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ABSTRACT
Complex event processing (CEP) is widely employed to de-
tect occurrences of prede�ned combinations (patterns) of
events in massive data streams. As new events are ac-
cepted, they are matched using some type of evaluation
structure, commonly optimized according to the statistical
properties of the data items in the input stream. How-
ever, in many real-life scenarios the data characteristics are
never known in advance or are subject to frequent on-the-�y
changes. To modify the evaluation structure as a reaction to
such changes, adaptation mechanisms are employed. These
mechanisms typically function by monitoring a set of prop-
erties and applying a new evaluation plan when signi�cant
deviation from the initial values is observed. This strategy
often leads to missing important input changes or it may
incur substantial computational overhead by over-adapting.
In this paper, we present an e�cient and precise method

for dynamically deciding whether and how the evaluation
structure should be reoptimized. This method is based on
a small set of constraints to be satis�ed by the monitored
values, de�ned such that a better evaluation plan is guaran-
teed if any of the constraints is violated. To the best of our
knowledge, our proposed mechanism is the �rst to provably
avoid false positives on reoptimization decisions. We for-
mally prove this claim and demonstrate how our method can
be applied on known algorithms for evaluation plan gener-
ation. Our extensive experimental evaluation on real-world
datasets con�rms the superiority of our strategy over exist-
ing methods in terms of performance and accuracy.
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1. INTRODUCTION
Real-time detection of complex data patterns is one of

the fundamental tasks in stream processing. Many modern
applications present a requirement for tracking data items
arriving from multiple input streams and extracting occur-
rences of their prede�ned combinations. Complex event pro-
cessing (CEP) is a prominent technology for providing this
functionality, broadly employed in a wide range of domains,
including sensor networks, security monitoring and �nancial
services. CEP engines represent data items as events arriv-
ing from event sources. As new events are accepted, they
are combined into higher-level complex events matching the
speci�ed patterns, which are then reported to end users.
One of the core elements of a CEP system is the evalu-

ation mechanism. Popular evaluation mechanisms include
non-deterministic �nite automata (NFAs) [50], evaluation
trees [43], graphs [8] and event processing networks (EPNs)
[30]. A CEP engine uses an evaluation mechanism to create
an internal representation for each pattern P to be moni-
tored. This representation is constructed according to the
evaluation plan, which re�ects the structure of P . The eval-
uation plan de�nes how primitive events are combined into
partial matches. Typically, a separate instance of the inter-
nal representation is created at runtime for every potential
pattern match (i.e., a combination of events forming a valid
subset of a full match).
As an example, consider the following scenario.
Example 1. A system for managing an array of smart

security cameras is installed in a building. All cameras
are equipped with face recognition software, and periodical
readings from each camera are sent in real time to the main
server. We are interested in identifying a scenario in which
an intruder accesses the restricted area via the main gate of
the building rather than from the dedicated entrance. This
pattern can be represented as a sequence of three primitive
events: 1) camera A (installed near the main gate) detects
a person; 2) later, camera B (located inside the building's
lobby) detects the same person; 3) �nally, camera C detects
the same person in the restricted area.

1346



(a)

(b)

Figure 1: Evaluation structures for a sequence of events
from streams A,B,C : (a) NFA without reordering; (b) Lazy
NFA with reordering.

Figure 1(a) demonstrates an example of an evaluation
mechanism (a non-deterministic �nite automaton) for de-
tecting this simple pattern by a CEP engine. This NFA
is created according to the following simple evaluation plan.
First, a stream of events arriving from camera A is inspected.
For each accepted event, the stream of B is probed for subse-
quently received events specifying the same person. If found,
we wait for a corresponding event to arrive from camera C.
Pattern detection performance can often be dramatically

improved if the statistical characteristics of the monitored
data are taken into account. In the example above, it can
be assumed that fewer people access the restricted area than
pass through the main building entrance. Consequently, the
expected number of face recognition noti�cations arriving
from camera C is signi�cantly smaller than the expected
number of similar events from cameras A and B. Thus, in-
stead of detecting the pattern in the order of the requested
occurrence of the primitive events (i.e., A → B → C), it
would be bene�cial to employ the �lazy evaluation� principle
[37] and process the events in a di�erent order, �rst moni-
toring the stream of events from C, and then examining the
local history for previous readings of B and A. This way,
fewer partial matches would be created. Figure 1(b) depicts
the NFA constructed according to the improved plan.
Numerous authors proposed methods for de�ning evalu-

ation plans based on the statistical properties of the data,
such as event arrival rates [8, 37, 43, 46]. It was shown that
systems tuned according to the a priori knowledge of these
statistics can boost performance by up to several orders of
magnitude, especially for highly skewed data.
Unfortunately, in real-life scenarios this a priori knowledge

is rarely obtained in advance. Moreover, the data charac-
teristics can change rapidly over time, which may render an
initial evaluation plan extremely ine�cient. In Example 1,
the number of people near the main entrance might drop
dramatically in late evening hours, making the event stream
from camera A the �rst in the plan, as opposed to the event
stream from C.
To overcome this problem, a CEP engine must continu-

ously estimate the current values of the target parameters
and, if and whenever necessary, adapt itself to the changed
data characteristics. We will denote systems possessing such
capabilities as Adaptive CEP (ACEP) systems.
A common structure of an ACEP system is depicted in

Figure 2. The evaluation mechanism starts processing in-
coming events using some initial plan. A dedicated compo-

Figure 2: General structure of an adaptive CEP system.

nent calculates up-to-date estimates of the statistics (e.g.,
event arrival rates in Example 1) and transfers them to the
optimizer. The optimizer then uses these values to decide
whether the evaluation plan should be updated. If the an-
swer is positive, a plan generation algorithm is invoked to
produce a new plan (e.g., a new NFA), which is then deliv-
ered to the evaluation mechanism to replace the previously
employed structure. In Example 1, this algorithm simply
sorts the event types in the ascending order of their arrival
rates and returns a chain-structured NFA conforming to that
order.
Correct decisions by the optimizer are crucial for the suc-

cessful operation of an adaptation mechanism. As the pro-
cess of creating and deploying a new evaluation plan is very
expensive, we would like to avoid �false positives,� that is,
launching reoptimizations that do not improve the currently
employed plan. �False negatives,� occurring when an impor-
tant shift in estimated data properties is missed, are equally
undesirable. A �awed decision policy may severely dimin-
ish or even completely eliminate the gain achieved by an
adaptation mechanism.
The problem of designing e�cient and reliable algorithms

for reoptimization decision making has been well studied in
areas such as traditional query optimization [29]. However,
it has received only limited attention in the CEP domain
([37, 43]). In [37], the authors present a structure which
reorganizes itself according to the currently observed arrival
rates of the primitive events. Similarly to Eddies [13], this
system does not adopt a single plan to maintain, but rather
generates a new plan for each newly observed set of events
regardless of the performance of the current one. The main
strength of this method is that it is guaranteed to produce
the optimal evaluation plan for any given set of events. How-
ever, it can create substantial bottlenecks due to the com-
putational overhead of the plan generation algorithm. This
is especially evident for stable event streams with little to
no data variance, for which this technique would be outper-
formed by a non-adaptive solution using a static plan.
The second approach, introduced in [43], de�nes a con-

