and snowflake topologies are
summarized in Figure 9(c), by cumulative query execution
time (Σ), best speedup (↑EO), and worst regression (↓EO)
w.r.t. EO over 100 different data sets. For all three metrics,
robust plan selection achieves a better cumulative query ex-
ecution time than conventional plan selection. Furthermore,
all three metrics achieve larger speedup than regression fac-
tors for all query topologies. Comparing the results of Q37,
Q95, and Q98 to FA, shows that all robust plan selection
strategies are close to the true optimum in these cases.

6.2 Plan Robustness
In every subsection, we evaluate one consistency require-

ment for the robustness metric presented in Section 3.

6.2.1 Cost Error Factor Improvement
According to the first consistency requirement, the esti-

mated most robust plan should have a smaller cost error
factor cerr than the estimated optimal plan (cf. Section 3).
To measure the cost error factor improvement, we calculate
the difference between the cerr of the estimated optimal plan
(cerr,EO) and the cerr of another plan p (cerr,p):

∆cerr,p
= cerr,EO − cerr,p

Consequently, a positive ∆cerr,p
shows the cerr improve-

ment of p compared to EO. Figure 10(a) shows typical ∆cerr,p

values (y-axis, log-scale) of JOB queries (x-axis), including
the queries with the largest ∆cerr,p

(Q14, Q16, and Q17)
and the smallest ∆cerr,p

(Q9 and Q25). Robust plan se-
lection using SS and FI achieves a positive ∆cerr,p

in 30 of
the 31 queries. Furthermore, robust plan selection using FS
achieves a positive ∆cerr,p

in 29 of 31 queries. Comparing
with the fastest plan (FA) shows that the fastest plan is
not necessarily as robust as the estimated most robust plan,
since there can be a large difference between estimated and
true cost for FA. Considering, e.g., JOB Q14, robust plan se-
lection with FS, SS, and FI achieves a larger ∆cerr,p

than FA.
The results of the synthetic benchmark are shown in Fig-

ures 10(b) and 10(c). Figure 10(b) shows typical results for
random topologies, including the queries with the largest
∆cerr,p

(Q57 and Q74) and the smallest ∆cerr,p
(Q33, Q87,

and Q91). Results for chain, cycle, and snowflake topolo-
gies are summarized in Figure 10(c), by average (µ∆cerr

),
largest (↑∆cerr

), and smallest (↓∆cerr
) ∆cerr,p

over 100 dif-
ferent data sets. For all three robustness metrics, robust

1369

0%

25%

50%

75%

100%
c
e
rr

D
o
m
in
a
n
c
e

[ρ
c
er
r
]

0

−100

−101

−102 Q
3
2

Q
1
6

Q
4

Q
7

Q
1
7

Q
2
3

Q
1

Q
1
9

Q
2
5

Q
1
4

c
e
rr

D
o
m
in
a
n
c
e

[δ
c
er
r
]

estimated optimal plan (EO)
fastest plan (FA)
cardinality-slope metric (FS)

(a) Join Order Benchmark

0%

25%

50%

75%

100%

0

−100

−101

−102

−103 Q
6
2

Q
8

Q
6
3

Q
2
7

Q
3
7

Q
7
9

Q
9
5

Q
4
6

Q
3
3

Q
5
7

selectivity-slope metric (SS)
cardinality-integral metric (FI)

(b) Random Topology

µρcerr
µδcerr

↓δcerr

C
h
a
in

EO 31.75% −0.94 −20.69
FA 92.95% −0.07 −1.47
FS 93.09% −0.11 −2.82
SS 89.37% −0.18 −4.49
FI 63.97% −0.38 −2.71

C
y
c
le

EO 20.63% −6.04 −26.27
FA 95.13% −0.36 −5.42
FS 91.53% −1.02 −7.81
SS 90.50% −0.80 −6.05
FI 63.21% −2.71 −13.60

S
n
o
w

fl
a
k
e EO 39.16% −2.51 −41.33

FA 93.91% −0.30 −3.73
FS 86.50% −1.22 −30.62
SS 88.87% −1.01 −40.72
FI 74.26% −1.74 −40.72

(c) Other Topologies

Figure 11: Comparison of cost error factor dominance for plan selection strategies.

