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ABSTRACT
Differentially private algorithms for answering sets of predi-
cate counting queries on a sensitive database have many ap-
plications. Organizations that collect individual-level data,
such as statistical agencies and medical institutions, use
them to safely release summary tabulations. However, exist-
ing techniques are accurate only on a narrow class of query
workloads, or are extremely slow, especially when analyzing
more than one or two dimensions of the data.

In this work we propose HDMM, a new differentially pri-
vate algorithm for answering a workload of predicate count-
ing queries, that is especially effective for higher-dimensional
datasets. HDMM represents query workloads using an im-
plicit matrix representation and exploits this compact repre-
sentation to efficiently search (a subset of) the space of dif-
ferentially private algorithms for one that answers the input
query workload with high accuracy. We empirically show
that HDMM can efficiently answer queries with lower error
than state-of-the-art techniques on a variety of low and high
dimensional datasets.
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1. INTRODUCTION
Institutions like the U.S. Census Bureau and Medicare

regularly release summary statistics about individuals, in-
cluding population statistics cross-tabulated by demographic
attributes [6,32] and tables reporting on hospital discharges
organized by medical condition and patient characteristics
[20]. These data have the potential to reveal sensitive in-
formation, especially through joint analysis of multiple re-
leases [16,29,36]. Differential privacy [11,12] has become the

∗Views expressed in this paper are those of authors and do
not necessarily reflect the views of the U.S. Census Bureau.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 10
Copyright 2018 VLDB Endowment 2150-8097/18/06.
DOI: https://doi.org/10.14778/3231751.3231769

dominant standard for ensuring the privacy of such data re-
leases. An algorithm for releasing statistics over a dataset
satisfies ε-differential privacy if adding or removing a single
record in the input dataset does not result in a significant
change in the output of the algorithm. The allowable change
is determined by ε, also called the privacy-loss budget. If
each record in the input corresponds to a unique individual,
this notion gives a compelling privacy guarantee [23].

We consider the problem of releasing answers to a work-
load (i.e., a set) of predicate counting queries while satis-
fying ε-differential privacy. Predicate counting queries have
the form SELECT Count(*) FROM R WHERE φ, where φ is any
boolean formula over the attributes in R. (This problem
formulation also supports group-by queries, each of which
can be rewritten into a set of predicate counting queries,
one query per possible group.) Workloads of such queries
are quite versatile, expressing histograms, multi-dimensional
range queries, data cubes, marginals, or arbitrary combina-
tions thereof.

There has been a plethora of work on differentially pri-
vate techniques for answering sets of queries including work
establishing theoretical lower bounds [4,17,31] and practical
algorithms [2, 3, 8, 10,19,24–26,28,33–35,35,41–50].

One class of techniques answers the queries of interest
on the database and then uses the Laplace Mechanism to
add noise, calibrated to their sensitivity, or the maximum
change in answers resulting from one change in the input
database [11,13,21,40]. These techniques can answer queries
using off-the-shelf systems (queries in SQL and data in rela-
tional form), and thus can be implemented efficiently [22,30].
However, a key limitation of this class is that because the
noise is calibrated on a per-query basis, they fail to exploit
workload structure and thus add more noise than is strictly
necessary, resulting in suboptimal accuracy.

A second, more sophisticated, approach to query answer-
ing generalizes the Laplace Mechanism by first selecting a
new set of strategy queries, then measuring the strategy
queries using the Laplace mechanism, and reconstructing
answers to the input queries from the noisy measurements.
Choosing an effective query answering strategy (different
from the workload) can result in orders-of-magnitude lower
error than the Laplace mechanism, with no cost to privacy.

An example of a technique from the select-measure-re-
construct paradigm is the Matrix Mechanism (MM) [28],
illustrated in Table 1a. The MM, and other techniques in
this paradigm, represent the database and queries in vec-
tor form, expressed over the full domain of each tuple (the
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Table 1: Overview of the High Dimensional Matrix Mechanism (HDMM), compared with the Matrix Mechanism (MM) [25].

(a) The Matrix Mechanism (MM) [25]

Input: workload W , in matrix form
data x, in vector form
privacy parameter ε

SELECT { A = OPTMM (W )

MEASURE
{

a = Ax
y = a + Lap(||A||1/ε)

RECONSTRUCT
{

x̄ = A+y
ans = Wx̄

(b) HDMM Overview

Input: workload W, in logical form
data x, in vector form
privacy parameter ε

W = ImpVec(W) // Compact vector representation
A = OPTHDMM(W) // Optimized strategy selection
a = Multiply(A,x) // Strategy query answering
y = a + Lap(||A||1/ε) // Noise addition
x̄ = LstSqr(A,y) // Inference
ans = Multiply(W, x̄) // Workload answering

product of the domains of the attributes). The vector repre-
sentation allows these techniques to compute the sensitivity
of sets of queries using a matrix norm, and to use inference
algorithms based on linear algebra to reconstruct answers
from noisy measurements. In this vector form, the selection
step corresponds to selecting a query matrix A (the strat-
egy), and the measurement step reduces to computing the
matrix-vector product between A and the data vector x.

Many recent algorithms fall within the select-measure-
reconstruct paradigm [2,8,10,19,24–26,28,28,33–35,41–47,
49,50], differing primarily in the measurement selection step.
We can characterize measurement selection as a search prob-
lem over a space of strategies, distinguishing prior work in
terms of key algorithmic design choices: the search space,
the cost function, and the type of search algorithm (greedy,
local, global, etc.). These design choices impact the three
key performance considerations: accuracy, runtime, and scal-
ability (in terms of increasing dataset dimensionality).

At one extreme are techniques that explore a narrow search
space, making them efficient and scalable but not particu-
larly accurate (in particular, their search space may include
accurate strategies only for a limited class of workloads).
For example, HB [34] considers strategies consisting of hi-
erarchically structured interval queries. It performs a sim-
ple search to find the branching factor of the hierarchical
strategy that minimizes an error measure that assumes the
workload consists of all range queries (regardless of the ac-
tual input workload). It is efficient and can scale to higher
dimensions, but it achieves competitive accuracy only when
the workload consists of range queries and the data is low
dimensional.

At the other extreme are techniques that search a large
space, and adapt to the workload by finding a strategy
within that space that offers low error on the workload,
thereby making them capable of producing a more accurate
strategy for the particular input. However, this increased
accuracy comes at the cost of high runtime and poor scal-
ability. This is exemplified by MM, which solves a rank-
constrained semi-definite program to find the optimal solu-
tion. Unfortunately, the optimization program is infeasible
to execute on any non-trivial input workload.

In short, there is no prior work that is accurate for a wide
range of input workloads, sufficiently fast, and capable of
scaling to large multi-dimensional domains.

Overview of approach and contributions. We describe
the High-Dimensional Matrix Mechanism (HDMM), a new
algorithm for answering workloads of predicate counting que-
ries. While similar in spirit to the matrix mechanism, there

are a number of innovations that make it more efficient and
scalable. We contrast the two algorithms in Table 1.

First, MM represents query workloads as fully-material-
ized matrices, while HDMM uses a compact implicit matrix
representation of the logical queries, which we call a union
of products (Section 4), for which query sizes are not ex-
ponential in the number of attributes. In the use case we
will describe soon, the matrix representation of one of the
workloads would be 22TB; in contrast, our most compact
representation of this workload is just 687KB. Without this
innovation it is infeasible merely to evaluate the error of a
strategy, let alone select the one with the least error.

The second key difference between the matrix mechanism
and HDMM is the search algorithm underlying the SE-
LECT step, and it is a key technical innovation of this pa-
per. HDMM uses a set of optimization routines (described
in Sections 5 and 6) that can exploit our compact implicit
workload representation. These different optimization rou-
tines work by restricting search to different regions of the
strategy space: local optimization is tractable in these re-
gions but they still contain high quality strategies. The out-
put is a measurement strategy A, also represented in a com-
pact implicit form.

Our third innovation consists of efficient techniques for
measurement and reconstruction. In MM, these steps are
implemented by multiplying a matrix A with the data vec-
tor x and multiplying a matrix pseudo-inverse A+ with the
noisy answers y, respectively. The latter inference step can
be inefficient in explicit matrix form. HDMM exploits the
special structure of our selected measurements to speed up
these steps, as described in Section 7.2.

