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ABSTRACT
An array DBMS streamlines large N -d array management.
A large portion of such arrays originates from the geospatial
domain. The arrays often natively come as raster files while
standalone command line tools are one of the most popu-
lar ways for processing these files. Decades of development
and feedback resulted in numerous feature-rich, elaborate,
free and quality-assured tools optimized mostly for a single
machine. ChronosDB partially delegates in situ data pro-
cessing to such tools and offers a formal N -d array data
model to abstract from the files and the tools. ChronosDB
readily provides a rich collection of array operations at scale
and outperforms SciDB by up to 75× on average.
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1. INTRODUCTION
A georeferenced raster or more generally an N -d array is

the primary data type in a broad range of fields including
climatology, geology, and remote sensing which are expe-
riencing tremendous growth of data volumes. For example,
DigitalGlobe is a commercial satellite imagery provider that
collects 70 TB of imagery on an average day [35].

Traditionally rasters are stored in files, not in databases.
The European Centre for Medium-Range Weather Forecasts
(ECMWF) has alone accumulated 137.5 × 106 files sized
52.7 PB in total [26]. This file-centric model resulted in a
broad set of sophisticated raster file formats. For example,
GeoTIFF is an effort by over 160 different remote sensing,
GIS (Geographic Information System), cartographic, and
surveying related companies and organizations [23]. NetCDF
has been under development since 1990 [56], is standardized
by OGC [44], and supports multidimensional arrays, chunk-
ing, compression, and hierarchical name space [40].

Command line tools have long being developed to man-
age raster files. Many tools have large user communities
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that are very accustomed to them. NCO (NetCDF Oper-
ators) have been under development since about 1995 [43],
GDAL (Geospatial Data Abstraction Library) provides tools
for managing over 150 raster file formats, has ≈106 lines of
code and hundreds of contributors [14]. Many tools utilize
multicore CPUs but mostly work on a single machine.

The in situ technique has gained increased attention due
to the explosive growth of raster data volumes in diverse file
formats [3, 85, 6, 8]. Unlike the in-db approach, the in situ
approach operates on data in their original file formats in a
standard file system and does not require importing into an
internal DBMS format. Files may be preprocessed before
querying but this is usually much faster than a full import.

Keeping data of an array DBMS in open, widely adopted,
and standardized file formats has numerous advantages: eas-
ier data sharing, powerful storage capabilities, the absence
of a time-consuming and error-prone import phase for many
data types, direct accessibility of DBMS data to other sys-
tems, and easier migration to other DBMS to name a few [59].

Many raster processing algorithms require significant im-
plementation efforts, but already existing stable and multi-
functional tools are largely ignored in this research trend.
Algorithms are re-implemented almost from scratch delay-
ing the emergence of an array DBMS being competitive with
existing operational pipelines, e.g. SciDB appeared in 2008
and still lacks even core operations like interpolation [65].

The idea of partially delegating in situ array operations
to existing tools was first realized in ChronosServer [59, 58,
11, 60, 62, 61]. Its successor is ChronosDB extended with
a significantly improved data model (section 2), new com-
ponents, optimizations, array management, query execution
capabilities (section 3), and array operations (section 4).

The ChronosDB formal data model uniformly represents
diverse raster data types and formats, takes into account the
distributed context, and is independent of the underlying
raster file formats and tools at the same time (section 2).

ChronosDB distributed algorithms are based on the model,
unified, formalized, and targeted at the in situ processing of
arbitrary geospatial N -d arrays (section 4).

The algorithms are designed to always delegate signifi-
cant portions of their work to the tools. This proves wide
applicability of the tools and the delegation approach. The
delegation happens by direct submission of files to a tool as
command line arguments to process them on a single cluster
node. ChronosDB re-partitions and streams input/output
files between the nodes and tools to scale out the processing.

In summary, the major contributions of our work include:
(1) we show that it is possible to build a well-abstracted,
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extensible, and efficient distributed geospatial N -d array
DBMS by leveraging existing elaborate command line tools
designed for a single machine;

(2) we give a holistic description of the complete DBMS
leveraging the tools: ChronosDB has a relatively simple yet
flexible coordination layer on top of powerful components.
This enables exceptional performance, rich functionality and
avoids re-implementing array algorithms from scratch. It is
also easier to manage the development life cycle of such a
DBMS as it is comprehensive by a small team of engineers;

(3) we thoroughly compare ChronosDB and SciDB on up
to 32-node clusters in the Cloud on real-world data: Landsat
satellite scenes and climate reanalysis. We took SciDB as it
is the only freely available distributed array DBMS to date.

2. CHRONOSDB DATA MODEL

2.1 Motivation
The most widely used industry-standard data models for

abstracting from raster file formats are Unidata CDM, GDAL
Data Model and ISO 19123. Industrial models are map-
pable to each other [40] and have resulted from decades of
considerable practical experience. However, they work with
a single file, not with a set of files as a single array.

The most well-known research models and algebras for
dense N -d, general-purpose arrays are AML [38], AQL [37],
and RAM [81]. They are mappable to Array Algebra [4].

The creation of the ChronosDB data model was motivated
by the following features that are not simultaneously present
in the existing data models: (1) the treatment of arrays in
multiple files arbitrarily distributed over cluster nodes as a
single array, (2) formalized industrial experience to leverage
it in the algorithms, (3) a rich set of data types (Gaussian,
irregular grids, etc.), (4) subarray mapping to a raster file is
almost 1:1 but still independent from a format. As can be
seen from [40], the N -d array model (section 2.2) resembles
CDM while the two-level set-oriented dataset model (sec-
tion 2.3) provides additional necessary abstractions.

Many popular command line tools rely on CDM, GDAL
or ISO. This makes the tools capable of handling data in
diverse raster file formats and be readily compatible with
the ChronosDB data model.

2.2 Multidimensional arrays
In this paper, an N -dimensional array (N -d array) is the

mapping A : D1 × D2 × · · · × DN 7→ T, where N > 0,
Di = [0, li) ⊂ Z, 0 < li is a finite integer, and T is a numeric
type1. li is said to be the size or length of ith dimension2.
Let us denote the N -d array by A〈l1, l2, . . . , lN 〉 : T. By
l1 × l2 × · · · × lN denote the shape of A, by |A| denote the
size of A such that |A| =

∏
i li. A cell or element value

of A with integer indexes (x1, x2, . . . , xN ) is referred to as
A[x1, x2, . . . , xN ], where xi ∈ Di. Each cell value of A is of
type T. A missing value is denoted by NA. An array may be
initialized after its definition by enumerating its cell values.
For example, the following defines and initializes a 2-d array
of integers: A〈2, 2〉 : int = {{1, 2}, {NA, 4}}. In this example,
A[0, 0] = 1, A[1, 0] = NA, |A| = 4, and the shape of A is 2×2.

Indexes xi are optionally mapped to specific values of ith
dimension by coordinate arrays A.di〈li〉 : Ti, where Ti is

1A C++ type according to ISO/IEC 14882 can be taken.
2Throughout this paper, i ∈ [1, N ] ⊂ Z

a totally ordered set, di[j] < di[j + 1], and di[j] 6= NA for
∀j ∈ Di. In this case, A is defined as A(d1, d2, . . . , dN ) : T.

A hyperslab A′ v A is an N -d subarray of A. The hyper-
slab A′ is defined by the notation A[b1 : e1, . . . , bN : eN ] =
A′(d′1, . . . , d

′
N ), where bi, ei ∈ Z, 0 6 bi 6 ei < li, d

′
i =

di[bi : ei], |d′i| = ei − bi + 1, and for all yi ∈ [0, ei − bi] the
following holds: A′[y1, . . . , yN ] = A[y1 + b1, . . . , yN + bN ],
d′i[yi] = di[yi + bi] (A and A′ have a common coordinate
subspace over which cell values of A and A′ coincide). The
dimensionality of A and A′ is the same. We will omit “: ei”
if bi = ei or “bi : ei” if bi = 0 and ei = |di| − 1.

Arrays X and Y overlap iff ∃Q : Q v X ∧Q v Y . Array
Q is called the greatest common hyperslab of X and Y and
denoted by gch(X,Y ) iff @W : (W v X)∧ (W v Y )∧ (Q v
W ) ∧ (Q 6= W ). An array X covers an array Y iff Y v X.

2.3 Datasets
Two dataset types exist: raw and regular. Raw datasets

capture a broad range of possible raster data types, e.g. a
set of scattered, overlapping satellite scenes, fig. 1. A raw
dataset must be “cooked” into a regular one in order to
perform array operations on it, section 3.3. Many real-world
array data already satisfy regular dataset criteria and need
not to be cooked, e.g. gridded geophysical data, section 5.

Both datasets are two-level and contain a user-level array
and a set of system-level arrays (array and subarrays for
short). Subarrays are distributed among cluster nodes and
stored as ordinary raster files. An array is never materialized
and stored explicitly: an operation with an array is mapped
to a sequence of operations with respective subarrays.

Datasets are read-only: an array operation produces a
new dataset. This has a strong practical motivation. The
majority of raster data come from instrumental observation
and numerical simulation. Original data are never changed
once they are produced. Derivative data differ vastly: raster
algorithms usually alter large portions of an array.

Formally, a raw dataset Draw = (A,M,P raw) has a user-
level array A(d1, d2, . . . , dN ) : T, metadata M , and a set
of system-level arrays P raw = {(A′, B,E,M ′, wid)}, where
B〈N〉 : int = {b1, b2, . . . , bN}, E〈N〉 : int = {e1, e2, . . . , eN}
such that A′ = A[b1 :e1, b2 :e2, . . . , bN :eN ], M ′ is metadata
for A′, wid is an identifier of a cluster node storing A′, M
and M ′ are sets of (name, value) pairs: M includes general
dataset properties (name, description, etc.) and properties
valid for ∀p ∈ P raw (type T, storage format, etc.), e.g. M =
{(type = int16), (format = GeoTIFF)}, M ′ = {(date =
2015-Sep-08, projection = EPSG:32637)}.

