
ForkBase: An Efficient Storage Engine for Blockchain and
Forkable Applications

Sheng Wang #, Tien Tuan Anh Dinh #, Qian Lin #, Zhongle Xie #, Meihui Zhang †
∗

,
Qingchao Cai #, Gang Chen §, Beng Chin Ooi #, Pingcheng Ruan #

#National University of Singapore, †Beijing Institute of Technology, §Zhejiang University
#{wangsh,dinhtta,linqian,zhongle,caiqc,ooibc,ruanpc}@comp.nus.edu.sg,

†meihui zhang@bit.edu.cn, §cg@zju.edu.cn

ABSTRACT
Existing data storage systems offer a wide range of functionalities
to accommodate an equally diverse range of applications. How-
ever, new classes of applications have emerged, e.g., blockchain
and collaborative analytics, featuring data versioning, fork seman-
tics, tamper-evidence or any combination thereof. They present
new opportunities for storage systems to efficiently support such
applications by embedding the above requirements into the storage.

In this paper, we present ForkBase, a storage engine designed for
blockchain and forkable applications. By integrating core appli-
cation properties into the storage, ForkBase not only delivers high
performance but also reduces development effort. The storage man-
ages multiversion data and supports two variants of fork semantics
which enable different fork worklflows. ForkBase is fast and space
efficient, due to a novel index class that supports efficient queries as
well as effective detection of duplicate content across data objects,
branches and versions. We demonstrate ForkBase’s performance
using three applications: a blockchain platform, a wiki engine and
a collaborative analytics application. We conduct extensive experi-
mental evaluation against respective state-of-the-art solutions. The
results show that ForkBase achieves superior performance while
significantly lowering the development effort.

PVLDB Reference Format:
Sheng Wang, Tien Tuan Anh Dinh, Qian Lin, Zhongle Xie, Meihui Zhang,
Qingchao Cai, Gang Chen, Beng Chin Ooi, Pingcheng Ruan. ForkBase:
An Efficient Storage Engine for Blockchain and Forkable Applications.
PVLDB, 11(10): 1137-1150, 2018.
DOI: https://doi.org/10.14778/3231751.3231762

1. INTRODUCTION
Developing a new application today is made easier by the avail-

ability of many storage systems that offer different data models and
operation semantics. At one extreme, key-value stores [22, 38, 8,
37] provide a simple data model and semantics, but are highly scal-
able. At the other extreme, relational databases [59] support more
∗corresponding author
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 10
Copyright 2018 VLDB Endowment 2150-8097/18/06.
DOI: https://doi.org/10.14778/3231751.3231762

complex, relational models and strong semantics, i.e. ACID, which
render them less scalable. In between are systems that make other
trade-offs between data model, semantics and performance [16, 20,
15, 7]. Despite these many choices, we observe that there emerges
a gap between modern applications’ requirements and what exist-
ing storage systems have to offer.

Many classes of modern applications demand properties (or fea-
tures) that are not a natural fit to existing storage systems. First,
blockchain systems, such as Bitcoin [47], Ethereum [2] and Hyper-
ledger [5], implement a distributed ledger abstraction — a globally
consistent history of changes made to some global states. Because
blockchain systems operate in an untrusted environment, they re-
quire the ledger to be tamper evident, i.e. the states and their his-
tories cannot be changed without being detected. Second, collab-
orative applications, ranging from traditional platforms like Drop-
box [26], GoogleDocs [4], and Github [3] to more recent and ad-
vanced analytics platforms like Datahub [43], allow many users to
work together on the shared data. Such applications need explicit
data versioning to track data derivation history, and fork semantics
to let users work on independent data copies. Third, recent sys-
tems that favor availability over consistency allow concurrent write
access to the data, which results in implicit forks that must be even-
tually resolved by upper layer applications [22, 21].

Without proper storage support, the applications have to imple-
ment the above mentioned properties on top of a generic storage
such as key-value stores or file systems. One problem with this
approach is the additional development cost. Another problem is
that the resulting implementations may fail to generalize to other
applications. But more importantly, the bespoke implementation
may incur unnecessary performance overhead. For example, cur-
rent blockchain platforms (e.g., Ethereum, Hyperledger) build their
tamper evident data structures on top of a key-value store, (e.g.,
LevelDB [6] and RocksDB [9]). However, we observe that these
ad-hoc implementations do not always scale well, and the current
blockchain data structures are not optimized for analytical queries.
As another example, collaborative applications over large, rela-
tional datasets, use file-based version control systems such as git.
But they do not scale to big datasets, and only offer limited query
functionality.

Clearly, there are benefits in unifying these properties and push-
ing them down into the storage layer. One direct benefit is that it
reduces development efforts for applications requiring any combi-
nation of these features. Another benefit is that it helps applications
generalize better with additional features at no extra effort. Finally,
the storage engine can exploit optimization that is otherwise hard
to achieve at the application layer.

1137

In this paper we present ForkBase, a novel and efficient stor-
age engine that meets the high demand in modern applications for
versioning, forking and tamper evidence1. One challenge in build-
ing ForkBase is to keep the storage overhead small when main-
taining a large number of data versions. Another challenge is to
provide elegant and flexible semantics to many classes of applica-
tions. ForkBase overcomes these challenges in two novel ways.
First, it defines a new class of index called Structurally-Invariant
Reusable Indexes (SIRI), which facilitates both fast lookups and
effective identification of duplicate content. The latter helps drasti-
cally lower the storage overhead for multiversion data. ForkBase
implements an instance of SIRI called POS-Tree, that combines
ideas from content-based slicing [45], Merkle tree [44] and B+-
tree [19]. POS-Tree directly offers tamper evidence, making Fork-
Base a natural choice for applications in untrusted environments.
Second, ForkBase provides a generic fork semantics that affords
the applications the flexibility of having both implicit and explicit
forks. Fork operations are efficient, thanks to POS-Tree’s use of
copy-on-write that eliminates unnecessary copies.

ForkBase exposes simple APIs and an extended key-value data
model. It provides built-in data types that help reduce development
effort and enable multiple trade-offs between query efficiency and
storage overhead. ForkBase also scales well to many nodes, as
it employs a two-layer partitioning scheme which helps distribute
skewed workloads evenly across nodes.

To demonstrate the values of our design, we build three represen-
tative applications on top of ForkBase, namely a blockchain plat-
form, a wiki service, and a collaborative analytics application. We
observe that only hundreds of lines of code are required to port ma-
jor components of these applications onto our system. The appli-
cations benefit much from the features offered by the engine, e.g.,
fork semantics for collaborations and tamper evidence for block-
chain. Moreover, as richer semantics are captured in the storage
layer, it is feasible to provide efficient query processing. In par-
ticular, ForkBase enables fast provenance tracking for blockchain
without scanning the whole chain, rendering it analytics-ready.

In summary, we make the following contributions:

• We identify common properties in modern applications, i.e.,
versioning, forking and tamper evidence. We examine the
benefits of a storage that integrates all these properties.

• We introduce a novel index class called SIRI that effectively
removes duplicates across multiversion data. We present POS-
Tree, an instance of SIRI that additionally offers tamper evi-
dence. We propose a generic fork semantics that captures the
workflows of many different applications.

• We implement ForkBase that efficiently supports blockchains
and forkable applications. ForkBase derives its efficiency
from the POS-Tree and flexibility from the generic fork se-
mantics. With elegant interfaces and rich data types, Fork-
Base offers a powerful building block for high-level systems
and applications.

• We demonstrate the usability of ForkBase by implementing
three representative applications, namely a blockchain plat-
form, a wiki service and a collaborative analytics applica-
tion. We show via extensive experimental evaluation that
ForkBase helps these applications outperform the respective
state-of-the-arts in terms of coding complexity, storage over-
head and query efficiency.

1ForkBase is the second version of UStore [24], which has evolved
significantly from the initial design and implementation.

In the following, we first discuss relevant background and moti-
vation in Section 2. We introduce the design in Section 3, followed
by the interfaces and implementation in Section 4 and 5 respec-
tively. We describe the modeling and evaluation of three applica-
tions in Section 6 and 7. We discuss related work in Section 8
before concluding in Section 9.

2. BACKGROUND AND MOTIVATIONS
In this section, we discuss several common properties underpin-

ning many modern applications. We motivate the design of Fork-
Base by highlighting the gap between what the application requires
of these properties and what existing solutions offer.

2.1 Deduplication for Multiversion Data
Data versioning is an important concept in applications that keep

track of data changes. Each update to the data creates a new ver-
sion, and the version history can be either linear or non-linear (i.e.
consisting of forks and branches). Systems that support linear ver-
sion histories include multiversion file systems [55, 60, 58] and
temporal databases [11, 54, 61]. Systems that have non-linear his-
tories include software version control such as git, svn and mercu-
rial for files, and collaborative dataset management such as Deci-
bel [43] and OrpheusDB [31] for relational tables. Blockchains can
be also seen as versioning systems in which each block represents
a version of the global states.