As a result of these innovations, HDMM achieves high
accuracy on a variety of realistic input workloads, in both
low and high dimensions. In fact, in our experiments, we
find it has higher accuracy than all prior select-measure-
reconstruct techniques, even on inputs for which the prior
techniques were specifically designed (e.g., it is more accu-
rate than HB on range queries). We also find it is more
accurate than state-of-the-art techniques outside the select-
measure-reconstruct paradigm. It achieves reasonable run-
time and scales more effectively than prior work that per-
forms non-trivial optimization (see Section 8 for a detailed
scalability evaluation).

Organization. In addition to the sections noted above, we
describe our use case next, followed by background, and the
end-to-end algorithm components in Section 7, experiments
in Section 8, and discussion in Section 9.
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2. MOTIVATING USE CASE
Based on our collaboration with the U.S. Census Bureau1,

we use as a running example and motivating use case the
differentially private release of a collection of 10 tabulations
from the 2010 Summary File 1 (SF1) [6], an important data
product based on the Census of Population and Housing
(CPH). Statistics from SF1 are used for redistricting, demo-
graphic projections, and other policy-making.

Our workload is a subset of queries from SF1 that can be
written as predicate counting queries over a Person relation.
(We omit other queries involving households; for brevity we
refer to our selected queries as simply SF1.) The Person

relation has the following schema: six boolean attributes
describing Race, two boolean attributes for Hispanic Eth-
nicity and Sex, Age in years between 0 and 114, and a
Relationship-to-householder field that has 17 values. Our
SF1 workload has 4151 predicate counting queries, each of
the form SELECT Count(*) FROM Person WHERE φ, where φ
specifies some combination of demographic properties (e.g.
number of Persons who are Male, over 18, and Hispanic) and
thus each query reports a count at the national level. These
queries are on a multidimensional domain of size 26 × 2 ×
2×115×17 = 500,480. The data also includes a geographic
attribute encoding state (51 values including D.C.). A work-
load we call SF1+ consists of the national level queries in
SF1 as well as the same queries at the state level for each of
51 states. We can succinctly express the state level queries
as an additional 4151 queries of the form: SELECT state,

Count(*) FROM Person WHERE φ GROUP BY state. Thus,
SF1+ can be represented by a total of 4151 + 4151 = 8302
SQL queries. The SF1+ queries are defined on a domain of
size 500,480× 51 = 25,524,480.

In addition to their SQL representation, the SF1 and
SF1+ workloads can be naturally expressed in a logical form
defined in Section 4.1. We useWSF1andWSF1+to denote the
logical forms of SF1 and SF1+ respectively.

3. BACKGROUND
We describe below the relevant background, including the

data model, logical query workloads, their corresponding
vector representations and differential privacy.

3.1 Data and schema
We assume a single-table relational schema R(A1 . . . Ad),

where attr(R) denotes the set of attributes of R. Subsets
of attributes are denoted A ⊆ attr(R). Each attribute
Ai has a finite domain dom(Ai). The full domain of R is
dom(R) = dom(A1)×· · ·×dom(Ad), containing all possible
tuples conforming to R. An instance I of relation R is a
multiset whose elements are tuples in dom(R). We use N
for |dom(R)|.

1The Census Bureau recently announced [7] that the test publi-
cations produced by the 2018 End-to-End Census Test would be
protected by a disclosure limitation system based on differential
privacy. The End-to-End Test is a prototype of the full produc-
tion system to be used for the 2020 Census of Population and
Housing. If the test of this disclosure limitation system is suc-
cessful, then the expectation is that the publications of the 2020
Census will also be protected using differential privacy. The work
discussed in this paper is part of the research and development
activity for those disclosure limitation systems.

3.2 Logical view of queries
Predicate counting queries are a versatile class, consisting

of queries that count the number of tuples satisfying any
logical predicate.

Definition 1 (Predicate counting query). A pred-
icate on R is a boolean function φ : dom(R) → {0, 1}. A
predicate can be used as a counting query on instance I of
R whose answer is φ(I) =

∑
t∈I φ(t).

A predicate corresponds to a condition in the WHERE clause
of an SQL statement, so in SQL a predicate counting query
has the form: SELECT Count(*) FROM R WHERE φ.

When a predicate φ refers only to a subset of attributes
A ⊂ attr(R) we may annotate the predicate, writing [φ]A.
If [φ1]A and [φ2]B are predicates on attribute sets A and B,
then their conjunction is a predicate [φ1 ∧ φ2]A∪B.

We assume that each query consists of arbitrarily complex
predicates on each attribute, but require that they are com-
bined across attributes with conjunctions. In other words,
each φ is of the form φ = [φ1]A1 ∧ · · · ∧ [φd]Ad . This facili-
tates the compact implicit representations described in Sec-
tion 4. One approach to handling disjunctions (and other
more complex query features) is to transform the schema by
merging attributes. We illustrate this in its application to
the SF1 workload, and return to this issue in Section 9.

Example 1. The SF1 workload consists of conjunctive
conditions over its attributes, with the exception of condi-
tions on the six binary race attributes, which can be complex
disjunctions of conjunctions (such as “The number of Per-
sons with two or more races”). We simply merge the six
binary race attributes and treat it like a single 26 = 64 size
attribute (called simply Race). This schema transformation
does not change the overall domain size, but allows every
SF1 query to be expressed as a conjunction.

3.3 Logical view of query workloads
A workload is a set of predicate counting queries. A work-

load may consist of queries designed to support a variety of
analyses or user needs, as is the case with the SF1 workload
described above. Workloads may also be built from the suf-
ficient statistics of models, or generated by tools that aid
users in exploring data, or a combination of these analyses.
For the privacy mechanisms considered here, it is prefer-
able for the workload to explicitly mention all queries of
interest, rather than a subset of the queries that could act
like a supporting view, from which the remaining queries of
interest could be computed. Enumerating all queries of in-
terest allows error to be optimized collectively. In addition,
a workload query can be repeated, or equivalently, weighted,
to express the preference for greater accuracy on that query.

Structured multi-dimensional workloads. Multi-dimens-
ional workloads are often defined in a structured form, as
products and unions of products, that we will exploit later in
our implicit representations. Following the notation above,
we write Φ = [φ1 . . . φp]A to denote a set of p predicates,
each mentioning only attributes in A. For example, the
following are common predicate sets defined over a single
attribute A of tuple t:

I IdentityA = {t.A == ai|ai ∈ dom(A)}
P PrefixA = {(a1 ≤ t.A ≤ ai)|ai ∈ dom(A)}
R AllRangeA = {(ai ≤ t.A ≤ aj)|ai, aj ∈ dom(A)}
T TotalA = {True}
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IdentityA contains one predicate for each element of the
domain. Both PrefixA and RangeA rely on an ordered dom(A);
they contain predicates defining a CDF (i.e. sufficient to
compute the empirical cumulative distribution function),
and the set of all range queries, respectively. The predicate
set TotalA, consists of a single predicate, returning True for
any a ∈ dom(A), and thus counting all records.

We can construct multi-attribute workloads by taking the
cross-product of predicate sets defined for single attributes,
and conjunctively combining individual queries.

Definition 2 (Product). For predicate sets Φ =
[φ1 . . . φp]A and Ψ = [ψ1 . . . ψr]B (A and B are disjoint), the
product is a query set containing a total of p · r queries:

[Φ×Ψ]A∪B = {φi ∧ ψj |φi ∈ Φ, ψj ∈ Ψ}

We describe several examples of workloads constructed
from products and unions of products below.

Example 2 (Single query as product). A predicate
counting query in the SF1 workload is: SELECT Count(*)

FROM Person WHERE sex=M AND age < 5. We can express
this query as a product: first, define predicate set Φ1 =
{sex=M} and predicate set Φ2 = {age < 5}. The query
is expressed as the product Φ1 ×Φ2. (We omit Total on the
other attributes for brevity.)

Example 3 (GROUP BY query as product). A GROUP

BY query can be expressed as a product by including an Iden-
tity predicate set for each grouping attribute and a singleton
predicate set for each attribute in the WHERE clause. The
product would also include Total for each attribute not men-
tioned in the query. For example, the query SELECT sex,

age, Count(*) FROM Person WHERE hispanic = TRUE

GROUP BY sex, age is expressed as ISex × IAge × Φ3 where
Φ3 = {hispanic=True}. This product contains 2×115 count-
ing queries, one for each possible setting of Sex and Age.

