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ABSTRACT
Modern databases, guaranteeing atomicity and durability, store trans-
action logs in a volatile, central log buffer and then flush the log
buffer to non-volatile storage by the write-ahead logging principle.
Buffering logs in central log store has recently faced a severe mul-
ticore scalability problem, and log flushing has been challenged
by synchronous I/O delay. We have designed and implemented a
fast and scalable logging method, ELEDA, that can migrate a surge
of transaction logs from volatile memory to stable storage without
risking durable transaction atomicity. Our efficient implementa-
tion of ELEDA is enabled by a highly concurrent data structure,
GRASSHOPPER, that eliminates a multicore scalability problem of
centralized logging and enhances system utilization in the presence
of synchronous I/O delay. We implemented ELEDA and plugged it
to WiredTiger and Shore-MT by replacing their log managers. Our
evaluation showed that ELEDA-based transaction systems improve
performance up to 71ˆ, thus showing the applicability of ELEDA.
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1. INTRODUCTION
A logging and recovery subsystem has been an indispensable

part of databases, since System R [4] was designed in the mid-
1970s. To ensure atomicity and durability, the write-ahead log-
ging (WAL) protocol [21, 22] was defined and later codified in
ARIES [39], a de facto transaction recovery method widely de-
ployed in relational database systems. Databases relying on ARIES
use centralized logging that in general consists of two operations;
(1) building an in-memory image of a log file by storing transaction
logs into a volatile, central log buffer and (2) appending the image
to the log file by flushing the log buffer to non-volatile storage (fol-
lowing the WAL protocol).

The widespread, decades-long use of centralized logging poses
a significant challenge in the landscape of multicore hardware. The
key challenge is to find a fast, scalable logging method that can
∗Contact author and principal investigator
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 2
Copyright 2017 VLDB Endowment 2150-8097/17/10... $ 10.00.
DOI: https://doi.org/10.14778/3149193.3149195

solve the classic problem of multiple producers (i.e., transactions)
and a single consumer (i.e., log flusher), with WAL being strictly
enforced. Two technical obstacles are known at present:
Multicore scalability for multiple producers. As multicore plat-
forms allow more transactions to run in parallel, storing concur-
rently generated logs into a central log buffer faces the serialization
bottleneck [8] that hinders the entire database from being scalable.
Prior studies [31, 32] have addressed this problem with noticeable
improvements, but scalability bottlenecks still exist due to the non-
scalable lock used in proposed solutions.
Synchronous I/O delay by a single consumer. Flushing a log
buffer to stable storage by the WAL protocol has long been chal-
lenged by synchronous I/O delay. In this regard, latency-hiding
techniques, originally proposed by DeWitt et al. [15] and Nightin-
gale et al. [42], have successfully been used to increase system-
wide throughput in the presence of synchronous I/O delay. Fur-
thermore, emerging non-volatile memory (NVM) technologies are
worth considering for low access latency. We believe that combin-
ing these can be a promising solution.

Important to notice is the intrinsic difficulty of the challenge
that whichever of two salient issues remains unaddressed will be a
culprit responsible for performance bottlenecks. Although a large
body of work has focused on this challenge, what still remains un-
resolved yet is the multicore scalability that may render several
databases vulnerable to performance problems on hardware with
dozens of cores, which appears in the cloud [1]. This constitutes
the primary motivation for the present work.

As a general solution to the performance bottlenecks of cen-
tralized logging, we present ELEDA (Express Logging Ensuring
Durable Atomicity) that can smoothly shepherd a surge of trans-
action logs from volatile memory to stable storage, without risking
atomicity and durability. The centerpiece of ELEDA is a highly con-
current data structure, called GRASSHOPPER, which is designed to
resolve the multicore scalability issues arising in centralized log-
ging. To enhance system-wide utilization in the presence of syn-
chronous I/O delay, we follow the claim of DeWitt et al. [15] and
apply proven implementation techniques to ELEDA. We tightly in-
tegrate all these into a three-stage logging pipeline of ELEDA that
can be applicable to any transaction systems suffering performance
bottlenecks of centralized logging.

We implemented a prototype of the ELEDA design and plugged
it to WiredTiger [41] and Shore-MT [17] that use consolidation ar-
ray techniques [31,32] but still exhibit the performance bottlenecks
under high loads on multicores. We evaluate the performance of
ELEDA on a high-end computing platform equipped with 36 physi-
cal cores, 488 GiB memory and two enterprise NVMe SSDs. With
the key-value workload, ELEDA-based systems improve transac-
tion throughput by a wide margin, thus some achieving higher than
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„ 3.9 million Txn/s with guaranteed atomicity and durability. With
the online transaction processing (OLTP) workload, ELEDA-based
systems also show significant improvements.

This paper makes the following contributions:
– We confirm that the performance bottlenecks in centralized

logging still exist and reframe the key challenge to be the
design of concurrent data structures (§2.2).

– We design ELEDA that is a fast, scalable logging method for
high performance transaction systems with guaranteed atom-
icity and durability (§3 and §4).

– We build ELEDA and plug it to WiredTiger and Shore-MT
(§5). We then evaluate ELEDA-based systems, demonstrat-
ing that our design avoids the performance bottleneck and
improves performance compared to the baseline systems.

2. BACKGROUND AND RELATED WORK
In this section, we point to a few essential concepts needed for

understanding our contribution.

2.1 Database Logging and Recovery
Transactional recovery is of importance to databases that are ex-

pected to guarantee ACID (Atomicity, Consistency, Isolation and
Durability) properties. Authoritative coverage on the field of trans-
action management and its subfield of transactional recovery can
be found in the textbooks by Bernstein et al. [6] and Weikum and
Vossen [53]. The internal design of database systems is described
by Hellerstein et al. [24].

Database logging in this context is used to capture every mod-
ification made to data by a transaction. A log sequence number
(LSN) is associated with each log to establish the happen-before
relation [36] between logs pertaining to the same database page,
or between logs spanning multiple data pages. LSN-stamped logs
are stored in a volatile, central log buffer and later synchronously
written to non-volatile storage by the WAL protocol. In a nut-
shell, given all log records that are totally-ordered, ARIES [39],
upon failures, replays all redo logs in LSN order to reconstruct the
state of databases as of the crash, then it applies undo logs in re-
verse LSN order to rollback the effects of uncommitted transac-
tions. Hence a globally unique LSN in ARIES (or its variants) is
pivotal to imposing proper ordering on transaction logs.

2.2 Multicore Scalability

2.2.1 Sequentiality of logging
A fundamental restriction imposed on database logs is the se-

quentiality of logging, strictly requiring that the sequence of LSN
and the log flushing order be the same. In other words, the LSN
order should also match the log order in an in-memory image of
a log file. Any violation would definitely risk the correctness of
database recovery. Note that the sequentiality condition held for
logs in a volatile buffer must be retained prior to the volatile log
buffer being sequentially flushed to non-volatile storage. To honor
the sequentiality of logging, the widespread use of a global lock
began early days in many database engines, such that (1) a trans-
action acquires a lock, (2) allocates an LSN for its log and embeds
the LSN in the log, (3) copies the log to the central log buffer, and
(4) releases the lock. The use of such a global lock undoubtedly
limits the scalability of database logging on multicore systems.

2.2.2 Related work
To improve the scalability of centralized logging, Johnson et

al. [31, 32] proposed the consolidation array technique that is ro-
bustly implemented in two publicly available database engines (i.e.,

Table 1: Control options for transaction durability.
Databases or Durability/Slow Non-Durability/Fast

storage engines (no data loss) (data loss)
Oracle [44] force wait no-wait

MySQL [43] flush log at commit delayed flush
SQL Server [38] full durability delayed durability
MongoDB [40] commit-level durability checkpoint durability

PostgreSQL [50] synchronous commit asynchronous commit
Shore-MT [17] flush log at commit lazy flush

Shore-MT [17] and WiredTiger [41]). But we observe that there
is still a chance to improve the multicore scalability of central-
ized logging in these systems, as the author of prior work also re-
cently confirmed the same issue and proposed distributed logging
on NVM instead in [52]. Distributed logging and recovery [49, 52,
54], owing to performance benefits, have been studied as such, but
design complexity added to recovery and log space partitioning,
which may restrict transactions to access multiple database tables
belonging to different log partitions, remains to be addressed for
database vendors to change the status quo. For instance, Silo [51]
avoids centralized logging bottleneck by letting each worker thread
copy transaction-local redo logs to per-thread log buffer after val-
idation (following optimistic concurrency control (OCC)). Since
Silo stores redo logs only for committed transactions, epoch-based
decentralized logging ensures correctness and works well for OCC-
based transaction engines. Despite this attractive feature, it is non-
trivial to directly apply Silo’s design to ARIES (or its variants)-
based databases adopting the steal and no-force policies that re-
quire undo/redo logs.