One major challenge in supporting data versioning is to reduce
storage overhead. The most common approach used in dataset
versioning systems, e.g. Decibel and OrpheusDB, is record-level
delta encoding. In this approach, the new version stores only the
records that are modified from the previous version. As a result, it
is highly effective when the differences between consecutive ver-
sions are small, but requires combining multiple deltas to recon-
struct the version’s content. OrpheusDB optimizes for reconstruc-
tions by flattening the deltas into a full list of record references.
However, this approach does not scale well for large tables. Delta
encoding suffers from the problem that it creates a new copy when-
ever a version is modified, even if the new content is identical to that
of some older versions or of versions in a different branch. In other
words, delta encoding is not effective for non-consecutive versions,
divergent branches or datasets. For instance, in multi-user applica-
tions like Datahub [13], duplicates across branches and datasets are
common. Even in the extreme case that users upload same data as
a new dataset, delta encoding offers no benefits. Another exam-
ple is application implementations that have no explicit versioning,
such as WordPress and Wikipedia [63], which store versions as in-
dependent records. In these cases, the storage sees no relationship
between the two versions and cannot exploit delta encoding to elim-
inate duplicate content.

Another approach for detecting and removing duplicates is chunk-
based deduplication. Unlike delta encoding, this approach works
across independent objects. It is widely used in file systems [52,
62], and is a core feature of git. In this approach, files are di-
vided into units called chunk, each of which is given a unique
identifier (e.g., by applying a collision-resistant hash function over
the chunk content) to detect identical chunks. Chunk-based dedu-
plication is highly effective in removing duplicates for large files
that are rarely modified. When an update leads to change existing
chunks, content-based slicing [45] can be used to avoid expensive
re-chunking, i.e. the boundary-shifting problem [29].

In this work, we adopt chunk-based deduplication for structured
datasets, such as relational tables. Instead of deduplicating on indi-
vidual records as in delta encoding, we apply deduplication on the
level of data pages in primary indexes. One direct benefit is that, to

1138

4

1 2 3 4 7 8

4 7

1 2 3 4 5 7 8

4 7

1 2 3 4 5 7 8 9

+5

+9

4

1 2 3 4 7 8

4 8

1 2 3 4 7 8 9

4 8

1 2 3 4 5 7 8 9

+9

+5

Figure 1: Two B+-trees containing same entries could have dif-
ferent internal structures.

access a version, we no longer need to reconstruct it from records,
and can directly access index and data pages for fast lookups and
scans. However, deduplication could be less effective when apply-
ing to data pages in indexes, e.g. B+-tree [19]. The main reason is
that the content of a data page is not only determined by the items
stored in the index, but also by the update history of the index.
Figure 1 shows an example in which two B+-trees contain iden-
tical sets of items, but have different data and index pages. As a
consequence, even when the indexes contain the same data items,
the probability of having identical pages remains small. Moreover,
their structural differences make it more complex to compare the
versions for diff and merge operations.

In ForkBase, we address the above issues by defining a new in-
dex class called Structurally-Invariant Reusable Indexes or SIRI
(§3.1), whose properties enable effective deduplication. We then
design an index structure POS-Tree (§3.2) belonging to this index
class. This structure not only detects duplicates across independent
objects2, but also provides efficient manipulation operations, such
as lookup, update, diff and merge.

2.2 Ubiquitous Forking
The concept of forks and branches captures the non-linearity of

version histories. It can be found in a broad range of applications,
from collaborative applications such as git and Datahub, highly
available replicated systems such as Dynamo [22] and TARDiS [21],
to blockchain systems such as Ethereum [2]. Two core operations
in these applications are fork and merge. The former creates a new
logical copy of the data, called branch, which can be manipulated
independently such that modifications on one branch are isolated
from other branches. The latter integrates content from different
branches and resolves potential conflicts.

Current applications have two distinct types of fork operations,
namely on demand (or explicit) and on conflict (or implicit). On-
demand forks are used in applications with explicit need for iso-
lated or private branches. One example is software version control
systems, e.g. git, which allow forking a branch for development
and only merging changes to the main code base (the trunk) after
they are well tested. Another example is collaborative analytics
applications, e.g. Datahub, which allow branching off from a rela-
tional dataset to perform data transformation tasks such as cleans-
ing, correction and integration.

On-conflict forks are used in applications that automatically cre-
ate branches on conflicting updates. Examples include distributed
applications that trade consistency for better availability, latency,
partition tolerance and scalability (or ALPS [42]). In particular,
Dynamo [22] and Ficus [30] expose on-conflict forks to the users

2Chunk-based deduplication is less effective than delta encoding
when the deltas are of much smaller size than the chunks.

in form of conflicting writes. TARDiS [21] proposes a branch-
and-merge semantics for weakly consistent applications. A branch
containing the entire state is created whenever there is a conflict-
ing write. By isolating changes in different branches, the applica-
tion logic is greatly simplified, especially since locks and rollbacks
are eliminated from the critical path. In cryptocurrency applica-
tions such as Bitcoin [47] and Ethereum [2], forks arise implicitly
when multiple blocks are appended simultaneously to the ledger.
The forks are then resolved by taking the longest chain or by more
complex mechanisms such as GHOST [57].

ForkBase is the first storage engine with native support for both
on-demand and on-conflict fork semantics (§3.3). The application
decides when and how branches are created and merged, while stor-
age optimizes branch related operations. By providing generic fork
semantics, ForkBase helps simplify application logic and lower de-
velopment cost while preserving high performance.

2.3 Blockchains
Security conscious applications demand data integrity against

malicious modifications, not only from external attackers but also
from malicious insiders. Examples include outsourced services like
storage [34] or file system [41], which is able to detect data tam-
pering. Blockchain systems [47, 37, 2] rely on tamper evidence
to guarantee that the ledger is immutable. A common approach to
achieve tamper evidence is to use cryptographic hashing [36] and
Merkle tree [44]. Indeed, current blockchain systems contain be-
spoke implementations of Merkle-tree-like data structures on top of
a simple key-value storage such as LevelDB [6] or RocksDB [9].
However, such implementations are not designed to be general and
therefore difficult to be reused or ported to different blockchains.

As blockchain systems are gaining traction, there is an increas-
ing demand for performing analytics on blockchain data [56, 1,
35]. However, current blockchain storage engines are not designed
for such tasks. More specifically, blockchain data is serialized and
stored as uninterpretable bytes in the storage, therefore it is im-
possible for the storage engine to support efficient analytics. Con-
sequently, to perform blockchain analytics directly on the storage,
the only option is to understand the data model and serialization
scheme, and to reconstruct the data structures by scanning the en-
tire storage.

ForkBase facilitates the development of blockchain systems and
applications by providing multiversion, tamper evident data types
and fork semantics. In fact, all data types in ForkBase are tam-
per evident. ForkBase helps reduce development effort, because its
data types make it easy to build complex blockchain data models
while abstracting away integrity issues (§6.1). More importantly,
ForkBase makes the blockchain analytics-ready, as rich structural
information is captured at the storage.

3. DESIGN
In this section, we present the design of ForkBase. We start by

defining a new index class SIRI that facilitates deduplication. We
then discuss a specific instance of SIRI called POS-Tree that addi-
tionally offers tamper evidence. Finally, we describe the model for
generic fork semantics.

3.1 SIRI Indexes
Existing primary indexes in databases focus on improving read

and write performance. They do not consider data page sharing,
which makes page-level deduplication ineffective as shown in Fig-
ure 1. We propose a new class of indexes, called Structurally-
Invariant Reusable Indexes (SIRI), which facilitates page sharing
among different index instances.

1139

Let I be an index structure. An instance I of I stores a set
of records rec(I) = {r1, r2, ..., rn}. The internal structure of
I consists of a collection of pages (i.e. index and data pages)
page(I) = {p1, p2, ..., pm}. Two pages are equal if they have
identical content and hence can be shared (i.e. deduplicated). I is
called an instance of SIRI if it has the following properties:

1. Structurally Invariant. For any instance I1, I2 of I:

rec(I1) = rec(I2) ⇐⇒ page(I1) = page(I2)

2. Recursively Identical. For any instance I1, I2 of I such that
rec(I2) = rec(I1) + r for any record r /∈ I1:

|page(I2)− page(I1)| � |page(I1) ∩ page(I2)|

3. Universally Reusable. For any instance I1 of I and page
p ∈ page(I1), there exists another instance I2 such that:

(|page(I2)| > |page(I1)|) ∧ (p ∈ page(I2))

The first property means that the internal structure of an index
instance is uniquely determined by the set of records. By avoid-
ing the structural variance caused by the order of modifications, all
pages between two logically identical index instances can be pair-
wisely shared. The second property means that an index instance
can be represented recursively by smaller instances with little over-
head, while the third property ensures that a page can be reused by
many index instances. By avoiding the structural variance caused
by index cardinalities, a large index instance can reuse pages from
smaller instances. As a result, instances with overlapping content
can share a large portion of their sub-structures.

B+-trees and many other balanced search trees do not have the
first property, since their structures depend on the update sequence.
Similarly, indexes that require periodical reconstruction, such as
hash tables and LSM-trees [50], do not have the second property.
Most hash tables do not have the third property. For example, a
bucket page in a small table is unlikely to be reused in a large ta-
ble because the records will be placed in multiple smaller buckets.
There are existing index structures that meet all properties, such as
radix trees or tries. However, they are unbalanced and therefore
could not bound operation costs.