Example 4 (SF1 Tabulation as Product). Except
for the population total, the queries in the P12 tabulation
of the Census SF1 workload [6] can be described by a single
product: ISex × RAge where RAge is a particular set of range
queries including [0, 114], [0, 4], [5, 9], [10, 14], . . . [85, 114].

Unions of products. Our workloads often combine multi-
ple products as a union of the sets of queries in each product.
For example, the set of all three-way marginals is a union of(
d
3

)
workloads, each a product of the Identity predicate set

applied to three attributes.
The input to the algorithms that follow is a logical work-

load consisting of a union of products, each representing one
or possibly many queries.

Definition 3 (Logical workload). A logical work-
load W = {q1 . . . qk} consists of a set of products qi where
each qi = [Φi1]A1 × · · · × [Φid]Ad .

Example 5 (SF1 as union of products). The SF1
workload from Section 2 can be represented in a logical form,
denoted WSF1, that consists of a union of k = 4151 prod-
ucts, each representing a single query. Because these queries
are at the national level, there is a Total predicate set on

the State attribute. The logical form of the SF1+ work-
load, denoted WSF1+, includes those products, plus an ad-
ditional 4151 products that are identical except for replac-
ing the Total on State with an Identity predicate set. There
are a total of k = 8302 products, representing a total of
4151+51×4151 = 215,852 predicate counting queries. While
this is a direct translation from the SQL form, this represen-
tation can be reduced. First, we can reduce to k = 4151
products by simply adding True to the Identity predicate
set on State to capture the national counts. Furthermore,
through manual inspection, we found that both WSF1 and
WSF1+ can be even more compactly represented as the union
of 32 products—we useW∗SF1 andW∗SF1+ to denote more com-
pact logical forms. This results in significant space savings
(Example 7) and runtime improvements.

3.4 Explicit data and query vectorization
The vector representation of predicate counting queries

(and the data they are evaluated on) is central to the select-
measure-reconstruct paradigm. The vector representation of
instance I is denoted xI (or simply x if the context is clear)
and called the data vector.2 Each entry in xI corresponds to
a tuple t ∈ dom(R) and reports the number of occurrences of
t in I. Note that, throughout the paper, the representation
of the data vector is always explicit; it is the representation
of queries that will be implicit.

Every predicate counting query φ has a vector form.

Definition 4 (Vectorized query). Given a predicate
counting query φ defined on schema R, its vectorization is
denoted vec(φ) and has an entry equal to φ(t) ∈ {0, 1} for
each tuple t ∈ dom(R).

The above definition immediately suggests a simple algo-
rithm for computing vec(φ): form a vector by evaluating φ
on each element of the domain and recording the 0 or 1 out-
put of evaluation. (A more efficient algorithm is presented
in the next section.) Note that both the data vector and the
vectorized query have size |dom(R)| = N . Once a predicate
query is vectorized, it can easily be evaluated by taking its
dot product with the data vector: that is, φ(I) = vec(φ) ·xI
for any instance I.

A single predicate counting query is represented as a vec-
tor, so a workload of predicate counting queries can be rep-
resented as a matrix in which queries are rows. For logical
workload W, its (explicit) matrix form is written W , and
the evaluation of the workload is equivalent to the matrix
product WxI . Note that the size of the workload matrix is
m×N where m is the number of queries, xI is N × 1, and
the vector of workload answers is m× 1.

3.5 Differential privacy
Differential privacy is a property of a randomized algo-

rithm that bounds the difference in output probabilities in-
duced by changes to an individual’s data. Let nbrs(I) be
the set of databases differing from I in at most one record.

Definition 5 (Differential Privacy [11]). A rand-
omized algorithm K is (ε, δ)-differentially private if for any
instance I, any I ′ ∈ nbrs(I), and any outputs O ⊆ Range(K),

Pr[K(I) ∈ O] ≤ exp(ε)× Pr[K(I ′) ∈ O] + δ

2When R has d attributes, the data vector has a multi-
dimensional interpretation as a d-way array, or a tensor; to
simplify notation we assume appropriate flattening.
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We focus exclusively on ε-differential privacy (i.e. δ = 0).
However our techniques also apply to a version of MM sat-
isfying approximate differential privacy (δ > 0) [28].

The Laplace mechanism underlies the private mechanisms
considered in this paper; we describe it in vector form. Let
Lap(σ)m denote a vector of m independent samples from a
Laplace distribution with mean 0 and scale σ.

Definition 6 (Laplace mechanism, vector form).
Given an m×N query matrix A, the randomized algorithm
LM that outputs the following vector is ε-differentially pri-

vate: LM(A,x) = Ax+ Lap(σA)m where σA =
‖A‖1
ε

.

Above, ‖A‖1 denotes the maximum absolute column sum
norm of A, shown in [25] to be equal to the sensitivity of
the query set defined by A, since it measures the maximum
difference in the answers to the queries in A on any two
databases that differ only by a single record.

For an algorithm K answering workload W, we measure
error as the expected total squared error on the workload
query answers, denoted Err(W,K) .

3.6 The matrix mechanism
For a workload W in matrix form, defined on data vec-

tor x, the matrix mechanism [25] is defined in Table 1(a).
Privacy of the matrix mechanism (and thus all techniques
in this paper) follows from the privacy of the Laplace Mech-
anism (output y of the MEASURE step). The RECON-
STRUCT steps (inference and workload answering) perform
post-processing on y, so they do not degrade privacy [12].

We use expected total squared error as the error metric
and optimization objective. This is the same error metric
proposed originally by the matrix mechanism, as well as a
number of other works [19,24,28,34,41].

Definition 7 (Workload error under strategy).
Given workload matrix W and strategy A, the expected total
squared error of the workload query answers is:

Err(W ,MM(A)) =
2

ε2
‖A‖21 ||WA+||2F

This error metric has a number of advantages: it is inde-
pendent of the input data and the setting of ε, and it can be
computed in closed form [25]. As a result, if the workload
is fixed,3 the optimized strategy A can be computed once
and used for multiple invocations of measure and reconstruct
(i.e. on different input datasets and/or for different outputs
generated with different ε values).

This error metric is an absolute measure of error, as op-
posed to a relative measure of error, which would report
error normalized by the actual query answer. The tech-
niques in this paper are not applicable to relative error mea-
sures; the objective function of the strategy selection prob-
lem would depend on the input data, and we would need to
solve for the best strategy for a workload and dataset.

4. IMPLICIT REPRESENTATIONS
Workload matrices can be represented implicitly, in a form

that is far more concise than materialized explicit workload
matrices, while still allowing key operations to be performed.

3E.g., the Census SF1 workload is determined for each de-
cennial census and therefore changes only every 10 years.

4.1 Implicitly vectorized conjunctions
Consider a predicate defined on a single attribute, A1,

where |dom(A1)| = n1. This predicate, [φ]A1 , can be vec-
torized with respect to just the domain of A1 (and not the
full domain of all attributes) similarly to Definition 4. When
a predicate is formed from the conjunction of such single-
attribute predicates, its vectorized form has a concise im-
plicit representation in terms of the kronecker product, de-
noted ⊗, between vectors. (Here we treat a length n vector
as an 1× n matrix.)

Definition 8 (Kronecker product). For two matri-

ces A ∈ Rm×n and B ∈ Rm
′×n′ , their Kronecker product

A⊗B ∈ Rm·m
′×n·n′ is:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


Theorem 1 (Implicit vectorization). Let φ =

[φ1]A1∧[φ2]A2 be a predicate defined by the conjunction of φ1

and φ2 on attributes A1 and A2. Then, vec(φ) = vec(φ1)⊗
vec(φ2).

While the explicit representation of vec(φ) has size n1 · n2,
the implicit representation, vec(φ1)⊗vec(φ2), requires stor-
ing only vec(φ1) and vec(φ2), which has size n1 + n2. More
generally, for a predicate counting query that is a conjunc-
tion of predicates on each of the d attributes, the implicit
vectorized representation of the query has size just Σdi=1ni
while the explicit representation has size Πd

i=1ni.

Example 6. Recall that the workload WSF1 consists of
4151 queries, each defined on a data vector of size 500,480.
Since explicitly vectorized queries are the same size as the
domain, the size of the explicit workload matrix is 4151 ×
500,480, or 8.3GB. Using the implicit representation, each
query can be encoded using 2+2+64+115+17 = 200 values,
for a total of 3.3MB. For WSF1+, which consists of 215,852
queries on a data vector of size 25,524,480, the explicit work-
load matrix would require 22TB of storage. In contrast, the
implicit vector representation would require 200MB.