2.2.3 Challenge
The key challenge in eliminating the non-scalable global lock for

scalable logging on multicores is to allow transactions to concur-
rently buffer their logs with the sequentiality being guaranteed. As
prior work attempted, concurrent log buffering itself is not tech-
nically challenging. The essence of the challenge is to guarantee
the sequentiality for those concurrently buffered logs, without us-
ing locks. Since the assigned LSN tells a log where to be copied in
the log buffer, the sequentiality for the log being buffered cannot be
ensured until its preceding logs are completely buffered. Here we
define an LSN already assigned to a log not being buffered yet as
an LSN hole, and also define the maximum LSN of which no LSN
holes are behind as a sequentially buffered LSN (SBL). Since LSN
holes undoubtedly stall the sequential log flushing, advancing SBL
with LSN holes being chased is critical to the entire logging sys-
tem. Hence the core challenge we address is to design concurrent
data structures that perform required operations while transactions
write logs to the central log buffer concurrently.

2.3 Synchronous I/O Delay
The strict enforcement of the WAL protocol incurs synchronous

I/O delay, which is detrimental to high performance reliable trans-
action processing. The synchronous I/O delay therefore has placed
substantial pressure on database designers for pursuing alternative
options that are intended to trade transaction durability for better
performance. As shown in Table 1, well-known database engines
provide such options that control balance between transaction dura-
bility and performance.

2.3.1 NVM is close at hand
The advent of fast, non-volatile memory technologies has changed

the age-old belief in our mind that non-volatile storage is slow. This
has driven a substantial body of proposals that have attempted to
reduce or to avoid the synchronous I/O delay in databases, either
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by rearchitecting subcomponents of databases [2, 13, 52], or by the
novel use of NVM [9,18,20,23,34]. Closer to our work is the pro-
posal by Fang et al. [18] that combines logging in NVM with hole
detection being executed during database recovery. Although the
hole detection uses linear scanning of log space in NVM, the pro-
posal retains efficiency during normal operations mainly because
(i) logs are quickly hardened to fast NVM with some LSN holes
being left unresolved and (ii) the linear scanning is performed only
during the recovery for detecting any holes left due to the system
crash. Write-behind logging (WBL) [3] is recent work designed for
hybrid storage with DRAM and NVM. With WBL, database man-
agement systems write updates to NVM-resident databases prior to
a log being flushed. Updates are made visible after a log is hard-
ened. WBL can ensure good performance only if databases reside
on fast, byte-addressable NVM that is again an essential part of the
scheme. All in all, despite performance gain proved by these tech-
niques, non-scalable locks in software, if left unaddressed, would
raise undesirable performance issues on high-end computing plat-
forms with dozens of cores, like what prior works [7,10–12,16,29,
30, 33, 37, 48] have addressed for improving multicore scalability
of components of operating systems and databases.

2.3.2 Latency-hiding techniques
Radically different from NVM-based approaches are some pro-

posals that are intended to increase system-wide utilization visible
to users in the presence of synchronous I/O delay. The database
and operating systems communities call these latency-hiding tech-
niques, and they are widely adopted in both research and commer-
cial fields. The key idea for improving system-wide utilization is
switching waiting threads/processes with runnable ones. The elab-
oration required here is to control when to release the computation
results to external users.

Early lock release. Three decades ago, DeWitt et al. [15] pro-
posed the early lock release (ELR) in the database community, stat-
ing that database locks can be released before its commit record
is hardened to the disk, as long as the transaction does not return
results to the client. This means, other transactions may see the
modifications made by the pre-committed transaction, and these
transactions are not allowed to return results to the clients. While
materializing ELR, Johnson et al. [31] proposed the flush pipelin-
ing technique that allows the thread to detach the pre-committed
transaction and to attach another transactions to reduce schedul-
ing bottleneck. Other examples of adopting ELR are Silo [51]
and SiloR [54] that have proposed high-performance in-memory
database engines, based on optimistic concurrency control and dis-
tributed logging.

External synchrony. In the systems community, Nightingale et
al. [42] proposed the external synchrony that may share the same
design goals of increasing system-wide utilization in the presence
of synchronous file I/O. The external synchrony is a model of local
file I/O to provide the reliability and simplicity of synchronous I/O,
while providing the performance of asynchronous I/O. The essence
of the external synchrony is, a process/thread is not allowed to de-
liver any output to an external user until the file system transac-
tion on which the pending output depends commits, meaning the
pending output is released only after the corresponding file system
transaction writes all contents to the non-volatile storage.

3. OVERVIEW
In this section, we provide an overview of ELEDA. We first de-

scribe the overall architecture and then explain how we approach
technical challenges for achieving the goals of making centralized
logging fast and scalable, with guaranteed atomicity and durability.

Log Sequence Number (LSN)

Stable 
Storage

Central Log Buffer

Flushing logs

Storage Durable LSN (SDL)

: Storage durable log 
: Fully buffered log 
: Partially buffered log 
: Unused log buffer 

Sequentially Buffered LSN (SBL)

Tx1 Tx2

1
2
2

N
N

1

Transactions

DB threads

Logs

TxN

Copying

void eleda_invoke_callback (int thd_id);
long eleda_reserve_lsn (size_t len);
void eleda_write_log (int thd_id,

void*  log_ptr,   size_t len,    long  lsn,
void  (*callback) (void*), void* arg);

ELEDA APIs

Figure 1: ELEDA logging architecture.

3.1 Overall Architecture
The logging architecture of ELEDA is based on a three-stage log-

ging pipeline, and it consists of three types of threads: database
threads, an ELEDA worker thread and an ELEDA flusher thread.
Figure 1 depicts the overall architecture. The central log buffer in
ELEDA is one contiguous memory logically divided into chunks by
I/O unit size. Database threads do the memory copy to store their
logs to the log buffer.

In the first stage of the logging pipeline, database threads, on be-
half of its transaction, reserve log space (i.e., LSNs) and copy logs
to the reserved buffer via ELEDA APIs, all done concurrently. LSN
allocation is done by using the atomic fetch-add instruction1,
and concurrent space allocation and copying inevitably creates so-
called LSN holes (i.e., partially buffered logs in Figure 1). That
being said, database threads can make rapid progress because the
ELEDA worker takes the responsibility for tracking such LSN holes
and advancing SBL. Among transactions is a committing one that
must provide a callback function to ELEDA and needs wait until its
log and all preceding logs become durable on stable storage.

In the second stage, the ELEDA worker tracks the LSN holes
and advances SBL efficiently using carefully designed concurrent
data structures (i.e., GRASSHOPPER) (§4.2). In the third stage,
the ELEDA flusher keeps flushing all sequentially buffered logs up
to SBL to non-volatile storage. Here we define the most recently
flushed LSN as a storage durable LSN (SDL), which is a durability
indicator for database logs in stable storage (§4.3). And database
threads wake up waiting transactions whose commit LSNs became
durable (i.e., commit LSN ď SDL). This is done by invoking call-
back functions associated with waiting transactions, and it makes
use of the latency-hiding technique (§3.3). As shown in Figure 1,
ELEDA provides APIs for this purpose. Although ELEDA is obliv-
ious to host engine’s logging and recovery policies, it permits the
host engine to pre-allocate in-memory log space at their disposal
(e.g., reserving log buffer space for logs generated upon rollback).
But such pre-allocated buffer space works as a large LSN hole that
may hinder log flushing.