stant threshold t for all monitored statistics. When any
statistic deviates from its initially observed value by more
than t, plan reconstruction is activated. This solution is
much cheaper computationally than the previous one. How-
ever, some reoptimization opportunities may be missed.
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Consider Example 1 again. Recall that we are interested
in detecting the events by the ascending order of their ar-
rival rates, and let the rates for events generated by cameras
A, B and C be rateA = 100, rateB = 15, rateC = 10 respec-
tively. Obviously, events originating at A are signi�cantly
less sensitive to changes than those originating at B and C.
Thus, if we monitor the statistics with a threshold t > 6, a
growth in C to the point where it exceeds B will not be dis-
covered, even though the reoptimization is vital in this case.
Alternatively, setting a value t < 6 will result in detection
of the above change, but will also cause the system to react
to �uctuations in the arrival rate of A, leading to redundant
plan recomputations.
No single threshold in the presented scenario can ensure

optimal operation. However, by removing the conditions
involving t and monitoring instead a pair of constraints
{rateA > rateB , rateB > rateC}, plan recomputation would
be guaranteed if and only if a better plan becomes available.
This paper presents a novel method for making e�cient

and precise on-the-�y adaptation decisions. Our method is
based on de�ning a tightly bounded set of conditions on the
monitored statistics to be periodically veri�ed at runtime.
These conditions, which we call invariants, are generated
during the initial plan creation, and are constantly recom-
puted as the system adapts to changes in the input. The
invariants are constructed to ensure that a violation of at
least one of them guarantees that a better evaluation plan
is available.
To the best of our knowledge, our proposed mechanism is

the �rst to provably avoid false positives on reoptimization
decisions. It also achieves notably low numbers of false neg-
atives as compared to existing alternatives, as shown by our
empirical study. This method can be applied to any deter-
ministic algorithm for evaluation plan generation and used
in any stream processing scenario.
The contributions and the structure of this paper can thus

be summarized as follows:
• We formally de�ne the reoptimizing decision problem

for the complex event processing domain (Section 2).
• We present a novel method for detecting reoptimiza-

tion opportunities in ACEP systems by verifying a set of in-
variants on the monitored data characteristics and formally
prove that no false positives are possible when this method is
used. We also extend the basic method to achieve a balance
between computational e�ciency and precision (Section 3).
•We demonstrate how to apply the invariant-based method

on two known algorithms for evaluation structure creation,
the greedy order-based algorithm [35] and ZStream algo-
rithm [43], and discuss the generalization of these approaches
to broader categories of algorithms (Section 4).
•We conduct an extensive experimental evaluation, com-

paring the invariant-based method to existing state-of-the-
art solutions. The results of the experiments, performed
on two real-world datasets, show that our proposed method
achieves the highest accuracy and the lowest computational
overhead (Section 5).

2. PRELIMINARIES
This section presents the notations used throughout this

paper, outlines the event detection process in an ACEP sys-
tem, and provides a formal de�nition of the reoptimizing
decision problem, which will be further discussed in the sub-
sequent sections.

2.1 Notations and Terminology
A pattern recognized by a CEP system is de�ned by a

combination of primitive events, operators, predicates, and
a time window. The patterns are formed using declarative
speci�cation languages ([24, 28, 50]).
Each event is represented by a type and a set of attributes,

including the occurrence timestamp. Throughout this paper
we assume that each primitive event has a well-de�ned type,
i.e., the event either contains the type as an attribute or it
can be easily inferred from the event attributes using negli-
gible system resources. We will denote the pattern size (i.e.,
the number of distinct primitive events in a pattern) by n.
The predicates to be satis�ed by the participating events

are usually organized in a Boolean formula. Any condition
can be speci�ed on any attribute of an event, including the
timestamp (e.g., for supporting multiple time windows).
The operators describe the relations between the events

comprising a pattern match. Among the most commonly
used operators are sequence (SEQ), conjunction (AND), dis-
junction (OR), negation (typically marked by '~', requires
the absence of an event from the stream) and Kleene closure
(marked by '*', accepts multiple appearances of an event in
a speci�ed position). A pattern may include an arbitrary
number of operators.
To illustrate the above, consider Example 1 again. We

will de�ne three event types according to the identi�ers of
the cameras generating them: A, B and C. For each primi-
tive event, we will set the attribute person_id to contain a
unique number identifying a recognized face. Then, to de-
tect a sequence of occurrences of the same person in three
areas in a 10-minute time period, we will use the following
pattern speci�cation syntax, taken from SASE [50]:

PATTERN SEQ (A a,B b,C c)
WHERE ((a.person_id = b.person_id)∧

(b.person_id = c.person_id))
WITHIN 10minutes.

On system initialization, the pattern declaration is passed
to the plan generation algorithm A to create the evaluation
plan. The evaluation plan provides a scheme for the CEP
engine, according to which its internal pattern representa-
tion is created. The plan generation algorithm accepts a
pattern speci�cation P and a set of statistical data charac-
teristic values Stat. It then returns the evaluation plan to
be used for detection. If these values are not known in ad-
vance, a default, empty Stat, is passed. Multiple plan gen-
eration algorithms have been devised, e�ciently supporting
patterns with arbitrarily complex combinations of the afore-
mentioned operators [35, 36, 43].
In Example 1, Stat contains the arrival rates of event

types A, B and C, the evaluation plan is an ordering on the
above types, and A is a simple sorting algorithm, returning
a plan following the ascending order of the arrival rates. The
CEP engine then adheres to this order during pattern detec-
tion. Another popular choice for a statistic to be monitored
is the set of selectivities (i.e., the probabilities of success)
of the inter-event conditions de�ned by the pattern. Exam-
ples of plan generation algorithms requiring the knowledge
of condition selectivities are presented in Section 4.
The plan generation algorithm attempts to utilize the in-

formation in Stat to �nd the best possible evaluation plan
subject to some prede�ned set of performance metrics, which
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Figure 3: Evaluation trees produced by ZStream for the
sequence of events from streams A,B,C : (a) a left-deep tree;
(b) a right-deep tree.

we denote as Perf . These metrics may include throughput,
detection latency, network communication cost, power con-
sumption, and more. For instance, one possible value for
Perf in Example 1 is {throughput,memory}, as processing
the events according to the ascending order of their arrival
rates was shown to vastly improve memory consumption and
throughput of a CEP system [37].
In the general case, we consider A to be a computationally

expensive operation. We also assume that this algorithm is
optimal; that is, it always produces the best possible solution
for the given parameters. While this assumption rarely holds
in practice, the employed techniques usually tend to produce
empirically good solutions.
An evaluation plan is not constrained to be merely an

order. Figure 3 demonstrates two possible tree-structured
plans as de�ned by ZStream [43]. An evaluation structure
following such a plan accumulates the arriving events at
their corresponding leaves, and the topology of the inter-
nal nodes de�nes the order in which they are matched and
their mutual predicates are evaluated. Matches reaching the
tree root are reported to the end users. From this point on,
we will denote such plans as tree-based plans, whereas plans
similar to the one used for Example 1 will be called order-
based plans. While the methods discussed in this paper are
independent of the speci�c plan structure, we will use order-
based and tree-based plans in our examples.