4.2 Implicitly vectorized products
The kronecker product can naturally encode product work-

loads too (as in Definition 2). Given a (logical) product
Φ×Ψ, we can implicitly represent its queries as a Kronecker
product of two matrices: one representing the predicates in
Φ and one representing the predicates in Ψ. If Φ has p
predicates, and the vector form of each predicate has size
n1 = |dom(A1)|, it is represented (explicitly) as a p × n1

matrix. If Ψ contains r predicates of size n2 = |dom(A2)|,
it is similarly represented as an r×n2 matrix. We can store
only these matrices, implicitly representing the product as
the Kronecker product:

Theorem 2. Given predicate sets Φ = [φ1 . . . φp]A1 and
Ψ = [ψ1 . . . ψr]A2 , on attributes A1 and A2, the vectorized
product is defined in terms of matrices vec(Φ) and vec(Ψ):
vec(Φ×Ψ) = vec(Φ)⊗ vec(Ψ).

The size of the implicit representation is pn1 + rn2, while
the explicit product has size prn1n2.
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4.3 Workload encoding algorithm
Given as input a logical workload W (as in Definition 3),

the ImpVec algorithm produces an implicitly represented
workload matrix with the following form:

W[k] =

w1W1

...
wkWk

 =


w1(W

(1)
1 ⊗ . . . ⊗W (1)

d )
...

. . .
...

wk(W
(k)
1 ⊗ . . . ⊗W (k)

d )

 (1)

Here stacking sub-workloads is analogous to union and in
formulas we will write an implicit union-of-products work-
load as W[k] = w1W1+ . . .+wkWk. We use blackboard bold
font to distinguish an implicitly represented workload W
from an explicitly represented workload W . Note that line

Algorithm 1: ImpVec
Input: Workload W = {q1 . . . qk} and weights w1 . . . wk
Output: Implicit workload W[k]

1. For each product qi ∈ W: qi = [Φi1]A1 × · · · × [Φid]Ad

2. For each j ∈ [1..d]

3. compute W
(i)
j = vec(Φij)

4. Let Wi = W
(i)
1 ⊗ · · · ⊗W (i)

d

5. Return: w1W1+ . . .+wkWk

3 of the ImpVec algorithm is explicit vectorization, as in
Definition 4, of a set of predicates on a single attribute.

Example 7. Recall from Example 5 that the 215,852 que-
ries of WSF1+can be represented as k = 8032 products. If
WSF1+ is represented in this factored form, the ImpVec al-
gorithm returns a smaller implicit representation, reducing
the 200MB (from Example 6) to 50 MB. If the workloads
are presented in their manually factored format of k = 32
products, the implicit representation of W∗SF1 requires only
335KB, and W∗SF1+ only 687KB.

4.4 Operations on vectorized objects
Reducing the size of the workload representation is only

useful if critical computations can be performed without ex-
panding them to their explicit representations. Standard
properties of the Kronecker product [37] accelerate strat-
egy selection and reconstruction. For strategy selection, a
critical object is the matrix product WTW. When W =
W1 ⊗ · · · ⊗Wd, then WTW = W T

1 W1 ⊗ · · · ⊗W T
d Wd. For

the inference phase of reconstruction, computing the pseudo-
inverse A+ is the main challenge. If A = A1⊗· · ·⊗Ad, then
A+ = A+

1 ⊗· · ·⊗A
+
d . Lastly, implicit strategy matrices allow

for straightforward calculation of sensitivity:

Theorem 3 (Sensitivity of Kronecker product).
Given an implicitly defined strategy matrix A1 ⊗ · · · ⊗Ad,
its sensitivity is: ||A1 ⊗ · · · ⊗Ad||1 =

∏d
i=1 ||Ai||1

Note that sparse matrices can also provide very compact
representations but do not support key operations in implicit
form; for example, W TW may not be sparse even if W is.

5. OPTIMIZING EXPLICIT WORKLOADS
In this section we develop a solution to the strategy se-

lection problem that works for explicitly-represented work-
loads and scales to modest domain sizes (of about 104). This
method, denoted OPT0, is a sub-routine used in Section 6.

Below we state the optimization problem underlying strat-
egy selection and introduce gradient-based optimization. We

then describe a careful restriction of the strategy space re-
quired to make gradient-based optimization scalable and ef-
fective, leading to the definition of OPT0.

5.1 The optimization problem
Our goal is to find a strategy A that (a) supports the in-

put workload W while (b) offering minimum expected total
squared error as per Definition 7. Strategy A supports a
workload W if and only if every query in W can be ex-
pressed as a linear combination of the queries in A, which
occurs whenever W = WA+A [28]. The expected total
squared error of the workload using a strategy with sensitiv-
ity 14 is equal to ||WA+||2F , where || · ||F is the Frobenius
norm. The resulting constrained optimization problem is:

Problem 1. Given an m× n workload matrix W :

minimize
A∈Rp×n

||WA+||2F

subject to WA+A = W , ||A||1 ≤ 1
(2)

This optimization problem is difficult to solve exactly. It has
many variables and is not convex, both the objective func-
tion and constraints involve A+, which can be slow to com-
pute, and, in addition, the constraint on ||A||1 is not differ-
entiable. Finally, ||WA+||2F has points of discontinuity near
the boundary of the constraint WA+A = W . This prob-
lem was originally formulated as a rank-constrained semi-
definite program [25], which will converge to the global op-
timum, but requires O(m4(m4 +N4)) time, making it infea-
sible for practical cases.

Gradient-based numerical optimization techniques can be
used to find locally optimal solutions. These techniques be-
gin by guessing a solutionA0 and then iteratively improving
it using the gradient of the objective function to guide the
search. The process ends after a number of iterations are
performed, controlled by a stopping condition based on im-
provement of the objective function. A direct application of
gradient-based optimization methods does not work due to
the constraints, and so a projected gradient method must be
used instead. Even without the constraints, gradient-based
optimization is slow, as the cost of computing the objective
function for general A is O(N3), e.g. requiring more than 6
minutes for N = 8192.

5.2 Parameterized optimization: OPT0

We now present an algorithm to solve Problem 1 by judi-
ciously restricting the search space of the optimization prob-
lem. Recall that our goal is to search over A that support
the workload W . The key observation we make is the fol-
lowing: if A contains one query that counts the number of
records in the database for each domain element in dom(R)
– i.e. A contains a scaled identity matrix – then any work-
load W is supported by A. Of course A = I is not a good
strategy for many workloads (e.g., this has poor error for
a workload encoding prefix queries). Hence, we search over
strategies that contain a scaled identity matrix in addition
to p extra rows, as defined below.

Definition 9 (p-Identity strategies). Given a p×
N matrix of non-negative values Θ, the p-Identity strategy
matrix A(Θ) is defined as follows:

4Li et al [25] showed that error-optimal strategy matrices
have equal L1 column norm, which can be normalized to 1.
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A(Θ) =

[
I
Θ

]
D

where I is the identity matrix and D = diag(1N + 1pΘ)−1.

Above, D is a diagonal matrix that scales the columns of
A(Θ) so that ||A||1 = 1. The p × N values in Θ deter-
mine the weights of the p queries as well as the weights on
the identity queries (where a lower weight query will be an-
swered with greater noise).

Example 8. For p = 2 and N = 3, we illustrate below
how A(Θ) is related to its parameter matrix, Θ.

Θ =

[
1 2 3
1 1 1

]
A(Θ) =


0.33 0 0

0 0.25 0
0 0 0.2

0.33 0.5 0.6
0.33 0.25 0.2


For this class of parameterized strategies, the resulting op-

timization problem is stated below; we use OPT0 to denote
the operator that solves this problem.

Problem 2 (parameterized optimization). Given
workload matrix W and hyper-parameter p:

minimize
{A=A(Θ) |Θ∈Rp×n

+ }
||WA+||2F

This parameterization was carefully designed to provide
the following beneficial properties:

Constraint resolution Problem 2 is a simpler optimiza-
tion problem than Problem 1 because it is unconstrained:
WA+A = W and ||A||1 ≤ 1 are satisfied for all A = A(Θ).