A regular dataset D = (A,M,P, S, ρ, r0) has a user-level
array A(d1, d2, . . . , dN ) : T, metadata M , a set of system-
level arrays P = {(A′, B,E,M ′, wid, key)}, where A′, B,
E, M ′, wid mean the same as for P raw, key〈N〉 : int =
{k1, k2, . . . , kN}, ki ∈ Z, A′ v A[hb1 :he1, . . . , h

b
N :heN ], where

hbi = max(r0i + ki × si − ρi, 0), (1a)

hei = min(r0i + (ki + 1)× si − 1 + ρi, |A.di| − 1), (1b)

S = (s1, s2, . . . , sN ) is the largest possible shape for ∀p ∈ P ,
ρ = (ρ1, ρ2, . . . , ρN ) is an overlap between subarrays, and
r0 = (r01, r

0
2, . . . , r

0
N ) is a reference index, si, r

0
i ∈ Z, si > 0,

ρi ∈ [0, si div 2) ⊂ Z, and @p, q ∈ P : p.key = q.key ∧ p = q.
Note that Draw and D share A and M . Let us refer to
subarray A′ by key as D〈〈key〉〉 or D〈〈k1, k2, . . . , kN 〉〉.

The above means that array A is divided by (N−1)-d hy-
perplanes on N -d subspaces, a subarray may not fully cover
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the subspace in which it resides, not all subspaces must con-
tain a subarray, no two subarrays except their overlapping
cells are inside the same subspace, subarray keys are unique.
All cells of an empty subspace are equal to NA. In this way
ChronosDB supports large sparse arrays, fig. 1.

Let us call gch(A′, A[hb1 : he1, . . . , h
b
N : heN ]) the body of

subarray A′ provided that hbi and hei are calculated given
ρi = 0 for ∀i. The cells of a subarray that are not in its
body are the periphery of this subarray. Let us refer to an
element of a tuple p = (A′, B, . . . ) in P raw or in P as p.A
for A′, p.B for B, etc. Let keys : D 7→ {p.key : ∀p ∈ P}.

A regular dataset is shown in fig. 2c. Array A(time, lat,
lon) with shape 6×2×6 is divided by 2-d planes into 9 subar-
rays (this is very common in practice), where S = (2, 2, 2),
overlap is not shown, r0 = (4, 0, 2). Subarrays with the
same color reside on the same cluster node. The values of
the coordinate arrays are shown next to each index. The
key 〈〈−1, 0, 1〉〉 refers to the subarray A[2 : 3, 0 : 1, 4 : 5] for
Jan 03-04, lat = 20° . . . 30°, lon = 35° . . . 40°.

3. CHRONOSDB ARCHITECTURE

3.1 Illustrative Dataset
To make this section clearer, we form a dataset as a run-

ning example: two mosaics of 4× 8 Landsat 8 scenes, bands
4 (visible red, red) and 5 (near-infrared, nir) [33], paths
191–198, rows 24–27, 01–15 July 2015, GeoTIFF. Both in
ChronosDB and SciDB, the mosaics are two 24937× 38673
arrays: red and nir. An array size is ≈1.4 GB in SciDB and
≈ 1.6 GB in ChronosDB. Each array has ≈ 23% of empty
cells (NA): the mosaic areas not covered by the scenes, fig. 1.

retile−−−−→

Figure 1: Footprints of scenes and subarrays, UTM 32N

3.2 ChronosDB Components
Gate and Workers run on a computer cluster of com-

modity hardware. A single Gate at a dedicated cluster node
receives queries (scripts) and coordinates workers. Workers
run at each node and are responsible for data processing.

Clients may connect to the Gate via WebSocket, estab-
lish a session, and communicate via a plain-text protocol: a
Client 7→ Gate message carries a script while Gate 7→ Client
messages carry ChronosDB output. A script is a sequence
of one or more ChronosDB commands (section 3.4 gives an
example). We implemented a JavaScript client in just 115
lines of code. Users can submit scripts via any third-party
interface equipped with a similar client. Hence, users work
with ChronosDB like with command line tools in a console.

ChronosDB Commands have the same syntax as com-
mand line tools. Command names coincide with the names
of existing command line tools. Command options have the
same meaning and names as tool options, but users specify
input and output dataset names instead of file names. Users
avoid learning a new language and work with ChronosDB as
if with the console tools they are accustomed to with only

minor changes to already familiar tool options. Most tool
documentation is applicable to the respective ChronosDB
command due to exactly the same meaning and behavior.

RAM Disk (ramd) [31] is mounted on each worker. This
allows the materialization of intermediate data to memory,
often avoids hitting IOPS limits (I/O operations per second
for ssd) in the Cloud, and yields large speedups (up to 3×).

Virtual file format (vff) is a description of operations
made to the source file [22, 42, 21]. A vff often substan-
tially reduces runtime space requirements and network I/O
by avoiding intermediate materialized data (section 3.4).

Execution Pool can run up to cp single-threaded tools
in parallel. Each worker has such a pool with cp slots, where
cp is the number of CPU cores.

3.3 Dataset Management
Consider a raw dataset Draw = (A,M,P raw) and its reg-

ular derivative D = (A,M,P, S, ρ, r0).
Dataset Namespace is hierarchical making it easier to

navigate in a large number of datasets. It is similar to the
ChronosServer namespace with over 800 registered datasets
to date [11, 12]. For example, we refer to Band �4 of the il-
lustrative dataset as Landsat8.Level 1.SurfaceReflectance.Band4 (dots
separate the names of dataset collections, the dataset name
is the last). A Gate keeps the hierarchy and file naming rules
in a human-readable XML file. For example, the Landsat
scene file name LC81910242015182LGN00 B4.TIF contains its acquisi-
tion date: year (2015) and the day of this year (182) [34].

Subarray Metadata M ′ is in file names and inside files.
Dataset Registration is the starting point of working

with a dataset. It happens by inserting dataset file naming
rules into the hierarchy by ChronosDB administrators by
manually editing the XML file. This way of registration is
the best practice exploited by proven data servers [76, 18].

Dataset Metadata M (section 2.3) resides on the Gate
together with arrays A.di and elements of ∀p ∈ P except
p.A. It is often in practice that A.di[j] = start + j × step,
where j ∈ [0, |A.di|) ⊂ Z, start, step ∈ R. Hence, only
|A.di|, start and step values have to be usually stored.

Dataset Files are placed on cluster nodes by manual
copying or the retrieve 〈node〉 〈file〉* command (down-
load the given list of files via FTP to the specified node).

A file of a raw or regular dataset is always stored entirely
on a node unlike in parallel or distributed file systems. A
file may be replicated (manually or using commands) on
several nodes for fault tolerance and load balancing. A file
is a subarray from P raw or P . The ChronosDB array model
is designed to be as generic as possible but allowing the
establishment of 1:1 mapping of a subarray to a dataset file.

ChronosDB assumes that all dataset files have the same
(1) format, (2) set of variables (bands) with the same names,
(3) set of attributes, and other relevant characteristics. Also,
variables with the same name in distinct files have the same
set and order of axes. In practice, data providers (NASA,
ECMWF, etc.) already disseminate files satisfying all these
criteria. The validate command can also verify this.

File Discovery. On startup or the receipt of the discover
command, workers get the dataset hierarchy from the Gate,
scan their local filesystems to discover datasets, create p.M ,
p.B, p.E, p.key by parsing file names or reading file meta-
data, and send ∀p (except p.A) to the Gate which broadcasts
back A.di for ∀i if the dataset satisfies raw or regular criteria
(see below). Periodic auto-rescan is not yet supported.
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Raw Dataset Ingestion. Subarrays in discovered files
may have different coordinate reference systems (CRS) [15].
In addition, subarrays may be misaligned despite having the
same CRS: @j : p1.A.di[j] = p2.A.di[j] but p1 and p2 spa-
tially overlap over the ith axis. This is reported to the user
and they must issue the mosaic command. Its functional-
ity is parallelized and overlaps with the Oracle Spatial and
Graph SDO GEOR AGGR.mosaicSubset procedure [45].

Using the mosaic command, we reprojected the scenes
into UTM zone 32N, 30 meters/pixel spatial resolution and
aligned them given the reference coordinates 500,000 (x) and
5,500,000 (y) by the nearest-neighbor resampling, fig. 1 (left).

At this stage ChronosDB has two more assumptions about
dataset files: all files have the same CRS and alignment.

Regular Dataset Ingestion makes raw dataset files sat-
isfy regular dataset criteria concerning subarray partitioning
(section 2.3) using the retile command (section 4.1).

ChronosDB created the regular dataset by retiling the 32
Landsat scenes (8.3 GB) prepared by the mosaic command
in ≈30 seconds on the 8-node cluster, fig. 1 (right). SciDB
imported the mosaic file for a single band (3.8 GB) in ≈2
hours on a powerful server to avoid burning Cloud time.

At this stage ChronosDB adds an additional partitioning
assumption about (regular) dataset files. Subarrays of the
dataset also become evenly distributed among cluster nodes
using the default placement policy, section 4.1.

Array Schema definitions/notations greatly differ among
existing array DBMS; there is no well-established practice
yet. ChronosDB again follows its command line mainstream.

Tools ncks (NCO), gdalinfo (GDAL), and others print
file metadata and array schema to stdout. ChronosDB com-
mands with the same names print array (dataset) schema in
plain text. In addition, the commands format their output
analogously to the respective tools.