2.2 Detection-Adaptation Loop
During evaluation, an ACEP system constantly attempts

to spot a change in the statistical properties of the data
and to react accordingly. This process, referred to as the
detection-adaptation loop, is depicted in Algorithm 1.
The system accepts events from the input stream and

processes them using the current evaluation plan. At the
same time, the values of the data statistics in Stat are con-
stantly reestimated by the dedicated component (Figure 2),
often as a background task. While monitoring simple val-
ues such as the event arrival rates is trivial, more complex
expressions (e.g., predicate selectivities) require advanced
solutions. In this paper, we utilize existing state-of-the-art
techniques from the �eld of data stream processing [14, 27].
These histogram-based methods allow to e�ciently main-
tain a variety of stream statistics over sliding windows with
high precision and require negligible system resources.
Opportunities for adaptation are recognized by the reop-

timizing decision function D, de�ned as follows:

D : STAT → {true, false} ,

Algorithm 1 Detection-adaptation loop in an ACEP sys-
tem
Input: pattern speci�cation P , plan generation algorithm
A, reoptimizing decision function D, initial statistic values
in_stat ∈ STAT

curr_plan⇐ A (P, in_stat)
while more events are available:
process incoming events using curr_plan
curr_stat⇐ estimate current statistic values
if D (curr_stat):

new_plan⇐ A (P, curr_stat)
if new_plan is better than curr_plan:

curr_plan⇐ new_plan
apply curr_plan

where STAT is a set of all possible collections of the mea-
sured statistic values. D accepts the current estimates for
the monitored statistic values and decides whether reopti-
mization is to be attempted. Whenever D returns true, A is
invoked. The output of A is a new evaluation plan, which,
if found more e�cient than the current plan subject to the
metrics in Perf , is subsequently deployed.
Methods for replacing an evaluation plan on-the-�y with-

out signi�cantly a�ecting system performance or losing in-
termediate results are a major focus of current research [29].
Numerous advanced techniques were proposed in the �eld of
continuous query processing in data streams [10, 38, 53]. In
our work, we use the CEP-based strategy introduced in [37].
Let t0 be the time of creation of the new plan. Then, partial
matches containing at least a single event accepted before
t0 are processed according to the old plan pold, whereas the
newly created partial matches consisting entirely of �new�
events are treated according to the new plan pnew. Note
that since pold and pnew operate on disjoint sets of matches,
there is no duplicate processing during execution. At time
t0+W (whereW is the time window of the pattern), the last
�old� event expires and the system switches fully to pnew.
In general, we consider the deployment procedure to be a

costly operation and will attempt to minimize the number
of unnecessary plan replacements.

2.3 Reoptimizing Decision Problem
The reoptimizing decision problem is the problem of �nd-

ing a function D that maximizes the performance of a CEP
system subject to Perf . It can be formally de�ned as fol-
lows: given the pattern speci�cation P , the plan generation
algorithm A, the set of monitored statistics Stat, and the set
of performance metrics Perf , �nd a reoptimizing decision
function D that achieves the best performance of the ACEP
detection-adaptation loop (Algorithm 1) subject to Perf .
In practice, the quality of D is determined by two factors.

The �rst factor is the correctness of the answers returned by
D. Wrong decisions can either fall into the category of false
positives (returning true when the currently used plan is still
the best possible) or false negatives (returning false when a
more e�cient plan is available). Both cases cause the system
to use a sub-optimal evaluation plan. The second factor is
the time and space complexity ofD. As we will see in Section
5, an accurate yet resource-consuming implementation of D
may severely degrade system performance regardless of its
output.
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We can now analyze the solutions to the reoptimizing
decision problem implemented by the adaptive frameworks
which we discussed in Section 1. The tree-based NFA [37]
de�nes a trivial decision function D, unconditionally return-
ing true. In ZStream [43] this functions loops over all values
in the input parameter curr_stat and returns true if and
only if a deviation of at least t is detected.

3. INVARIANT-BASED METHOD FOR THE
REOPTIMIZING DECISION PROBLEM

As illustrated above, the main drawback of the previously
proposed decision functions is their coarse granularity, as
the same condition is veri�ed for every monitored data prop-
erty. We propose a di�erent approach, based on construct-
ing a set of �ne-grained invariants that re�ect the existing
connections between individual data characteristics. The
reoptimizing decision function D will then be de�ned as a
conjunction of these invariants.
In this section, we present the invariant-based decision

method and discuss its correctness guarantees, time and
space complexity, and possible optimizations.

3.1 Invariant Creation
A decision invariant (or simply invariant) will be de�ned

as an inequality of the following form:

f1 (stat1) < f2 (stat2) ,

where stat1, stat2 ∈ STAT are sets of the monitored statis-
tic values and f1, f2 : STAT → R are arbitrary functions.
We are interested in �nding a single invariant for each

building block of the evaluation plan in current use. A build-
ing block is de�ned as the most primitive, indivisible part
of a plan. An evaluation plan can then be seen as a collec-
tion of building blocks. For instance, the plan for detecting
a sequence of three events of types A, B and C, which we
discussed in Example 1, is formed by the following blocks:

1. �Accept an event of type C�;

2. �Scan the history for events of type B matching the
accepted C�;

3. �Scan the history for events of type A matching the
accepted C and B�.

In general, in an order-based plan each step in the selected
order will be considered a block, whereas for tree-based plans
a block is equivalent to an internal node.
We know that the speci�c plan from the above exam-

ple was chosen because the plan generation algorithm A
sorts the event types according to their arrival rates. If,
for instance, the rate of B exceeded that of A, the second
block would have been �Scan the history for events of type
A matching the accepted C� and the third would also have
changed accordingly. In other words, the second block of
the plan is so de�ned because, during the run of A, the
condition rateB < rateA was at some point checked, and
the result of this check was positive. Following the termi-
nology de�ned above, in this example STAT consists of all
valid arrival rate values and f1, f2 are trivial functions, i.e.,
f1 (x) = f2 (x) = x.
We will denote any condition (over the measured statistic

values) whose veri�cation has led the algorithm to include
some building block in the �nal plan as a deciding condition.

Obviously, no generic method exists to distinguish between
a deciding condition and a regular one. This process is to
be applied separately on any particular algorithm A based
on its semantics. In our example, assume that the arrival
rates are sorted using a simple min-sort algorithm, selecting
the smallest remaining one at each iteration. Then, any
comparison between two arrival rates will be considered a
deciding condition, as opposed to any other condition which
may or may not be a part of the implementation of this
particular algorithm.
When A is invoked on a given input, locations can be

marked in the algorithm's execution �ow where the deciding
conditions are veri�ed. We will call any actual veri�cation
of a deciding condition a block-building comparison (BBC).
For instance, assume that we start executing our min-sort al-
gorithm and a deciding condition rateC < rateA is veri�ed.
Further assume that rateC is smaller than rateA. Then, this
veri�cation is a BBC associated with the building block �Ac-
cept an event of type C �rst�, because, unless this deciding
condition holds, the block will not be included in the �nal
plan. This will also be the case if rateC < rateB is subse-
quently veri�ed and rateC is smaller. If rateB is smaller, the
opposite condition, rateB < rateC , becomes a BBC associ-
ated with a block �Accept an event of type B �rst�. Overall,
(n− 1) BBCs take place during the �rst min-sort iteration,
(n− 2) during the second iteration, and so forth.
In general, for each building block b of any evaluation plan,

we can determine a deciding condition set (DCS). A DCS
of b consists of all deciding conditions that were actually
checked and satis�ed by BBCs belonging to b as explained
above. Note that, by de�nition, the intersection of two DCSs
is always empty. In our example, assuming that the blocks
listed above are denoted as b1, b2, b3, the deciding condition
sets are as follows:

DCS1 = {rateC < rateB , rateC < rateA} ,
DCS2 = {rateB < rateA} ,
DCS3 = ∅.