Expressiveness Considering only p-Identity strategy ma-
trices could mean that we omit from consideration the op-
timal strategy, but it also reduces the number of variables,
allowing more effective gradient-based optimization. The
expressiveness depends on the parameter p used to define
matrices A(Θ), which is an important hyper-parameter. In
practice we have found p ≈ n

16
to provide a good balance

between efficiency and expressiveness for complex workloads
(such as the set of all range queries). For less complex work-
loads, an even smaller p may be used.

Efficient gradient, objective, and inference To a first
approximation, the runtime of gradient-based optimization
is #restarts∗#iter∗(costgrad+costobj), where costgrad
is the cost of computing the gradient, costobj is the cost of
computing the objective function, #restarts is the number
of random restarts, and #iter is the number of iterations
per restart. For strategy A, the objection function, denoted
C(A), and the gradient function, denoted ∂C

∂A
, are defined:

C(A) = ||WA+||2F = tr[(ATA)+(W TW )] (3)

∂C

∂A
= −2A(ATA)+(W TW )(ATA)+ (4)

Note that the above expressions depend on W through
the matrix product W TW , which can be computed once
and cached for all iterations and restarts; we therefore omit
this cost from complexity expressions. It always has size
N×N regardless of the number of queries in W . For highly
structured workloads (e.g all range queries), W TW can be
computed directly without materializing W , so we allow
OPT0 to take W TW as input in these special cases.

For generalA, the runtime complexity of computing C(A)
and ∂C

∂A
is O(N3). By exploiting the special structure of

A(Θ), we can reduce these costs to O(pN2):

Theorem 4 (Complexity of OPT0). Given any p-Id-
entity strategy A(Θ), both the objective function C(A(Θ))
and the gradient ∂C

∂A
can be evaluated in O(pN2) time.

The speedup resulting from this parameterization is often
much greater in practice than the N

p
improvement implied

by the theorem. When N = 8192, computing the objective
for general A takes > 6 minutes, while it takes only 1.5 sec-
onds for a p-Identity strategy: a 240× improvement. Nev-
ertheless, OPT0 is only practical for modest domain sizes
(N ∼ 104). For multi-dimensional data we do not use it
directly, but as a subroutine in the algorithms to follow.

6. OPTIMIZING IMPLICIT WORKLOADS
We present next a series of optimization techniques for

multi-dimensional workloads, exploiting the implicit work-
load representations presented in Section 4. One of the main
ideas is to decompose a strategy optimization problem on a
multi-dimensional workload into a sequence of optimization
problems on individual attributes. The optimization opera-
tors OPT⊗, OPT+, and OPTM are each variants described
below and are summarized in Table 2.

6.1 Optimizing product workloads
Recall that W = W1⊗ · · · ⊗Wd, for an implicit workload

that is the product of d sub-workloads. If Wi is defined
with respect to a domain of size ni, then W is defined on a
total domain of size of N =

∏d
i=1 ni. We perform strategy

optimization directly on this implicit product representation
by decomposing the optimization problem into a series of
explicit optimizations on the sub-workloads.

Definition 10 (OPT⊗). Given workload W and param-
eter vector ~p = 〈p1 . . . pd〉, the operator OPT⊗(W, ~p) applies
OPT0 to each sub-workload and returns a product strategy:

OPT⊗(W, ~p) = OPT⊗(W1 ⊗ · · · ⊗Wd, ~p)

def
= OPT0(W1, p1)⊗ · · · ⊗ OPT0(Wd, pk)

= A1 ⊗ · · · ⊗Ad = A

Therefore OPT⊗ merely requires solving d independent in-
stances of OPT0 and the resulting output strategy is the
product of d distinct pi-Identity strategies. This decompo-
sition has a well-founded theoretical justification. Namely, if
we restrict the solution space to a (single) product strategy,
so that A has the form A = A1⊗· · ·⊗Ad, then the error of
the workload under A decomposes into the product of the er-
rors of its sub-workloads under corresponding sub-strategies.
Thus overall error is minimized when Err(Wi,Ai) is min-
imized for each i and it follows that the OPT⊗ program
minimizes the correct objective function.

Theorem 5 (Error decomposition). Given a work-
load W = W1 ⊗ · · · ⊗Wd and a sensitivity 1 strategy A =
A1 ⊗ · · · ⊗Ad, the error is proportional to:

||WA+||2F =

d∏
i=1

||WiA
+
i ||

2
F

The cost of each iteration in OPT⊗(W) is the sum of costs
of d independent optimizations of the sub-workloads Wi.
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Table 2: Summary of optimization operators: input and output types, and the complexity of objective/gradient functions.

Definition Output strategy Optimization Operator Input workload Complexity

§5.2 Problem 2 p-Identity matrix A(Θ) ← OPT0(W , p) Any explicit W N2p

§6.1 Definition 10 Product, A(Θ) terms A ← OPT⊗(W, ~p) Single product
∑d
i=1 n

2
i pi

§6.2 Problem 3 Product, A(Θ) terms A ← OPT⊗(w1W1 + · · ·+ wkWk, ~p) Union of products k
∑d
i=1 n

2
i pi

§6.2 Definition 11 Union of products A1 + · · ·+ Al ← OPT+(W[k1], . . . ,W[kl], ~p) Union of products k
∑d
i=1 n

2
i pi

§6.3 Problem 4 Weighted marginals M(θ) ← OPTM(w1W1 + · · ·+ wkWk) Union of products 4d

Since the cost of each iteration in OPT0 is O(pin
2
i ), the cost

for OPT⊗(W) isO(
∑
pin

2
i ). Note that if W were represented

explicitly, each iteration in OPT0 would take O(
∏
i pin

2
i ).

6.2 Optimizing unions of product workloads
We now define three approaches for optimizing implicit

workloads that are (weighted) unions of products. Each ap-
proach restricts the strategy to a different region of the full
strategy space for which optimization is tractable (see Ta-
ble 2). The first computes a strategy consisting of a single
product; it generalizes OPT⊗. The second, OPT+, can gen-
erate strategies consisting of unions of products. The third,
OPTM, generates a strategy of weighted marginals.

Single-product output strategy For weighted union of
product workloads, if we restrict the optimization problem
to a single product strategy, then the objective function de-
composes as follows:

Theorem 6. Given workload W[k] = w1W1+ . . .+wkWk

and strategy matrix A = A1 ⊗ · · · ⊗Ad, workload error is:

||W[k]A+||2F =

k∑
j=1

w2
j

d∏
i=1

||W (j)
i A+

i ||
2
F (5)

This leads to the following optimization problem:

Problem 3 (Union of product optimization). For
a workload W[k] = w1W1+ . . .+wkWk and parameter vector
~p = 〈p1 . . . pd〉, let:

Ai = minimize
{Ai(Θi) |Θi∈R

pi×n
+ }

k∑
j=1

w2
j

d∏
i′=1

||W (j)

i′ A
+
i′ ||

2
F

and form final solution strategy as A = A1 ⊗ · · · ⊗Ad.

When k = 1, Problem 3 returns the same solution as Defi-
nition 10, so we use matching notation and allow the OPT⊗
operator to accept a single product or a union of products,
as shown in Table 2. Problem 3 is a coupled optimization
problem, and we use a block method that cyclically opti-
mizes A1, . . . ,Ad until convergence. We begin with random
initializations for all Ai. We optimize one Ai at a time,
fixing the other Ai′ 6= Ai using OPT0 on a carefully con-

structed surrogate workload Ŵi (equation 6) that has the

property that the error of any strategy Ai on Ŵi is the
same as the error of A on W. Hence, the correct objective
function is optimized.

Ŵi =


c1W

(1)
i

...

ckW
(k)
i

 cj = wj
∏
i′ 6=i

||W (j)
i′ A+

i′ ||F (6)

The cost of running this optimization procedure is deter-
mined by the cost of computing Ŵ T

i Ŵi and the cost of op-
timizing it, which takes O(n2

i (pi + k)) and O(n2
i pi ·#iter)

time respectively (assuming each (W TW )
(j)
i has been pre-

computed). As before, this method scales to arbitrarily large
domains as long as the domain size of the sub-problems al-
lows OPT0 to be efficient.