Users avoid learning a new array schema notation and in-
spect ChronosDB datasets in a way they are accustomed to
with only minor changes to the output (e.g. additional infor-
mation about the retiling parameters used: Subarray=2048x2048).

ChronosDB does not yet allows the creation of an array
by defining its schema. ChronosDB infers array schema for
raw and regular datasets by analyzing their files.

Below is the ChronosDB gdalinfo command output for
the array of the illustrative dataset “Band �4”. Note that
gdalinfo prints the same output for the raw (after mosaic)
and regular (after retile) illustrative datasets. The Coordinate

System, Type, Pixel Size etc. are the same for all dataset files
while Size and Corner Coordinates were automatically inferred.
The meaning of the fields in this output is the same as for
the well-known gdalinfo tool [20].

gdalinfo Landsat8.Level_1.SurfaceReflectance.Band4
Driver: GTiff/GeoTIFF
Size is 38673, 24937
Coordinate System is:
PROJCS["WGS 84 / UTM zone 32N", ...skipped... AUTHORITY["EPSG","32632"]]
Origin = (-53110.000000000000000,5878570.000000000000000)
Pixel Size = (30.000000000000000,-30.000000000000000)
Metadata:

AREA_OR_POINT=Area
Corner Coordinates:
Upper Left ( -53110.000, 5878570.000) ( 0d47’37.30"E, 52d46’20.14"N)
Lower Left ( -53110.000, 5130460.000) ( 1d50’34.16"E, 46d 6’11.15"N)
Upper Right ( 1107080.000, 5878570.000) ( 17d59’48.38"E, 52d42’52.21"N)
Lower Right ( 1107080.000, 5130460.000) ( 16d50’57.11"E, 46d 3’26.67"N)
Center ( 526985.000, 5504515.000) ( 9d22’26.95"E, 49d41’33.18"N)
Subarray=2048x2048 Block=2048x1 Type=UInt16, ColorInterp=Gray

NoData Value=0

ChronosDB expects a user to perceive an array as a single
object despite the fact that the array actually consists of a
variable number of files scattered among cluster nodes.

Metadata Management also happens via ChronosDB
commands that mirror the functionality of the respective
tools. ChronosDB currently supports the analog of ncatted
(attribute editor, NCO) to append, create, delete, modify,
and overwrite internal file metadata [43]. ncatted creates a
new dataset since ChronosDB datasets are read-only.

ChronosDB can potentially provide a broader set of simi-
lar commands since all dataset files contain the same set of
metadata keys and a metadata operation is usually reduced
to modifying each file individually.

Location Management commands include cp (make a
copy of a dataset), rm (remove a dataset), mv (place a subset
of subarrays on a given worker), retile (section 4.1).

For example, cp Landsat8.Level 1.SurfaceReflectance.Band4 $band4

creates a copy of the dataset (Band � 4) residing in ramd.

3.4 A Life of a Script
We demonstrate how ChronosDB executes scripts and

how it is efficient for complex analytic pipelines as follows.
ndvi = (nir−red)/(nir+red+ 1) is a popular estimate

of the photosynthetic activity of plants [39]. Soil-Adjusted
Vegetation Index savi = (nir−red)/(nir+red+L)×(1+L)
aims to minimize soil brightness influences. L is a soil fudge
factor varying from 0 to 1 depending on the soil [28]. Note
that we may tune L many times to find an appropriate value.

We take nir and red arrays with different subarray shapes
2048×2048 and 4096×4096 to avoid their collocation (sub-
arrays from different datasets are collocated if they reside on
the same node and their coordinate arrays overlap), to trig-
ger retiling and network exchange. We first perform their
2× interpolation, then join them to compute savi, and then
create a small 1209 × 780 “quick outlook” array (64× less
than the join output) to visually estimate the result. Note
that changing L triggers recomputing of the overall pipeline.

gdalwarp -tr 15 15 Landsat8.Level_1.SurfaceReflectance.Band4 $redWarp
gdalwarp -tr 15 15 Landsat8.Level_1.SurfaceReflectance.Band5 $nirWarp
join -A $nirWarp -B $redWarp --jtype inner

--reduce="(A.astype(float)-B)/(A.astype(float)+B+0.8)*(1+0.8)"
--type=Float32 --out $SAVI

gdalwarp -tr 960 960 -overwrite $SAVI SAVIoutlook

gdalwarp accepts the target resolution: 15 leads to the 2×
increase of the resolution (recall that the source pixel size is
30 meters), 960 leads to 64× downsampling (960/15 = 64).

ChronosDB commands cannot be nested: they have input
and output datasets. The output dataset of a command can
be specified as the input dataset for the next command. This
clear and easy-to-use syntax is not a limitation or perfor-
mance penalty. ChronosDB does not materialize the whole
output of a command before launching the next command.

Script Parsing. The Gate has a built-in command line
parser to get the command name and its arguments from
a string like “command arg1 arg2 . . . ”. To integrate a tool
named command in ChronosDB, a tool driver (Java class) of
the same name must be created. The parser instantiates
the tool driver named command and passes to it the parsed
arguments. The driver returns an operation executor de-
pending on the arguments. The executor must implement
Get-Keys, Get-Subarray, and other methods to build an
execution plan (see below and section 4). A tool driver may
also verify the syntax and the absence of malicious instruc-
tions since some options are passed to the OS as is.

Intermediate Datasets are prefixed with $ and reused
in subsequent commands. Such datasets are not registered
as permanent in the namespace to save time. A vff is also
used for them when possible: if the operation is not an alge-
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braic computation or hyperslabbing and if a tool supports a
vff. For example, we can completely avoid materialization
during the interpolation and the merge step of the join.

Execution Plan is an acyclic graph G = (V,E), where
E = {((Di, keyji ), (D′

k, keym)) : Di〈〈keyji 〉〉 is required to
compute D′〈〈keym〉〉}. For an array operation, Di is an in-
put dataset and D′

k is the output dataset. The Gate builds
a static G for a script (G is immutable at runtime). This
makes it easier to reason about the data flow.

Each operation has Get-Keys and Get-Subarray func-
tions executed on the Gate and workers respectively (sec-
tion 4). Get-Keys (1) computes the keys of D′

k and ∀p ∈
D′
k.P except p.A given the metadata of input datasets, and

returns its part of the graph G, (2) may assign the destina-
tion worker ID to D′

k〈〈keym〉〉.wid. Step (1) is possible since
all operations are formally defined and the Gate locally keeps
all necessary metadata (for step (1) the Gate has functions
similar to Get-Subarray, not shown in section 4).

Get-Subarray physically produces subarray D′
k〈〈keym〉〉

given keym and all necessary metadata. It takes as input all
edges {(u, v)} ⊆ E such that v = (D′

k, keym).
Plan Rewriting capabilities currently consist of insert-

ing a retiling with different parameters to maintain load bal-
ance and to control the sizes of subarrays (see below).

Runtime Dataset Consistency. ChronosDB commands
treat regular dataset files such that they never violate the
assumptions from section 3.3. Each command also verifies
its input datasets. For example, all input datasets for the
K-way array join (section 4.2) must have the same (1) CRS,
(2) set and order of axes, and (3) resolution along each axis.

Vacuum service scans subarrays in the background when
ChronosDB is idle and removes those fully consisting of NA.
This avoids additional costs of testing each subarray during
script execution and keeps execution plans static.

Controlling Sizes of Subarrays. Subarrays may grow
too large or become too small during their processing. A
few large or many small subarrays may also be produced.

ChronosDB uses retiling to merge/split small/large sub-
arrays. We examine the execution plan and find operations
after which a subarray size becomes 2× more or less a given
threshold. ChronosDB inserts the retiling (taking all its pa-
rameters from the dataset except the subarray shape) in the
plan after such an operation e.g. after SAVIoutlook.

We investigate subarrays for potential retiling only if they
are not in a vff, are going to be materialized, and are not
at the border of their array e.g. D′〈〈−4, 2〉〉, fig. 2f.

Task Scheduling. We consider a v ∈ V to be a task that
must be assigned to a worker based on input data locality.
If a subarray is placed redundantly, we randomly choose a
replica. An output subarray will be moved to the worker
D′
k〈〈keym〉〉.wid or kept locally if wid was not assigned.
Depth-first search starts from any of the resulting datasets,

e.g. SAVIoutlook, traverses the reverse of G and determines the
order of producing subarrays: δ : v 7→ ∆. δ is assigned upon
exit, v ∈ V , ∆ ⊂ Z, |∆| > 1 if v was visited more than once.

Note that after a hyperslabbing operation some vertices
may become unreachable from any vertice of any resulting
dataset. This automatically prunes some redundant tasks.

ChronosDB tasks are (1) tiny (each processes one out
of hundreds or thousands of subarrays; each red and nir
dataset has 232 subarrays shaped ≈ 2048×2048) and (2) fin-
ish at such a high rate (hundreds of milliseconds) that it is
reasonable to usually assign the upcoming task based on

data locality and not to move the data to another worker.
The task to be scheduled may wait a little for the worker
with the input data for the task to be free since the time for
moving this data is often comparable to the waiting time.

In addition, ChronosDB tasks are of the same workload:
they (3) generally have equal volumes of input/output data,
and (4) the same operation is applied in each task.

Recent works show that fine-grained tasks alleviate prob-
lems related to fairness, stragglers, skew and make it easier
to evenly load resources and increase cluster utilization [47].

Experiments suggest (section 5.3) that given task proper-
ties (1–4), a static scheduler is usually sufficient when (i) in-
put subarrays (for each operation in the script) are evenly
distributed among workers, (ii) stragglers are absent, nodes
are homogeneous, and (iii) only one script can run at a time.