3.2 Pattern-Oriented-Split Tree
We propose an instance of SIRI indexes called Pattern-Oriented-

Split Tree (POS-Tree). Beside the SIRI properties above, it has
three additional properties: it is a probabilistically balanced search
tree; it is efficient to find differences and to merge two instances;
and it is tamper evident. This structure is inspired by content-
based slicing [45], and resembles a combination of a B+-tree and a
Merkle tree [44]. In POS-Tree, the node (i.e. page) boundary is de-
fined as patterns detected from the contained entries, which avoids
structural differences. Specifically, to construct a node, we scan
the target entries until a pre-defined pattern occurs, and then cre-
ate a new node to hold the scanned entries. Because of the distinct
characteristics of leaf nodes and internal nodes, we define different
patterns for them.

3.2.1 Tree Structure
Figure 2 illustrates the structure of a POS-Tree. Each node in the

tree is stored as a page, which is the unit for deduplication. The
node is terminated with a detected pattern, unless it is the last node
of a certain level. Similar to a B+-tree, an index node contains one
entry for each child node. Each entry consists of a child node’s
identifier and the corresponding split key. To look up a specific

Root Hash

M M

M M M M M M

M

{‹split-key, H({elements}›}

{elements}

M

Index Node

Data Node

Node Meta

Node Pattern

M

Figure 2: Pattern-Oriented-Splitting Tree (POS-tree) resem-
bling a B+-tree and Merkle tree.

key, we adopt the same strategy as in the B+-tree, i.e., following
the path guided by the split keys. POS-Tree is also a Merkle tree in
the sense that the child node’s identifier is the cryptographic hash
value of the child (e.g., derived from SHA-1 hash function) instead
of memory or file pointers. The mapping from the node identifier
to storage pointer is maintained externally.

3.2.2 Leaf Node Split
In order to avoid structural variance for leaf nodes, we define

patterns similar to content-based slicing [45] used in file dedupli-
cation systems. These patterns help splitting the nodes into smaller
ones of similar sizes. Given a k-byte sequence (b1, .., bk), let P be
a function taking k bytes as input and returning a pseudo-random
integer of at least q bits. The pattern occurs if and only if:

P (b1...bk) MOD 2q = 0

In other words, the pattern occurs when the function P returns 0
for the q least significant bits. This pattern can be implemented
via rolling hashes (e.g. Rabin-Karp, cyclic polynomial and moving
sum) which support continuous computation over sequence win-
dows and offer satisfactory randomness. In particular, we use the
cyclic polynomial [18] hash, which is of the form:

P (b1...bk) = sk−1(h(b1))⊕ sk−2(h(b2))⊕ ...⊕ s0(h(bk))

where ⊕ is exclusive-or operator, and h maps a byte to an integer
in [0, 2q). s is a function that shifts its input by 1 bit to the left, and
then pushes the q-th bit back to the lowest position. This function
can be computed continuously for a sliding window:

P (b1...bk) = s(P (b0...bk−1))⊕ sk(h(b0))⊕ s0(h(bk))

Each time, we remove the oldest byte and adds the latest one.
Initially, the entire list of data entries is treated as a byte se-

quence, and the pattern detection process scans it from the begin-
ning. When a pattern occurs, a leaf node is created from recently
scanned bytes. If a pattern occurs in the middle of an entry, the
page boundary is extended to cover the whole entry, so that no en-
tries are stored across multiple pages. In this way, each leaf node
(except for the last node) ends with a pattern, as shown in Figure 2.

3.2.3 Index Node Split
The rolling hash used for splitting leaf nodes has good random-

ness which keeps the structure balanced against skewed application
data. However, we observe that it is costly: it accounts for 20% of
the cost for building POS-Trees. Thus, for index nodes, we apply
a simpler function Q that exploits the intrinsic randomness from
cryptographic hashes used as child node ids. In particular, for a
list of index entries, Q examines each child node id (i.e. a byte
sequence) until a pattern occurs:

id MOD 2r = 0

When a pattern is detected, all scanned index entries are stored in a
new index node.

1140

Algorithm 1: POS-Tree Construction
Input: a list of data elements data
Output: id of constructed POS-Tree’s root
PatternDetector detector;
List<Element> elements, new entries;
Node node;
id last commit;
new entries = data;
/* use pattern P for leaf nodes */
detector = new P();
do

move all elements in new entries to elements;
for each e in elements do

node.append(e);
feed e into detector to detect pattern;
if pattern detected or is last element then

last commit = node.commit();
add index entry of node into new entries;

/* use pattern Q for index nodes */
detector = new Q();
/* loop until root is found */

while new entries.size() > 1;
return last commit;

3.2.4 Construction and Update
Given the node splitting strategies above, a POS-Tree is con-

structed as follows. First, data records are sorted by key and treated
as a sequence. Next, the pattern function P is applied to create a list
of leaf nodes and respective index entries. After that, function Q is
repeatedly applied on each level of index entries to construct index
nodes, until the root node is reached. Algorithm 1 demonstrates
this bottom-up construction. The expected node size is controlled
by parameters q and r in pattern functions. To ensure that a node
will not grow infinitely large, an additional constraint is enforced:
the node size cannot be α times larger than the average size; oth-
erwise it splits forcefully. The probability of force split is equal to
(1/e)α, which can be very low (e.g. 0.03% when α = 8).

To update a single entry, POS-Tree first seeks to the target node,
applies the change, and finally propagates it to the index nodes in
the path back to the root node. Copy-on-write is used to ensure
that old nodes are not deleted. When modified, a node might split
if a new pattern occurs, or merge with the next node if its pattern
is destroyed. In any cases, at most two nodes are effected at each
level. The update complexity is thereforeO(log(N)) since the tree
is probabilistically balanced. To further amortize cost from many
changes, multi-update is supported, in which index nodes are up-
dated only after all changes are applied on multiple data nodes.

POS-Tree enables a special type of update in which an entire set
of records is exported, modified externally and then re-imported.
The final re-import operation is efficient. In particular, POS-Tree
rebuilds an entire new tree from the given records, but the tree
shares most of its nodes with the old tree. Thanks to the SIRI prop-
erties, rebuilding a new tree has the same result as applying updates
directly to the old tree.

3.2.5 Diff and Merge
POS-Tree supports fast diff operation which identifies the dif-

ferences between two POS-Tree instances. Because two sub-trees
with identical content must have the same root id, the diff operation
can be performed recursively by following the sub-trees with dif-
ferent ids, and pruning ones with the same ids. The complexity of
diff is therefore O(D log(N)), where D is the number of different
leaf nodes and N is the total number of data entries.

POS-Tree supports three-way merge which consists of a diff phase
and a merge phase. In the first phase, two objectsA andB are diff-
ed against a common base object C, which results in ∆A and ∆B

𝑨 𝑩 𝑩𝑨

Calculated

Reused

Figure 3: Three-way merge of two POS-Trees reuses disjointly
modified sub-trees to build the merged tree.

respectively. In the merge phase, the differences are applied to one
of the two objects, i.e., ∆A is applied to B or ∆B is applied to A.
In conventional approaches, the two phases are performed element-
wise. In POS-Tree, both phases can be done efficiently at sub-tree
level. More specifically, we do not need to reach leaf nodes during
the diff phase, as the merge phase can be performed directly on the
largest disjoint sub-trees that cover the differences, instead of on
individual leaf nodes, as illustrated in Figure 3.

3.2.6 Sequence POS-Tree
POS-Tree is designed for indexing records with unique keys, and

therefore suitable for collection abstractions such as Map and Set.
It can also be slightly modified to support sequence abstractions
such as List and Blob (i.e. byte sequence). We call this variant
sequence POS-Tree. Each index entry in this variant replaces the
split key with a counter that indicates the total number of leaf-level
data entries in that sub-tree. This allows for computing the path for
positional accesses, e.g., read the i-th element. The diff operation is
also different from the original POS-Tree. Finding the differences
between two sequences is commonly calculated using edit distance,
e.g., the diff tool in Linux [46]. The sequence POS-Tree is able to
perform this operation recursively on index entries, instead of on
the flattened sequence of data entries.

3.3 Generic Fork Semantics
We propose a generic fork semantics that support both fork on

demand (FoD) and fork on conflict (FoC). The application chooses
which semantics to use, while the storage focuses on optimizing
the fork related operations.

3.3.1 Fork on Demand
In this scenario, a branch is forked explicitly on the demand to

create an isolated modifiable data copy. Every branch has a user-
defined tag, thus we refer to it as tagged branch. The latest version
of a branch is called the branch head, which is the only modifi-
able state. For example, in Figure 4(a) version S1 from an existing
branch is forked to a new branch. Then an update W is applied
to the new branch creating a version S2, which becomes the new
branch’s head. The most important operations are as follows:

• Fork – create an isolated modifiable branch from another
branch (or a version) and attach a tag;

• Read – return committed data from a branch (or a version);

• Commit – update (or advance) a branch with new data;

• Diff – find the differences between branches (or versions);

• Merge – merge two branches and their commit histories;

Most versioning control systems such as git and Decibel follow this
semantics and provide the same set of operations.