Union-of-products output strategy For certain work-
loads, restricting to solutions consisting of a single product,
as OPT⊗ does, excludes good strategies. This can happen
for a workload like W = (R×T )∪ (T ×R), for which choos-
ing a single product tends to force a suboptimal pairing of
queries across attributes. Unfortunately, we cannot optimize
directly over union-of-product strategies because computing
the expected error is intractable. Nevertheless, we can use
our existing optimization methods to generate high-quality
union-of-product strategies. This operator takes as input a
weighted union of products, partitioned into l subsets. It
optimizes each individually using OPT⊗ and combines the
resulting output strategies to form a strategy consisting of
a union of l products. Below we use K = k1 + · · ·+ kl (and
recall notation W[k] from Section 4.3):

Definition 11 (OPT+). Given a workload, W[K] =
W[k1] + · · ·+W[kl], and parameter vector ~p, the optimization
routine OPT+ returns the union of strategies defined below:

OPT+(W[K], ~p)
def
= OPT⊗(W[k1], ~p) + · · ·+ OPT⊗(W[kl], ~p)

= A1 + · · ·+ Al
This definition could easily be extended so that each Ai

gets a different fraction of the privacy budget, and so that
each call to OPT⊗ gets a different parameter vector.

6.3 Optimized marginal strategies
Although OPT⊗ or OPT+ can be used to optimize work-

loads consisting of marginals, we now describe a third op-
timization operator, OPTM, which is especially effective for
marginal workloads (but is applicable to any union of prod-
uct workload). A single marginal can be specified by a sub-
set of attributes S ⊆ [d] and can be expressed as the product
A1⊗· · ·⊗Ad where Ai = I if i ∈ S and Ai = T otherwise.
Since there are 2d subsets of [d], a set of weighted marginals
can be characterized by a vector θ of 2d non-negative weights
where θ1 is the weight on the 0-way marginal (i.e., the total
query) and θ2d is the weight on the d-way marginal (i.e., the
queries defining the full contingency table). We use M(θ)
to denote the matrix which stacks each of these 2d weighted
marginals. Each marginal has sensitivity 1 so the total sensi-
tivity of M(θ) is

∑
θi. We resolve the sensitivity constraint

from Problem 1 by moving it into the objective function, and
we resolve the other constraint by forcing θ2d to be strictly
positive. The resulting optimization problem is given below:

Problem 4 (Marginals optimization). Given a
workload, W[k] = w1W1 + . . .+wkWk, let:

θ = minimize
θ∈R2d

+ ;θ
2d
>0

(∑
θi
)2
||W[k]M(θ)+||2F
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Without materializing M(θ) we can evaluate the objective
function and its gradient by exploiting the structure of M(θ).
For strategies of the form M(θ), (MTM)+ can be written
as the weighted sum of 2d kronecker products, where each
sub-matrix is either I or 1 = T TT , and we can efficiently
find the 2d weights that characterize the inverse by solving
a (sparse) linear system of equations. The objective func-
tion only depends on W[k] through the trace and sum of

(W TW )
(j)
i . Thus, these statistics can be precomputed for

the workload and the objective function can be evaluated
very efficiently. The cost of this precomputation is linear in
k, but subsequent to that, evaluating the objective and gra-
dient only depends on d, and not ni or k. Specifically, the
time complexity of evaluating the objective and gradient is
O(4d) – quadratic in 2d, the size of θ.

7. THE HDMM ALGORITHM
The complete HDMM algorithm is described in Table 1(b).

Here we explain OPTHDMM, efficient MEASURE and RECON-
STRUCT methods, and conclude with a privacy statement.

7.1 The OPTHDMM strategy selection algorithm
Using the optimization operators defined in previous sec-

tions, we now define OPTHDMM, our fully-automated strat-
egy selection algorithm. Predicting which optimization op-
erator will yield the lowest error strategy requires domain
expertise and may be challenging for complex workloads.
Since our operators are usually efficient, we simply run mul-
tiple operators, keeping the output strategy that offers least
error. We emphasize that strategy selection is independent
of the input data and does not consume the privacy budget.

The algorithm below takes as input: implicit workload W,
operator set P, and the maximum number of restarts, S.

Algorithm 2: OPTHDMM

Input: implicit workload W, operator set P, max-restarts S
Output: implicit strategy A
1. best = (I, errorI)
2. For random starts [1..S]:
3. For each operator Pi ∈ P:
4. (Ai, errori) = Pi(W)
5. if errori < best emit Ai and update best.

We instantiate OPTHDMM with an operator set consisting
of: OPT⊗(W, ~p), OPT+(g(W), ~p), and OPTM(W). (OPT0

does not appear here explicitly because it is called by OPT⊗
and OPT+). We use the following convention for setting the
p parameters: if an attribute’s predicate set is contained in
T ∪ I, we set p = 1 (this is a fairly common case where
more expressive strategies do not help), otherwise we set
p = ni/16 for each attribute Ai with size ni. In OPT+

above, g forms two groups from the unioned terms in W.
Extensions to the above algorithm—e.g., cost-based ex-

ploration of the operator space, or an extended operator set
with alternative parameter settings—could improve upon
the already significant improvements in accuracy we report
in our experimental evaluation and are left for future work.

7.2 Efficient MEASURE and RECONSTRUCT

The implicit form of the output strategies enables effi-
ciency for the measure and reconstruct stages. Recall
from Section 6 that OPT⊗ returns a product strategy and
OPT+ returns a union of products, and in both cases, the

d terms in each product are p-Identity matrices. Similarly,
OPTM returns a union of products consisting of the marginals
building blocks T and I.

To exploit this structure to accelerate the MEASURE phase
we define an efficient Multiply(A,x) operation (as in Ta-
ble 1(b)) for A = A1 ⊗ · · · ⊗ Ad (although it is easily ex-
tended to a union of kronecker products.) The key property
of Kronecker products that we need is given in Equation 7:

(B ⊗C) flat(X) = flat(BXCT ) (7)

where flat(·) “flattens” a matrix into a vector by stacking
the (transposed) rows into a column vector. The expres-
sion on the right is computationally tractable, as it avoids
materializing the potentially large matrix B ⊗ C. Matri-
ces B and C need not be explicitly represented if we can
compute matrix-vector products with them. Thus, by set-
ting B ← A1 ⊗ · · · ⊗Ad−1 and C ← Ad we can compute
matrix-vector products for matrices of the formA1⊗· · ·⊗Ad

efficiently. When d > 2, B would never be materialized; in-
stead we repeatedly apply Equation 7 to get a representation
of B that can be used to compute matrix-vector products.

Assuming for simplicity that Ai ∈ Rn×n for all i, the
space and time complexity of computing Multiply(A,x) using
this procedure is O(nd) and O(dnd+1) respectively, where
nd is the size of the data vector. Using an explicit matrix
representation would require O(n2d) time and space.

Related techniques allow RECONSTRUCT to be acceler-
ated because LstSqr(A,y) can be defined as Multiply(A+,y)
where A+ is the pseudo inverse of A. For strategies produced
by OPT⊗ and OPTM, the pseudo inverse can be computed
efficiently in implicit form. For OPT⊗, we use the identity
in Section 4.4: (A1 ⊗ · · · ⊗ Ad)

+ = A+
1 ⊗ · · · ⊗ A

+
d . For

OPTM, the pseudo inverse of the strategy M(θ) is M+ =
(MTM)+MT , where MT is a (transposed) union of Kro-
necker products, and (MTM)+ is a sum of Kronecker prod-
ucts. Thus, we can define an efficient routine for LstSqr for
these strategies. Unfortunately, we are not aware of an effi-
cient method for computing the pseudo inverse of a strategy
produced by OPT+, but we can still perform inference by us-
ing an iterative algorithm like LSMR [14] to solve the least
squares problem. This algorithm only requires as input a
routine for computing matrix-vector products on A and AT ,
which we can do efficiently using Multiply.

7.3 Privacy statement
We conclude with a statement of the privacy of HDMM.

The ImpVec and OPTHDMM steps of HDMM do not use the
input x. The Laplace Mechanism is used to compute x̄ from
x and the privacy of HDMM follows from privacy properties
of the Laplace Mechanism [11] and the well-known post-
processing theorem [12].

Theorem 7 (Privacy). The HDMM algorithm is ε-
differentially private.

8. EXPERIMENTS
In this section we evaluate the accuracy and scalability of

HDMM. We begin with details on the experimental setup.
In Section 8.2 we perform a comprehensive comparison of
HDMM with competing algorithms, showing that it consis-
tently offers lower error and works in a significantly broader
range of scenarios than other algorithms. In Section 8.3, we
study the scalability of HDMM compared with the subset of
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methods that perform search over a general strategy space,
showing the HDMM scales more favorably than competitors
and can efficiently support high-dimensional cases.