ChronosDB ensures (i) by inserting a retiling, see below.
SciDB shuffles chunks among all cluster nodes almost after

each operation, section 5.1. This ensures scalability at a high
cost but not straggler mitigation or proper multi-tenancy.

Maintaining Load Balance. ChronosDB traverses the
execution plan and counts workers holding over S/n × λ1

or less than S/n/λ1 subarrays for a dataset D. If it finds
more than n/λ2 such workers, it inserts the retiling with pa-
rameters taken from D. The retiling will redistribute subar-
rays among workers using the default placement policy (sec-
tion 4.1) keeping subarrays intact. Here λ1, λ2 are thresh-
olds, S =

∑
∀p∈D.P |p.A|, and n is the number of workers.

This prevents the majority of subarrays to concentrate on
a small set of workers and ensures amortized scalability.

Example Plan. Figure 2e shows the example of the
savi execution plan built for tiny red (Band4) and nir
(Band5) arrays with different shapes of subarrays. This
triggers the retiling of Band5 during the join. The tuples
contain the keys of subarrays, the subscript is the δ value:
key = (k1, k2, . . . )δ, e.g. (0, 1)9 refers to Band4〈〈0, 1〉〉.

Plan Execution. The Gate sends to a worker the whole
subgraph with all vertices assigned to that worker. A worker
keeps all tasks received from the Gate in a local priority
queue Q sorted in the ascending order by δ.

Workers execute tasks in a push-based fashion. Once a
slot in the local execution pool is free, the worker picks the
first task u ∈ Q for which all input subarrays are locally
available and submits u to the pool. The worker materializes
the output subarray su to its local ramd or to ssd if the
ramd is full. Let (u, v) ∈ E and v be assigned to another
worker with ID = wa. Then the worker connects to wa and
reports the input subarray su for v to be ready. Worker wa
replies to the reporter immediately if δ(v) = min(Q) or once
(1) δ(v) becomes one of the smallest in Q: δ(v)−min(Q) <
Θδ and (2) ramd is at least Θramd% free, where Θδ and
Θramd are thresholds. When the worker receives the reply, it
streams su to wa. If |δ(u)| > 1, the worker keeps su until all
its derived subarrays are obtained (by this or other workers).

Note that all input subarrays for v may arrive to wa before
v is considered for execution. This enables starting v at once
when its turn comes not waiting for the arrival of input data.

A multi-threaded tool occupies that number of slots which
are currently free, it does not wait for the 100% free pool
to run. The number of threads for such a tool is set to the
number of free slots (as the command line parameter).

Fault Tolerance. Suppose subarrays for V ′ ⊂ V were
not produced. The scheduler is then run to reassign workers
for ∀v ∈ V ′ and the execution for this subgraph is started.
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4. ARRAY OPERATIONS
We now show how to perform a wide variety of distributed

operations leveraging elaborate command line tools. Each
algorithm has lines highlighted in light gray. These are iso-
lated parts of the algorithms which are delegated to a tool.

At a glance, it may seem there is no room for improve-
ments in some operations and the delegation will not yield
a speedup. However, many steps contribute significantly
to the elapsed time required to complete even a relatively
simple operation. For example, the aggregation includes
I/O, byteswapping, broadcasting (e.g., conforming scalars
to multi-dimensional variables), collection (e.g., accessing
discontinuous hyperslabs in memory), and possibly weight-
ing [89, 90, 88]. Even the averaging runs several times
faster when optimized properly [89]. The same is true for
highly optimized, industry-standard tools used for other op-
erations [43, 19]. The tools also have a wealth of code for
proper metadata maintenance in complex raster file formats:
a subarray is readily accessible by any other GIS software.

4.1 Distributed N-d Retiling
ChronosDB uses retiling to process a raw dataset into

a regular one, to reprocess (retile) a regular dataset with
different parameters, for K-way joins (section 4.2). It is
also the core of many other vital functions (section 3.4).

The basic idea is to cut each p ∈ P onto smaller pieces
P ′ = {p′ : p′ v p}, assign each piece a key, and merge all
pieces with the same key into a single, new subarray. Each
key is associated with a cluster node, all pieces with the
same key are gathered and merged on the same node.

Algorithm 1 tiles and retiles sets of both arbitrarily and
regularly shaped N -d arrays, accepts an overlap, reference
indexes, manages subarrays with keys, fits the ChronosDB
data model, is formalized and parallelized.

Algorithm 1 has two phases: cut (split subarrays into
pieces) and merge (the pieces) which are launched in turn
when the Gate encounters the retile command in a script.

Algorithm 1 is illustrated on a 2-d case, fig. 2f. Consider a
2-d array A(lat, lon) in a regular dataset D = (A,M,P, S, ρ,
r0), where S = (5, 6), ρ = (0, 0), r0 = (5, 6). Array A
has shape 10× 18 and consists of 6 subarrays which bodies
are separated by thick blue lines. Subarrays may reside on
different cluster nodes. Cells are separated by dotted gray
lines. Subarrays have key range k01 ∈ [−1, 0], k02 ∈ [−1, 1].

Dataset D is being retiled into D′ = (A,M,P ′, S′, ρ′, r0),
where S′ = (3, 3), ρ′ = (1, 1), r0 = (12,−1). New subarray
bodies are separated by dashed red lines. In total, 28 new
subarrays will be produced with key range k01 ∈ [−4,−1],
k02 ∈ [0, 6]. For example, the hatched area marks subarray
D′〈〈−3, 2〉〉 = A[2 :6, 4:8] with body A[3 :5, 5:7] and periph-
ery A[6, 4:8], A[2, 4:8], A[3 :5, 4], and A[3 :5, 8]. Not all new
subarrays will have shape 5× 5 (5 = s′1 + ρ′1 × 2) and fully
cover respective subspaces, e.g. D′〈〈−1, 6〉〉 = A[8 :9, 16:17].

Reference coordinates r0i and r0i are highlighted in pink
on lat and lon axes. The source and new subarray keys are
plotted on axes k0i and k0i respectively.

Function Get-Key calculates the ith key value k0i of the
new subarray which body contains coordinate yi.

Function Get-Extents takes a set of subarrays and finds
out how to cut each of them into pieces (arrays of indexes
B′ and E′, line 26) so cells within each piece belong to the
same new subarray. B′ and E′ are later used by workers to
perform the actual cutting of pieces (line 13).

Algorithm 1 Distributed N -d Retiling with an Overlap

Input: D = (A,M, . . . ) . Raw or regular dataset
S′ = (s′1, s

′
2, . . . , s

′
N ) . Target shape for new subarrays

ρ′ = (ρ′1, ρ
′
2, . . . , ρ

′
N ) . Overlap

r0 = (r01, r
0
2, . . . , r

0
N ) . Reference indexes, r0 ⊂ ZN

function Policy . Piece placement policy
Output: D′ = (A,M,P ′, S′, ρ′, r0)

Require: s′i ∈ [Θb
axis,Θ

e
axis] ⊂ Z, s′i > 0,

∏N
i=1 s

′
i 6 Θshape

1: function Retile(D, S′, ρ′, r0,Policy) . is executed on the Gate
2: Initiate two-phase retiling: (1) [Cut], (2) [Merge]
3: return D′ = (A,M,P ′, S′, ρ′, r0)

4: function Get-Keys [Cut](D) . the Gate has
5: (C,K)← Get-Extents(D.P ) . ∀p ∈ D.P except p.A
6: return {((D, key1), (Dcut, (key1, key2))) : (key1, key2) ∈ K}
7: function Get-Keys [Merge](Dcut)
8: return {((Dcut, (k1, k2)), (D′, k2)) : Policy(D′, k2) 6= SKIP∧
9: for ∀(k1, k2) ∈ keys(Dcut),D′〈〈k2〉〉.wid← Policy(D′, k2)}

10: function Get-Subarray [Cut]({((D, k1), (Dcut, (k1, k2)))})
11: (C,K)← Get-Extents(D.P ) . a worker has all local p ∈ D.P
12: find (p, key,B′, E′) ∈ C : p.key = k1 ∧ key = k2
13: Dcut〈〈k1, k2〉〉.A← p.A[B′[0] :E′[0], . . . , B′[N − 1] :E′[N − 1]]

14: function Get-Subarray [Merge]({((Dcut, (k1, k2)), (D′, k2))})
15: D′〈〈k2〉〉 ← merge {Dcut〈〈k1, k2〉〉} for ∀k1 . DELEGATION

16: function Get-Key(yi)
17: return (yi > r0i ) ? (yi− r0i ) div s′i : −1− ((r0i − 1−yi) div s′i)

18: function Get-Extents(P ) . C: cut extents from ∀p ∈ P
19: C← K← {}, kbi ← Get-Key(0), kei ← Get-Key(|A.di| − 1)
20: for each p ∈ P do . bi = p.B[i− 1], ei = p.E[i− 1]

21: xb
i ← Get-Key(bi), x

e
i ← Get-Key(ei)

22: for each ki ∈ [max(kbi , x
b
i − 1),min(kei , x

e
i + 1)] do

23: b′i ← max(r0i + ki × s′i − ρ
′
i − bi, 0)

24: e′i ← min(r0i + (ki + 1)× s′i − 1 + ρ′i − bi, ei − bi)
25: if e′i < 0 ∨ b′i > ei − bi then continue

26: B′〈N〉 = {b′1, . . . , b
′
N}, E′〈N〉 = {e′1, . . . , e

′
N}

27: key1 ← p.key, key2 ← (k1, . . . , kN )
28: C← C ∪ {(p, key2, B′, E′)}, K← K ∪ {(key1, key2)}
29: return (C,K)

We find the key range of the new subarrays into which
A (line 19) and p (line 21) are to be cut. Line 22 steps a
key back (−1) and a key forward (+1) to ensure cutting the
periphery of the new subarrays whose bodies do not overlap
with p. Here kb = (−4, 0) and ke = (−1, 6), fig. 2f. Lines
22–28 iterate over the latter key range limited by kbi and kei
to avoid generating subarrays without bodies: A[0, 1:5] will
be not cut and D′〈〈−5, 1〉〉 will be not produced.