plan selection achieves a positive µ∆cerr,p
. Also, FS and SS

achieves a positive ∆cerr,p
for all generated chain and cycle

queries. A comparison of ↑∆cerr
and ↓∆cerr

for FS, SS and
FI shows that the maximum gain is always larger than the
maximum loss of cerr. Considering FS in Q57 of the random
topology, shows the best ∆cerr,p

of 89.02. The comparison
of FI to FS and SS in Figure 10(c) shows that FI always
achieves worse results. The reason is that the cardinality-
integral robustness metric already balances plan robustness
and estimated costs. In contrast, the cardinality-slope and
selectivity-slope robustness metrics only focus on plan ro-
bustness and achieve this trade-off by limiting robust plan
candidates to near-optimal plans. We also observe that the
fastest plan (FA) is not necessarily as robust as the esti-
mated most robust plan. For instance, FS and SS achieves
a larger ∆cerr,p

than FA for Q79 of the random topology.

6.2.2 Cost Error Factor Dominance
According to the second consistency requirement, the es-

timated most robust plan, chosen by robust plan selection,
should dominate all robust plan candidates, denoted as RPC ,
with respect to their cerr (cf. Section 3). In order to measure
the cost error factor dominance, we define ρcerr,p

of a plan p:

ρcerr,p
=

∣{r ∣ cerr,p ≤ cerr,r, r ∈ RPC }∣∣RPC∣
A ρcerr,p

of 100% indicates that a plan has the smallest cerr

of all robust plan candidates, i.e., is the most robust plan. In
practice, a ρcerr,p

of 100% cannot be achieved for every query,
since the robustness value assigned by a robustness metric
is an approximation for an upper bound of cerr. Therefore,
we additionally define δcerr,p

as the difference between cerr

of a plan p and cerr of the most robust plan r ∈ RPC :

δcerr,p
= min{cerr,r ∣ r ∈ RPC } − cerr,p

A δcerr,p
close to 0 indicates that a plan p has a similar

cerr as the plan with the smallest cerr from the robust plan
candidates, i.e., the most robust plan. Figure 11(a) plots
ρcerr,p

and δcerr,p
for JOB queries (x-axis). The y-axes show

ρcerr,p
(in percent) and δcerr,p

(in log-scale). We show typ-
ical results, including the queries with the best ρcerr,p

and
δcerr,p

(Q14 and Q23) and the worst ρcerr,p
and δcerr,p

(Q16,
Q23, Q25, and Q32). Overall, robust plan selection with FS
and SS achieves a ρcerr,p

of 100% for 13 of the 31 executed
queries, i.e., robust plan selection chooses the most robust
plan. A ρcerr,p

≥ 80% is achieved for FS and SS for 25 of the

31 executed queries. In contrast, conventional plan selection
with EO achieves ρcerr,p

≥ 80% for only 12 of the 31 executed
queries. The average δcerr,p

over all 31 JOB queries is bet-
ter for SS (−0.11) and FI (−0.12) compared to EO (−0.50).
Considering the fastest plan (FA), we again observe that it
is not necessarily as robust as the estimated most robust
plan. The average ρcerr,p

over all 31 JOB queries with SS
(92.65%) is larger than the average ρcerr,p

of FA (89.37%).
Figures 11(b) and 11(c) show the synthetic benchmark re-

sults. Figure 11(b) plots typical results for random topolo-
gies, including Q46 and Q95 with the best ρcerr,p

and δcerr,p
,

and Q57 and Q62 with the worst ρcerr,p
and δcerr,p

. Fig-
ure 11(c) summarizes the results for chain, cycle, and snow-
flake topologies, by average ρcerr,p

(µρcerr
), average δcerr,p

(µδcerr
), and worst δcerr,p

(↓δcerr
) over 100 different data sets.