1141

𝑺𝟐

𝑺𝟏

𝑾

𝑺′𝟏
𝑭𝒐𝒓𝒌

(a) (b)

Figure 4: Generic fork semantics supported for both (a)
fork on demand and (b) fork on conflict.

3.3.2 Fork on Conflict
In this scenario, a branch is implicitly created from concurrent

and conflicting modifications, in order to avoid blocking any oper-
ations and delay conflict resolutions. For example, in Figure 4(b)
two conflicting updates W1 and W2 are applied to the head ver-
sion S1 concurrently. The result is that two different branches with
heads S2 and S3 are created. Such branches can only be identi-
fied by their head versions, and thus we refer to them as untagged
branches. The most important operations are as follows:

• Read – choose and read a version based on a policy which
can be one of the following:

– any-branch: read from any branch head;
– exact-version: read the given version;
– version-descendant: read from any branch head derived

from the given version;

• Commit – update (or advance) a branch based on a policy,
or create a new branch if the policy fails:

– exact-version: write to the given version if it is a branch
head;

– version-descendant: write to a non-conflicting branch
head derived from the given version;

• ListBranches – return all the branch heads;

• Merge – resolve conflicts and merge branches;

Many forkable applications can be implemented using the above
operations. For example, a multi-master replicated data service
can apply remote changes via Commit (version-descendant), spec-
ifying the last version that the remote node committed. A new
branch is created if the changes conflict with local changes. Period-
ically, the service checks and resolves outstanding conflicts using
ListBranches and Merge. Another example is cryptocurrency, in
which whenever a client receives a block, it invoke Commit (exact-
version) where the previous version is extracted from the block it-
self. The longest chain can be identified using ListBranches. The
final example is TARDiS [21], following which we can extend
our semantics to implement complex branch policies and support
a wide range of consistency levels.

4. DATA MODEL AND APIS
In this section, we introduce ForkBase’s data model and sup-

ported operations, showing how it integrates above designs.

4.1 FNode
ForkBase adopts an extended key-value data model: each object

is identified by a key, and contains a value of a specific type. A key
may have multiple branches. Given a key we can retrieve not only
the current value in each branch, but also its historical versions.
Similar to other data versioning systems, ForkBase organizes ver-
sions in a directed acyclic graph (DAG) called version derivation

struct FNode {
enum type; // object type
byte[] key; // object key
byte[] data; // object value
int depth; // distance to the first version
vector<uid> bases; // versions it is derived from
byte[] context; // reserved for application

}

Figure 5: The FNode structure.

graph. Each node in the graph is a structure called FNode, and it
is associated with a unique identifier uid. Links between FNode
represent their derivation relationships. The structure of a FNode
is shown in Figure 5. The context field is reserved for application
metadata, e.g., commit messages in git or nonce values for block-
chain proof-of-work [28].

4.2 Tamper Evident Version
Each FNode is associated with a uid representing its version,

which can be used to retrieve the value. The uid uniquely identifies
both the object value and its derivation history, based on the con-
tent stored in the FNode. Two FNodes are considered equivalent,
i.e., having the same uid, when they have both the same value and
derivation history. This is due to the use of POS-Tree – a struc-
turally invariant Merkle tree – to store the values. In addition, the
derivation history is essentially a hash chain formed by linking the
bases fields, thus two equal FNodes must have the same history.

It can be seen that uid is tamper evident. Given a uid, the user
can verify the content and history of the returned FNode. This in-
tegrity property is guaranteed under the threat model that the stor-
age is malicious, but the users keep track of the last uid of every
branch that has been committed. This model is similar to that in
fork-consistent storage systems [41], and does not provide other
stronger guarantee, such as freshness in Concerto [12]. Instead of
introducing a new tamper evidence design, ForkBase supports this
property efficiently as a direct benefit from the POS-Tree design.

4.3 Value Type
ForkBase provides many built-in data types. They can be cate-

gorized into two classes: primitive and chunkable.
Primitive types include simple values – String, Tuple and In-

teger. They are atomic values optimized for fast access. These
values are not explicitly deduplicated, since the benefits of sharing
small data does not offset the extra overheads. Apart from the basic
get and set operations, many type-specific operations are provided,
such as append, insert for String and Tuple, and add, multiply for
numerical types.

Chunkable types are complex data structures – Blob, List, Map
and Set. Each chunkable value is stored as a POS-Tree (or a se-
quence POS-Tree) and thus deduplicated. The chunkable types are
suitable for data that may grow fairly large and have many updates.
Reading a chunkable value simply returns a handler, while actual
data pages are fetched gradually on demand through an iterator in-
terface. Fine-grained access methods are naturally supported by the
POS-Tree, such as seek, insert, update and remove.

The rich collection of built-in data types makes it easy to build
high level data abstractions, such as relational tables and block-
chains (§6). Note that some data types could have same logical rep-
resentation but different performance trade-offs, for example String
and Blob, or Tuple and List. The applications can flexibly choose
those types that are more suitable for their workloads.

4.4 APIs
Table 1 lists the basic operations supported by ForkBase. A new

FNode can be created given its value and the base uid from which

1142

Table 1: ForkBase APIs with fork semantics.
Method FoD FoC Ref

Get
Get(key,branch) X M1
Get(key,uid) X X M2

Get(key,policy) X M3

Put
Put(key,branch,value) X M4
Put(key,base uid,value) X M5
Put(key,policy,value) X M6

Merge
Merge(key,tgt brh,ref brh) X M7
Merge(key,tgt brh,ref uid) X M8
Merge(key,ref uid1,...) X M9

View
ListKeys() X X M10

ListTaggedBranches(key) X M11
ListUntaggedBranches(key) X M12

Fork

Fork(key,ref brh,new brh) X M13
Fork(key,ref uid,new brh) X M14
Rename(key,tgt brh,new brh) X M15

Remove(key,tgt brh) X M16

Track
Track(key,branch,dist rng) X M17
Track(key,uid,dist rng) X X M18

LCA(key,uid1,uid2) X X M19

ForkBaseConnector db;
// Put a blob to the default master branch
Blob blob {"my value"};
db.Put("my key", blob);
// Fork to a new branch
db.Fork("my key", "master", "new branch");
// Get the blob
FNode value = db.Get("my key", "new branch");
if (value.type() != Blob)
throw TypeNotMatchError;

blob = value.Blob();
// Remove first 10 bytes and append new bytes
// Changes are buffered in client
blob.Remove(0, 10);
blob.Append("some more");
// Commit changes to that branch
db.Put("my key", "new branch", blob);

Figure 6: Fork and modify a Blob object.

it is derived (M5). Existing FNodes can be retrieved using their
uids (M2). A branch tag can be used instead of uid, in this case the
branch head is returned for Get (M1) and used as the base version
for Put (M4). When neither branch tag nor uid is specified, the
default branch is used.

The fork related operations discussed in §3.3 can be mapped to
these APIs. For FoD operations, a tagged branch can be forked
from another branch (M13) or from a non-head version (M14).
Commit and Read are supported by (M4) and (M1) respectively.
The diff operations can be implemented by first finding the base
version (M19) and then performing three-way diff (on POS-Trees
for chunkable types). A tagged branch can merge with another
branch using (M7) or with a specific version using (M8). In ei-
ther case, only the active branch’s head is updated such that the
new head contains data from both branches. For FoC operations,
Commit and Read are supported by (M6) and (M3) respectively.
All the policy-based operations are actually implemented on top
of version-based accesses (M2, M5), which also allows the appli-
cation to implement its own policies. The branches are listed via
(M12), and they can be merged in a single operation (M9). Each
key in ForkBase has isolated space for both fork semantics, such
that a branch update from one semantics will not affect the states of
the other. As a result, a key can contain both tagged and untagged
branches at the same time.

In summary, data in ForkBase can be manipulated at two granu-
larities: at an individual object or at a branch of objects. ForkBase
exposes easy-to-use interfaces that combine both object manipula-

Request Dispatcher

Servlet

Request Handler
Get/Put/Fork/Merge/Rename/...

Access Control Branch Table

Data Type Manager

Object Manager

Chunkable
blob/list/map/set/...

Primitive
bool/number/string/...

Chunk Storage Client

+

Distributed Chunk Storage

Servlet Servlet ...

Data Access Requests

Local Storage

Application

ForkBase

Master

...

Figure 7: Architecture of a ForkBase cluster.

tion and branch management. Figure 6 shows an example of fork-
ing and editing a Blob object. Since Put is used for both insertion
and update, its value field could be either an entire new value or
the base object that has undergone a sequence of updates. We can
commit multiple updates on the same object in a batch and Fork-
Base only retains the final version.

5. SYSTEM IMPLEMENTATION
In this section, we present the implementation details of Fork-

Base. The system can either run as an embedded storage or as a
distributed service.

5.1 Architecture
Figure 7 shows the architecture of a ForkBase cluster consisting

of four main components: master, dispatcher, servlet and chunk
storage. The master maintains the cluster runtime information,
while the request dispatcher receives and forwards requests to the
corresponding servlets. Each servlet manages a disjoint subset of
the key space, as determined by a routing policy. A servlet further
contains three sub-modules for executing requests: the access con-
troller verifies request permission before execution; the branch ta-
ble maintains branch heads for both tagged and untagged branches;
and the object manager handles object manipulations, hiding the
internal data representation from the main execution logic. The
chunk storage persists and provides access to data chunks. All
chunk storage instances form a large pool of shared storage, which
is accessible by remote servlets. In fact, each servlet is co-located
with a local chunk storage to enable fast data access and persis-
tence. When ForkBase is used as an embedded storage, e.g., in
blockchain nodes, only one servlet and one chunk storage are in-
stantiated.