3.2 Scalable Logging
The widespread use of a non-scalable global lock to protect log

buffering is now liable for the serialization bottleneck [8] on mul-
ticores. The naive elimination of a global shared lock for scalable
logging however poses a challenge that requires sequentiality of
logging to be preserved. The essence in addressing this challenge
is to design shared data structures allowing concurrent accesses,
and to devise an algorithm for fast tracking of LSN holes.
1This will surely hit a hardware-based synchronization bottleneck
once latch contention is eliminated, and research on new designs
for surpassing the limitation is ongoing in our community [47].
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Figure 2: Grasshopper algorithm for advancing SBL.

To address the challenge, we eliminate non-scalable locks by
designing concurrent data structures intended to enable multiple
transactions to store their logs to the log buffer concurrently while
tracking LSN holes fast and thus advancing SBL accordingly. We
call this GRASSHOPPER. GRASSHOPPER advances SBL in two
ways - hopping and crawling - depending on how LSN holes are
traced. To put it in a nutshell, a grasshopper on grass hops using
its hind legs when it feels threatened, and crawls otherwise. Our
GRASSHOPPER works likewise, except that the threat we are con-
cerned here is the gap between the current SBL and the most re-
cently allocated LSN. The wider the gap is, the longer it takes to
trace LSN holes and to flush sequentially buffered logs.

Figure 2 depicts how SBL is advanced in two different ways:
hopping is used when the gap is too wide while crawling is acti-
vated otherwise. The question is how to figure out when to com-
mence or to stop hopping. We address this by maintaining a table,
called a hopping index (or H-index in short), whose entry book-
keeps the cumulative byte count of buffered logs for the LSN range
of [i ¨ 2H , pi` 1q ¨ 2H ), where i and 2H are the index to the table
and a hopping distance, respectively. As shown in Figure 2, entries
in the hopping index are used to provide more accurate informa-
tion to GRASSHOPPER. If an entry equals to 2H , we can assert that
all logs in the corresponding LSN range are buffered without LSN
holes. Otherwise (ă 2H ), one or more holes exist in the range.

3.2.1 SBL-hopping
When the current SBL - a precise indicator of the tip of the se-

quentially buffered logs - is far behind the most recently allocated
LSN because transactions generate logs too fast, we advance SBL
by hopping the hopping distance, provided that logs in a given LSN
range are all sequentially buffered. SBL-hopping continues until
GRASSHOPPER detects any LSN holes, by checking the byte count
of the hopping index entry (i.e., byte count ă 2H ). Hence SBL-
hopping can be viewed as fast-path SBL advancement which works
well when logs are surging fast. But the hopping is unable to pre-
cisely spot LSN holes since the hopping index does never record
each individual LSN value. We cope with this issue by chasing
LSN holes accurately (i.e., SBL-crawling).

3.2.2 SBL-crawling
The method of advancing SBL switches from SBL-hopping to

SBL-crawling when we detect the presence of LSN holes. Once we
know the presence of LSN holes, GRASSHOPPER advances SBL by
chasing LSN holes thoroughly (i.e., SBL-crawling). SBL-crawling,
despite of its relatively slow nature of advancing SBL, can handle
a wide range of operating conditions efficiently.

3.3 Latency-hiding Design
To address the synchronous I/O delay, we use latency-hiding

techniques in ELEDA for pursuing better system-wide utilization.
To this end, we leverage the proven techniques used in the prior
studies [32, 42, 51, 54]. This is done by first letting synchronous
waiting be switched over other useful transaction processing work.
Once I/O is completed, the computation results held by this I/O
can be delivered to an external user asynchronously through the

BEGIN;
UPDATE ..;
...

COMMIT;

T1

SDL

BEGIN;
UPDATE ..;
...

COMMIT;

T1

waiting
runnable

BEGIN;
DELETE ..;
...
COMMIT;

T2
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T1 T1 T2

BEGIN;
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...

COMMIT;

T1
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DELETE ..;
...
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T2

T2
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callback

< <T1’s LSN T1’s LSN

1 2 3

runnablewait

T1 is committing. DB Thread detaches 
T1 and attaches T2.

DB Thread runs T2 and T1 
is woken up by its callback.

Transaction

Thread

Figure 3: Latency-hiding techniques in ELEDA.

callback. Since database engines we tested (or assumed) are all
based on multi-threaded architecture, we use a limited number of
database threads (i.e., „ the number of available cores) as worker
threads, and each of them binds itself to an active transaction among
multiple candidates. We therefore assume that there is one-to-
one relationship between a transaction object and an external user,
though a database connection object may have such relationship
with an external user instead in other engines (e.g., MariaDB).

Figure 3 shows how we implement proven techniques in ELEDA.
Suppose there is a committing transaction T1 who just writes a
commit log to the log buffer, but the SBL is not advanced to its
LSN due to the LSN holes. Then, it is unsafe for T1 to return re-
sults to the client because its commit log is not durable yet. At this
point, the database thread detaches T1 (pre-committed transaction)
and put it to the waiting state, and then the database thread attaches
a runnable transaction T2, which has useful operations to execute.
When all LSN holes preceding T1’s commit LSN are completely
filled (i.e., SBL passes T1’s commit LSN), then the log flusher ad-
vances SDL to SBL by hardening logs in between. This makes T1’s
commit log durable (i.e., T1’s commit LSNď SDL), and this is the
moment ELEDA can put T1 to a running state, thereby letting T1
return its results to the external user. A callback registered for T1 is
invoked to deliver an asynchronous notification to an external user.

4. ELEDA DESIGN
In this section, we describe designs and the approach we take

to address the challenge in §3.2, especially a highly concurrent
data structure that resolves the serialization bottleneck caused by
the non-scalable global lock used in centralized logging of several
database systems. In particular, we focus on explaining how we de-
sign shared data structures and make concurrent operations acting
on the data structures correct.

4.1 Data Structures
ELEDA uses concurrent data structures (i.e., a hopping index ta-

ble and GRASSHOPPER) that are intended to chase LSN holes and
to advance SBL, the tip of sequentially buffered logs, without using
non-scalable locks. GRASSHOPPER is designed based on two basic
data structures: an augmented shared FIFO queue (i.e., a two-level
list) and a binary min-heap.

Grasshopper list. An augmented shared FIFO queue is called a
grasshopper list that manages LSNs that have been buffered but not
confirmed to be durable yet. We call these LSNs pending LSNs. A
grasshopper list is created for each database thread, and it is shared
between the owner database thread and the ELEDA worker thread
with different access privileges. Since a grasshopper list is basi-
cally a FIFO queue, enqueuing is solely done by the owner database
thread and dequeuing is performed by the ELEDA worker thread.
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Figure 4: Per-thread grasshopper list.

A per-thread grasshopper list internally consists of two lists; a
crawling list (or c-list) and a hopping list (or h-list). Figure 4 shows
a per-thread grasshopper list with some pointer fields being shared
by a database thread and the ELEDA worker thread. The figure
depicts how we organize the crawling list with the augmented hop-
ping list. Note that none of shared variables are protected by a lock.

The crawling list is a list of all pending LSN nodes, and a pend-
ing LSN node is a triple of ăstart lsn, end lsn, callbacką, where
the callback is valid when the LSN is for a commit log that re-
quires a committing transaction to wait until it becomes durable.
The crawling list has three pointer fields: head, tail and gc. Since a
grasshopper list is created for each database thread, pending LSNs
in each grasshopper list are totally ordered in ascending order.

The hopping list is a list of pointer pairs, one pointing to the first
pending LSN node in a given LSN range of [i ¨ 2H , pi ` 1q ¨ 2H ),
and the other one pointing to the next pair. The hopping list has
two pointer fields: head and tail. The hopping list augments the
crawling list in that the head pointer is updated after hopping 2H

distance when GRASSHOPPER finds itself lagging too behind the
current log buffer offset, and the head pointer is used to place the
head pointer of the crawling list to the LSN node where the crawl-
ing should commence afterward. Any other succinct data structure
meeting the requirement can be used.