FS and SS achieve a significantly larger µρcerr,p
(83%–93%)

compared to EO (21%–47%) for all query topologies. The
worst δcerr,p

for EO is substantially larger for chain (−20.69)
or cycle queries (−26.27). Considering only Q79 of the ran-
dom topology shows that FS and SS chooses the most robust
plan with ρcerr,p

=100% and δcerr,p
=0.0, whereas EO chooses

a volatile plan with ρcerr,p
= 12.20% and δcerr,p

= −9.74. A
comparison of µρcerr

, µδcerr
and ↓δcerr

of FI to FS and SS in
Figure 11(c) shows that FI is outperformed by FS and SS.
Again, the reason is that FI balances plan robustness and
estimated costs. However, µρcerr

, µδcerr
and ↓δcerr

for FI are
still substantially better w.r.t. the estimated optimal plan.

6.2.3 Correlated Cost Error Factor Limit
According to the third consistency requirement, a large

cerr for a plan with a small robustness value indicates a
failure of the metric (cf. Section 3). Since cardinality es-
timations can be precise and always result in a small cost
error factor cerr, even if a large robustness value is assigned,
the correlation between the robustness value and cerr cannot
be used to evaluate the third requirement. To evaluate the
requirement, we draw all robust plan candidates of a query
into a single plot. Figure 12 shows some typical results for
the selectivity-slope metric, including the JOB queries 7, 14,
19, and 25. The assigned robustness value rδs is plotted on
the x-axis in logarithmic scale, and the cerr on the y-axis in
logarithmic scale. Additionally, we highlight the estimated
optimal plan, the fastest plan and the estimated most robust
plan. For Q14, we see a strong correlation between rδs and
cerr, i.e., there is no robust plan candidate with a smaller
rδs and a larger cerr. For Q7 and Q19, we see that the cor-

1370

2

3

4

1 · 1011 4 · 1011

C
o
st

E
rr
o
r
F
a
c
to

r
c
e
r
r
[l
o
g
sc
a
le
]

candidates
more robust plans

est. optimal plan
fastest plan
est. most robust plan

10

15

3 · 1010 6 · 1010

2

3

4

4 · 1012 8 · 1012
Robustness Value rδs [log scale]

10

20

30

4 · 1011 6 · 1011

JOB Q7 JOB Q14

JOB Q19 JOB Q25

Figure 12: Correlated cost error factor limit for the
selectivity-slope robustness metric.

Table 1: Optimization time relative to the end-to-
end query execution time.

JOB Chain Cycle Snowflake Random

est. optimal plan 0.98% 0.14% 0.12% 0.17% 0.13%
cardinality-slope 3.94% 3.70% 3.10% 3.06% 3.08%
selectivity-slope 4.78% 3.51% 3.32% 3.20% 3.10%
cardinality-integral 4.91% 3.68% 3.62% 3.11% 2.96%

related cost error factor limit requirement is fulfilled, even
if there is no strong correlation between rδs and cerr. Fi-
nally, Q25 shows a stronger correlation between rδs and cerr

than Q7 and Q19. In contrast to Q14, Q25 has three clus-
ters of robust plan candidates. The estimated most robust
plan, the estimated optimal plan and the fastest plan have
a small rδs and result in a small cerr. A majority of other
robust plan candidates have a large rδs and result in a large
cerr. Similar to Q7, Q14, and Q19, no plan with a small rδs
results in a large cerr for Q25. The plots of cardinality-slope
and cardinality-integral metric look similar to these results,
although the cardinality-slope metric has an outlier for Q25,
which can be also seen in Figures 10(a) and 11(a).

6.3 Robust Plan Candidates
In this section, we evaluate the impact of the robust plan

candidates on execution time and on plan robustness. For
the cardinality-slope and selectivity-slope robustness metric,
the robust plan candidates are limited to near-optimal plans
with λ = 1.2, whereas the cardinality-integral robustness
metric balances costs and plan robustness by definition. Fig-
ure 9 shows that robust plan selection with the cardinality-
slope or selectivity-slope robustness metric suffers less from
estimation errors than conventional plan selection.

