
Efficient Estimation of Inclusion Coefficient using

HyperLogLog Sketches

Azade Nazi, Bolin Ding, Vivek Narasayya, Surajit Chaudhuri
Microsoft Research

{aznazi, bolind, viveknar, surajitc}@microsoft.com

ABSTRACT
Efficiently estimating the inclusion coefficient – the fraction of val-
ues of one column that are contained in another column – is use-
ful for tasks such as data profiling and foreign-key detection. We
present a new estimator, BML, for inclusion coefficient based on
Hyperloglog sketches that results in significantly lower error com-
pared to the state-of-the art approach that uses Bottom-k sketches.
We evaluate the error of the BML estimator using experiments on
industry benchmarks such as TPC-H and TPC-DS, and several real-
world databases. As an independent contribution, we show how
Hyperloglog sketches can be maintained incrementally with data
deletions using only a constant amount of additional memory.
PVLDB Reference Format:
Azade Nazi, Bolin Ding, Vivek Narasayya, Surajit Chaudhuri. Efficient
Estimation of Inclusion Coefficient using HyperLogLog Sketches. PVLDB,
11(10): 1097-1109, 2018.
DOI: https://doi.org/10.14778/3231751.3231759

1. INTRODUCTION
The discovery of all inclusion dependencies in a dataset is an

important part of data profiling efforts. It is useful for tasks such
as foreign-key detection and data integration [17, 28, 4, 22, 21].
However, due to issues in data quality such as missing values or
multiple representations of the same value, it becomes important
to relax the requirement of exact containment. Thus, computing
the fraction of values of one column that are contained in another
column –inclusion coefficient is of interest to these applications.

When the database schema and data sizes are large, computing
the inclusion coefficient for many pair of columns in the database
can be both computationally expensive and memory intensive. One
approach for addressing this challenge is to estimate the inclusion
coefficient using only bounded-memory sketches of the data. Given
a fixed budget of memory per column, these techniques scan the
data once, and compute a data sketch that fits within the mem-
ory budget. For a given pair of columns X and Y , the inclusion
coefficient �(X,Y) is then estimated using only the sketches on
columns X and Y .

One such approach, adopted in Zhang et al. [31] is to build a
Bottom-k sketch [12] on each column, and develop an inclusion
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 10
Copyright 2018 VLDB Endowment 2150-8097/18/06... $ 10.00.
DOI: https://doi.org/10.14778/3231751.3231759

coefficient estimator using these sketches. Intuitively, Bottom-k
sketches have high accuracy for inclusion coefficient estimation
when the number of distinct values in both X and Y are smaller
than k since the sketches effectively behave like hash tables of the
respective columns. However, as we show empirically in this paper,
one of the limitations of using Bottom-k sketches for estimating in-
clusion coefficient is that for given memory budget (of k values), as
the cardinality (i.e. number of distinct values) of column X or Y in-
creases beyond k, the estimation error becomes large. Additionally,
Bottom-k sketches are not amenable to incremental maintenance in
situations where data is deleted. For instance, in data warehousing
scenarios, it is not uncommon for recent data to be added and older
data to be removed from the database.

Developing an estimator with low error for inclusion coefficient
using bounded-memory sketches is challenging. We first estab-
lish a hardness result showing that any estimator that relies only
on sketches with bounded memory must incur unbounded error in
certain cases. Intuitively, the difficult cases are when column X has
small cardinality and column Y has large cardinality or vice-versa.
Furthermore, as we report in our empirical evaluation, these diffi-
cult cases appear to be quite common in the real-world databases
that we have studied.

We develop a new estimator for inclusion coefficient BML (Bi-
nomial Mean Lookup) based on Hyperloglog sketches [14]. Hy-
perloglog (HLL) sketches can be computed efficiently and within
a given memory budget, requiring invocation of only a single hash
function for each value in the column. HLL sketches are becoming
increasingly popular for estimating cardinality in different applica-
tions, and are even being adopted in commercial database engines
– e.g., [16] uses Hyperloglog to support approximate distinct count
functionality. The main idea behind the BML estimator is a theoret-
ical result that establishes a mapping from the inclusion coefficient
�(X,Y) to the probability that the value of a bucket in the HLL
sketch of column Y is greater than the value of the corresponding
bucket in the HLL sketch of column X . BML, is based on maxi-
mum likelihood estimation (MLE) method. It observes the number
of buckets in the HLL sketch of column Y whose HLL value is
greater than the HLL value of the corresponding bucket in column
X , and it returns the value of �(X,Y) that maximizes the likeli-
hood of this observation. As a by-product of our estimation tech-
nique, we are also able to provide a bound on the error. This error
bound is data-dependent, i.e. it is specific to the pair of columns
X and Y . Such an error bound can be valuable to applications that
consume the estimates, and is not provided by prior techniques.