LSN-heap. A binary min-heap is called an LSN-heap that is
exclusively owned by a dedicated ELEDA worker thread, and an
LSN-heap is constructed from a collection of first (and smallest)
pending LSNs of all grasshopper lists. For SBL-crawling, we can
remove the top element (i.e., the smallest LSN) from the current
LSN-heap if and only if the top LSN, which is the smallest pending
LSN (ăSBL) in all grasshopper lists, is contiguous to the current
SBL. Then we update the old SBL (i.e., advancing SBL).

4.1.1 Access rules on shared data structures
We have presented main shared data structures and variables so

far. These shared data structures in ELEDA are accessed by three
types of threads: database threads, ELEDA worker and ELEDA
flusher. Since shared accesses allow several concurrent executions
to be exposed to shared data structures, access rules must be clearly
set to avoid undefined behaviors due to malicious data races.

Design principles. In this regard, we use two design princi-
ples in making access rules. The first design principle is, ELEDA’s
logging pipeline architecture solely consists of producer/consumer
structures, which means that every pair of a reader and a writer
accessing the same shared data structure is mapped to a pair of
a producer and a consumer. This makes designing concurrent al-
gorithms straightforward since concurrent algorithms for the pro-
ducer/consumer problem have been discussed thoroughly in many
textbooks (e.g., Herlihy and Shavit [25]).

As shown in Figure 5, there are three such relationships. The
first one is, a database thread and an ELEDA worker thread access-
ing a grasshopper list are mapped to a producer enqueuing pending
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ELEDA
Worker

ELEDA
Flusher

DB
Thread

ELEDA
Worker

Producer Consumer

LSN2 LSN1

ELEDA
Worker

ELEDA
FlusherSBL2 SBL1

ELEDA
Flusher

DB
Thread

SDL2 SDL1

P

C

Track LSN holes
&

Advance SBL

Flush logs < SBL
&

Advance SDL

Invoke
callbacks < SDL

Work

P

P

C

C

Figure 5: The producer/consumer structures in ELEDA.

Table 2: Allowed operations (W: Write, R: Read and Ø: none)
for different threads on variables in shared data structures.

Thread Type Shared Variables
head tail gc SBL SDL h-index

Database thread Ø W W Ø R W
ELEDA worker thread W R Ø W Ø R
ELEDA flusher thread Ø Ø Ø R W Ø

LSN nodes to the list, and a consumer dequeuing nodes from the
list, respectively. The second one is, the ELEDA worker and the
ELEDA flusher are also mapped to a producer advancing SBL, and
a consumer advancing SDL by flushing logs up to SBL. The third
one is, the ELEDA flusher and a database thread are mapped to a
producer advancing SDL and a consumer invoking callbacks up to
SDL and advancing the garbage-collection point.

The second principle is in accordance with the first one: we
never allow concurrent write privileges since arbitrating concurrent
writes on shared variables complicates synchronization methods,
and the performance cannot usually be guaranteed. Table 2 shows
access privileges that clearly represent who can access which vari-
ables with what access privileges. By the access privileges, there is
only one writer who can modify any variables in shared data struc-
tures. In ELEDA, there is only one producer thread who can modify
the shared variables, which can be read by the consumer thread to
detect overrunning. We resort to Table 2 in explaining concurrent
algorithms for tracking LSN holes in §4.2.
General invariant. A general invariant enforced on a shared, con-
ceptual FIFO structure supporting a single producer and a single
consumer is, the consumer can never overrun the producer. This
invariant however does never mandate that the consumer should
do spin-waiting until the waiting condition is cleared. Instead, in
ELEDA the consumer-side thread skips consuming work and pro-
cesses other useful work to retain high utilization. The consumer
later revisits and processes the work whenever it is safe. The formal
descriptions of algorithm-specific invariants will be fully discussed
in §4.5 after we explain complete algorithms.

4.1.2 Starting point: enqueuing an LSN node
The starting point of our logging pipeline is when a transaction

needs to store its logs to the central log buffer. A database thread
first gets an LSN for its logs by atomically incrementing the LSN
sequencer. The allocated LSN is used as an offset inside the central
log buffer and tells where to copy given logs. After embedding the
assigned LSN in the logs, the database thread copies the logs to the
offset in the log buffer. Once the copy is done, the database thread
creates a new pending LSN node for the logs and enqueues the node
to its grasshopper list. At that time, if the pending LSN node is for
a commit log, then we follow the protocol to mask synchronous
I/O delay (see Figure 3 in §3.3) such that the database thread must
detach the current transaction by changing the state to waiting, and
then the pending LSN node is enqueued to the grasshopper list. The
callback in the pending LSN node will be used to put the waiting
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Figure 6: Enqueuing a new pending LSN node.

transaction to the runnable state once SDL passes the registered
start lsn, meaning all preceding LSNs are made durable. In line
with this protocol, a database thread first inserts a pending LSN
node into the crawling list and then adds a node to the hopping list
if and only if the start lsn of the node is the first (i.e., smallest) one
in the list for a given LSN range.

Enqueuing a new pending LSN to the grasshopper list can be
separated into three constituent steps in detail:

1. A database thread appends a new pending LSN node into the
c-list by resetting the c-list.tail to the new node.

2. IF the start lsn of the new pending LSN node is the first one
in the range of [pi` 1q ¨ 2H , pi` 2q ¨ 2H ), a database thread
inserts a hopping node to the h-list by resetting the h-list.tail
to the new hopping node. ELSE this step can be skipped.

3. Increment the cumulative byte count of the corresponding
entry of the hopping index by the log size.

Figure 6 describes the steps needed to complete enqueuing a new
pending LSN node to a grasshopper list, assuming that a database
thread obtained the LSN of pi` 1q ¨ 2H ` 1 for its logs.

Note that a database thread, while enqueuing a new pending
LSN node, changes the tail fields of two lists, not changing other
variables (following access rules in Table 2). We enforce that the
pointer manipulation order should strictly abide by the order shown
above, not to have malicious data race with the ELEDA worker
thread who is advancing SBL by changing head fields of the grasshop-
per list concurrently.

4.2 Tracking LSN Holes
With GRASSHOPPER data structures, ELEDA performs the fast

advancement of SBL that inevitably relies on how fast it can track
LSN holes. In this section, we explain how we advance SBL ef-
ficiently by the following key procedures: SBL-hopping (§4.2.1)
and SBL-crawling (§4.2.2). Note that none of procedures use any
type of locks in performing operations. When advancing SBL, a
dedicated ELEDA worker thread2 is used to chase LSN holes, and
tracking the holes involves moving head pointer fields of grasshop-
per lists. Moving head pointers has two implications in that moving
c-list.head means that we advance SBL by SBL-crawling, while
moving the h-list.head implies that SBL-hopping advances SBL.
SBL-crawling is by far the most important workhorse under a va-
riety of workloads. The main switch to control the mode is deter-
mined by whether or not the current SBL falls into the same entry
of the hopping index with the most recently allocated LSN. We first
explain how we do SBL-hopping.

4.2.1 SBL-hopping algorithm
If ELEDA finds itself lagging too behind the most recently al-

located LSN, meaning that the ELEDA cannot advance SBL fast
enough to process all pending LSNs being produced by database
transactions, then SBL-hopping is used. To decide whether or not
2The performance of a single worker thread can be limited by inter-
processor communication overhead in NUMA machines. Over-
coming such a limitation will be left as future work.