Lines 23 and 24 find indexes of gch(p,D′〈〈k1, k2, . . . , kN 〉〉).
For example, source subarray A[5 : 9, 0 : 5] will be cut into
9 pieces, one of them is A[5 : 6, 4 : 5] belonging to the new
dashed subarray, fig. 2f. Here xb = (−3, 0) and xe = (−1, 2).

The retiling takes Policy function as an argument to cus-
tomize the placement of each new subarray, line 9. Two
options are currently supported; for all pieces with a given
key: do not cut them (SKIP) or send them to worker wid
(may be equal to the source worker id). Note that if a key
is skipped, no subarray will be produced with this key.

Default-Policy function (not shown in algorithm 1) is
taken by default for retiling. It returns SKIP if a subarray
with a given key has no body. It sorts other subarrays by
keys and assigns the first subarrays with the total size of
≈ S/n to the first worker, the next portion of subarrays to
the second worker and so on. Here S is the total size of
subarrays and n is the number of workers. Given many tiny
and equal-sized tasks, this leads to an even load distribution
among workers without complex bin packing algorithms.

ChronosDB regular subarrays are similar to RasDaMan
tiles or SciDB chunks serving as I/O units. RasDaMan
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Algorithm 2 Distributed, File Based K-Way Array Join

Input: D1,D2, . . . ,DK . Datasets
S, ρ, r0 . Parameters used for cooking D1

� ∈ {inner, outer} . Join Type
κ(p1, p2, . . . , pK) . K-ary operation

Output: D./ = (A./,M, P./, S, ρ, r
(0))

Require: D1 must be regular, it is a “reference” dataset
1: function Get-Keys
2: r

(0)
i ← r0i + zi, zi : D1.A.di[0] = d./i [zi], P← D1.P

3: for each k ∈ [2, K] ⊂ Z do

4: r
(0)
i ← r

(0)
i − z0i , z0i : Dk.A.di[0] = d./i [z0i ]

5: D′
k ← Retile(Dk, S, ρ, r

(0),K-Join-Policy), P← P ∪ D′
k.P

6: Kj ← keys(D′
j), ◦ ← (� = inner)?∩ : ∪, K← K1◦K2◦· · ·◦KK

7: compute P./, D./ ← (A./,M, P./, S, ρ, r
(0))

8: return {((D′
j , k), (D./, k)) : j ∈ [1, K] ∧ k ∈ K ∩ keys(D′

j)}
9: function K-Join-Policy(D′

k, key)
10: if ∃wid ∈ {p.wid : p ∈ P ∧ p.key = key} then return wid

11: return (� = inner) ? SKIP : Default-Policy(D′
k, key)

12: function Get-Subarray(edges = {((D′
j , key), (D./, key))})

13: for j ∈ [1, K] do
14: pj ← [∃((D′

j , key), (D./, key)) ∈ edges] ? D′
j〈〈key〉〉 : NA

15: return D./〈〈key〉〉 ← κ′(p1, p2, . . . , pK) . DELEGATION

and SciDB do not further partition cells inside a tile/chunk.
However, ChronosDB subarrays are stored in sophisticated
raster file formats the majority of which support chunking
(section 4.7). This enables additional partitioning level of
cells and more flexibility in adapting to dynamic workloads.

4.2 Distributed K-Way Array Join
Map algebra is an analysis language loosely based on the

concepts presented in [80]. It is widely used in the indus-
try [87]. Map algebra includes algebraic operations on geo-
referenced N -d arrays. Many K-ary array operations im-
plicitly require the prior K-way array join if K > 1.

ChronosDB supports two join types. inner join is useful
for algebraic computations when any operation on a set of
cells must return NA if at least one of the cell values is miss-
ing. outer join is useful for a compositing operation when
at least one non-missing value contributes to the resulting
cell, e.g. a K-day cloud-free composite of satellite imagery.

The K-way join ./: �, κ, A1, A2, . . . , AK 7→ A./ takes
as input a join type � ∈ {inner,outer}, a mapping κ :
T1,T2, . . . ,TK 7→ T./, and N -d arrays Aj(d

j
1, d

j
2, . . . , d

j
N ) :

Tj , j ∈ [1,K] such that ∃d./i : dji v d./i for ∀i, j.
TheK-way join yields theN -d arrayA./(d

./
1 , d

./
2 , . . . , d

./
N ) :

T./ such that A./[x1, x2, . . . , xN ] = κ′(a1, a2, . . . , aK), where
xi ∈ [0, |d./i |), aj = Aj [y

j
1, y

j
2, . . . , y

j
N ] if ∃yji : dji [y

j
i ] =

d./i [xi]; aj = NA otherwise.
Operation κ′ formally defines the difference between the

two join types. If aj = NA for ∀j, κ′ returns NA regardless of
the � value. If � = inner and ∃j : aj = NA, κ′ returns NA.
Otherwise κ′ returns κ(a1, a2, . . . , aK).

Unlike SciDB join [67], ChronosDB join (1) allows joining
more than two arrays at a time, (2) provides outer and in-
ner join types, (3) accepts a reducer to derive an array from
the joined arrays (step 3 often follows the join in practice).

ChronosDB uses a retiling-based approach for the K-way
array join. The main goal of the join algorithm is to prepare
input arrays such that κ could be delegated to an external
tool. Most tools work on a single machine and refuse to
process arrays not covering exactly the same N -d subspace.

We (1) retile all input subarrays with the parameters
taken from the first dataset D1, (2) assign the same key

to all new subarrays (regardless of the dataset) whose bod-
ies are in the same N -d subspace defined by d./i , S, ρ, and
r(0) (lines 2 and 4 adjust reference indexes respectively),
(3) collect all subarrays with the same key from all datasets
on one of the workers, (4) delegate the calculation of κ on
the subarrays with the same key to a tool: ncap2 (NCO) or
gdal calc.py (GDAL) depending on the format.

Get-Keys iteratively calls Retile on each input dataset
with adjusted reference indexes and the custom piece place-
ment policy. A piece with a given key is assigned to a worker
that already has a subarray with the same key from dataset
D1 or a newly retiled dataset. inner join discards subarrays
with keys absent in at least one of the datasets. Otherwise,
Default-Policy chooses a worker for a new subarray.

Before delegating κ we must prepare pj such that ∀pj have
the same extents. If � = inner, find d′i = gch(p1.A.di, . . . ,
pK .A.di) and cut each pj respectively. If � = outer, find
d′i : pj .A.di v d′i ∧ |d′i| 6 si +ρi× 2 for ∀i, j and extend each
pj respectively filling newly emerged cells with NA.

The K-way join algorithm is amenable to modifications.
For example, to multiply 2-d arrays A and B, where SA =
(a1, a2), SB = (b1, b2) we can (1) retile subarrays of B to
shape (a2, a1), (2) use the policy function which just reverses
the key = (k1, k2) of a newly cut piece (from B) to key′ =
(k2, k1) and seeks the subarray of A with key′. This idea is
applicable to similar operations where the column blocks are
joined with row blocks. It is also straightforward to extend
the idea for similar K-ary operations on N -d arrays.

4.3 Aggregation
The aggregate of an N -d array A(d1, d2, . . . , dN ) :T over

axis d1 is the (N − 1)-d array Aaggr(d2, . . . , dN ) :Taggr such
that Aaggr[x2, . . . , xN ] = faggr(cells(A[0 : |d1| − 1, x2, . . . ,
xN ])), where ∀xi ∈ [0, |di|), cells : A′ 7→ T is a multiset of
all cell values of an array A′ v A, faggr : T 7→ w ∈ Taggr is
an aggregation function.

Algorithm 3 Two-Phase Distributed Array Aggregation

Input: D, faggr Output: Daggr Require: N > 1
1: function Get-Keys [Phase1]
2: return {((D, key), (DL, key)) : key ∈ keys(D)}
3: function Get-Subarray [Phase1](ξ = {((D, k), (DL, k))})
4: return DL〈〈k〉〉 ← faggr(D〈〈k〉〉) . |ξ| = 1, DELEGATION

5: function Get-Keys [Phase2]
6: return {((DL, k), (Daggr, ka)) : k ∈ keys(DL) ∧ ka =
7: k[1 :N − 1],Daggr〈〈ka〉〉.wid← Default-Policy(Daggr, ka)}
8: function Get-Subarray [Phase2](ξ = {((DL, k), (Daggr, ka))})
9: return Daggr〈〈ka〉〉 ← faggr(all DL from ξ) . DELEGATION

Due to space constraints, we give algorithm 3 for aggre-
gating subarrays with the same dj for the same ka (phase 2),
where j ∈ [2, N ]. The aggregation is delegated to ncra for
NetCDF files (lines 4 and 9), where faggr ∈ {max,min, sum}.
The calculation of average is reduced to calculating the sum
and dividing each cell of the resulting array on |A.d1|.