Hyperloglog sketches can be maintained incrementally in the
presence of insertions. An independent contribution of this paper
is a technique for incrementally maintaining a Hyperloglog sketch
in the presence of data deletions with a constant memory overhead.

1097

The key idea is that each bucket in an HLL sketch always holds an
integer value less than a constant `, where ` is the number of bits
of the hash value. By maintaining a max-heap of constant size (at
most `) for each bucket we are able to support incremental deletion.

We show through experiments on real-world databases and in-
dustry benchmark TPC-H and TPC-DS databases that BML has
significantly lower overall error than the approach using Bottom-
k sketches [31], particularly in cases where at least one of the
columns has large cardinality. For cases where both columns have
small cardinality, the accuracy of both estimators are similar. For
instance, in two real-world databases where there are many columns
with small and large cardinality, the average error using Bottom-k
sketches is 0.30 and 0.59 respectively, whereas the corresponding
errors for BML are only 0.10 and 0.14. For the other two real-
world databases where most columns have small cardinality the av-
erage error using Bottom-k sketches is 0.05 and 0.02 respectively,
whereas the corresponding errors for BML are 0.06 and 0.04.

Finally, we consider one important application of inclusion co-
efficients, namely the problem of foreign-key (FK) detection in a
database. All prior work on FK detection [29, 31, 11] relies on
exact inclusion coefficients to prune the FK candidates. We show
empirically on several real-world and benchmark databases that the
estimation error of BML is acceptable for these FK detection tech-
niques. In other word, replacing the exact inclusion coefficient with
an estimate obtained via the BML estimator has no noticeable im-
pact on the precision and recall of these FK detection algorithms.

In summary, this paper makes the following contributions:
• We establish a hardness result for inclusion coefficient estima-

tion using bounded-memory sketches.

• We develop an MLE-based estimation algorithm called BML
(Binomial Mean Lookup) for inclusion coefficient estimation based
on Hyperloglog sketches [14]. We prove the correctness of our
algorithm and the error bound of our estimator.

• We show how, with a constant memory overhead, Hyperloglog
sketches can be extended to support incremental deletion.

• We implement our inclusion coefficient estimator (BML) on Cos-
mos [10], a distributed, Big Data engine that is extensively used
within Microsoft for analyzing large data sets; and evaluate the
effectiveness of BML using several synthetic and real-world datasets.

• We measure the precision and recall of two existing foreign-key
detection techniques when using inclusion coefficient estimates
rather than the exact inclusion coefficients.

The rest of the paper is organized as follows. We present a hard-
ness result for inclusion coefficient estimation using sketches and
introduce background of Hyperloglog sketch construction in §2.
We describe the BML estimator for inclusion coefficient and its
error analysis in §3. The extension to support incremental deletion
is presented in §4. We describe the results of our experimental eval-
uation of inclusion coefficient estimation and its application to FK
detection in §5. We discuss related work in §6 and conclude in §7.

2. PROBLEM DEFINITION AND
BACKGROUND

Let database D be the collection of tables T , where the set of all
columns in tables T are C. Let n be the total number of columns
(|C| = n). For each column X 2 C, the set of all its possible values
is called the domain of X , denoted by dom(X). We use X[i] as
the value of column X for tuple i. We formally define the inclusion
coefficient estimation problem and we discuss the hardness result.

2.1 Inclusion Coefficient Estimation and Hard-
ness Result

Inclusion coefficient is defined between two sets of values, and is
used to measure the fraction of values of one set that are contained
in the other set.

DEFINITION 1. (Inclusion Coefficient) Given two columns/sets,
X and Y , the inclusion coefficient of X and Y is defined as:

�(X,Y) =
|X \ Y |

|X|
, |X| 6= 0 (1)

where | · | represents the number of distinct values in a set.

If X is fully covered by Y (X ✓ Y), �(X,Y) = 1; otherwise
0 �(X,Y) < 1. Note that �(X,Y) is asymmetric: in general,
�(X,Y) is not equal to �(Y,X).

In tasks such as foreign key detection and data profiling, we need
to calculate inclusion coefficients for many pairs of columns, which
could be too expensive (in terms of both time and memory) for large
datasets. As a trade-off between accuracy and performance, the
idea is to construct a sketch (or a compact data structure) for each
column C 2 C by scanning the data once, and estimate the inclu-
sion coefficient between any pair of columns using their sketches.

Such sketching and estimation techniques are useful in two sce-
narios: i) columns are too large to fit into memory; and ii) we want
to compute inclusion coefficients for many pairs of columns (e.g.,
there are n columns and inclusion coefficients need to be calculated
for all the n(n� 1)/2 pairs).