5.2 Internal Data Representation
Data objects are stored in the form of data chunks. A primitive

object consists a single chunk, while a chunkable object comprises
multiple chunks.

Chunk and cid. A chunk is the basic unit of storage in ForkBase,
which contains a byte sequence. A chunk is uniquely identified by
its cid, computed from the byte sequence in the chunk using a cryp-
tographic hash function, e.g. SHA-256. Since the hash function is
collision resistant, each chunk has a unique cid, i.e., two chunks
with the same cid should contain identical byte sequences. The
chunks are stored and deduplicated in chunk storage (§5.3) and can
be retrieved via their cids.

FNode and POS-tree. A FNode is serialized and stored as a
meta chunk. The uid of the FNode is in fact an alias for the meta

1143

chunk’s cid. A POS-Tree is stored in multiple chunks, one chunk
per node. In particular, an index node is stored in an index chunk,
and a leaf node in a blob/list/map/set chunk. The child node id
stored in the index entry is the cid of the respective chunk.

Data Types. For a primitive object, its value is embedded in the
meta chunk’s data field for fast access. For a chunkable object,
the data field contains a cid which indicates the root of the corre-
sponding POS-Tree. Accessing a large chunkable object is efficient
because only the relevant POS-Tree nodes are fetched on demand,
as opposed to fetching the entire tree at once. By default, the ex-
pected chunk size is 4 KB for all POS-Tree nodes, but type-specific
chunk sizes are also supported. For example, blob chunks storing
content of large files can have large sizes, whereas index chunks
may need smaller sizes since they only contain tiny index entries.

5.3 Chunk Storage
The chunk storage persists data chunks and supports retrieval us-

ing cid. It exposes a key-value interface, where the key is the cid of
the committed chunk. The chunk storage is content addressable: it
derives cid from content of the chunk. As a result, when a request
contains an existing chunk, the storage will detect it and return im-
mediately. The fact that the chunks are immutable is leveraged in
two ways. First, the chunks are persisted in a log-structured layout
which provides locality for consecutively generated chunks from a
POS-Tree, and cached with a LRU policy. Second, each chunk is k-
way replicated for better fault tolerance without introducing consis-
tency issues, because there is no update. Delta encoding can be ap-
plied on similar chunks to further reduce space consumption [63].
We leave this enhancement for future work.

5.4 Branch Management
For each key there is a branch table that holds all its branches’

heads. The branch table comprises two structures for tagged and
untagged branches respectively.

TB-table. Tagged branches are maintained in a map structure
called TB-table, in which each entry consists of a tag (i.e. branch
name) and a head cid. The Put-Branch operation (M4) first updates
the value (in POS-Tree) and then creates a FNode, and finally re-
places the old branch head with this new FNode’s cid in TB-table.
The Fork-Branch operation (M13) simply creates a new table en-
try pointing to the referenced FNode. Therefore, fork operations
are extremely lightweight in ForkBase. Concurrent updates on a
tagged branch are serialized by the servlet. To prevent from over-
writing others’ changes by accident, additional guarded APIs are
provided, which ensures that the Put succeeds only if the current
branch head is not advanced after its last read.

UB-table. Untagged branches are maintained in a set structure
called UB-table, in which each entry is simply a head cid for a
conflicting branch. The Put-Policy (M6) and Put-Version (M5) op-
erations update the UB-table accordingly. Once a new FNode is
created, its cid is added to the UB-table, and its base cid is removed
from the table. If the base cid is not found in the table, it means that
the base version has already been derived by others, hence a new
conflicting branch occurs. If the new FNode already exists in chunk
storage (from equivalent operations), the UB-table simply ignores
it.

Conflict Resolution. A three-way merge strategy is used in
Merge (M7-M9) operations. To merge two branch heads v1 and v2,
the POS-Trees of three versions (v1, v2 and LCA(v1, v2)) are fed
into the merge function. A conflict occurs if both branches modify
a key (in Map and Set) or a position (in List and Blob). If the merge
fails, it returns a conflict list, calling for conflict resolution. This
can be handled at the application layer with the merged result sent

back to the storage. In addition, simple conflicts can be resolved
using built-in resolution functions (such as append, aggregate and
choose-one). ForkBase also allows users to hook customized reso-
lution functions which are executed upon conflicts.

5.5 Cluster Management
When ForkBase is deployed as a distributed service, it uses a

hash-based two layer partitioning that distributes workloads evenly
among nodes in the cluster:
• Request dispatcher to servlet: requests received by a dis-

patcher are partitioned and sent to the corresponding servlet
based on the request keys’ hash.
• Servlet to chunk storage: chunks created in a servlet are

partitioned based on cids, and then forwarded to the corre-
sponding chunk storage.

However, all meta chunks generated by a servlet are always stored
in its local chunk storage, as they are not accessed by other servlets.
By keeping the meta chunks locally, it is efficient to return primitive
objects or to track historical versions. In addition, servlets caches
the frequently accessed remote chunks as they are immutable. When
reading a POS-Tree node, request dispatchers forward Get-Chunk
request directly to the chunk storage, bypassing the servlet.

6. APPLICATION DEVELOPMENT
In this section, we use ForkBase to build three applications: a

blockchain platform, a wiki engine and a collaborative analytics
application. We describe how it meets the applications’ demands
and reduces development efforts.

6.1 Blockchain
The blockchain data consists of some global states and transac-

tions that modify the states. They are packed into blocks linked
with each other via cryptographic hash pointers, forming a chain
that ends at the genesis block. In systems that support smart con-
tracts (user-defined codes), each contract is given a key-value stor-
age to manage its own states separately from the global states. We
refer readers to [25] for a more comprehensive treatment of the
blockchain design space. In this paper, we focus on integrating
ForkBase with Hyperledger for two reasons. First, Hyperledger
is one of the most popular blockchains with support for Turing-
complete smart contracts, making it easy to evaluate the storage
component by writing contracts that stress the storage. Second, the
platform targets enterprise applications whose demands for both
data processing and analytics are more pronounced than public
blockchain applications like cryptocurrency.

Data Model in Hyperledger. Figure 8(a) illustrates the main
data structures in Hyperledger v0.63. The states are protected by a
Merkle tree and any modification results in a new tree; the old val-
ues and trees are kept in a separate structure called state delta. A
blockchain transaction can issue read or write operations (of key-
value tuples) to the states. Only transactions that update the states
are stored in the block. A write is buffered in an in-memory struc-
ture. The system batches multiple transactions and then issues a
commit. The commit operation first creates a new Merkle tree, fol-
lowed by a new state and a new block, and finally writes all changes
to the storage.

Blockchain Analytics. One initial goal of blockchain systems is
to securely record the states, thus the designs are focused on tam-
per evidence and data versioning. As blockchain applications gain
3Newer versions, i.e. v1.0+, make significant changes to the data
model, but they do not fit our definition of a blockchain system
which requires a Byzantine fault tolerance consensus protocol.

1144

⋯ ⋯
Blockchain

Internal	
structure

State	hash

Txnsprev_hash
Block

State	Merkle
tree

State
Delta

Rocksdb

KeyContract	 ID Value

⋯

⋯

KV	Store

(a) Hyperledger (v0.6) data model

⋯ ⋯

Blockchain

ForkBase

FID

Txnsprev_hash
Blob

Data	(Blob)

M
ap Contract	ID

...
...

...
...

M
ap Key

... ...

... ...

⋯ ⋯

Data	(Blob) Data	(Blob)⋯ ⋯

(b) Hyperledger data model on ForkBase

Figure 8: Blockchain data models.

traction, the massive volume of data stored on the ledger present
valuable opportunities for analytics [56, 1, 35]. However, tradi-
tional key-value stores which underlie current blockchain systems,
are not optimized for analytics.

In this work we consider two representative analytical queries on
blockchain data. The first query is a state scan, which returns the
history of a given state, i.e. how the current value comes about.
The second query is a block scan, which returns the values of the
states at a specific block. The current Hyperledger data structures
are designed for fast access to the latest states. However, the two
above queries require traversing to the previous states and involve
computations with state delta. We implemented both queries in Hy-
perledger by adding a pre-processing step that parses all the internal
structures of all the blocks and constructs an in-memory index.

Hyperledger on ForkBase. Figure 8(b) illustrates how we use
ForkBase to implement Hyperledger’s data structures. The key in-
sight here is that a FNode fully captures the structure of a block
and its corresponding states. We replace Merkle tree and state delta
with Map objects organized in two levels. The state hash is now
replaced by the uid of the first-level Map. This Map contains key-
value tuples where the key is the smart contract ID, and the value
is the uid of the second-level Map. This second-level Map contains
key-value tuples where the key is the data key, and the value is the
uid of a Blob storing the state.