Algorithm 3 has two phases similar to the retiling. Con-
sider the dataset described in section 2.3, fig. 2c. The first
phase locally aggregates 3-d subarrays over the first axis to
obtain interim 2-d aggregates e.g. D〈〈0, 0, 0〉〉 7→ DL〈〈0, 0, 0〉〉
(new keys retain the same dimensionality). To compute the
final result, the second phase collects all 2-d subarrays of DL
contributing to the given final 2-d aggregate on the node
specified by Default-Policy, section 4.1. For example,
DL〈〈0, 0, 0〉〉, DL〈〈−1, 0, 0〉〉, DL〈〈−2, 0, 0〉〉 7→ Daggr〈〈0, 0〉〉.
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(a) Multiresolution pyramid, 3 levels [60].
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(c) Dataset example (best viewed in color).
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& hyperslabbing [60].
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(f) Retiling example.

Figure 2: Illustration of array processing operations.

4.4 Resampling
Multiresolution Pyramid illustrates downsampling.

Large arrays are interactively visualized depending on the
zoom level. Usually several zoom levels are defined, e.g.
Z = {0, 1, . . . , 16}. Usually at zoom level z ∈ Z an array
is displayed with 2z× less resolution than the original. A
multiresolution pyramid is the stack of arrays for all zoom
levels, fig. 2a. The display of downsampled arrays for coarser
scales significantly reduces network traffic and system load
making this functionality vital for an array DBMS.

Formally, given a 2-d array A(d1, d2) : T, its coarser ver-
sion is the array A′(d′1, d

′
2) : T′ such that d′i〈dlie〉 = {di[0],

di[2], . . . , di[blic × 2]}, where li = |di|/2 and A′[x′1, x
′
2] =

avg({A[x1, x2] : xi div 2 = x′i∧A[x1, x2] 6= NA}) for ∀xi, avg
is the average and avg(∅) = NA. To shorten the formulas,
section 4.4 assumes that di stores the smallest border cell
coordinates and gdalwarp starts the processing from di[0].
ChronosDB delegates the resampling to gdalwarp.

Numerous downsampling techniques exist [57]. However,
SciDB does not support anything more advanced. In con-
trast, a large number of tools with plethora of options exist
specifically targeted at creating coarser array versions.

Interpolation is a core operation with many applica-
tions [57]. It estimates a value at a coordinate (y1, . . . , yN )
for an array A(d1, . . . , dN ), where yi ∈ (di[j], di[j+1]) ⊂ Ti,
and j ∈ [0, |di| − 1) ⊂ Z. For example, array resolution can
be doubled by interpolation when yi = (di[j] + di[j + 1])/2.

As in downsampling, numerous interpolation techniques
exist [57]. The most basic one is nearest neighbor (NN): an
unknown cell value is obtained by copying the value from
the nearest cell with a known value. SciDB xgrid operator
mimics NN interpolation [65]: it increases the length of the
input array dimensions by an integer scale replicating the
original cell values, fig. 2d. This is almost equivalent to NN
since a generic interpolation works with an arbitrary scale.

Algorithm 4 Distributed, In Situ Array Hyperslabbing

Input: D = (A, . . . ) . Raw or regular dataset and hyperslab indexes
B〈N〉 : int = {b1, . . . , bN}, E〈N〉 : int = {e1, . . . , eN}

Output: D′ = (A′, . . . ): A′(d′1, . . . , d
′
N ) = A[b1 : e1, . . . , bN : eN ]

Require: 0 6 bi 6 ei < |A.di| . result is not empty
1: function Get-Keys
2: A′.d′i ← A.di[bi : ei]
3: return {((D, k), (D′, k)) : ∀k ∈ keys(D)∧Get-Cut(D〈〈k〉〉) 6= 0}
4: function Get-Cut(p ∈ D.P )
5: mi ← p.A.di, li ← |mi| − 1, m′

i ← A′.d′i, l
′
i ← |m

′
i| − 1

6: ω ← 0, αi ← max(mi[0],m′
i[0]), βi ← min(mi[li],m

′
i[l

′
i])

7: if αi 6 βi for ∀i then . p.A and A′ overlap
8: if αi = mi[0] ∧ βi = mi[li] for ∀i then ω ← 1 . p.A v A′

9: else find b′i, e
′
i : mi[b

′
i] = αi∧mi[e

′
i] = βi . cut gch(p.A,A′)

10: ω ← (B′ = {b′1, b
′
2, . . . , b

′
N}, E

′ = {e′1, e
′
2, . . . , e

′
N})

11: return ω
12: function Get-Subarray(ξ = {((D, k), (D′, k))}) . |ξ| = 1
13: if Get-Cut(D〈〈k〉〉) = 1 then return copy of D〈〈k〉〉
14: (B′, E′)← Get-Cut(D〈〈k〉〉), b′i ← B′[i− 1], e′i ← E′[i− 1]

15: D′〈〈k〉〉.A← D〈〈k〉〉.A[b′1 : e′1, . . . , b
′
N : e′N ] . DELEGATION

4.5 Hyperslabbing
Hyperslabbing is an extraction of a hyperslab from an ar-

ray. Consider a 2-d array A(lat, lon) consisting of 9 sub-
arrays separated by thick lines, fig. 2d. The hatched area
marks the hyperslab A′ = A[1 : 5, 2 : 5]. Hyperslabbing an
array is reduced to hyperslabbing the respective subarrays
as follows. Some subarrays do not overlap with A′ and are
filtered out, e.g. A[0 : 1, 0 : 1]. Others are entirely inside A′

and migrate to the resulting dataset as is, e.g., A[4 :5, 4:5].
We hyperslab only the remaining subarrays to complete

the operation. A subarray is entirely located on a node in
a single file and its hyperslabbing is delegated to a tool:
gdal translate (GDAL) or ncks (NCO) depending on the
file format (algorithm 4, line 15). Most tools support raster
file subsetting on a single machine. ChronosDB scales out
the tools by orchestrating their massively parallel execution.

1254



0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

(a) No chunking

0 1 2 3 4 5 6 7 8 9

(b) Exact 2× 2 chunking

0 1 2 3 4 5 6 7 8 9

(c) Inexact 2× 2 chunking

Figure 3: Array chunking.

4.6 Reshaping
The reshaping operation Ψ :A, π 7→ A′ takes as input an

N -d array A(d1, . . . , dN ) : T and the permutation mapping
π : i 7→ j, where i, j ∈ [1, N ] ⊂ Z, π(i) 6= π(j) for i 6= j,
and

⋃
i{π(i)} = [1, N ]. The reshaping operation outputs the

N -d array A′(dπ(1), . . . , dπ(N)) : T such that A[x1, . . . , xN ] =
A′[xπ(1), . . . , xπ(N)], where xi ∈ [0, |di|) ⊂ Z for all i.

Reshaping helps to achieve the fastest hyperslabbing along
a dimension e.g. reading a time series A[x1, x2, 0:|time| − 1]
of a 3-d array A(lat, lon, time) vs. A(time, lat, lon).

It is possible to reshape an array by reshaping its subar-
rays separately. Consider an array A(lat, lon), shape 9× 4,
and its reshaped version A′(lon, lat), shape 4×9, thick lines
separate the subarrays, fig. 2b. Hatched cells of A and A′

mark subarrays A[0 : 2, 2 : 3] and A′[2 : 3, 0 : 2]. Hence, A[b1 :
e1, . . . , bN :eN ] is reshaped to A′[bπ(1)

:eπ(1)
, . . . , bπ(N)

:eπ(N)
]:

reshaping does not move cells between distinct subarrays.
Reshaping alters the array storage layout according to the

given order of dimensions. Two strips (1-d arrays) show
storage layouts of A[0 : 2, 2 : 3] and A′[2 : 3, 0 : 2], fig. 2b.
Usually the last dimension of an N -d array varies the fastest:
cells along the Nth dimension are sequential in the memory.
A cell A[x1, x2] precedes the cell A[x1, x2+1]. Thick lines on
the strips separate cells with distinct x1 indexes. Reshaping
is delegated to ncpdq (NCO) for NetCDF format.

4.7 Chunking
Chunking partitions an array into a set of I/O units called

chunks (fig. 3, thick blue and dashed red lines separate sub-
arrays and chunks respectively). Chunking is an approach
to substantially accelerate array I/O.

Consider reading a 5× 2 slice from a 2-d array, fig. 3. For
the row-major storage layout, a possible way is to spend 5
I/O requests to read 5 portions sized 1× 2, fig. 3(a). For a
compressed array, a larger part of it might have to be read
and unpacked to get the slice. However, only chunks storing
the required data are read from a chunked array, fig. 3(b,c).

The exact chunking reorganizes data such that the cells
with indexes (x1, . . . , xN ) and (y1, . . . , yN ) belong to the
same chunk iff xi div ci = yi div ci for ∀i, fig. 3(b).

ChronosDB performs exact chunking of subarrays with-
out moving cells between them, fig. 3(c). We call this tech-
nique “inexact chunking”. Its benefits are: (1) it reaches the
goal of chunking (mainly I/O speedup, this is experimentally
proven in section 5), (2) it leverages sophisticated chunking
techniques of raster file formats, (3) it can be performed
in parallel on each subarray, (4) it has a strong practical
motivation and is more appropriate for data sharing.

In practice, for a chunk shape c1 × c2 × · · · × cN and an
array A(d1, d2, . . . , dN ) the condition ci � |A.di| usually
holds. This translates to ci � |p.A.di| for ∀p ∈ P given the
proper retiling parameters, section 4.1. Real-world datasets

are usually already split into files containing subarrays meet-
ing these criteria, e.g. in climate modeling it is common to
have files storing yearly or monthly data, section 5.2.

Recall that ChronosDB subarrays are directly accessible
by a user and any other software as ordinary files. In the case
of yearly files, it is inconsistent to have an exactly chunked
file named 2015.* and supposed to store data for year 2015
but with extra grids from 2014 or 2016 year.