Algorithm 1: SBL-Hopping() and SBL-Crawling()
Data: DBT // a group of database threads
Data: H-Index[] // hopping index
Data: H // hopping exponent

1 Procedure SBL-Hopping()
2 h-size Ð H-Index.table size
3 high Ð (SBL ąą H) // high-order (64-H) bits
4 index Ð high modulo h-size
5 while H-Index[index].bytes == 2H do
6 H-Index[index].bytes Ð 0
7 high Ð high + 1
8 index Ð (index + 1) modulo h-size
9 end

10 HB Ð (high ăă H) // hopping boundary
11 adjust heads
12 SBL Ð min

@kPDBT
{e lsn | h-listk .head.e lsn ě HB}

13 rebuild the LSN-heap
14 Procedure SBL-Crawling()
15 top Ð LSN-heap.peek()
16 while top.start lsn == SBL and H-Index[index].bytes != 2H do
17 SBL Ð top.e lsn
18 LSN-heap.pop()
19 adjust head of top.c-list
20 LSN-heap.insert(head of top.c-list)
21 top Ð LSN-heap.peek()
22 end
23 LSN-heap.insert(heads of c-lists)

Per-thread crawling lists

ELEDA

Thread
head

LSN-heap

tail

New SBL

DB Threads

3

1 1
3

2
2

Figure 7: The overall flow of SBL-crawling.

to perform SBL-hopping, the ELEDA worker thread first checks the
entry of the hopping index that current SBL belongs to. If the en-
try has a value of 2H , meaning the corresponding LSN range of
the log buffer is already filled up, then we guarantee that there is
no LSN hole in that range. Then the thread checks the next entry
of the hopping index. Checking entries of the hopping index con-
tinues until the ELEDA worker confronts with an entry whose byte
count is smaller than 2H . Then it advances the head pointers of
both the h-list and c-list of all per-thread grasshopper lists, to ad-
vance SBL. In principle, we are able to advance SBL to the LSN
range boundary (i.e., i ˆ 2H ) at which hopping stops. However,
we have to be careful here since there can be a log placed across
the LSN range boundary, which must not be partially flushed for
correctness. In that case, SBL is set to the end lsn of the log (see
line 21 of algorithm 1).

After the ELEDA worker thread advances the head of the h-list,
it deletes all pointer pairs preceding the new head in the list. It
is worth noting that the SBL-Hopping algorithm modifies only the
head fields of the grasshopper lists, by the access rules in Table 2.
SBL-Hopping() of algorithm 1 describes the general algorith-
mic sequences of SBL-hopping.

4.2.2 SBL-crawling algorithm
For SBL-crawling, we use the LSN-heap built from the head

nodes of per-thread crawling lists. Hence, the maximum number of
nodes in the LSN heap is equal to the number of database threads.

As shown in Figure 7, the LSN-heap is exclusively managed by
the ELEDA worker thread, and no other threads can access it. As
summarized in Table 2, the head LSN nodes in crawling lists are
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also modified by the ELEDA worker. These access restrictions on
concerned shared data structures enable the ELEDA worker thread
to manipulate the LSN-heap in a thread-safe way, especially when
advancing SBL while other database threads run. Figure 7 depicts
the concurrent operations; while database threads insert newly cre-
ated pending LSN nodes to their own crawling list by modifying
the tail pointer, the ELEDA worker thread can insert new head LSN
nodes to the LSN-heap and adjust the head pointers of crawling
lists concurrently, as long as heads do never overrun tails.

The top of the LSN-heap is guaranteed to be the smallest pending
LSN among all pending ones, owing to both the total order property
of each crawling list and the very nature of min-heap. The top ele-
ment of the heap can be removed when its start lsn is contiguous to
the current SBL. As the ELEDA worker thread pops the top pending
LSN from the LSN-heap, the end lsn of the top element will be the
new SBL. Once the top element is removed, the ELEDA worker ad-
justs the head of the c-list from which the top pending LSN came,
to the next pending LSN node. Once the head of the c-list is ad-
justed, we insert the new head node of the c-list to the LSN-heap.
When the start lsn of the head of the c-list crosses the LSN range
boundary (i.e., i ¨ 2H ), then the head of the h-list should also be ad-
justed to the next node, which is the first/smallest pending LSN in
the next LSN range. The ELEDA worker performs SBL-crawling
for advancing SBL as long as SBL falls in the same entry of the
hopping index with the most recently allocated LSN. Otherwise if
the hopping index entry equals 2H , we switch to SBL-hopping.

4.3 Flushing Logs
Recall that the last stage of ELEDA logging pipeline is to flush

all sequentially buffered logs to stable storage. For this purpose,
ELEDA bookkeeps the most recently flushed SBL, defined as stor-
age durable LSN (SDL). The SDL is stored in stable storage. The
flushing operation is straightforward in that an ELEDA flusher thread
keeps flushing the logs, starting from the current SDL to SBL.
Since SBL is always reset to the end of a log, no logs can be par-
tially written, leaving the remaining part in the volatile log buffer.
Once the thread receives a completion notification, then it advances
SDL to SBL. Once SDL is advanced, the flusher thread stores SDL
to stable storage and frees the log buffer area in between SDL and
SBL to be used for incoming logs. Since we use NVMe SSD de-
vices for stable storage, the I/O unit is tailored to maximize the I/O
throughput of sequential writes for given devices. This inevitably
brings us a tradeoff between high bandwidth utilization and low
latency. Choosing a right point on this tradeoff depends on the
workload characteristics, such as an average size of a log and the
maximum degree of concurrency.

4.4 Garbage-collection & Callbacks
While the ELEDA worker thread moves the heads of h- and c-

lists, a database thread should move the gc pointer (i.e., garbage
collection point) to collect garbage LSN nodes in the c-list and
to invoke callback functions to inform waiting transactions of the
completion. The physical removal of pending LSN nodes is done
after the callback is invoked. Moving the gc pointer continues until
the gc and SDL logically point to the same pending LSN. Note that
gc pointer is exclusively accessed by the owner database thread.

4.5 Invariants for Correctness
In ELEDA, there are three types of the producer/consumer struc-

tures, all of them allow concurrent executions on concerned shared
data structures. Notoriously hard to reason are these concurrent
executions on shared data structures that may yield undefined be-
haviors. We therefore specify three important invariants that must

be preserved throughout the concurrent executions. Three invari-
ants are algorithm-specific refinements of the general invariant dis-
cussed in §4.1.1, and operations on shared variables strictly follow
the access rules in Table 2. We express the specifications of invari-
ants using Hoare logic [27, 28]: {P} C {Q} where P and Q are
pre- and post-states satisfying relevant conditions, and C is a se-
quence of commands. We abbreviate SBL advancement, garbage-
collection and log flushing as SA, GC and LF, respectively. Three
invariants are specified as follows:
Spec1. {head ÞÑ v

Ź

tail ÞÑ v} SA {head ÞÑ v}: If both head
and tail point to the same pending LSN node (v), the ELEDA worker
thread (consumer) is not permitted to move the head while a database
thread (producer) is allowed to update the tail.
Spec2. {gc ÞÑ v

Ź

SDL ÞÑ v} GC {gc ÞÑ v}: If both gc and SDL
logically point to the same pending LSN (v), the database thread
(consumer) is not permitted to move the gc while the ELEDA flusher
thread (producer) is allowed to update the SDL.
Spec3. {SDL ÞÑ v

Ź

SBL ÞÑ v} LF {SDL ÞÑ v}: If both SDL
and SBL have the same value (v), the ELEDA flusher thread (con-
sumer) is not permitted to flush anymore while the ELEDA worker
thread (producer) is allowed to update SBL.

Three invariants forbid one of concurrent threads from mutating
concerned data, and these specifications indeed work as lineariza-
tion points [26] that are used as a correctness condition for our
GRASSHOPPER data structures. We strictly enforce these invariants
in concerned producer/consumer structures to ensure correctness of
concurrent executions on shared data structures in ELEDA.
Memory model. Modern microprocessors allow out-of-order exe-
cution to enhance performance of programs, and compilers do sim-
ilar work (i.e., instruction reordering) when generating machine
code. This inevitably brings memory ordering issues to multi-
threaded programs. To enforce memory ordering constraints on
code that reads or updates shared variables in ELEDA, we explicitly
use memory barriers (i.e., mfence) to guarantee the read-after-
write (RAW) order for correct synchronization.

5. IMPLEMENTATIONS
We have implemented a prototype of ELEDA as a shared library

and then plugged it to two storage engines, WiredTiger storage en-
gine and the official EPFL branch of Shore-MT, with proper mod-
ifications being made. WiredTiger and Shore-MT use the consoli-
dation array technique [31, 32] in their log manager.