As long as the above conditions hold, no other evaluation
plan can be returned by A. On the other hand, if any of
the conditions is violated, the outcome of A will result in
generating a di�erent plan. If we de�ne the decision function
D as a conjunction of the deciding condition sets, we will
recognize situations in which the current plan becomes sub-
optimal with high precision and con�dence.
However, verifying all deciding conditions for all building

blocks is very ine�cient. In our simple example, the to-
tal number of such conditions is quadratic in the number
of event types participating in the pattern. For more com-
plicated plans and generation algorithms, this dependency
may grow to a high-degree polynomial or even become expo-
nential. Since the adaptation decision is made during every
iteration of Algorithm 1, the overhead may negatively a�ect
the system throughput and the response time.
To overcome this problem, we will constrain the number

of conditions to be veri�ed by D to one per building block.
For each deciding condition set DCSi, we will determine
the tightest condition, that is, the one that was closest to
being violated during plan generation. This tightest condi-
tion will be selected as an invariant of the building block
bi. In other words, we may alternatively de�ne an invari-
ant as a deciding condition selected for actual veri�cation
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by D out of a DCS. More formally, given a set DCSi =
{c1, · · · , cm} such that ck = (fk,1 (statk,1) < fk,2 (statk,2)) ,
we will select a condition that minimizes the expression
(fk,2 (statk,2)− fk,1 (statk,1)) as an invariant of the build-
ing block bi.
In the example above, the invariant for DCSi is rateC <

rateB , since we know that rateB < rateA, and therefore
rateB − rateC < rateA − rateC . It is clear that rateB is a
tighter bound for the value of rateC than rateA.
To summarize, the process of invariant creation proceeds

as follows. During the run of A on the current set of statis-
tics Stat, we closely monitor its execution. Whenever a
block-building comparison is detected for some block b, we
add the corresponding deciding condition to the DCS of b.
After the completion of A, the tightest condition of each
DCS is extracted and added to the invariant list.
Figure 4 demonstrates the invariant creation process ap-

plied on the pattern from Example 1 and the rate-sorting
algorithm A discussed above. Each sub�gure depicts a dif-
ferent stage in the plan generation and presents the DCSs
and the BBCs involved at this stage.
As discussed above, this generic method has to be adapted

to any speci�c implementation of A. This is trivially done
for any A which constructs the solution plan in a step-by-
step manner, selecting and appending one building block
at a time. However, for algorithms incorporating other ap-
proaches, such as dynamic programming, it is more chal-
lenging to attribute a block-building comparison to a single
block of the plan. In Section 4, we will exemplify this pro-
cess on two algorithms taken from the previous work in the
�eld and discuss its applicability on broader algorithm cat-
egories.

3.2 Invariant Verification and Adaptation
During the execution of the detection-adaptation loop (Al-

gorithm 1), D traverses the list of invariants built as de-
scribed above. It returns true if a violated invariant was
found (according to the current statistic estimates) and false
otherwise. This list is sorted according to the order of the re-
spective building blocks in the evaluation plan. In Example
1, �rst the invariant rateC < rateB will be veri�ed, followed
by rateB < rateA. The reason is that an invariant im-
plicitly assumes the correctness of the preceding invariants
(e.g., rateB < rateA assumes that rateC < rateB holds;
otherwise, it should have been changed to rateC < rateA).
For tree-based plans, the veri�cation proceeds in a bottom-
up order. For example, for the tree plan displayed in Figure
3(a), the order is (A,B)→ (A,B,C).
If a violation of an invariant is detected, A is invoked to

create a new evaluation plan. In this case, the currently used
invariants are invalidated and a new list is created follow-
ing the process described above. Subsequent veri�cations
performed by D are then based on the new invariants.
Assuming that any invariant can be veri�ed in constant

time and memory, the complexity of D using the invariant-
based method is O (B), where B is the number of the build-
ing blocks in an evaluation plan. This number is bounded
by the pattern size (the number of event types participating
in a pattern) for both order-based and tree-based plans. To
guarantee this result, an application of the invariant-based
method on a speci�c implementation of A has to ensure
that the veri�cation of a single invariant is a constant-time
operation, as we exemplify in Section 4.

3.3 Correctness Guarantees and the K-invariant
Method

We will now formally prove that the invariant-based method
presented above guarantees that no false positive detections
will occur during the detection-adaptation loop.

Theorem 1. Let D be a reoptimizing decision function
implemented according to the invariant-based method. Let
A be a deterministic plan generation algorithm in use and
let p be the currently employed plan. Then, if at some point
during execution D returns true, the subsequent invocation
of A will return a plan p′, such that p′ 6= p.

By de�nition, if D returns true, then there is at least one
invariant whose veri�cation failed, i.e., its deciding condition
does not hold anymore. Let c be the �rst such condition,
and let bi be the building block such that c ∈ DCSi (recall
that there is only one such bi). Then, by determinism of
A and by the ordering de�ned on the invariants, the new
run of A will be identical to the one that produced p until
the block-building comparison that checks c. At that point,
by de�nition of the block-building comparison, the negative
result of validating c will cause A to reject bi as the current
building block and select a di�erent one, thus producing a
plan p′, which is di�erent from p. �
Since we assume A to always produce the optimal solu-

tion, the above result can be extended.

Corollary 1. Let D be an invariant-based reoptimizing
decision function and let A be a deterministic plan gener-
ation algorithm in use. Then, if at some point during exe-
cution D returns true, the subsequent invocation of A will
return a plan that is more e�cient than the currently em-
ployed one.

Note that the opposite direction of Theorem 1 does not
hold. It is still possible that a more e�cient evaluation plan
can be deployed, yet this opportunity will not be detected by
D because we only pick a single condition from each deciding
condition set (see Section 4.2 for an example). If we were
to include the whole union of the above sets in the invariant
set, even stronger guarantees could be achieved, as stated in
the following theorem.

Theorem 2. Let D be a reoptimizing decision function
implemented according to the invariant-based method, with
all conditions from all DCSs included in the invariant
set. Let A be a deterministic plan generation algorithm in
use and let p be the currently employed plan. Then, if and
only if at some point during the execution D returns true,
the subsequent invocation of A will return a plan p′, such
that p′ 6= p.

The �rst direction follows immediately from Theorem 1.
For the second direction, let p′ 6= p and let bi ∈ p, b′i ∈ p′

be the �rst building blocks that di�er in p and p′. By A's
determinism, there exist f1, f2, stat1, stat2 s. t.