Inexact chunking produces a negligible fraction of chunks
with smaller shapes e.g. A[4, 7:8], fig. 3(c). This does not
necessarily imply a slower I/O performance. For certain
access patterns, inexact chunking may yield a faster I/O
than the exact one: A[2 :6, 7:8] requires reading 6 (or even 8)
vs. 3 chunks from the exactly and inexactly chunked arrays
respectively, fig. 3(b, c). Note that if |A.di| mod ci 6= 0 then
the exact chunking also produces some smaller chunks.

Chunk shape is one of the crucial I/O performance param-
eters for an array [16]. An appropriate chunk shape depends
on data characteristics and workload. Generally no single
chunk shape is optimal for all access patterns. It is typically
not obvious a priori what chunk shape is good in a given
case: chunk shape is often tuned experimentally. An array
DBMS must be able to quickly alter chunk shape in order
to support the tuning and to adapt to dynamic workloads.

ChronosDB leverages ncks (NCO) and gdal translate

(GDAL) to chunk NetCDF and GeoTIFF files respectively.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
Hardware and software. We used Microsoft Azure

DS2 V2 virtual machines (VMs) with 2 CPU cores (Intel
Xeon E5-2673 v3, 2.4 GHz), 7 GB RAM, 64 GB local SSD,
max 4 virtual data disks and 6400 IOPS, Ubuntu Linux
14.04 LTS (it is the latest version supported by SciDB 16.9).

SciDB 16.9 is the latest version as of 12/2017. It is mostly
written in C++. Parameters used: 0 redundancy, 2 SciDB
instances (SIs) per VM, SIs can allocate an unlimited amount
of memory, other settings are default [66]. ChronosDB is
100% on Java, ran one worker per node, OracleJDK 1.8.0 -
111 64 bit, max heap and ramd are sized 2 GB each. GDAL
v2.2.3 and NCO v4.6.7 are from the Conda repository [13].

It is recommended to run 1 SI per 2 CPU cores and 8 GB
or more RAM [68, 69]. However, we ran 2 SIs per VM since
1 SI per VM was up to 2× slower for all queries.

We selected DS2 V2 VMs since (1) this hardware was the
closest to the minimal required [69] at the time of the exper-
iments, and (2) any experimental array fully fits the RAM
of a single VM. DS2 V2 VMs are optimal for these data in
terms of cost and performance. A larger VM is not cost ef-
fective. We checked most queries on the newer D2S V3 VMs
(8 GB RAM) and observed no significant runtime difference
compared to DS2 V2.

Shuffling. ChronosDB subarrays and SciDB chunks of
the input arrays are distributed uniformly among cluster
nodes. Most SciDB operators shuffle output chunks between
cluster nodes using a hash function. It assigns a chunk to a
SciDB instance via a hash over the chunk position minus ar-
ray origin, divided by chunk size [64, 63]. This formula may
collocate output and input chunks leading to no exchange
of chunks over the network, e.g. for xgrid operator [64].

Arrows →← in fig. 4 indicate that SciDB actually shuffles
the resulting chunks while ��@@

→
← indicates no shuffling or its
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negligible runtime, e.g. for tiny results in the aggregation. In
the former case, ChronosDB runtime also includes shuffling
of its output subarrays while in the latter it does not.

For experimental purposes, ChronosDB shuffling makes
the jth worker (j ∈ [1, n]) send its output subarrays to the
(n + 1 − j)th worker, where n is the number of workers.
Unlike SciDB, this always forces a complete exchange of all
resulting data when n is even. Sometimes this only adds up
to 1-2 sec. of overhead due to the fast network, ramd, zero-
copy [77], and the shuffling being parallel to the processing.

Results materialization to ssd is mandatory for many
query types since we study real-world use cases. Chunking
accelerates many subsequent queries. It is primarily a sep-
arate query, not part of a query. We get a new chunked
array, save it to ssd, and reuse it many times. Similarly, a
pyramid is built in advance to avoid delays when it is served
many times via a visualization system (e.g. interactively ex-
plore a query output). Reshaping, in particular, accelerates
multiple hyperslabbing queries along an axis. Many other
queries pursue similar goals. We give many charts (marked
by ram) when SciDB discards its output (consume operator)
and ChronosDB saves its output to ramd. ChronosDB is
still much faster than SciDB. This translates to an order of
magnitude speedup in complex analytic pipelines, e.g. savi.

Cold and hot query runs were evaluated: a query is exe-
cuted for the first and the second time respectively. We drop
pagecache, dentries and inodes before each cold query to
prevent data caching. ChronosDB benefits from native OS
caching and is much faster during hot runs. This is particu-
larly useful for continuous experiments with the same data
occurring quite often (e.g. tuning certain parameters, sec-
tion 4.7). There is no significant runtime difference between
cold and hot SciDB runs. Superlinear acceleration in some
cases may be due to exceeding the I/O limits leading to a
slowdown for smaller clusters compared to larger ones.

It is impossible to import large data volumes into SciDB
in a reasonable time frame. However, the datasets turned
out to be sufficient for representative results.

It took us about 600+ lines of Bash code for SciDB and
about 450+ lines of ChronosDB script to run all operations
with different chunk shapes and modes (ram/ssd).

5.2 Climate Reanalysis Data
Eastward (u-wind) and northward (v-wind) wind speeds

at 10 meters above surface between 1979–2010 (32 years)
from NCEP/DOE AMIP-II Reanalysis (R2) are taken [41].
These are 6-hourly forecast data (4-times daily values at
00:00, 06:00, 12:00, and 18.00), a time series of 94 × 192
Gaussian grids, NetCDF3 format, ≈3 GB. The data already
satisfy regular dataset criteria and need not to be retiled.
They result in two 3-d arrays shaped 46752× 94× 192. All
queries except the wind speed were ran on the u-wind array.

We developed a Java program to convert NetCDF 7→ CSV
to feed the latter to SciDB. To date, this is the only way to
import a NetCDF file into SciDB. The import took over 45
hours on a powerful server to avoid wasting Cloud time.

An appropriate chunk shape must be found for a SciDB
array to get the fastest performance. It is practical to import
a single grid for a single time step per iteration. This justifies
setting the initial chunk shape to A, table 1 (numbers are
for the u-wind array). Shape E coincides with the shapes of
ChronosDB subarrays except for leap years. SciDB failed to
reshape the array with chunk shape E. For ChronosDB and

Table 1: SciDB runtime1 vs. chunk shape2, 8 nodes

Operation A B C D E

Average 63.2 16.7 45.2 54.4 17.2
Reshape 210.9 165.0 3974.4 1145.2 —
[, 0 : 20, 0 : 20]3 138.0 5.4 92.8 22.8 25.2
[, 0, 0]3 104.2 1.5 11.3 0.6 15.8

1 seconds, 2chunk shapes – A: 1 × 94 × 192, B: 100× 20× 16 ,

C: 10× 10× 8, D: 730× 2× 2, E: 1460× 94× 192, 3hyperslabbing

the u-wind array, only hyperslabbing benefits from chunking
since it is more apparent for much bigger data: there is no
need to tune chunk shape for ChronosDB in this case.

The SciDB aggregation performance is the fastest and ap-
proximately the same for arrays with chunk shapes B and E,
table 1. It is about 4× slower than the ChronosDB aggre-
gation, fig. 4d. For chunk shape E only 33 chunks at most
must be read, aggregated, and sent over the network. This
suggests the major bottleneck is not due to the I/O or the
network exchange of a large number of chunks but because
of the unoptimized array management.

We selected shape B for the aggregation, reshaping, wind
speed, and window hyperslabbing queries. We benchmarked
the min, max, and avg performance but show the results
only for the latter due to the similarity of numbers and space
constraints, fig. 4d. The result is the single 94 × 192 grid,
section 4.3. ChronosDB outperforms SciDB from 3× to 5×
for cold queries and from 6× to 10× for hot queries.

The reshaping (time, lat, lon) 7→ (lon, lat, time) was eval-
uated since the respective SciDB operator has a limitation:
it does not accept the order of dimensions and completely
reverses their order. The ratio is up to 26× (figs. 4g and 4h).

Wind speed (ws) at each grid cell and time point is calcu-

lated as ws =
√

u-wind2 + v-wind2. Climate models often
do not produce ws and it is derived once required. The
input and the resulting arrays have the same chunk shape
leading to no actual shuffling. The ratio is up to 25× (fig. 4l).
ChronosDB is 3× faster for the hot run on 1 node with ramd
(30 vs. 94 sec.): ramd helps to avoid hitting ssd I/O limits.

The ratio slightly drops on 32 nodes: each ChronosDB
worker has only 1 subarray and can use only 1 CPU core to
process it; SciDB has ≈875 chunks per node in this case.

To contrast the performance resulting from an inappro-
priate chunk shape, we evaluate the hyperslabbing of the
20× 20 window on both shapes A and B, figs. 4e and 4f.

Time series hyperslabbing (all time steps for the single
point (0, 0)) was evaluated on shape D (fig. 4j).

ChronosDB hyperslabs the chunked arrays up to 3× faster
than the original. This proves that inexact chunking is an
I/O accelerator when the subarrays can be balanced between
cluster nodes. However, ChronosDB is very fast in both
hyperslabbing types even on the original array, fig. 4e. This
is a strong advantage of ChronosDB.

We measured the performance of altering the chunk shape
A 7→ B, A 7→ D, and B 7→ D, figs. 4a to 4c. The first
two are to estimate the speed of switching from the initial
shape to one of the most appropriate for the given workloads.
The last is to estimate the speed of switching between the
workloads. We used the fastest SciDB query to change the
shape [71]. ChronosDB outperforms SciDB by up to 1034×.