WiredTiger storage engine. WiredTiger has been adopted re-
cently as a default storage engine for MongoDB and offers multi-
version concurrency control via a concurrent skip-list for maxi-
mizing update concurrency. Unlike conventional database engines,
WiredTiger’s transaction creates a single log for all updates it made
when it commits. This limits the highest isolation level to SNAP-
SHOT ISOLATION [5]. Owing to the absence of database lock
management, WiredTiger storage engine achieves higher perfor-
mance than Shore-MT engine. ELEDA replaced WiredTiger’s log
manager implementing the consolidation array technique. While
we implement latency-hiding techniques, we add thread-local park-
ing slots to park pre-committing transactions. Parked transactions
will later be woken up and be allowed to deliver results to the client.

Shore-MT storage engine. The EPFL branch of Shore-MT
fully implemented several techniques [30,32,45–47] offered to im-
prove the multicore scalability of database locking, latching, and
logging. In the context of this paper, we have only enabled the
logging optimizations from this codebase. We have implemented
ELEDA to Shore-MT with Aether [31]. We replaced its consolida-
tion array-based logging subsystem and modified its flush pipelin-
ing implementation for transaction switching.
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Table 3: Supermicro Server 6028R-TR specifications.
Component Specification
Processor 18-Core Intel Xeon E5-2699 v3
Processor Sockets 2 Sockets
Hardware Threads 36 (HyperThreading Disabled)
Clock Speed 2.3 GHz
L3 Cache 45 MiB (per socket)
Memory 488 GiB DDR4 2400 MHz
Storage Samsung SM1725 NVMe SSD (3.5 TB)

6. EVALUATION
For evaluation, we use three workloads; the key-value work-

load (YCSB) [14], the online transaction processing workload (sys-
bench) [35] and a logging microbenchmark.

6.1 System Setup
All storage engines are running on a 36-core server specified in

Table 3. To reduce irrelevant lock contention, we run all exper-
iments with Hyperthreading being disabled. Two NVMe SSDs,
each of which has the peak I/O speed of 3.5 GiB/s with 50 µs de-
lay for the sequential writes of 16 KiB block, are used. ELEDA
stripes log data across them with 512 KiB of stripe unit. The I/O
unit for flushing logs is set to 64 KiB throughout all experiments,
unless stated otherwise. For all systems, we use three variants; 1) a
vanilla system on NVMe SSDs (NVMe), 2) a vanilla system on the
tmpfs in-memory file system (tmpfs) and 3) an ELEDA-based sys-
tem on NVMe SSDs (ELEDA). We used tmpfs, although durability
is broken, to focus on the multicore scalability of log buffering in
vanilla systems. Hopping distance is set to 4 MiB.

We run both vanilla and ELEDA-based Shore-MT storage sys-
tems with the default configuration, except that we provide 200
GiB memory for a buffer pool and a 10 GiB log file. The log
buffer size is set to 32 MiB. For log flushing policy, we use the de-
fault setting which forces the log buffer to the log file by the WAL
principle. This means that it ensures full ACID compliance. All
transactions in Shore-MT experiments are committed after flush-
ing logs. WiredTiger is configured with 60 GiB of cache size. A
transaction in WiredTiger flushes its log to the stable storage when
it commits (i.e., commit-level durability). To expose performance
bottlenecks in database logging and preclude irrelevant overhead
arising from other components, we use the isolation level READ
UNCOMMITTED in all storage engines. By doing this, we focus our
attention to the impact of non-scalable locks and the performance
upper bound of ELEDA-based systems, not on discovering latent
bottlenecks in other places. Note that workloads are configured to
access disjoint records or key-values to make the resulting transac-
tion history SERIALIZABLE.

6.2 Key-value Workload
The YCSB benchmark consists of representative transactions han-

dled by web-based companies, as can be seen in many studies [3,
37, 51, 54]. To demonstrate that ELEDA-based systems can per-
form fast, scalable logging under high update workloads, we run
ELEDA-based WiredTiger and Shore-MT on the YCSB benchmark
with workload A(50% Reads and 50% Writes) and 1 KiB payload.

6.2.1 Throughput
Figure 8 shows the throughput results. In all systems, ELEDA-

based systems improved performance with a wide margin. Notice-
able is the wide performance gap („10ˆ) between ELEDA-based
and vanilla systems with 1 database thread that is primarily ow-
ing to the latency-hiding technique allowing a database thread to
execute transactions not conflicting with parked ones. The benefit
of the latency-hiding technique under low load can be consistently
observed throughout all experiments. In Figure 8(a), WiredTiger
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Figure 8: Throughput on the key-value workload.

(ELEDA) peaks at 3.9 million Txn/s with 32 database threads. Mean-
while, the throughput of WiredTiger (NVMe) is not commensurate
with the number of database threads: the throughput almost flattens
out from the beginning. Interestingly, WiredTiger (tmpfs) severely
suffers the scalability problem after it peaked at 740 kTxn/s (with 4
database threads). The throughput improvement that ELEDA con-
tributes with 32 threads is 71ˆ. The I/O bandwidth consumed by
WiredTiger (ELEDA) peaks at 2.2 GiB/s with 32 database threads,
while WiredTiger (NVMe) peaks at 30 MiB/s with 32 database
threads. Noticeable is the performance drop in WiredTiger (tmpfs),
due to the non-scalable lock in the consolidation array technique.

Figure 8(b) shows that Shore-MT (ELEDA) improves the trans-
action throughput compared to the other two systems. We note
that Shore-MT (ELEDA) exhibits slight performance drop-off after
it peaks at 898 kTxn/s with 16 threads. In-depth looking through
profiling reveals that it is due to the non-scalable algorithm for in-
serting a new transaction into the transaction list to get a transaction
ID, which was also spotted as the main culprit for scalability prob-
lems in [33]. Although Shore-MT (ELEDA) showed saturated per-
formance due to other cause that is beyond the scope of the present
work, the performance behaviour observed up to 16 threads indi-
cates that ELEDA can scale as more threads join if the non-scalable
algorithm is resolved. Shore-MT (NVMe) and Shore-MT (tmpfs)
peak at 143 kTxn/s (32 threads) and 492 kTxn/s (16 threads). The
I/O bandwidth consumed by Shore-MT (ELEDA) peaks at „190
MiB/s with 16 threads, while Shore-MT (NVMe) also peaks at„35
MiB/s with 32 threads. The throughput improvement ELEDA con-
tributed to the Shore-MT engine with 32 threads is „6.3ˆ.

6.2.2 Commit latency
Figure 9 shows the CDF of the commit latencies for all stor-

age engines with different logging methods. WiredTiger (ELEDA)
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Figure 9: CDFs for the commit latencies on the key-value work-
load: WiredTiger and Shore-MT with 32 threads.
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Figure 10: Throughput on the OLTP workload.

has the average commit latency of 1.3 ms, whereas WiredTiger
(NVMe) has 576 µs. Shore-MT (ELEDA) shows worse behaviour
(the average commit latency of 6.4 ms) than Shore-MT (NVMe)
(171 µs for the commit latency). In Shore-MT, a transaction gen-
erates 3 logs, and 2 out of 3 logs have a 40 bytes payload. This in-
curs nontrivial processing overhead in maintaining a crawling list.
In terms of the average commit latency, Shore-MT (tmpfs) is better
than ELEDA-based and vanilla systems. However, the average com-
mit latency of WiredTiger (tmpfs) is 1.1 ms, which is worse than
WiredTiger (NVMe) or comparable to WiredTiger (ELEDA) with
32 database threads because of heavy lock contention in logging.

6.3 Online Transaction Processing Workload
For experiments with the OLTP workload, we first use a variant

of sysbench OLTP workloads and measure throughput and commit
latency of ELEDA-based systems under high loads. For evaluation,
we wrote sysbench-like programs using transaction APIs exported
from Shore-MT and WiredTiger storage engines.

6.3.1 Throughput
Figure 10 shows the transaction throughput results. WiredTiger

(ELEDA) showed similar behavior as was shown in Figure 8 in that
it scales well as we increase the number of database threads. In Fig-
ure 10(a), WiredTiger (ELEDA) peaks at 1 million Txn/s with 32
threads, while WiredTiger (NVMe) and WiredTiger (tmpfs) peak
at 30 kTxn/s (32 threads) and 421 kTxn/s (4 threads), respectively.
Note that WiredTiger (tmpfs) again shows performance collapses
as load increases due to the non-scalable lock. The I/O band-
width consumed by WiredTiger (ELEDA) peaks at 606 MiB/s while
WiredTiger (NVMe) peaks at 84 MiB/s, both with 32 threads. The
throughput improvement in WiredTiger with 32 threads is „32ˆ.