One immediate benefit of this model is that the code for main-
taining data history and integrity becomes remarkably simple. In
particular, for 18 lines of code that uses ForkBase, we eliminate
1900+ lines of code from the Hyperledger codebase. Another ben-
efit is that the data is now readily usable for analytics. For state
scan query, we simply follow the uid stored in the latest block
to get the latest Blob for the requested key. From there, we fol-
low base version to retrieve the previous values. For block scan
query, we follow the uid stored in the requested block to retrieve
the second-level Map. We then iterate through all entries to obtain
corresponding Blobs.

6.2 Wiki Engine
A wiki engine allows collaborative editing of documents (or wiki

pages). Each entry contains a linear chain of versions. The wiki
engine can be built on top of a multiversion key-value storage in
which each entry maps to a wiki page. This can be directly imple-
mented with Redis [8], for instance, using list-type values. How-
ever, in some existing implementations, e.g. Wikipedia, the ver-
sions are stored as independent records and therefore additional
mechanisms are needed to capture and exploit their relationships.

Data Model in ForkBase. This multiversion key-value model
fits naturally into ForkBase. Reading and writing an entry directly
maps to Get (M1) and Put (M4) operations on the default branch.
The Blob type is used instead of String because it helps eliminate
duplicates across versions. Meta information, e.g. timestamp and
author, can be stored in the context field. When accessing consec-
utive versions, ForkBase clients can reuse shared data chunks to
serve out more quickly. Comparing two versions is efficiently sup-
ported by diff-ing two POS-Trees. Finally, ForkBase’s two-level
partitioning scheme helps scale skewed workloads from hot pages.

6.3 Collaborative Analytics
Collaborative analytics is an emerging application which allows

a group of scientists (or analysts) to work on a shared dataset with
different analysis goals [13, 48]. For example, on a dataset of cus-
tomer purchasing records, some analysts may perform customer be-
havioral analysis, while others use it to improve inventory manage-
ment. At the same time, the dataset may be continually cleaned and
enriched by other analysts. As the analysts simultaneously work
on different versions, there is a clear need for versioning and on-
demand fork semantics. Decibel [43] and OrpheusDB [31] are two
state-of-the-art systems that support relational datasets. They pro-
vide SQL-like query interfaces, and use record-level delta encoding
to eliminate duplicate records across versions.

Data Model in ForkBase. ForkBase has a rich collection of
built-in data types, which offers the flexibility to construct different
data models. In particular, we implement two layouts for relational
datasets: row-oriented and column-oriented. In the former, a record
is stored as a Tuple, embedded in a Map keyed by its primary key.
In the latter, column values are stored as a List, embedded in a Map
keyed by the column name. Applications can choose the layout that
best serves their queries. For instance, the column-oriented layout
is more efficient for analytical queries.

Branch-related operations are readily supported by ForkBase’s
fork-on-demand semantics. Other common operations such as data
transformation, analytical queries, and version comparisons, are
easy to implement as well. For example, POS-Trees enable fast
update to a table, as well as point queries, range queries and ver-
sion diffs. While other dataset management systems require ver-
sion reconstruction upon access, ForkBase enables direct access to
any data pages in any versions. Besides, POS-Tree’s deduplication
works across datasets, which results in significantly lower storage
requirement at scale.

7. EVALUATION
We implemented ForkBase in about 30k lines of C++ code. In

this section, we first evaluate the performance of ForkBase opera-
tions. Next, we evaluate the three applications discussed in §6 in
terms of storage consumption and query efficiency. We compare
them against respective state-of-the-art implementations.

Our experiments were conducted in an in-house cluster with 64
nodes, each of which runs Ubuntu 14.04 and is equipped with E5-
1650 3.5GHz CPU, 32GB RAM, and 2TB hard disk. All nodes
are connected via 1Gb Ethernet. For fair comparison against other

1145

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 4 8 12 16

Th
ro

ug
hp

ut
 (

x1
04

 q
ue

rie
s/

se
c)

#Nodes

ForkBase_Get_256
ForkBase_Put_256
ForkBase_Get_2560
ForkBase_Put_2560

Figure 9: Scalability with multiple
servlets.

100

101

102

104 105 106

La
te

nc
y

(m
s)

#Updates

ForkBase
Rocksdb

ForkBase-KV

Figure 10: Latency of blockchain com-
mits (b=50, r=w=0.5).

 100

 1000

210 212 214 216 218 220

#T
xn

/s

#Updates

ForkBase
Rocksdb

ForkBase-KV

Figure 11: Client perceived throughput
(b=50, r=w=0.5).

Table 2: Performance of ForkBase Operations.
Throughput (ops/sec) Avg. latency (ms)

1KB 20KB 1KB 20KB
Put-String 75.0K 8.3K 0.24 0.9
Put-Blob 37.5K 5.7K 0.28 1.0
Put-Map 35.8K 4.7K 0.38 1.28

Get-String 78.3K 56.9K 0.23 0.8
Get-Blob-Meta 99.7K 100.4K 0.16 0.17
Get-Blob-Full 38.4K 4.9K 0.62 2.9
Get-Map-Full 38.2K 5.0K 0.61 3.2

Track 97.8K 96.0K 0.16 0.17
Fork 113.6K 109.4K 0.17 0.17

systems, all servlets in ForkBase are configured with one request
execution thread and two request parsing threads. Both leaf and
index page sizes in the POS-Tree are set to 4KB.

7.1 Micro-Benchmark
We deployed one ForkBase servlet and used multiple clients for

sending requests. We benchmark nine operations and Table 2 lists
the aggregated throughput and average latency over 5 million re-
quests using 32 clients. We observe that large requests achieve
higher network throughput – the product of throughput and re-
quest size – because of smaller overheads in message parsing. The
throughputs of primitive types are higher than those of chunkable
types, due to the overhead in chunking and traversing the POS-
Tree. Get-X-Meta, Track and Fork achieve the highest throughputs,
regardless of the request sizes. This is because these operations
require no or very small data transfer. The average latencies of
different operations do not vary much, because the latency is mea-
sured at the client side. In this case, network delays have major
contribution to the final latency.

Table 3 details the cost breakdown of the Put operation, exclud-
ing the network cost. It can be seen that the main contributor to the
latency gap between primitive and chunkable types is the rolling
hash computations incurred in the POS-Tree.

We measured ForkBase’s scalability by increasing the number
of servlets up to 64. Figure 9 shows the almost linear scalability
for both Put and Get operations (with value size of 256 and 2560
bytes). The fact that ForkBase scales almost linearly is expected
because there is no communication between the servlets.

7.2 Blockchain
We compare ForkBase-backed Hyperledger with the original im-

plementation using RocksDB, and also with another implementa-
tion that uses ForkBase as a pure key-value storage. We refer to
them as ForkBase, Rocksdb and ForkBase-KV respectively. We
first evaluate how different storage engines affect normal opera-
tions of Hyperledger and the user-perceived performance. We then
evaluate their efficiency on supporting analytical queries. We used

Table 3: Breakdown of Put Operation (µs).
String Blob

1KB 20KB 1KB 20KB
Serialization 0.8 0.8 1.1 1.5

Deserialization 5.7 9.2 6.2 13.2
CryptoHash 8.5 56.4 9.5 80.6
RollingHash - - 7.5 42.2

Persistence 10.4 60.7 10.5 93.7

Blockbench [23], a benchmarking framework for permissioned block-
chains, to generate and drive workloads. Specifically, we used the
smart contract implementing a key-value store, which is designed
to stress the storage. Transactions for this contract are generated
based on YCSB workloads. We varied the number of keys, the
number and ratio of read and write operations (r and w). Unless
stated otherwise, the number of keys is the same as the number of
operations. We issued up to 1 million write operations with 1KB-
size values for each test. For the blockchain configuration, we de-
ployed one server, varied the maximum block size b and kept the
default values for the other settings.

7.2.1 Blockchain Operations
Figure 10 shows the 95th percentile latency of commit opera-

tions. Read and write operations are orders of magnitude faster
because of memory buffers, and we omit the details here. Though
Rocksdb is designed for fast batch commits, ForkBase and Rocksdb
still have similar latencies. Both are better than ForkBase-KV since
using ForkBase as a pure key-value store introduces overhead from
conducting hash computation both inside and outside of the stor-
age layer. Figure 11 shows the overall throughput, measured as
the total number of transactions committed per second. We see no
differences in throughput, because the overheads in read, write and
commit are relatively small compared to the total time a transaction
takes to be included in the blockchain. In fact, we observe that the
cost of executing a batch of transactions is much higher than that
of committing the batch.

7.2.2 Merkle Trees
A commit operation involves updating Map objects in ForkBase

or the Merkle trees in the original Hyperledger. Hyperledger pro-
vides two Merkle tree implementations: the default option is a
bucket tree, in which the number of leaves is fixed and pre-determined
at start-up time, and the data key’s hash determines its bucket num-
ber; the other option is a trie. Figure 12 shows how different struc-
tures affect the commit latency. With bucket tree, the number of
buckets (nb = 10, 1K, 1M) has significant impact on the commit
latency. With fewer buckets, the latency increases and the distri-
bution becomes less uniform. This is because with more updates,
write amplification becomes more severe, which increases the cost

1146

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

10-1 100 101 102 103 104

C
D

F

Time (ms)

ForkBase
Rocksdb_10
Rocksdb_1K
Rocksdb_1M
Rocksdb_trie

Figure 12: Commit latency distribution with
different Merkle trees.