(f1 (stat1) < f2 (stat2)) ∈ DCSi

(f2 (stat2) < f1 (stat1)) ∈ DCS′i,

as otherwise there would be no way for A to determinis-
tically choose between bi and b′i. Since p′ was created by
A using the currently estimated statistic values, we can
deduce that f2 (stat2) < f1 (stat1) holds. Consequently,
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Figure 4: Invariant creation for pattern SEQ(A,B,C) from Example 1: (a) selecting the �rst event type in the detection
order; (b) C is set as the �rst event type, and selection of the second event type is in process; (c) B is set as the second type,
and only a single event type remains for the third position; (d) the evaluation plan and the invariant set are �nalized.

f1 (stat1) < f2 (stat2) does not hold. By the assumption
that all deciding conditions are included in the invariant
set, D will necessarily detect this violation, which completes
the proof. �
The above result shows that greater precision can be gained

if we do not limit the number of monitored invariants per
building block. However, as discussed above, validating all
deciding conditions may drastically increase the adaptation
overhead.
The tradeo� between performance and precision can be

controlled by introducing a new parameter K, de�ned as
the maximal number of conditions from a deciding set to
select as invariants. We will refer to the method using a
speci�c value of K as the K-invariant method, as opposed
to the basic invariant method discussed above. Note that
the 1-invariant method is equivalent to the basic one. The
K-invariant method becomes more accurate and more time-
consuming for higher values of K. The total number of the
invariants in this case is at most K · (B − 1).

3.4 Distance-Based Invariants
By Corollary 1, it is guaranteed that a new, better evalu-

ation plan will be produced following an invariant violation.
However, the magnitude of its improvement over the old
plan is not known. Consider a scenario in which two event
types in a pattern have very close arrival rates. Further as-
sume that there are slight oscillations in the rates, causing
the event types to swap positions periodically when ordered
according to this statistic. If an invariant is de�ned compar-
ing the arrival rates of these two types, then D will discover
these minor changes and two evaluation plans with little to
no di�erence in performance will be repeatedly produced
and deployed. Although not a �false positive� by de�nition,
the overhead implied by this situation may exceed any ben-
e�t of using an adaptive platform.
To overcome this problem, we will introduce the notion

of the minimal distance d, de�ned as the smallest relative
di�erence between the two sides of the inequality required
for an invariant to be considered as violated. That is, given
a deciding condition fk,1 (statk,1) < fk,2 (statk,2), we will
construct the invariant to be veri�ed by D as follows:

(1 + d) · fk,1 (statk,1) < fk,2 (statk,2) .

The experimental study in Section 5 demonstrates that a
correctly chosen d leads to a signi�cant performance im-
provement over the basic technique. However, �nding a suf-
�ciently good d is a di�cult task, as it depends on the data,
the type of statistics, the invariant expression, and the fre-
quency and magnitude of the runtime changes. We identify
the following directions for solving this problem:

1)Parameter scanning: empirically checking a range of
candidate values to �nd the one resulting in the best perfor-
mance. This method is the simplest, but often infeasible in
real-life scenarios.
2)Data analysis methods: deriving d from the currently

available statistics can provide a good estimate in some
cases. For instance, it can be calculated as the average rel-
ative di�erence between the sides of a deciding condition
obtained during the initial plan generation, or, more for-
mally:

d = AV G

(
|(fk,2 (statk,2)− fk,1 (statk,1))|
min (fk,1 (statk,1) , fk,2 (statk,2))

)
.

The e�ectiveness of this approach depends on the distri-
bution and the runtime behavior of the statistical values.
Speci�cally, false positives may be produced when the val-
ues are very close and the changes are frequent. Still, we
expect it to perform reasonably well in the common case.
This technique can also be utilized to produce a starting
point for parameter scanning.
3)Meta-adaptive methods: dynamically tuning d on-the-

�y to adapt it to the current stream statistics. This might
be the most accurate and reliable solution. We start with
some initial value, possibly obtained using the above tech-
niques. Then, as invariants are violated and new plans are
computed, we modify d to prevent repeated reoptimization
attempts when the observed gain in plan quality is low. An
even higher precision can be achieved by additionally uti-
lizing �ne-grained per-invariant distances. This advanced
research direction is a subject for our future work.
We implement and experimentally evaluate the �rst two

approaches in Section 5.

4. APPLICATIONS OF THE INVARIANT-
BASED METHOD

In Section 3, we presented a generic method for de�ning
a reoptimizing decision function D as a list of invariants.
As we have seen, additional steps are required in order to
apply this method to a speci�c choice of the evaluation plan
structure and the plan generation algorithm. Namely, the
following should be strictly de�ned: 1)what is considered
a building block in a plan; 2)what is considered a block-
building comparison in A; 3)how we associate a BBC with
a building block. Additionally, e�cient veri�cation of the
invariants must be ensured. In this section, we will exem-
plify this process on two plan-algorithm combinations taken
from previous works in the �eld. The experimental study
in Section 5 will also be conducted on these adapted algo-
rithms. We also discuss how the presented techniques can
be generalized to several classes of algorithms.
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Algorithm 2 Greedy algorithm for order-based plans

Input: event types e1, · · · , en, arrival rates r1, · · · , rn, inter-
event predicate selectivities sel1,1, · · · , seln,n

Output: order-based evaluation plan E = ep1 , ep2 , · · · , epn

E ⇐ ∅; p1 = argminj {rj · selj,j}
add ep1 to E
for i from 2 to n:

pi = argminj /∈E
{
rj · selj,j ·

∏
k<i selpk,j

}
add epi to E

return E

4.1 Greedy Algorithm for Order-Based Plans
The greedy heuristic algorithm based on cardinalities and

predicate selectivities was �rst described in [48] for creat-
ing left-deep tree plans for join queries. It was adapted to
the CEP domain in [35]. The algorithm supports all oper-
ators described in Section 2.1 and their arbitrary composi-
tion. Its basic form, which we describe shortly, only targets
conjunction and sequence patterns of arbitrary complexity.
Support for other operators and their composition is im-
plemented by either activating transformation rules on the
input pattern or applying post-processing steps on the gen-
erated plan (e.g., to augment it with negated events). As
these additional operations do not a�ect the application of
the invariant-based method, we do not describe them here.
The reader is referred to [35] for more details.
The algorithm proceeds iteratively, selecting at each step

the event type which is expected to minimize the overall
number of partial matches (subsets of valid pattern matches)
to be kept in memory. At the beginning, the event type
with the lowest arrival rate (multiplied by the selectivities
of any predicates possibly de�ned solely on this event type)
is chosen. At each subsequent step i; i > 1, the event
type to be selected is the one that minimizes the expression(∏i

j=1 rpj ·
∏

j,k≤i selpj ,pk

)
, where rx stands for the arrival

rate of the xth event type in a pattern, selx,y is the selectivity
of the predicate de�ned between the xth and the yth event
types (equals to 1 if no predicate is de�ned), p1, · · · , pi−1 are
the event types selected during previous steps, and pi is the
candidate event type for the current step. Since a large part
of this expression is constant when selecting pi, it is su�-
cient to �nd an event type, out of those still not included in
the plan, minimizing

(
rpi · selpi,pi ·

∏
k<i selpk,pi

)
.