8.1 Experimental setup
Implementation Details Our Python implementation
uses the L-BFGS-B algorithm [5], as implemented in scipy.

optimize, as the solver for all optimization routines. Scal-
ability experiments were done on a 4-core Intel i7 3.6GHz
processor with 16GB of RAM. The parameter p, controlling
the size of p-Identity strategies for OPT0, is set as described
in Section 7.1. In experiments not shown, we varied p and
found that any choice between n

32
and n

8
results in nearly

the same accuracy. In experiments, the number of restarts
(S in Algorithm 2) is set to 25. We observed that the dis-
tribution of local minima across different random restarts
was fairly concentrated, suggesting that far fewer than 25
restarts may be sufficient in practice.

Competing techniques We compare HDMM against a
variety of techniques from the literature. Some algorithms
are specialized to particular settings and we indicate that
below.

We consider two baseline algorithms: the Laplace Mech-
anism (LM) and Identity. LM adds noise directly to each
workload query (scaled to the sensitivity) [21,22]. Identity
adds noise to the entries of the data vector, then uses the
noisy data vector to answer the workload queries. Identity
and LM work in both low and high dimensions, on any input
workload.

We also consider the two select-measure-reconstruct meth-
ods with general search spaces: The Matrix Mechanism
(MM) [28] and the Low Rank Mechanism (LRM) [47]. Both
of these attempt to find a strategy that minimizes total
squared error on the workload queries.

In addition to these general-purpose algorithms, we con-
sider a number of other algorithms designed for low-dimen-
sions and specialized for specific workload classes. These in-
clude Privelet [41], HB [34], Quadtree [8], and GreedyH
[24]. These algorithms are all designed to accurately answer
range queries: Privelet uses a Haar wavelet as the strat-
egy, HB uses a hierarchical strategy with branching factor
that adapts to the domain size, GreedyH uses a weighted
hierarchical strategy, and Quadtree uses a generalization
of the hierarchical strategy to two dimensions. Of the above
methods, Privelet, HB, and Quadtree tend to be quite
scalable but have limited search spaces. GreedyH solves
a non-trivial optimization problem making it less scalable.
For workloads consisting solely of marginals, we also com-
pare against DataCube [10]. DataCube accepts as input a
workload of marginals, and returns a strategy consisting of
a different set of marginals that adapts to the input through
a greedy heuristic.

All of the algorithms described so far, with the excep-
tion of LM, are members of the select-measure-reconstruct
paradigm. We also consider two state-of-the-art algorithms
outside of this class: DAWA [24] and PrivBayes [48]. In 1-
or 2-dimensions, the DAWA algorithm uses some of its pri-
vacy budget to detect approximately uniform regions, com-
presses the domain, reformulates the workload, and then
uses the remainder of its privacy budget to run the GreedyH
algorithm described above. PrivBayes is suitable for multi-
dimensional datasets. PrivBayes first privately fits a Bayes-

ian network on the data and then generates a synthetic
dataset by drawing samples from the Bayesian network. The
synthetic data can then be used to answer the workload.
Note that both DAWA and PrivBayes have error rates
that depend on the input data.

Datasets We consider five datasets, covering low and high
dimensional cases. Most of the algorithms we consider have
error rates that only depend on the schema and not the
dataset instance. The different schemas we consider have a
large impact on the workloads that can be defined over the
data and runtime complexity of algorithms.

For 1D and 2D cases, we use representative datasets from
the DPBench study [18], Patent and BeijingTaxiE (which
we call Taxi). For higher dimensional cases, we use three
datasets, each derived from different Census products. CPH
(short for Census of Population and Housing) is the dataset
used as a running example throughout the paper and is de-
scribed in Section 2. Adult is a dataset from the UCI ma-
chine learning dataset repository [9] with five discrete at-
tributes for age, education, race, sex, and hours-per-week.
CPS is a dataset released in the March 2000 Population
Survey conducted by the Census [1]; it has five discrete at-
tributes for income, age, marital status, race, and sex.

For scalability experiments we use synthetic datasets, al-
lowing us to systematically vary the dimensionality and at-
tribute domain sizes. The runtime of HDMM, and the other
algorithms we compare against, only depends on the domain
size and dimensionality of the data, and not the contents of
the data vector, so we use an all-zero data vector.

Workloads For the CPH dataset, we use the SF1 and
SF1+ workloads that were introduced in Section 2 and used
as a motivating use case throughout the paper. For the
other datasets, we selected workloads that we believe are
representative of typical data analyst interactions. We also
synthesized a few workloads that help illustrate differences
in algorithm behavior.

For 1-dimensional datasets, we use three workloads based
on range queries: Prefix 1D , Width 32 Range, and Per-
muted Range. Prefix 1D is P , as described in Section 3.3,
and serves as a compact proxy for all range queries. The
Width 32 Range workload contains all range queries that
sum 32 contiguous elements of the domain (i.e., it omits
small ranges). Permuted Range is a workload consisting of
all range queries right-multiplied by a random permutation
matrix to randomly shuffle the elements of the domain. This
synthesized workload serves to evaluate whether algorithms
can “recover” the obscured range query workload.

For 2-dimensional datasets, we use workloads Prefix 2D
and Prefix Identity . The Prefix 2D workload is just the
product workload P × P . The Prefix Identity workload is a
union of two products: P × I and I × P .

For higher dimensional datasets, we use a variety of work-
loads. We consider multiple workloads based on marginals.
All Marginals contains queries for the set of 2d marginals
(for a dataset of dimension d); 2-way Marginals contains
queries for the

(
d
2

)
2-way marginals; and 3-way Marginals

contains queries for the
(
d
3

)
3-way marginals. We also con-

sider a variation on marginals in which range queries are
included for numerical attributes (like income and age): All
Range-Marginals is a marginals-like workload, but the Iden-
tity subworkloads are replaced by range query workloads on
the numerical attributes, and 2-way Range-Marginals is a
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Table 3: Error ratios of various algorithms on low and high dimension datasets/workloads with ε = 1.0. Algorithms labeled
- are not applicable for the given configuration; algorithms labeled * are not scalable to the given configuration.

Configuration General-Purpose Algorithms Low-D Range Query Algorithms High-D Algorithms
Dataset Domain / Dimensions Workload Identity LM MM LRM HDMM Privelet HB Quadtree GreedyH DAWA DataCube PrivBayes

Patent 1024
Width 32 Range 1.25 7.06 * 3.21 1.0 2.59 1.48 - 1.25 2.45 - -

Prefix 1D 3.34 151 * 2.44 1.0 1.80 1.34 - 1.49 2.96 - -
Permuted Range 2.36 877000 * * 1.0 10.57 3.35 - 2.16 * - -

Taxi 256× 256
Prefix Identity 1.44 65.0 * * 1.0 6.11 4.05 4.71 * * - -

Prefix 2D 4.75 2422 * * 1.0 3.14 2.03 1.95 * * - -

CPH 2× 2× 64× 17× 115× 51
SF1 3.07 9.32 * * 1.0 - - - - - - 66700

SF1+ 3.16 13.7 * * 1.0 - - - - - - 6930

Adult 75× 16× 5× 2× 20
All Marginals 1.38 11.2 * * 1.0 - - - - - 4.57 20.5

2-way Marginals 5.30 2.11 * * 1.0 - - - - - 2.01 155

CPS 100× 50× 7× 4× 2
All Range-Marginals 1.49 421000 * * 1.0 - - - - - - 4.74

2-way Range-Marginals 5.79 53200 * * 1.0 - - - - - - 24.8

subset of the previous workload that only contains queries
over two dimensions at a time. Prefix 3D is the set of prefix
queries along three dimensions (P × P × P ); and All 3-way
Ranges is the set of all 3-way range queries.

Error measures To compare HDMM to other algorithms
in terms of accuracy, we report error ratios. Recall from
Section 3 that Err(W,K) is the expected total squared er-
ror of algorithm K for workload W , and that for algorithms
within the select-measure-reconstruct paradigm, this quan-
tity can be computed in closed form (Definition 7) and is in-
dependent of the input data. Define the error ratio between
Kother and HDMM on workload W as Ratio(W,Kother) =√

Err(W,Kother)
Err(W,HDMM)

. Whenever possible, we report analytically

computed error ratios (which hold for all settings of ε.) For
data-dependent algorithms (DAWA and PrivBayes), the ex-
pected error depends on the input data and ε, so these are
stated in our comparisons. There is no closed form expres-
sion for expected error of a data-dependent algorithm, so we
estimate it using average error across 25 random trials.