PROBLEM 1. (Estimating Inclusion Coefficient using sketches)
For each column C 2 C, we construct a sketch SC by scanning
C once. Then for any two columns X and Y , we want to derive
an estimator �̂(SX ,SY) to �(X,Y), by accessing only the two
sketches.
In the rest part, we write �̂(SX ,SY) as �̂ if X and Y are clear
from the context. Table 1 shows frequently used notations.

2.1.1 Estimation Error and Sketch Size
Suppose we estimate the inclusion coefficient �(X,Y) of two

columns X and Y as �̂, using their sketches. The estimation error
|�(X,Y) � �̂| ranges from 0 to 1. Considering the randomness
in the sketch construction, ideally, we would like the estimation
error to be bounded with high probability, i.e., |�(X,Y) � �̂|
✏ with probability at least 1 � �, for any given two columns X
and Y . Unfortunately, we can show that, unless the sketch size is
linear in the number of distinct values (which could be equal to the
number of rows), there is no sketch based on which the worst-case
estimation error can be bounded with ✏ < 1 and � < 1.
A lower bound of sketch size: The hardness can be observed
even in a very simple case when X = {x} contains only one el-
ement, and Y is large. In this case, �(X,Y) takes value either 0
(if x /2 Y) or 1 (otherwise). Therefore, to bound the estimation
error below any constant less than 1, from the sketches of Y , we
need to distinguish two cases, i) x /2 Y or ii) x 2 Y , with high
probability—this is exactly the approximate membership problem
[9]. More formally, we can prove the following hardness result.

THEOREM 1. We pre-compute a sketch for each column in a
database to estimate the inclusion coefficient for pairs of columns.
If we require that, for any two given columns X and Y 2 C ,
|�(X,Y) � �̂| ✏ < 1 with probability at least 1 � � > 0, then
any sketch must use space at least ⌦(nC log(1/�)) bits per column
C 2 C, where nC is the number of distinct values in C.

PROOF. From the above discussion, we can reduce approximate
membership problem to our inclusion coefficient estimation prob-
lem: for each column Y of size n, we want to construct a sketch

1098

to support membership queries, i.e., check whether x 2 Y for any
given x, with a false positive rate at most �.

Suppose we want to estimate the inclusion coefficient �(X,Y)
using sketches of X and Y . Consider the case when X = {x}.
Indeed, �(X,Y) = 1 if x 2 Y , or 0 if x /2 Y . Therefore, to
ensure that the estimation error is less than 1, there must be no
false positive to the membership query x 2 Y (with probability
less than �)—[9] shows that, for this purpose, any sketch must use
space at least ⌦(n log(1/�)) bits. So the proof is completed.

Remark: [25] gives an even tighter lower bound of sketch sizes
when the number of distinct values in each column is unknown.

2.2 HLL Sketch Construction
As shown in Theorem 1, the worst-case error cannot be bounded

based on sublinear-size sketches. However, the hope is that, for
particular instances of X and Y , the estimation errors still could be
much better than the worst-case error. Hyperloglog (HLL) sketch
[14, 15] provides a near-optimal way to estimate cardinality (i.e.
the number of distinct values in a set). In §3, we will show how to
use HLL sketches to estimate inclusion coefficients. We first review
how to construct the HLL sketch of a column.

Let h : dom(X) ! {0, 1}` be a hash function that returns ` bits
for each value X[i] 2 dom(X). For each hash value si = h(X[i]),
we find the position of the leftmost 1 represented by ⇢(si) and the
maximum of {⇢(si) : si = h(X[i])} is the HLL sketch of the
column X which is used for cardinality estimation [14, 15].

One way to reduce the variance of the estimation is to use multi-
ple hash functions [15]; however, [15] proposed stochastic averag-
ing that employing only a single hash function emulates the effect
of using different hash functions. They use one hash function but
take the first m bits to bucketize hash values to mimic 2m hash
functions and reduce the variance. Then the remaining ` �m bits
of each hash value si = h(X[i]) are used to find the position of the
leftmost 1 as ⇢(si). Algorithm 3 in Appendix A shows the steps to
construct such sketches for a set of columns C. In §3.3, we discuss
how to choose the parameter m for given two columns X , and Y .

X

i

…

(X[i])
0	 1	 0	 0	 1	
1 m

0…0
b1

si
:

…

(si)

b2^m

…

0	 1	 0		 0	 0	 1	sj
:

…j
 = 3

(sj) = 4

0…0

Buckets

(X[j])
= 4 1

(si) Max(

) (sj)

,

Figure 1: Constructing the HLL sketch of the column X as SX .