Algorithm 2 depicts the plan generation process. When all
selectivities satisfy selx,y = 1, i.e., no predicates are de�ned
for the pattern, this algorithm simply sorts the events in an
ascending order of their arrival rates.
We will de�ne a building block for order-based evaluation

plans produced by Algorithm 2 as a single directive of pro-
cessing an event type in a speci�c position of a plan. That
is, a building block is an expression of the form �Process
the event type ej at ith position in a plan�. Obviously, a
full plan output by the algorithm contains exactly n blocks,
and a total of O

(
n2
)
blocks is considered during the run.

Deciding conditions created for such a block are de�ned as:

rj · selj,j ·
∏
k<i

selpk,j < rj′ · selj′,j′ ·
∏
k<i

selpk,j′ .

Here, ej′ , j
′ 6= j is an event type which was considered to

occupy ith position at some point but eventually ej was se-

Algorithm 3 ZStream algorithm for tree-based plans

Input: event types e1, · · · , en, arrival rates r1, · · · , rn, inter-
event predicate selectivities sel1,1, · · · , seln,n

Output: tree-based evaluation plan T

subtrees⇐ new two-dimensional matrix of size n× n
for i from 1 to n:

subtrees[i][1].cardinality = subtrees[i][1].cost = ri
for i from 2 to n:
for j from 1 to n− i+ 1:
for k from j + 1 to j + i:

new_cardinality = Card(
subtrees[k − j][j].cardinality,
subtrees[i− (k − j)][k].cardinality)

new_cost = subtrees[k − j][j].cost+
+ subtrees[i− (k − j)][k].cost+ new_cardinality

if new_cost < subtrees[i][j].cost :
subtrees[i][j].tree = new_tree(

subtrees[k − j][j], subtrees[i− (k − j)][k])
subtrees[i][j].cardinality = new_cardinality
subtrees[i][j].cost = new_cost

return subtrees[n][1].tree

lected. Note that, while in the worst case the products may
contain up to n − 1 multiplicands, in most cases the num-
ber of the predicates de�ned over the events in a pattern is
signi�cantly lower than n2. Therefore, invariant veri�cation
will be executed in near-constant time.

4.2 Dynamic Programming Algorithm for Tree-
Based Plans

The authors of ZStream [43] introduced an e�cient algo-
rithm for producing tree-based plans based on dynamic pro-
gramming (Algorithm 3). The algorithm consists of n − 1
steps, where during the ith step the tree-based plans for all
subsets of the pattern of size i + 1 are calculated (for the
trees of size 1, the only possible tree containing the lone leaf
is assumed). During this calculation, previously memoized
results for the two subtrees of each tree are used. To cal-
culate the cost of a tree T with the subtrees L and R, the
following formula is used:

Cost (T ) =

{
ri T is a leaf

Cost (L) + Cost (R) + Card (L,R) otherwise,

where Card (L,R) is the cardinality (the expected number
of partial matches reaching the root) of T , whose calculation
depends on the operator applied by the root. For example,
the cardinality of a conjunction node is de�ned as the prod-
uct of the cardinalities of its operands multiplied by the total
selectivity of the conditions between the events in L and the
events in R. That is,

Card (T ) = Card (L)× Card (R)× SEL (L,R) ,

where SEL (L,R) is a product of all predicate selectivities
seli,j : i ∈ L, j ∈ R. Leaf cardinalities are de�ned as the
arrival rates of the respective event types. The reader is
referred to [43] for more details.
To apply the invariant-based method, we will de�ne each

internal node of a tree-based plan as a building block. This
way, up to O

(
n3
)
blocks will be formed during the run of

Algorithm 3, with only O (n) included in the resulting plan.
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A comparison between the costs of two trees will be con-
sidered a block-building comparison for the root of the less
expensive tree. The deciding conditions for this algorithm
will be thus de�ned simply as Cost (T1) < Cost (T2), where
T1, T2 are the two compared trees. These comparisons are
invoked at each step during the search for the cheapest tree
over a given subset of events. For k events, the number of

candidate trees is Ck−1 = (2k−2)!
(k−1)!k!

, where Cm is the mth

Catalan number. Therefore, picking only one comparison as
an invariant and dismissing the rest of the candidates may
create a problem of false negatives, and K-invariant method
is recommended instead (see discussion in Section 3.3).
The obvious problem with the above de�nition is that

tree cost calculation is a recursive function, which contra-
dicts our constant-time invariant veri�cation assumption.
We will eliminate this recursion by utilizing the following
observation. In Algorithm 3, all block-building comparisons
are performed on pairs of trees de�ned over the same set
of event types. By invariant de�nition, one of these trees
is always a subtree of a plan currently being in use. Recall
that invariants on tree-based plans are always veri�ed in the
direction from leaves to the root. Hence, if any change was
detected in one of the statistics a�ecting the subtrees of the
two compared trees, it would be noticed during veri�cation
of earlier invariants. Thus, it is safe to represent the cost of
a subtree in an invariant as a constant whose value is ini-
tialized to the cost of that subtree during invariant creation
(i.e., plan construction).

4.3 General Applicability of the Invariant-Based
Method

The approaches described in Sections 4.1 and 4.2 only
cover two special cases. Here, we generalize the presented
methodologies to apply the invariant-based method to any
greedy or dynamic programming algorithm. We also dis-
cuss the applicability of our method to other algorithm cat-
egories.
A generalized variation of the technique illustrated in Sec-

tion 4.1 can be utilized for any greedy plan generation algo-
rithm. To that end, a part of a plan constructed during a
single greedy iteration should be de�ned as a building block.
Additionally, a conjunction of all conditions evaluated to se-
lect a speci�c block is to be de�ned as a block-building com-
parison associated with this block. Since most greedy algo-
rithms require constant time and space for a single step, the
complexity requirements for the invariant veri�cation will
be satis�ed.
Using similar observations, we can generalize the approach

described in Section 4.2 to any dynamic programming algo-
rithm. A subplan memoized by the algorithm will corre-
spond to a building block. A comparison between two sub-
plans will serve as a BBC for the block that was selected
during the initial run.
In general, the invariant-based method can be similarly

adapted to any algorithm that constructs a plan in a deter-
ministic, bottom-up manner, or otherwise includes a notion
of a �building block�. To the best of our knowledge, the
majority of the proposed solutions share this property.
In contrast, algorithms based on local search (adapted

to CEP in [35]) cannot be used in conjunction with the
invariant-based method. Rather than building a plan step-
by-step, these algorithms start with a complete initial solu-
tion and modify it to create an improved version [3].

(a) (b)

(c) (d)

Figure 5: Throughput of the invariant-based method for
di�erent dataset-algorithm pairs as a function of the pat-
tern size and the invariant distance d : (a) tra�c dataset /
greedy algorithm; (b) tra�c dataset / ZStream algorithm;
(c) stocks dataset / greedy algorithm; (d) stocks dataset /
ZStream algorithm.

5. EXPERIMENTAL EVALUATION
In this section, the results of our experimental evaluation

are presented. The objectives of this empirical study were
twofold. First, we wanted to assess the overall system per-
formance achieved by our approach and the computational
overhead implied by its adaptation process as compared to
the existing strategies for ACEP systems, outlined in Sec-
tion 1. Our second goal was to explore how changes in the
parameters of our method and of the data characteristics
impact the above metrics.