8.2 Accuracy comparison
To assess the accuracy of HDMM, we considered 11 com-

peting algorithms and a total of 11 workloads, defined over
two low-dimensional datasets and three high-dimensional
datasets. Our goal was to empirically compare error of all
algorithms in all settings. However, some algorithms are not
defined for some of the datasets and workloads; these cases
are labeled with − in Table 3. For example, a number of
algorithms were designed for low-dimensions, while others
were designed for high dimensions. In addition, there are
algorithms that are defined for a given dataset/workload,
but were infeasible to run; these cases are labeled with ∗ in
Table 3. For example, in theory MM is applicable to any
workload, but it is infeasible to run for the domain sizes we
considered. LRM is also applicable to any workload but
is only feasible on medium-sized or smaller domains where
the workload and strategy can be represented as a dense
matrix. Overall, HDMM and the simple baseline methods
(LM and Identity) are the only algorithms general and
scalable enough to run in all target settings.

Findings Table 3 summarizes the results, reported as er-
ror ratios to HDMM (so that HDMM is always 1.0). It
shows that HDMM is never outperformed by any competing
method and offers significant improvements, often at least a
factor of two and sometimes an order of magnitude.

Even when the workload is low-dimensional range queries,
and we compare against a collection of algorithms designed
specifically for this workload (e.g. HB, Privelet, GreedyH),
HDMM is 1.34 times better than the best algorithm, HB.

On the Permuted Range workload, only HDMM offers ac-
ceptable utility, since the other algorithms are specifically
designed for (unpermuted) range queries, while HDMM ad-
apts to a broader class of workloads.

Overall, we see that some algorithms approach the er-
ror offered by HDMM (ratios close to 1), but, importantly,
only for some experimental configurations. To highlight this,
we use bold in the table to indicate the second best error
rate, after HDMM. We find that, depending on the work-
load and domain size, the second best error rate is achieved
by a broad set of algorithms: Identity, HB, Quadtree,
GreedyH are all second-best performers for some workload.
This shows that some competing algorithms have specialized
capabilities that allow them to perform well in some set-
tings. In contrast, HDMM outperforms across all settings,
improving error and simplifying the number of algorithms
that must be implemented for deployment.

In high dimensions, there are fewer competitors, and Iden-
tity is generally the best alternative to HDMM, but the
magnitude of improvement by HDMM can be as large as
5.79. Included in Table 3 are two data-dependent algo-
rithms. DAWA is defined only for 1D and 2D, but in fact
timed out for some low-dimensional workloads. PrivBayes
is designed for high-dimensional data, but does not offer
competitive accuracy for these datasets. Note that the er-
ror rates for these methods may differ on different datasets
(and for different ε values).

8.3 Scalability comparison
Next we evaluate the scalability of HDMM by systemat-

ically varying the domain size and dimensionality. We as-
sume throughout that each dimension has a fixed size, n, so
that d-dimensional data has a total domain size of N = nd.
We ran each algorithm on increasingly larger datasets until
it exhausted memory or reached a 30-minute timeout.

We compare against the other general-purpose algorithms:
LRM, GreedyH, and DataCube. We omit MM because it
cannot run at these domain sizes and Identity, Privelet,
HB, and Quadtree because (as shown above) they offer
sub-optimal error and specialize to narrow workload classes.

Figure 1a shows the scalability of LRM, GreedyH, and
HDMM on the Prefix 1D workload. (DataCube is listed
as not applicable (N/A) because it is not defined on non-
marginal workloads.) Since all three of these algorithms
require as input an explicitly represented workload in dense
matrix form, they are unable to scale beyond N ≈ 104. On
this 1D workload, HDMM runs a single instance of OPT0,
which can be expensive as the domain size grows. HDMM is
more scalable than LRM, but less scalable then GreedyH.
(Recall HDMM is run with 25 random restarts; in results
not shown, we lower the number of restarts to 1. At this
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Figure 1: (a)-(c) Runtime comparison on synthetic datasets of increasing domain size (workload and dimensionality varies by
plot); (d) Runtime of HDMM’s measure+reconstruct phase on strategies selected by its OPT⊗, OPT+ and OPTM subroutines.

setting, HDMM still achieves higher accuracy than other
methods yet achieves lower runtime than GreedyH.)

Figure 1b shows the scalability of LRM and HDMM on
the Prefix 3D workload. (GreedyH is only applicable in
1D; DataCube remains inapplicable.) The scalability of
LRM is roughly the same in 3D as it is in 1D because it
is determined primarily by the total domain size. HDMM
is far more scalable in 3D however, because it solves three
smaller optimization problems (for OPT⊗) rather than one
large problem. The main bottleneck for HDMM is measure
and reconstruct, not strategy optimization.

Figure 1c shows the scalability of DataCube and HDMM
on the 3-way Marginals workload (again, GreedyH does
not apply to high dimensions). Both DataCube and HDMM
scale well, with DataCube scaling to domains as large as
N ≈ 108 and HDMM scaling to N ≈ 109. On small do-
mains, DataCube is faster than HDMM, due to HDMM’s
higher up front optimization cost (25 random restarts and
multiple optimization programs). As the domain size grows,
measure and reconstruct becomes the bottleneck for both al-
gorithms. A single data point is shown for LRM because it
did not finish on larger domain sizes (N ≥ 38).

In summary, HDMM is most scalable in the multi-dimen-
sional setting, where our implicit representations speed up
strategy selection. The main bottleneck is the measure and
reconstruct steps, which we now examine more closely.

Unlike strategy selection, the cost of measure+reconstruct
primarily depends on the total domain size (since the data
vector must be explicitly represented). Figure 1d shows
the runtime of measure+reconstruct for synthetic datasets
of varying domain sizes. Since we designed specialized al-
gorithms for each strategy type produced by HDMM (as
described in Section 7.2), there is one line for each strat-
egy selection subroutine. On strategies produced by OPT⊗
and OPTM, measure+reconstruct scales to domains as large
as N ≈ 109—at which point, the data vector is 4 GB in
size (assuming 4 byte floats). OPT+ does not scale as well
(N ≈ 108). This is because computing the pseudo-inverse
for OPT+ requires iterative methods, whereas OPT⊗ and
OPTM have closed-form expressions that we exploit.

9. DISCUSSION AND CONCLUSIONS
HDMM is a general and scalable method for privately an-

swering collections of counting queries over high-dimensional
data. Because HDMM provides state-of-the-art error rates
in both low- and high-dimensions, and fully automated strat-
egy selection, we believe it will be broadly useful to algo-
rithm designers.

HDMM is capable of running on multi-dimensional data-
sets with very large domains. This is primarily enabled by
our implicit workload representation in terms of Kronecker
products, and our optimization routines for strategy selec-
tion that exploit this implicit representation. We also ex-
ploit the structure of the strategies produced by the opti-
mization to efficiently solve the least squares problem.

HDMM is limited to cases for which it is possible to ma-
terialize and manipulate the data vector. Since we have
only investigated a centralized, single-node implementation,
it is possible HDMM could be scaled to larger data vec-
tors, especially since we have shown that strategy selection
is not the bottleneck. Recent work has shown that standard
operations on large matrices can be parallelized [38], how-
ever the decomposed structure of our strategies should lead
to even faster specialized parallel solutions. Ultimately, for
very large domains, factoring the data (as PrivBayes does)
may be unavoidable. HDMM still has a role to play, how-
ever, since it can be used to optimize queries over the fac-
tored subsets of the data.

As noted previously, HDMM optimizes for absolute error
and is not applicable to optimizing relative error, which is
data dependent. Nevertheless, by weighting the workload
queries (e.g. inversely with their L1-norm) we can approx-
imately optimize relative error, at least for datasets whose
data vectors are close to uniform. This approach could be
extended to reflect a user’s assumptions or guesses about the
input data. Future work could also integrate HDMM mea-
surement with techniques like iReduct [39] which perform
adaptive measurement to target relative error.

While HDMM produces the best known strategies for a
variety of workloads, we do not know how close to optimal
its solutions are. There are asymptotic lower bounds on
error in the literature [15, 17, 31], but it is not clear how to
use them on a concrete case given hidden constant factors.
Li et al [27] provided a precise lower bound in terms of the
spectral properties of W , but it is not clear how to compute
it on our large workload matrices and it is often a very loose
lower bound under ε-differential privacy.
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