Our robust plan selection is an online approach, since it
requires low calculation effort for the metric and limits the
plan candidates to the k-cheapest plans. Table 1 shows op-
timization time relative to end-to-end query execution time
(i.e., optimization time/query execution time) for both con-
ventional and robust plan selection on both workloads. Since
robust plan selection introduces additional computational
overhead, this ratio is smaller for conventional plan selec-
tion than for robust plan selection. However, the optimiza-
tion time for robust plan selection is still very small w.r.t.
the end-to-end query execution time. The optimization time
depends on the number of enumerated plans, i.e., the query

Table 2: Average γcerr for the Join Order Benchmark
(JOB) and the Synthetic Benchmark.

JOB Chain Cycle Snowflake Random

cardinality-slope 5.86 −0.05 −0.39 −1.91 −3.04
selectivity-slope −0.85 −0.08 −0.18 −1.75 −2.62
cardinality-integral −1.00 −0.04 0.00 −0.48 −0.24

graph topology and the number of robust plan candidates.
Finally, we demonstrate that selecting the estimated ro-

bust plan from k-cheapest plans with k=500 is competitive
w.r.t. an estimated robust plan without this limit. As set-
ting k =∞ is infeasible, especially for the complex query
graph topologies of some JOB queries, we limit k for this
experiment to 10, 000. We denote the difference between
cerr of the estimated most robust plan with k= 10, 000 and
the estimated most robust plan with k=500 as γcerr

. A neg-
ative γcerr

indicates that robust plan selection found a more
robust plan with a larger k, whereas a γcerr

close to 0 indi-
cates that robust plan selection will not find a considerably
more robust plan with a larger k.

Table 2 shows the average γcerr
for robust plan selection

with our three robustness metrics for both, JOB and the syn-
thetic benchmark. For JOB, the average γcerr

is close to 0
for the selectivity-slope and cardinality-integral metrics, i.e.,
a larger k will not yield substantially more robust plans. For
the cardinality-slope metric, the average γcerr

is even posi-
tive. The reason is that robust plan selection with a larger k
will choose a plan for Q15 and Q21 that results in a signifi-
cantly larger cerr. For the synthetic benchmark, the average
γcerr

is close to 0 for all three robustness metrics on chain
and cycle queries. For snowflake queries, the average γcerr

value is more negative compared to chain and cycle queries
due to the larger plan space. Finally, for random queries,
the average γcerr

is close to 0 for the cardinality-integral ro-
bustness metric. In contrast, robust plan selection with the
cardinality-slope metric will lead to a γcerr

smaller than −1
for 43 of the 100 generated queries, and with the selectivity-
slope metric for 57 of the 100 generated queries. Overall,
k = 500 achieves a good trade-off between plan robustness
and query execution time, since for a large number of queries
γcerr

is close to 0 and the optimization overhead is small.
From our experiments we conclude that FS is more con-

servative than SS. It achieves more moderate speedups, but
also smaller regressions. FI achieves similar results as SS,
and supports arbitrary PCF shapes and is independent of f̂ .

7. CONCLUSION
The three novel robustness metrics presented in this pa-

per are valuable and general building blocks for robust query
processing. They efficiently quantify the robustness of query
execution plans at optimization time and consider the im-
pact of potential cardinality estimation errors during plan
selection. Despite their simplicity, our experimental evalua-
tion has demonstrated the effectiveness of all three robust-
ness metrics. Compared to competitive approaches for ro-
bust plan selection, we do not limit the plan topology, can
calculate a robustness value for a single plan independent of
other plans, and are not bound to expensive statistical mod-
els. In the presence of cardinality estimation errors, our com-
parison of end-to-end query execution times clearly shows
that selection of robust plans outperforms conventional plan
selection. Finally, our formal specification of the problem
and requirements for robustness metrics build a solid foun-
dation for future research on robust query processing.

1371

8. REFERENCES
[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal, and

J. R. Haritsa. On the stability of plan costs and the
costs of plan stability. PVLDB, 3(1-2):1137–1148,
2010.

[2] K. H. Alyoubi. Database query optimisation based on
measures of regret. PhD thesis, Birkbeck, University of
London, 2016.

[3] B. Babcock and S. Chaudhuri. Towards a robust
query optimizer: A principled and practical approach.
In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’05, pages 119–130. ACM, 2005.

[4] S. Babu, P. Bizarro, and D. DeWitt. Proactive
re-optimization. In Proceedings of the 2005 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’05, pages 107–118. ACM, 2005.