5.1 Experimental Setup
We implemented the two CEP models described in Sec-

tion 4, the lazy NFA [37] with the greedy order-based algo-
rithm [48] and the ZStream model with tree-based dynamic
programming algorithm [43]. We also added support for
three adaptation methods (i.e., implementations of D): 1)
the unconditional reoptimization method from [37]; 2) the
constant-threshold method from [43]; 3) the invariant-based
method. To accurately estimate the event arrival rates and
predicate selectivities on-the-�y, we utilized the algorithm
from [27] for maintaining statistics over sliding window.
Since the plan generation algorithms used during this study

create plans optimized for maximal throughput, we choose
throughput as a main performance metric, re�ecting the ef-
fectiveness of the above algorithms in the presence of changes
in the input. We believe that similar results could be ob-
tained for algorithms targeting any other optimization goal,
such as minimizing latency or communication cost.
Two real-world datasets were used in the experiments. For

each of them, we created 5 sets of patterns containing di�er-
ent operators (Section 2.1), as follows: (1)sequences; (2)se-
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Figure 6: Comparison of the adaptation methods applied on the tra�c dataset combined with the greedy algorithm ((a)-(d))
and ZStream algorithm ((e)-(h)): (a),(e) throughput (higher is better); (b),(f) relative throughput gain over the non-adaptive
method (higher is better); (c),(g) total number of plan reoptimizations; (d),(h) computational overhead (lower is better).

quences with an additional event under negation; (3)con-
junctions; (4)sequences with a single event under Kleene
closure; (5)composite patterns, consisting of a disjunction
of three sequences. Each set contained 6 patterns of sizes
varying from 3 to 8. We de�ned pattern size as the number
of events in a pattern for sets 1-4 and the number of events
in each subpattern for set 5. Further details are speci�ed
below for each dataset. For lack of space, we only include
the graphs averaged over all pattern sets unless otherwise
stated. The speci�c results obtained for each set can be
found in the extended version of this paper [34].
The �rst dataset contains the vehicle tra�c sensor data,

provided by City of Aarhus, Denmark [9] and collected over
a period of 4 months from 449 observation points, with
13,577,132 primitive events overall. Each event represents
an observation of tra�c at the given point. The attributes
of an event include, among others, the point ID, the average
observed speed, and the total number of observed vehicles
during the last 5 minutes. The arrival rates and selectivities
for this dataset were highly skewed and stable, with few on-
the-�y changes. However, the changes that did occur were
mostly very extreme. The patterns for this dataset were
motivated by normal driving behavior, where the average
speed tends to decrease with the increase in the number of
vehicles on the road. We requested to detect the violations
of this model, i.e., combinations (sequences, conjunctions,
etc., depending on the operator involved) of three or more
observations with either an increase or a decline in both the
number of vehicles and the average speed.
The second dataset was taken from the NASDAQ stock

market historical records [1]. Each record in this dataset
represents a single update to the price of a stock, spanning
a 1-year period and covering over 2100 stock identi�ers with
prices updated on a per minute basis. Our input stream
contained 80,509,033 primitive events, each consisting of a
stock identi�er, a timestamp, and a current price. For each
stock identi�er, a separate event type was de�ned. In ad-

dition, we preprocessed the data to include the di�erence
between the current and the previous price. Contrary to
the tra�c dataset, low skew in data statistics was observed,
with the initial values nearly identical for all event types.
The changes were highly frequent, but mostly minor. The
patterns to evaluate were then de�ned as combinations of
di�erent stock identi�ers (types), with the prede�ned price
di�erences (e.g., for a conjunction pattern AND (A,B,C)
we require A.diff < B.diff < C.diff).
All models and algorithms under examination were im-

plemented in Java. All experiments were run on a machine
with 2.20 Ghz CPU and 16.0 GB RAM.

5.2 Experimental Results
In our �rst experiment, we evaluated the performance of

the invariant-based method for di�erent values of the in-
variant distance d, obtained by parameter scanning (Section
3.4). In this experiment, only the sequence pattern sets were
used. For each of the four possible dataset-algorithm combi-
nations, the system throughput was measured as a function
of the tested pattern size and of d, with its values ranging
from 0 (which corresponds to the basic method) to 0.5.
The results are displayed in Figure 5. It can be observed

that in each scenario there exists an optimal value dopt,
which depends on the data and the algorithm in use, consis-
tently outperforming the other values for all pattern sizes.
For distances higher than dopt, too many changes in the
statistics are undetected, while the lower values trigger un-
necessary adaptations. Overall, the throughput achieved by
using invariants with distance dopt is 2 to 25 times higher
than that of the basic method (d = 0).
Then, we validated the average relative di�erence method

described in Section 3.4 by comparing its output value davg
to dopt (obtained via parameter scanning as described above)
for each scenario. For lack of space, we only outline here the
main observations of this study. Full results are available in
the extended paper [34]. For the tra�c dataset, the com-
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Figure 7: Comparison of the adaptation methods applied on the stocks dataset combined with the greedy algorithm ((a)-(d))
and ZStream algorithm ((e)-(h)): (a),(e) throughput (higher is better); (b),(f) relative throughput gain over the non-adaptive
method (higher is better); (c),(g) total number of plan reoptimizations; (d),(h) computational overhead (lower is better).

puted values were considerably close to the optimal ones for
patterns of length 6 and above, with precision reaching at
least 87% (for ZStream algorithm and pattern length 7) and
as high as 92% (Greedy algorithm, length 8). For the stocks
dataset, the achieved accuracy was only 31-44%. This can
be attributed to the low data skew, matching our earlier ex-
pectations and highlighting the need for developing better
solutions, which is the goal of our future work.
Next, we performed an experimental comparison of all

previously described adaptation methods. The comparison
was executed separately for each dataset-algorithm combi-
nation. For the invariant-based method, the dopt values
obtained during the �rst experiment were used. For the
constant-threshold method, an optimal threshold topt was
empirically found for each of the above combinations using
a similar series of runs.
Figures 6-7 summarize the results. Each �gure consists

of two rows. Every row represents the measurements for a
particular dataset-algorithm combination and contains four
graphs, presenting di�erent statistics as a function of the
pattern size. The �rst graph shows the throughput achieved
using each of the adaptation methods. Here, we have also
included the �static� method in our study, where no adap-
tation is supported and the dataset is processed using a sin-
gle, prede�ned plan. The second graph is a di�erent way of
viewing the previous one, comparing the adaptation meth-
ods by the relative speedup they achieve over the �static
plan� approach. The third graph depicts the total number
of reoptimizations (actual plan replacements) recorded dur-
ing each run. Finally, we report the computational overhead
of each method, that is, a percentage of the total execution
time spent on executions of D and A (i.e., checking whether
a reoptimization is necessary and computing new plans).
The throughput comparison demonstrates the superior-

ity of the invariant-based method over its alternatives for
all scenarios. Its biggest performance gain is achieved in
the tra�c scenario, characterized by high skew and major