Although SciDB and ChronosDB chunking are not pre-
cisely equivalent, they pursue the same goal: adapt to an

1256



/

→←ssd
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(c) 100× 20× 16 7→ 730× 2× 2
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(d) Average

→←ssd

(e) [, 0 : 20, 0 : 20], 1× 94× 192

→←ssd

(f) [, 0 : 20, 0 : 20], 100×20×16
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(g) Reshaping to RAM
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(j) [, 0, 0], 730× 2× 2

→←ram

(k) Wind speed

→←ssd

(l) Wind speed

→←ram

(m) NDVI non-collocated

→←ssd

(n) NDVI non-collocated

→←ram

(o) Interpolation 1024 & 2048

→←ssd=ram

(p) SAVI 1024 & 4096

Figure 4: (a, b, c) chunking, (e, f) hyperslabbing [0 : 46751, 0 : 20, 0 : 20], (j) hyperslabbing [0 : 46751, 0 : 0, 0 : 0], a & b mean
that a× a SciDB chunks and b× b ChronosDB subarrays were used. The horizontal axes plot the number of cluster nodes.

I/O workload (e.g. hyperslabbing). This dramatic runtime
difference is probably not due to the network or disk I/O
similarly to the aggregation as noted above and concluded
from table 1 but due to the chunking algorithms themselves.

Fast NCO chunking performance is the result of years of
hard work: NCO v4.4.2 (2014/02/17) chunks the original
array to 730 × 2 × 2 about 100× slower than NCO v4.6.7.
Certainly SciDB will improve its chunking technique but this
will require time, development efforts, financial support, and
other relevant investments. This is additional evidence to
leverage already existing and elaborate command line tools.

ChronosDB keeps a large number of chunks in a much
smaller number of subarrays (files). This multilevel cell stor-
age approach makes it possible to perform chunking and
adapt to workload much faster when the subarrays are bal-
anced between cluster nodes. This is straightforward to
achieve when the number of subarrays is equal to or a mul-
tiple of cluster nodes: the usual case in practice.

Unlike SciDB, ChronosDB is able to quickly adapt to
changing workloads. It is also very fast for a ChronosDB
user to try different chunk shapes for a given workload.

5.3 Landsat Satellite Data
Please, refer to section 3.1 for the dataset description.
We benchmarked each operation on arrays with SciDB

chunk and ChronosDB subarray shapes 1024×1024, 2048×
2048, and 4096×4096. We pick the shape on which a system
performs best and show the respective runtime in fig. 4.

We benchmarked the 2× interpolation on the nir array,
fig. 4o. ChronosDB outperforms SciDB from 7× to 12×.

Note that ChronosDB is not only faster but it performs
the real nearest-neighbor interpolation. In contrast, SciDB
just fills new cells with the values taken from the cells with
the coordinates known in advance.

We benchmarked the creation of 3 levels of the multires-
olution pyramid also on the nir array, fig. 4i. ChronosDB
outperforms SciDB from 11× to 97×.

The calculation of NDVI demonstrates the K-way array
join, section 4.2. We evaluated NDVI computation on red
array with shape 2048 × 2048 and nir array with all three
shapes. SciDB fails to compute NDVI on 1- and 2-node clus-
ters with a not enough memory error. SciDB red and nir arrays
are collocated when their shapes coincide and no exchange
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of chunks over the network is required to compute NDVI.
This case yields the fastest performance (not shown).

Other pairs of shapes lead to partially collocated SciDB
arrays. Figures 4m and 4n show the performance when
ChronosDB subarrays are totally non collocated: Default-
Policy (section 4.1) assigned nir subarrays to workers in
reverse order. This requires ChronosDB to send over the
network all subarrays of red or nir array (≈1.6–1.8 GB
in total depending on the retiling parameters). ChronosDB
triggers the retiling to calculate NDVI when the subarray
shapes of red and nir arrays do not coincide, section 4.2.

ChronosDB is exceptionally superior (from 11× to 21×) to
SciDB even when SciDB discards its output, fig. 4m. SciDB
and ChronosDB performed best on the 1024 × 1024 and
4096 × 4096 chunk and subarray shapes of the nir array
respectively. ChronosDB materialized all its intermediate
data during the join operation to ramd.

SciDB always fails on DS2 V2 VMs with a not enough memory

error when computing the SAVI pipeline (section 3.4). We
selected DS3 V2 VMs (14 GB RAM, 4 CPU cores). SciDB
also fails on 1- and 2-node DS3 V2 clusters. SciDB and
ChronosDB performed best with the same shapes as for
the NDVI case. SciDB arrays were again partially collo-
cated while ChronosDB arrays were totally non collocated.
ChronosDB materialized the intermediate data to ramd.
It was about 30% slower without ramd. ChronosDB is
from 32× to 47× faster than SciDB, fig. 4p. This proves
ChronosDB to be efficient for complex analytic pipelines.

6. RELATED WORK
Unlike all similar systems, ChronosDB combines a unique

set of features. It (1) operates in situ on raster files, (2) runs
on a computer cluster, (3) scales existing industry-standard
tools, provides (3) a formal data model, (4) a clear command
line query syntax, (5) an efficient execution engine, and (6) a
rich set of operations (some are not listed due to space con-
straints: other NCO/GDAL tools and ImageMagic [29]).

Open source array DBMS. SciDB [7, 74, 73, 16] re-
quires complex and slow data import. Array dimensions are
integer making some operations difficult or impossible on
many real-world datasets: time series, Gaussian grids, etc.
SciDB functionality constrained the benchmark in section 5.

PostGIS is a popular industrial geospatial engine [51]. It
imports files into BLOBs or registers out-db files resulting in
a set of separate tiles not treated logically as a single array.
PostGIS is not distributed and is tailored to 2-d tiles [50].

RasDaMan Community requires data import [2], works on
top of PostgreSQL on a single machine, and is based on array
algebra [4]. It allows expressing a wide range of operations
but it may be far not straightforward [54, 55, 53]. It is
easier to use dedicated functions for each operation. Only
ChronosDB and RasDaMan data models are formalized.

SciQL is an array simulation on top of MonetDB but it is
not in situ enabled and not under active development [91].

TileDB has a new on-disk format with support for fast
updates (it is not very relevant for georeferenced arrays).
TileDB is not yet distributed or in situ enabled. It does not
yet offer any array processing functions [79, 78, 48].

Commercial array DBMS/GIS. RasDaMan Enterprise
is in situ enabled and distributed with largely the same func-
tions as the open version. It adds support for other base
DBMS and performance accelerators [3, 52]. Oracle Spatial
is distributed but not in situ enabled and tailored to 2-d

arrays [46]. Its functionality is similar to PostGIS. ArcGIS
ImageServer focuses on complex geospatial analytics as well
as powerful visualization and publishing capabilities [1].

In situ algorithms. Blanas et al. proposed in-memory
techniques [6], ArrayUDF scales out user-defined sliding win-
dow functions [17], and SAGA runs aggregation queries [86]
over HDF5 files. FastQuery bitmap indexes can be stored
alongside the original data [10]. DIRAQ reorganizes data for
efficient range queries [32]. Su et al. proposed user-defined
subsetting and aggregation over NetCDF files [75]. SciMate
is optimized for several hyperslabbing patterns [85]. OLA-
RAW performs parallel on-line aggregation of FITS files [9].

ArrayStore is not in situ enabled, focused on finding the
optimal tiling strategy, and finally arrived at a similar regu-
lar tiling scheme to ChronosDB [72]. Google Earth Engine
functionality covers the most of ChronosDB [25]. It does
not operate in situ. Its native data model is a collection of
2-d images. It supports N -d arrays but less efficiently [24].

SWAMP is the most prominent effort to scale NCO. It
partitions a bash script calling NCO tools and executes its
parts on a computer cluster [82, 83]. Each cluster node
usually stores a copy of all data. No data model is provided:
a user explicitly iterates over a set of files and deals with file
partitioning. ChronosDB abstracts from file names, their
quantity, location on cluster nodes, and other details.

Ad-hoc software. Practitioners mainly develop batch-
style scripts launched at each cluster node without data ex-
change or HPC programs to process data on a supercom-
puter via e.g. MPI [49]. ChronosDB is a good complement
to the world of isolated scripts and MPI programs to stream-
line certain tasks of big geospatial data processing in the
Cloud. Note that ChronosDB can scale out scripts as well.

National initiatives include Australian Data Cube [36],
Russian UniSat [30], European EarthServer [5]. They fea-
ture complex analytic pipelines implemented using a broad
range of software. ChronosDB or a similar system may serve
as a building block, not an all-in-one substitute for these ini-
tiatives. In situ processing with popular command line tools
suits best for interoperability with these ecosystems.

Hadoop-based approaches need data import. The plu-
gin called SciHadoop has a driver for accessing HDFS-based
arrays via NetCDF API [8]. Hadoop [27] and SciDB [70]
streaming can feed data into a tool’s stdin and ingest its
stdout. Note three time-consuming data conversion steps:
data import into an internal format, export into stdin, and
import from stdout. ChronosDB delegation takes place
without any data conversion. SparkArray extends Spark
with filter, hyperslabbing, smooth and join array operations.
It did not outperform SciDB for any query [84].

7. CONCLUSIONS
ChronosDB delegates portions of raster data processing to

feature-rich and highly optimized command line tools. This
makes ChronosDB run much faster than SciDB. In addition,
ChronosDB design is highly abstracted and independent
from underlying raster file formats and tools. Standard file
formats are interfaces between ChronosDB and tools written
in diverse programming languages and generally supported
by active communities. The command line query syntax of
ChronosDB is clear, easy to use, and already well-known by
most users. Future work includes developing a Web GUI or
a remote API for ChronosDB to make it publicly available
as a Cloud service at chronosdb.gis.land.
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