[5] M. Charikar, S. Chaudhuri, R. Motwani, and
V. Narasayya. Towards estimation error guarantees for
distinct values. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’00, pages 268–279. ACM,
2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[7] H. Doraiswamy, P. N. Darera, and J. R. Haritsa.
Identifying robust plans through plan diagram
reduction. PVLDB, 1(1):1124–1140, 2008.

[8] A. Dutt and J. R. Haritsa. Plan bouquets: Query
processing without selectivity estimation. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 1039–1050. ACM, 2014.

[9] P. Gassner, G. M. Lohman, K. B. Schiefer, and
Y. Wang. Query optimization in the IBM DB2 family.
IEEE Data Engineering Bulletin, 16:4–18, 1993.

[10] G. Graefe, R. Borovica-Gajic, and A. Lee. Robust
performance in database query processing (Dagstuhl
seminar 17222). Dagstuhl Reports, 7(5):169–180, 2017.

[11] G. Graefe, W. Guy, H. A. Kuno, and G. N. Paulley.
Robust query processing (Dagstuhl seminar 12321).
Dagstuhl Reports, 2(8):1–15, 2012.

[12] G. Graefe, A. C. König, H. A. Kuno, V. Markl, and
K. Sattler, editors. Robust Query Processing (Dagstuhl
Seminar 10381), volume 10381 of Dagstuhl Seminar
Proceedings, Leibniz-Zentrum für Informatik,
Germany, 2010. Schloss Dagstuhl.

[13] R. W. Hamming. Numerical Methods for Scientists
and Engineers. Dover Publications, Inc., 1986.

[14] A. Hulgeri and S. Sudarshan. Parametric query
optimization for linear and piecewise linear cost
functions. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02,
pages 167–178. VLDB Endowment, 2002.

[15] F. Hüske. Specification and optimization of analytical
data flows. PhD thesis, TU Berlin, 2016.

[16] Y. E. Ioannidis and S. Christodoulakis. On the
propagation of errors in the size of join results. In
Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’91,
pages 268–277. ACM, 1991.

[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[18] V. Leis, B. Radke, A. Gubichev, A. Mirchev,
P. Boncz, A. Kemper, and T. Neumann. Query
optimization through the looking glass, and what we
found running the join order benchmark. The VLDB
Journal, pages 1–26, 2017.

[19] G. Lohman. Query optimization–are we there yet? In
Datenbanksysteme für Business, Technologie und Web,
BTW ’17. Gesellschaft für Informatik, Bonn, 2017.

[20] G. M. Lohman. Is query optimization a solved
problem. In Proceedings of the Workshop on Database
Query Optimization, page 13. Oregon Graduate
Center Comp. Sci. Tech. Rep, 2014.

[21] G. Moerkotte, T. Neumann, and G. Steidl. Preventing
bad plans by bounding the impact of cardinality
estimation errors. PVLDB, 2(1):982–993, 2009.

[22] W. Scheufele and G. Moerkotte. On the complexity of
generating optimal plans with cross products
(extended abstract). In Proceedings of the Sixteenth
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’97, pages
238–248. ACM, 1997.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
Proceedings of the 1979 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’79,
pages 23–34. ACM, 1979.

[24] F. Wolf, N. May, P. R. Willems, and K.-U. Sattler. On
the calculation of optimality ranges for relational
query execution plans. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD ’18, pages 663–675. ACM, 2018.

[25] S. Yin, A. Hameurlain, and F. Morvan. Robust query
optimization methods with respect to estimation
errors: A survey. SIGMOD Record, 44(3):25–36, 2015.

1372

	Introduction
	Related Work
	Problem Statement
	Robust Plan Example

	Robustness Metrics
	Cardinality-Slope Robustness Metric
	Selectivity-Slope Robustness Metric
	Cardinality-Integral Robustness Metric
	Robustness Metrics Overview

	Plan Candidates and Selection
	Evaluation
	Query Execution Time
	Plan Robustness
	Cost Error Factor Improvement
	Cost Error Factor Dominance
	Correlated Cost Error Factor Limit

	Robust Plan Candidates

	Conclusion
	References