Shore-MT also shows similar performance behavior likewise.
The throughput of Shore-MT (ELEDA) peaks at 810 kTxn/s with
32 threads, while Shore-MT (NVMe) and Shore-MT (tmpfs) peak
at 67 kTxn/s (16 threads) and 248 kTxn/s (16 threads), respectively.
The I/O bandwidth consumed by Shore-MT (ELEDA) peaks at 315
MiB/s with 32 database threads while Shore-MT (NVMe) peaks at
269 MiB/s with 16 database threads. The throughput improvement
in Shore-MT with 32 database threads is „12ˆ.

6.3.2 Commit latency
Figure 11 shows the CDF of the commit latencies with the OLTP

workload. WiredTiger (ELEDA) has an average commit latency of
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Figure 11: CDFs for the commit latencies on the OLTP work-
load: WiredTiger and Shore-MT with 32 threads.

3.7ms, whereas WiredTiger (NVMe) and WiredTiger (tmpfs) have
1 ms and 2.5 ms. Shore-MT (ELEDA) shows worse behaviour
(the average commit latency of 10.9 ms) than Shore-MT (NVMe)
and Shore-MT (tmpfs) (439 µs and 222 µs for the average commit
latencies). Although the average commit latency of WiredTiger
(ELEDA) is longer than the other two systems, it scales the perfor-
mance as the count of threads increases by eliminating lock con-
tention observed in vanilla systems.

6.3.3 Throughput with TPC-C workloads
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Figure 12: TPC-C benchmark result of WiredTiger.

Next, we use TPC-C workloads for measuring transaction through-
put and also discuss effects of long transactions using NEW ORDER
and PAYMENT transactions. For this experiment, we implemented
the WiredTiger-based TPC-C application running under SNAPSHOT
ISOLATION (SI)3. The number of warehouses is 32 with each
database thread executing a transaction against the dedicated ware-
house, avoiding unwanted contention. Figure 12 shows tpmC as
we increase database threads. It shows that WiredTiger (tmpfs)
scales tpmC throughput up to 16 threads, and then tpmC collapses
afterward due to the contention in the log manager. WiredTiger
(ELEDA) shows no performance collapse and handles long transac-
tions without extra processing overhead.

6.4 Experiments with Different Settings

6.4.1 Evaluation under snapshot isolation
To see the performance behavior of ELEDA-based systems under

higher isolation level, we conduct experiments measuring the per-
formance of WiredTiger under SNAPSHOT ISOLATION (SI) that
is the highest isolation level supported by WiredTiger. Figure 13
shows results with key-value and OLTP workloads. As shown in
the figure, WiredTiger (NVMe) is mainly affected by synchronous
I/O delay, and WiredTiger (tmpfs) suffers the serialization bottle-
neck by lock contention. WiredTiger (ELEDA) shows better per-
formance, but the performance is suddenly limited as the count of
database threads exceeds 16. In-depth profiling spotted a culprit
for this issue. Code flows intended to obtain a snapshot that de-
termines the visibility of key-value records, spend „30% of time
with 32 database threads. This is engine-specific overhead, and it
3Fekete at al. [19] proved that TPC-C benchmarks, running under
SI, ensures serializable execution.
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Figure 13: Throughput of WiredTiger under SI.

is irrelevant to ELEDA. If it were removed, WiredTiger (ELEDA)
would show the same peak throughput as shown in Figure 8(a).
With OLTP workloads (Figure 13(b)), WiredTiger (ELEDA) shows
a similar behavior as was shown in Figure 10(a). Though further in-
vestigation is needed, we believe that the overhead of WiredTiger’s
snapshot routines only matters under very high loads (ą 2M Txn/s).

6.4.2 Key-value workload with varying size
Next, we explore the performance of WiredTiger with payload

size being varied. For the evaluation, we use key-value work-
loads by varying the payload size from 512 bytes to 5 KiB. Since
the workload is configured to use larger payload, the I/O unit is
also reset to 512 KiB for ELEDA to utilize maximum device band-
width. Figure 14 shows the results of WiredTiger (ELEDA) with
the number of database threads being fixed to 32. As payload size
increases, the performance of WiredTiger (ELEDA) gradually de-
grades mainly because the amount of log data grows. Through-
put of other two systems remains the same, since they suffer either
synchronous I/O delay or scalability bottleneck with 32 database
threads. As shown in Figure 14, the I/O bandwidth consumed by
WiredTiger (ELEDA) peaks at 6.2 GiB/s when the payload size is 5
KiB, while the write bandwidth consumed by WiredTiger (NVMe)
is unchanged regardless of payload size.

6.4.3 Comparison with NVM-based logging
As discussed in §2.3.1, NVM-based logging has clear advan-

tages over other proposals owing to the attractive characteristic of
NVM itself. The proposal of Fang et al. [18] is a good example.
In this section, we conduct performance comparison between the
approach of Fang et al. on the emulated NVM with ELEDA on
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Figure 15: Throughput comparison between NVM-based log-
ging [18] and ELEDA

SSDs. The objective of this experiment is to shed light on ELEDA’s
potential application in conventional database systems that mostly
run on commodity hardware without NVM, by comparing perfor-
mance between software-only ELEDA and hardware-assisted NVM
logging. For this experiment, we use a small segment of shared-
memory and treat it as fast NVM. We also implement the approach
of Fang et al. in ELEDA, by following their algorithms. We then
measure the performance of WiredTiger with key-value and OLTP
workloads. As shown in Figure 15, experimental results demon-
strate that pure software architecture (ELEDA) on a commodity
server can attain comparable (or sometimes better) performance
than NVM-based logging. It is noteworthy that, to exploit NVM-
based logging in conventional database systems, we need to ex-
pense not only the cost for hardware (NVM module) but also (and
more importantly) the cost for software modification to make them
NVM-aware.

6.5 In-depth Analysis

6.5.1 Microbenchmark
To measure various performance metrics, we build a database

logging microbenchmark that creates a transaction which is de-
signed to buffer three separate logs to ELEDA, followed by the
transaction commit. For accurate measurements, transaction switch-
ing and callback mechanisms are also implemented, and callbacks
are invoked after ELEDA flushes logs to the storage devices. We
measure throughput, I/O bandwidth and the CDF of commit la-
tency by varying the number of database threads and the log size.
To maximize device utilization, we reset the I/O unit to 512 KiB.

Figure 16(a) shows the throughput graphs of ELEDA, as we vary
the number of database threads and the log size. ELEDA’s through-
put increases as we add more database threads. The peak through-
put (1.34 million Txn/s) is achieved with a 128 bytes log, and sus-
tained until the log size is increased to 2 KiB. After that point, the
throughput decreases as we grow the log size. Figure 16(b) shows
I/O bandwidth consumed by ELEDA. Since we use two NVMe
SSDs, the maximum aggregated bandwidth for sequential write is
around 6.92 GiB/s. The figure clearly shows that ELEDA can uti-
lize more bandwidth as we increase the log size and the count of
database threads. When the log size reaches 4 KiB, ELEDA utilizes
full device bandwidth. Figure 16(c) shows the CDF of a commit la-
tency with a 128 bytes log. The CDF indicates that increased CPU
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Figure 16: Microbenchmark measures throughput, I/O band-
width and CDF of the commit latency.

utilization by more active threads widens the latency distributions.
One interesting phenomenon comes to our attention; performance
results with a single database thread are better than those with two
and four threads. This is because Linux dispatches threads evenly
to different processor sockets to maximize the use of cache mem-
ory, but this increases inter-socket memory bus traffic with cache
invalidation messages in ELEDA. Giving the processor affinity to
threads easily makes the graph look better, but we do not change
the configuration since databases would not do that.