statistic shifts (Figure 6). This gain reaches its peak for
larger patterns, with the maximal recorded performance of
more than 6 times that of the second-best constant-threshold
method: the greater the discrepancy between the data char-
acteristics, the more di�cult it is to �nd a single threshold to
accurately monitor all the changes. Since this discrepancy
may only increase as more statistic values are added to the
monitored set, we expect the superiority of this method to
keep growing with the pattern size beyond the values we ex-
perimented with. Figures 6(b) and 6(f) provide a clear illus-
tration of the above phenomenon and of the invariant-based
method scalability. Also, for larger patterns the constant-
threshold method nearly converges to the unconditional one
due to the increasing number of its false positives.
For the stocks dataset (Figure 7), the throughput mea-

surements for the constant-threshold and the invariant-based
methods are considerably closer. Due to the near-uniformity
of the statistic values and of their variances, �nding a sin-
gle topt is su�cient to recognize most important changes.
Hence, the precision of the constant-threshold method is
very high on this input. Nevertheless, the invariant-based
method achieves a performance speedup for this dataset as
well (albeit only about 30-60%) without adding signi�cant
overhead. Also, for the same reason, the static plan performs
reasonably well in this scenario, decidedly outperforming the
unconditional method. The latter su�ers from extreme over-
adapting to the numerous small-scale statistic shifts.
The total number of reoptimizations performed in each

scenario (Figures 6(c), 6(g), 7(c), 7(g)) backs up and aug-
ments the above results. The invariant-based method re-
quires few plan replacements while also achieving the best
throughput. The extremely high numbers produced by the
unconditional strategy lead to its poor performance. For the
tra�c dataset, the constant-threshold method tends to ap-
proach these numbers for larger patterns. This can either be
a sign of multiple false positives or over-adapting. For the
stocks dataset, this method is similar to the invariant-based.
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Figures 6(d), 6(h), 7(d) and 7(h) present the computa-
tional overhead of the compared approaches. Here, the same
behavior is observed for all dataset-algorithm combinations.
While the invariant-based and the constant-threshold meth-
ods consume negligible system resources, unconditional re-
optimization results in up to 11% of the running time de-
voted to the adaptation process.
As evident by the experiments with stock market data,

smaller number of reoptimizations and lower computational
overhead do not necessarily result in better overall system
performance. On this dataset, the invariant-based method
achieves the highest throughput despite a slightly higher
overhead as compared to the second-best constant-threshold
method. This can be attributed to the false negatives of the
latter, that is, cases in which it missed a reoptimization op-
portunity and kept using an old plan despite a better one
being available.
In all experiments, the relative gain of the invariant-based

method was considerably higher for ZStream algorithm than
for the greedy one. There are two reasons for this result.
First, the more complex structure of the tree-based plans
makes it more di�cult to capture the dependencies between
plan components without �ne-grained invariants. Second,
as this algorithm is more computationally expensive, the
penalty for a redundant reoptimization is higher. Follow-
ing these observations, we believe that the invariant-based
method is capable of achieving even larger bene�t for more
advanced and precise (and hence more complex) plan gener-
ation algorithms. Utilizing this method will thus encourage
the adoption of such algorithms by CEP engines.

6. RELATED WORK
Complex event processing is an increasingly active re-

search �eld [26]. The origins of CEP systems can be traced
to older data stream managements systems (DSMSs), in-
cluding Aurora/Borealis [4], Stream [12], TelegraphCQ [21],
and NiagaraCQ [22]. This was followed by the emergence
of a broad variety of solutions for detecting occurrences of
situations of interest, as opposed to generic data, including
frameworks such as SASE/SASE+ [50, 7, 52], CEDR [18],
Cayuga [28], T-Rex [25] and Amit [6]. Esper [2] and IBM
System S [11] are examples of widely used commercial CEP
providers.
Many CEP approaches incorporate NFAs as their primary

evaluation structure [50, 28, 25]. Various extensions to this
model were developed, such as AFA [20] and lazy NFA [37].
ZStream [43] utilizes tree-based detection plans. Event pro-
cessing networks [30] is another conceptual model, present-
ing a pattern as a network of simple agents.
Multiple works have addressed the broad range of CEP

optimization opportunities arising when the statistical char-
acteristics of the primitive events are taken into account. In
[8] �plan-based evaluation� is described, where the arrival
rates of events are exploited to reduce network communica-
tion costs. The authors of NextCEP [46] propose a frame-
work for pattern rewriting in which operator properties are
utilized to assign a cost to every candidate evaluation plan.
Then, a search algorithm (either greedy or dynamic) is ap-
plied to select the lowest cost detection scheme. ZStream
[43] applies a set of algebraic rule-based transformations on
a given pattern, and then reorders the operators to minimize
the cost of a plan.

Adaptive query processing (AQP) is the widely studied
problem of adapting a query plan to the unstable data char-
acteristics [29]. Multiple solutions consider traditional data-
bases [5, 32, 15, 42, 33, 47]. The mid-query reoptimization
mechanism [33], one of the �rst to possess adaptive prop-
erties, collects statistics at the prede�ned checkpoints and
compares them to the past estimates. If severe deviation is
observed, the remainder of the data is processed using a new
plan. The methods described in [15] and [42] are the closest
in spirit to our work. Rather than executing reoptimization
on a periodic basis or upon a constant change, the authors
compute an individual range for each monitored value within
which the current plan is considered close-to-optimal.
The �eld of stream processing has developed adaptive

techniques of its own. A-Greedy [16] is an algorithm for
adaptive ordering of pipelined �lters, providing strong the-
oretical guarantees. Similarly to our method, it detects vio-
lations of invariants de�ned on the �lter drop probabilities.
The authors of [40] describe �incremental reoptimization,�
where the optimizer constantly attempts to locate a better
plan using e�cient search and pruning techniques. Eddy
[13, 19, 41] presents stateless routing operators, redirecting
incoming tuples to query operators according to a prede�ned
routing policy. This system discovers execution routes on-
the-�y in a per-tuple manner. Query Mesh [44] is a middle-
ground approach, maintaining a set of plans and using a
classi�er to select a plan for each data item. Large DSMSs
have also incorporated adaptive mechanisms [49, 17].
The majority of the proposed CEP techniques are de-

prived from adaptivity considerations [31]. The two notable
exceptions, ZStream [43] and tree-based NFA [37] were cov-
ered in detail above. Additional works labeled as 'adaptive'
refer to on-the-�y switching between several detection algo-
rithms [45, 51] or dynamic rule mining [23, 39].

7. CONCLUSIONS AND FUTURE WORK
In this paper, we discussed the problem of e�cient adap-

tation of a CEP system to on-the-�y changes in the statisti-
cal properties of the data. A new method was presented to
avoid redundant reoptimizations by periodically verifying a
small set of simple conditions de�ned on the monitored data
characteristics. We proved that validating this set of con-
ditions will only fail if a better evaluation plan is available.
We applied our method on two real-life algorithms and ex-
perimentally demonstrated the achieved performance gain.
One area of interest that was not yet addressed by the ex-

isting approaches is the multi-pattern adaptive CEP, where
the system is given a set of patterns possibly containing
common subexpressions. In this case, the detection process
typically follows a single global plan that exploits sharing
opportunities. While our method can be trivially applied to
multi-pattern systems with no sharing, substantially more
sophisticated optimization techniques are required for the
general case. We intend to target this research direction in
our future work.
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