10-1

100

101

102

103

104

105

106

100 101 102 103

La
te

nc
y

(m
s)

#States scanned

Forkbase, 210

Rocksdb, 210
Forkbase, 216

Rocksdb, 216

(a) State Scan

10-1

100

101

102

103

104

105

106

100 101 102 103

La
te

nc
y

(m
s)

#Blocks scanned

ForkBase_210

ForkBase_216
Rocksdb_210

Rocksdb_216

(b) Block scan

Figure 13: Scan queries. ’X, 2y’ means using storage X, and 2y keys.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (

qu
er

ie
s/

se
c)

#Requests (x104)

ForkBase_100U
ForkBase_90U
ForkBase_80U

Redis_100U
Redis_90U
Redis_80U

(a) Throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12

M
em

or
y

U
sa

ge
 (

M
B)

#Requests (x104)

ForkBase_100U
ForkBase_90U
ForkBase_80U

Redis_100U
Redis_90U
Redis_80U

(b) Storage Consumption

Figure 14: Performance of editing wiki pages.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5 6

Th
ro

ug
hp

ut

#Versions

ForkBase
Redis

Figure 15: Throughput of read consecutive
versions of a wiki page.

of updating the tree. In fact, for any pre-defined number of buck-
ets, the bucket tree is expected to fail to scale beyond workloads
of a certain size. In contrast, Map objects in ForkBase scale grace-
fully by dynamically adjusting the tree height and bounding node
sizes. The trie structure exhibits low amplification, but the latency
is higher than ForkBase because the structure is not balanced, there-
fore it may require longer tree traversals during updates.

7.2.3 Analytical Queries
We populated the storage with varying numbers of keys and a

large number of updates that result in a medium-size chain of 12000
blocks. Figure 13(a) compares the performance for state scan query.
The x axis represents the number of unique keys scanned per query.
For a small number of keys, the difference between ForkBase and
Rocksdb is up to four orders of magnitudes. This is because the
cost in Rocksdb is dominated by the pre-processing phase, which is
not required in ForkBase. However, this cost amortizes with more
keys, explaining why the performance gap gets smaller. In partic-
ular, this gap reduces to 0 when the number of unique keys being
scanned is the same as the total number of keys in the storage, since
scanning them requires retrieving all the data from the storage.

Figure 13(b) shows the performance for block scan query. The
x axis represents the block number being scanned, where x = 0 is
the oldest (or first) block. We see a huge difference in performance
starting from 4 orders of magnitudes but decreasing with higher
block numbers. The cost in ForkBase increases because higher
blocks contain more keys to be read. For 210 unique key, the scan-
ning cost peaks around 2500 blocks, because they contains all the
keys. We note that the gap is at least two orders of magnitudes
regardless of how many blocks are being scanned.

7.3 Wiki Engine
We compare ForkBase with Redis, both of which were deployed

as multi-versioned wiki engines. We employed 32 clients on sepa-

rate nodes to simultaneously edit 3200 pages hosted in the engine.
In each request, a client loads/creates a random page whose initial
size is 15 KB, edits/appends the text, and finally uploads the revised
version. In all the tests, each page has approximately 40 versions
in average, resulting in more than 2GB of application data. We en-
abled data persistence in Redis to ensure that all data are written to
the disk.

7.3.1 Edit and Read Pages
Figure 14(a) shows the throughput of editing pages, in which

xU indicates the ratio of in-place updates against insertions (e.g.,
100U means all updates are in place). It is expected that Redis out-
performs ForkBase in terms of write throughput, since the latter has
to chunk the text and build the POS-Tree. On the other hand, the
chunking overhead is paid off by the deduplication along the ver-
sion history. As shown in Figure 14(b), ForkBase consumes 55%
less storage than Redis, thanks to the deduplication using POS-
Trees. The performance of reading wiki pages is illustrated in Fig-
ure 15. It can be seen that Redis is fast for reading a single version.
As we track more versions during a single exploration, ForkBase
starts to outperform Redis. The reason is that the data chunks com-
posing a Blob value can be reused from the clients. When reading
an old version, a large number of chunks may have already been
cached, resulting in lower read latencies and network traffics.

7.3.2 Hot Pages
We deployed a distributed wiki service in a 16-node cluster, and

ran a skewed workload (zipf = 0.5). Figure 16 shows the effect
of skewness to storage size distribution. With one layer partition-
ing on the page name (1LP), where page content is stored locally,
ForkBase suffers from imbalance. The two layer partitioning (2LP)
overcomes the problem by distributing chunks evenly among dif-
ferent nodes.

1147

 0

 100

 200

 300

 400

 500

 600

 700

 800

M
em

or
y

U
sa

ge
 (

M
B)

ForkBase_2LPForkBase_1LP

Figure 16: Storage size distribution in
skewed workloads.

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 1 2 3 4 5 6 7 8

La
te

nc
y

(m
s)

Percentage of Differences(%)

ForkBase
OrpheusDB

(a) Diff

102

103

104

105

1 2 3 4 5 6 7 8

La
te

nc
y

(m
s)

#Records (x106)

ForkBase-COL
ForkBase-ROW

OrpheusDB

(b) Aggregation

Figure 17: Performance of querying datasets.

7.4 Collaborative Analytics
We compare ForkBase with OrpheusDB, a state-of-the-art dataset

management system, in terms of their performance in storing and
querying relational datasets. We used a dataset containing 5 million
records loaded from a csv file. Each record is around 180 bytes
in length, consisting of a 12-byte primary key, two integer fields
and other textual fields of variable lengths. The space consump-
tion of the initial commit of the dataset is 927MB in ForkBase and
1167MB in OrpheusDB. We focus on queries that do not modify
the dataset, because OrpheusDB is not designed for efficient com-
mit operations.

7.4.1 Version Comparison
Figure 17(a) shows the cost in comparing two dataset versions

with a varying degree of differences. OrpheusDB’s cost is roughly
consistent, because the storage maintains a vector of version-to-
record mapping for each dataset version, and it relies on full vector
comparison to find the differences. On the contrary, ForkBase’s
cost is low for small differences, because ForkBase can quickly
locate them using the POS-Tree. However, the cost increases when
the differences are large, as we need to traverse more tree nodes.

7.4.2 Analytical Queries
Figure 17(b) compares the performance of aggregation queries

on the numerical fields. For ForkBase, both row (ForkBase-ROW)
and column (ForkBase-COL) layouts were used. It can be seen that
ForkBase-ROW and OrpheusDB have similar performance, whereas
ForkBase-COL has 10× better performance. The gap is due to the
physical layouts and the fact that ForkBase does not need to check-
out the version and reconstruct from its deltas. More specifically,
even though ForkBase-ROW does not explicitly reconstruct a ver-
sion, the target values are scattered over all data pages, thus it incurs
the same I/O cost as OrpheusDB. However, ForkBase-COL can ef-
ficiently locate target columns from the top-level Map, and then
iterate over the values in the Lists.

8. RELATED WORK
Dataset Versioning. Decibel [43] and OrpheusDB [31] are state-

of-the-art systems built for relational dataset versioning, with git-
like version control and SQL-like query interfaces. They use record-
level delta encoding to remove duplicates between consecutive ver-
sions. The trade-off between space saving and reconstruction cost
of such approaches has been studied in [14]. DEX [17] executes
queries directly on delta-based storage to avoid version reconstruc-
tion. dbDedup [63] extends delta encoding to achieve global dedu-
plication via similarity search. In contrast, ForkBase uses page-
level deduplication which helps detect global duplicates and direct
data access without checkout or reconstruction.

Persistent data structures. Persistent data structures, which
persists all the states and thus support versioning, have been widely
studied [27, 39, 53, 33]. Purely functional data structures [49] is
a special class of such structures, which is mainly used in func-
tional programming languages. POS-Tree can be seen as a purely
functional data structure with additional SIRI properties, which is
effective for global deduplication.

Blockchain storage. Current blockchain systems use simple
key-value storage such as LevelDB [6] and RocksDB [9] as their
storage backend. They implement the log-structured-merge tree [50]
which consists of exponentially-sized index components that are
merged periodically. They achieve superior write performance from
sequential I/Os, but lacking of tamper evidence or analytics sup-
ports. ForkBase is designed to replace them as a more natural and
efficient storage for blockchain systems.

Data Integrity. Outsourced database systems [32, 40, 51] often
rely on Merkle trees to achieve data integrity, as does ForkBase.
Recently, Concerto [12] employs trusted hardware (e.g. Intel SGX)
to achieve both integrity and freshness against malicious storage
providers. Although orgthogonal to ForkBase, Concerto’s design
can be integrated to enable stronger security.

9. CONCLUSIONS
In this paper, we identified three common properties in block-

chain and forkable applications: data versioning, fork semantics
and tamper evidence. We proposed a new index class called SIRI
that is effective at detecting duplicate content among multiversion
data. We designed POS-Tree, an instance of SIRI, that addition-
ally offers tamper evidence. We described a generic fork semantics
to support a broad range of applications. We designed and imple-
mented ForkBase that integrates these ideas and is able to deliver
better performance than ad-hoc, application-layer solutions. By im-
plementing three applications on top of ForkBase, we demonstrated
that our storage simplifies application logic, thereby reducing de-
velopment efforts. We showed via experimental evaluation that
ForkBase is able to deliver better performance than state-of-the-art
in terms of storage consumption and query efficiency. In summary,
ForkBase provides a powerful building block for blockchains and
the emerging forkable applications [10].