6.5.2 Profiling CPU utilization
Profiling reveals detailed information about various system ac-

tivities, especially about where the time goes. Since WiredTiger
shows larger performance improvement with ELEDA than Shore-
MT, we choose it for profiling.

Figure 17 shows the breakdown of profiled results of WiredTiger
(tmpfs), WiredTiger (NVMe) and WiredTiger (ELEDA), with the
key-value workload. As we increase the number of database threads,
vanilla engines cannot achieve commensurate CPU utilization due
to too much portion of waiting/sleeping activities primarily caused
by the lock contention. With 32 threads, WiredTiger (tmpfs) spends
20% time in spin-waiting while WiredTiger (NVMe) has negligible
portion. Since the modern implementation of a mutex, upon con-
tention, first incurs spin-waiting, followed by sleeping, WiredTiger
(tmpfs) shows substantial portion of spin-waiting due to the re-
moval of synchronous I/O delay. Spin-waiting on a mutex vari-
able however bursts memory bus with cache invalidation messages,
thus resulting in performance collapses in WiredTiger (tmpfs). This
definitely prohibits the system from gaining more utilization. The
same explanation applies to WiredTiger (NVMe). The difference
is, WiredTiger (NVMe) with 32 database threads spends 88% of
time in doing nothing, but sleeping. At this time, the synchronous
I/O delay causes lock contention to reach sleeping most time. This
is why we observed such low throughput numbers from vanilla
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Figure 17: Profiling CPU utilization: WiredTiger on the key-
value workload.

WiredTiger systems. In contrast, WiredTiger (ELEDA) show nei-
ther spin-waiting nor sleeping owing to the absence of lock con-
tention, and CPU utilization is therefore commensurate with the
count of database threads. Figure 17(c) shows time spent in ELEDA.
Note that WiredTiger (ELEDA), unlike other systems, does have
negligible kernel time that is usually increased due to lock con-
tention (e.g., futex()).

6.5.3 Effects of I/O unit size
As we discussed in §4.3, the commit latency is critically influ-

enced by the I/O unit. A larger I/O unit for higher device utilization
takes longer to fill the I/O buffer, but this increases the commit la-
tency. To analyze the effect of I/O unit on commit latency and band-
width utilization, we use different I/O units - 64 KiB and 512 KiB
- for ELEDA-based systems, all running 32 database threads with
key-value and OLTP workloads. In all results shown in Figure 18,
the smaller I/O unit provides much shorter commit latencies than
the larger I/O unit. Hence, if there is a strict service-level agree-
ment on response time, adjusting the I/O unit for different types
of workloads is required. We then measure the max bandwidth
utilization for different I/O units by using large size logs, although
results are not plotted here. The max bandwidth utilization ELEDA-
based systems can achieve for 64 KiB I/O unit is„3.2 GiB/s, while
ELEDA with 512 KiB I/O unit utilizes full device bandwidth (i.e.,
6.9 GiB/s). However, the commit latency for 64 KiB I/O unit is
an order of magnitude shorter than that for 512 KiB I/O unit. One
may think that multiple flusher threads may help increasing the uti-
lization with a smaller I/O unit, but preserving the sequentiality of
logging with multiple flusher threads would be very challenging.
We leave this issue open to our community.
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Figure 18: Effects of the I/O unit to commit latencies.
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Figure 19: Performance breakdown of WiredTiger (ELEDA).

6.5.4 Performance breakdown of ELEDA
The next experiment focuses on ELEDA and measures the con-

tribution of GRASSHOPPER and the latency-hiding technique on
the achieved throughput. The contribution of GRASSHOPPER is
further broken down by SBL-crawling and SBL-hopping. For the
evaluation, we selectively enable one or both of the latency-hiding
technique and GRASSHOPPER in WiredTiger (ELEDA); they are
denoted as “WT w/ Latency-hiding” and “WT w/ ELEDA”, respec-
tively. For comparison, we use vanilla WiredTiger (NVMe) as a
baseline (i.e., “WT (Vanilla)”).

Figure 19 shows the performance breakdown of ELEDA with
key-value and OLTP workloads. The contribution of the latency-
hiding technique is dominant when the count of database threads is
low because a small number of threads incur negligible lock con-
tention overhead. As load increases, the sole use of the latency-
hiding technique reveals its limitation in scaling the performance,
primarily due to lock contention with multiple threads of execu-
tion. If lock contention is left unaddressed, the effect of the latency-
hiding technique diminishes, and the system suffers the serializa-
tion bottleneck (see the throughput collapse of “WT w/ Latency-
hiding” in Figure 19).

Once the latency-hiding technique reaches its limitation (i.e.,„4
database threads), GRASSHOPPER plays a major role in achiev-
ing scalable performance by eliminating the scalability bottleneck.
Hence GRASSHOPPER contributes to achieving commensurate per-
formance as the count of database threads increases (i.e., the results
of “WT w/ ELEDA”). Since GRASSHOPPER is designed to resolve
serialization bottleneck on multicores, it is of use to the system
that shows a clear indication of performance bottlenecks caused
by lock contention; in other words it is of no use to the system if
synchronous I/O delay remains unresolved. Overall, performance
breakdown shows that ELEDA successfully resolves whichever of
the synchronous I/O delay and the scalability bottleneck is a matter
of pressing concern.

We further break down the impact of GRASSHOPPER on ELEDA
to have a deeper understanding of interplay between SBL-crawling
and SBL-hopping. For this evaluation, we use WiredTiger (ELEDA)
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Figure 20: Performance breakdown of GRASSHOPPER.

 0

 1000

 2000

 3000

 4000

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t 
(k

T
x
n

/s
)

No. of Database Threads

WiredTiger (ELEDA w/ SCAN)
WiredTiger (ELEDA w/ GRASSPHOPPER)

128 170 96 91 81 47

Figure 21: Throughput comparison between GRASSHOPPER
and a linear scanning approach on the key-value workload.

on the key-value workload and measure the contribution of SBL-
crawling on the measured throughput. The contribution of crawl-
ing is quantified by the ratio of the SBL increment conducted by
SBL-crawling to the total, and it is denoted as “Crawling Ratio”
in Figure 20. SBL-crawling makes a principal contribution to the
performance when the thread count is low where the overhead of
managing the LSN-heap can be neglected. As the count of threads
increases and payload size is decreased, SBL-crawling incurs sig-
nificant overhead in manipulating the LSN-heap. This causes SBL-
crawling to start falling behind, and this is the moment when SBL-
hopping plays a key role in advancing SBL in a timely manner. The
effect of this interplay is well presented in Figure 20.

Finally, we compare GRASSHOPPER with a simple scanning ap-
proach for tracking LSN holes to see the clear benefit of GRASSHOP-
PER. For the evaluation, we use a bitmap with each bit representing
a single byte of a log buffer. A dedicated worker simply scans a
bitmap to advance SBL while database threads set bits after copy-
ing their logs, except that database threads stop before they outrun
the dedicated worker thread. We run the same YCSB workload
used before against the WiredTiger engine. As shown in Figure 21,
the scanning approach hits its max speed quickly (i.e., „40 MiB/s)
even with 2 database threads. We believe that designing an efficient
scanning mechanism would require nontrivial effort and warrant
meaningful research outcomes.

7. CONCLUSIONS
We have observed that contemporary database systems relying

on ARIES (or its variants) have faced significant performance bot-
tlenecks in centralized logging on computing platforms with dozens
of processor cores and fast storage devices. With two open-source
systems, we have identified non-scalable locks (or algorithms) used
in the centralized logging as the main bottleneck. To address the
problem, we proposed a fast, scalable logging method, ELEDA,
that is based on highly concurrent data structures. ELEDA also
integrated transaction switching and asynchronous callback mech-
anisms to address synchronous I/O delay. Our evaluation demon-
strated that ELEDA is modular and applicable to any transaction
systems suffering the bottleneck in centralized logging. As hard-
ware vendors provision more cores, scalability issues in system
software deserve careful consideration so as not to have undesir-
able performance problems. In this regard, ELEDA provides one
method to address the key challenge in database logging, that is an
essential prerequisite for high performance transaction systems.
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