ACKNOWLEDGMENTS
This work was supported by the Singapore Ministry of Education
Tier-3 Grant MOE2017-T3-1-007 (WBS No. R-252-000-A08-112).
Meihui Zhang was supported by China Thousand Talents Program
for Young Professionals (3070011181811). Gang Chen was sup-
ported by National Key Research and Development Program of
China (2017YFB1201001). We thank the anonymous reviewers
for their insightful feedback, and thank Wanzeng Fu, Ji Wang and
Hao Zhang for their early contributions.

1148

10. REFERENCES
[1] Chainalysis - blockchain analysis.

https://www.chainalysis.com.
[2] Ethereum. https://www.ethereum.org.
[3] Github. https://github.com.
[4] Googledocs. https://www.docs.google.com.
[5] Hyperledger. https://www.hyperledger.org.
[6] LevelDB. https://github.com/google/leveldb.
[7] MongoDB. http://mongodb.com.
[8] Redis. http://redis.io.
[9] RocksDB. http://rocksdb.org.

[10] The Morning Paper review on ForkBase.
https://blog.acolyer.org/2018/06/01/forkbase-an-efficient-
storage-engine-for-blockchain-and-forkable-applications.

[11] I. Ahn and R. Snodgrass. Performance evaluation of a
temporal database management system. SIGMOD Record,
15(2):96–107, 1986.

[12] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng,
V. Pandey, and R. Ramamurthy. Concerto: A high
concurrency key-value store with integrity. In SIGMOD,
pages 251–266, 2017.

[13] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande,
A. J. Elmore, S. Madden, and A. Parameswaran. Datahub:
Collaborative data science & dataset version mangement at
scale. In CIDR, 2015.

[14] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and
A. Parameswaran. Principles of dataset versioning:
Exploring the recreation/storage tradeoff. PVLDB,
8(12):1346–1357, 2015.

[15] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov,
H. Ding, J. Ferris, A. Giardullo, S. Kullkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. Tao: Facebook’s distributed data store for
the social graph. In USENIX ATC, pages 49–60, 2013.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. ACM TOCS, 26(2):4, 2008.

[17] A. Chavan and A. Deshpande. Dex: Query execution in a
delta-based storage system. In SIGMOD, pages 171–186,
2017.

[18] J. D. Cohen. Recursive hashing functions for N-grams. ACM
Trans. Inf. Syst., 15(3):291–320, 1997.

[19] D. Comer. Ubiquitous B-tree. ACM Computing Surveys
(CSUR), 11(2):121–137, 1979.

[20] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS: Yahoo!’s hosted data serving platform.
PVLDB, 1(2):1277–1288, 2008.

[21] N. Crooks, Y. Pu, N. Estrada, T. Gupta, L. Alvisi, and
A. Clement. Tardis: A branch-and-merge approach to weak
consistency. In SIGMOD, pages 1615–1628, 2016.

[22] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP, volume 41, pages 205–220, 2007.

[23] T. T. A. Dinh, J. Wang, G. Chen, L. Rui, K.-L. Tan, and B. C.
Ooi. Blockbench: A benchmarking framework for analyzing
private blockchains. In SIGMOD, pages 1085–1100, 2017.

[24] T. T. A. Dinh, J. Wang, S. Wang, G. Chen, W.-N. Chin,
Q. Lin, B. C. Ooi, P. Ruan, K.-L. Tan, Z. Xie, and M. Zhang.

UStore: A distributed storage with rich semantics. CoRR,
abs/1702.02799, 2017.

[25] T. T. A. Dinh, M. Zhang, B. C. Ooi, and G. Chen. Untangling
blockchain: A data processing view of blockchain systems.
IEEE Transactions on Knowledge and Data Engineering
(TKDE), pages 1366–1385, 2018.

[26] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre,
and A. Pras. Inside Dropbox: Understanding personal cloud
storage services. In Proceedings of the 2012 Internet
Measurement Conference, pages 481–494, 2012.

[27] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making data structures persistent. Journal of Computer and
System Sciences, 38(1):86–124, 1989.

[28] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In Annual International Cryptology Conference,
pages 139–147, 1992.

[29] K. Eshghi and H. K. Tang. A framework for analyzing and
improving content-based chunking algorithms.
Hewlett-Packard Labs Technical Report TR, 30(2005), 2005.

[30] R. G. Guy, J. S. Heidemann, W.-K. Mak, T. W. Page Jr, G. J.
Popek, D. Rothmeier, et al. Implementation of the Ficus
replicated file system. In USENIX Summer, pages 63–72,
1990.

[31] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. Parameswaran.
OrpheusDB: Bolt-on versioning for relational databases.
PVLDB, 10(10):1130–1141, 2017.

[32] R. Jain and S. Prabhakar. Trustworthy data from untrusted
databases. In ICDE, pages 529–540, 2013.

[33] L. Jiang, B. Salzberg, D. Lomet, and M. Barrena. The
BT-tree: A branched and temporal access method. 2000.

[34] M. Kallahalla, E. Riedely, R. Swaminathan, Q. Wangz, and
K. Fux. Plutus: Scalable secure file sharing on untrusted
storage. In FAST, pages 29–42, 2003.

[35] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and
A. Narayanan. BlockSci: Design and applications of a
blockchain analysis platform. CoRR, abs/1709.02489, 2017.

[36] J. Katz and Y. Lindell. Introduction to modern cryptography.
CRC Press, 2014.

[37] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap
main memory database system based on virtual memory
snapshots. In ICDE, pages 195–206, 2011.

[38] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. SIGOPS Operating Systems
Review, 44(2):35–40, 2010.

[39] S. Lanka and E. Mays. Fully persistent B+-trees. In
SIGMOD, pages 426–435, 1991.

[40] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for outsourced
databases. In SIGMOD, pages 121–132, 2006.

[41] J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure
untrusted data repository. In OSDI, 2004.

[42] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with cops. In SOSP, pages
401–416, 2011.

[43] M. Maddox, D. Goehring, A. J. Elmore, S. Madden, A. G.
Parameswaran, and A. Deshpande. Decibel: The relational
dataset branching system. PVLDB, 9(9):624–635, 2016.

[44] R. C. Merkle. A digital signature based on a conventional
encryption function. In A Conference on the Theory and
Applications of Cryptographic Techniques on Advances in
Cryptology, pages 369–378, 1988.

1149

[45] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In SIGOPS Operating
Systems Review, volume 35, pages 174–187, 2001.

[46] E. W. Myers. An O(ND) difference algorithm and its
variations. Algorithmica, 1(1-4):251–266, 1986.

[47] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf, 2009.

[48] F. A. Nothaft, M. Massie, T. Danford, and et al. Rethinking
data-intensive science using scalable analytics systems. In
SIGMOD, pages 631–646, 2015.

[49] C. Okasaki. Purely functional data structures. Cambridge
University Press, 1999.

[50] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[51] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
completeness of relational query results in data publishing.
In SIGMOD, pages 407–418, 2005.

[52] J. Paulo and J. Pereira. A survey and classification of storage
deduplication systems. ACM Computing Surveys (CSUR),
47(1):11, 2014.

[53] O. Rodeh. B-trees, shadowing, and clones. ACM
Transactions on Storage (TOS), 3(4), 2008.

[54] B. Salzberg and V. J. Tsotras. Comparison of access methods
for time-evolving data. ACM Computing Surveys (CSUR),
31(2):158–221, 1999.

[55] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C.
Veitch. Elephant: the file system that never forgets. In

HotOS, pages 2–7, 1999.
[56] S. Shah, A. Dockx, A. Baldet, F. Bi, C. Allchin, S. Misra,

M. Huebner, B. Sherpherd, and B. Holroyd. Unlocking
economic advantage with blockchain: a guide for asset
managers. Oliver Wyman and JP Morgan, 2016.

[57] Y. Sompolinsky and A. Zohar. Secure high-rate transaction
processing in Bitcoin. In International Conference on
Financial Cryptography and Data Security, pages 507–527,
2015.

[58] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger. Metadata efficiency in versioning file systems. In
FAST, 2003.

[59] M. Stonebraker and L. A. Rowe. The design of the
POSTGRES. In SIGMOD, pages 340–355, 1986.

[60] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-securing storage: Protecting
data in compromised system. In OSDI, 2000.

[61] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass. Temporal databases: Theory, design, and
implementation. Benjamin-Cummings Publishing Co., Inc.,
1993.

[62] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua,
M. Fu, Y. Zhang, and Y. Zhou. A comprehensive study of the
past, present, and future of data deduplication. Proceedings
of the IEEE, 104(9):1681–1710, 2016.

[63] L. Xu, A. Pavlo, S. Sengupta, and G. R. Ganger. Online
deduplication for databases. In SIGMOD, pages 1355–1368,
2017.

1150