For example, as shown in Figure 1, one hash function h is used
for all values in column X , and the first m bits are used to bucketize
hash values. As a result there are 2m buckets (b1, b2, · · · , b2m) in
HLL sketch of column X represented by SX . Specifically, in this
figure si = h(X[i]) and sj = h(X[j]) are assigned to bucket b1
because their first m bits are the binary representation of the value
one. Moreover, ⇢(si) = 3 and ⇢(sj) = 4 because the position of
the leftmost 1 in the remaining ` � m bits of the hash values si
and sj are 3, and 4 respectively. If the si and sj are the only hash
values assigned to b1, the final value in b1 is V X

1 = max(3, 4) = 4.
The formal definition of V X

i is given by Definition 2.

DEFINITION 2. (V X
i : HLL value of column X in bucket bi).

Let sj be the hash value of the tuple j in X whose first m bits
(sj [1, ...,m]) indicate it belongs to bucket bi, i.e., sj [1, ...,m] is
the binary representation of the value i ((sj [1...m])2 = i), and
⇢(sj) be the leftmost one in the remaining ` � m bits of the hash
value sj (sj [m + 1, ..., `]). The HLL value of column X for the
bucket bi is defined as:

Table 1: Summary of frequently used notations
n Total number of columns
nX Number of distinct values in column X
SX Sketch of column X

�(X,Y) Inclusion coefficient of columns X and Y

�̂ Estimation of �(X,Y)
h ` bits Hash function
m Number of bits assigned for bucketization
2m Number of buckets in HLL sketch
V X
i HLL value of column X in bucket bi

V X HLL value of column X when there is only one bucket
P̂ Estimated value of pr(V X V Y)
ep Estimation error of pr(V X V Y)
e� Estimation error of �(X,Y)

V X
i = max

sj :(sj [1...m])2=i
⇢(sj) (2)

Note that when there is only one bucket we ignore index i and
denote the HLL value of column X by V X .
Space complexity: In the HLL sketch of the column X (SX) the
HLL value of each bucket is an integer number (1 V X

i `�m).
Thus each bucket needs log(` � m) bits to store V X

i , i.e., total
memory to store the sketch SX is O(2m log(`�m)).

3. EFFICIENT ESTIMATION OF INCLU-
SION COEFFICIENT

In this section, we describe a technique to estimate the inclusion
coefficient using Hyperloglog (HLL) sketches. In a preprocess-
ing step, a HLL sketch [14, 15] is constructed for all columns by
scanning the data only once—in practice these sketches are com-
pact enough to be able to fit into memory. Our algorithm aim to
estimate the inclusion coefficient of two columns X and Y using
pre-computed HLL sketches of X and Y . We also produce an error
bound for the estimate.

3.1 Overview of our Approach
The main idea of our algorithm is to produce an estimate of the

inclusion coefficient between two columns X and Y by comparing
their HLL values (Definition 2). To develop intuition on why com-
paring the HLL values of X and Y can help in finding the inclu-
sion coefficient, we start with the case of a HLL sketch with a single
bucket, and suppose that X and Y have the same number of distinct
values. We examine the following two extreme cases. i) if X = Y
or �(X,Y) = 1, we have pr(V X

 V Y) = pr(V X = V Y) = 1,
because the hash function h in HLL is applied on the same set of
values for both X and Y ; and ii) if X \ Y = ? or �(X,Y) = 0,
pr(V X

 V Y) is at least 0.5. A useful observation here is that
pr(V X

 V Y) increases monotonically as �(X,Y) increases
(we prove it formally later). For example, in Figure 2, we plot
pr(V X

 V Y) as a function of �(X,Y) when |X| = |Y | = 104.
§3.2.1 introduces how to derive this function for general cases.

Clearly given bucket i for each columns X and Y , the event
V X
i <= V Y

i is a Bernoulli trial. When there are multiple buck-
ets since buckets are independent, the events V X

i <= V Y
i are in-

dependent Bernoulli trials [15]. The reason that for a given col-
umn the buckets are independent is the result of the HLL construc-
tion 2.2. from property of the universal hashing, first m bits of a
hash value is independent of the rest `�m bits.

The intuition behind our algorithm is that, using multiple buckets
in the HLL sketches of X and Y , we first estimate pr(V X

 V Y)
given the fact that the event V X

i V Y
i is an independent Bernoulli

trial for each bucket bi (e.g., estimating pr(V X
 V Y) ⇡ 0.8 in

Figure 2). Then, since pr(V X
 V Y) can be written as a function

of the inclusion coefficient, we effectively “lookup” the value of

1099

�(X,Y) that produces the estimated pr(V X
 V Y). For exam-

ple, in Figure 2 by looking up we get �(X,Y) ⇡ 0.62).
Maximizing the likelihood. Our algorithm is based on the max-
imum likelihood estimation (MLE). More formally, let Z = |{i |

V X
i V Y

i }| be the number of buckets (among all 2m buckets)
where V X

i V Y
i . The random variable Z follows a distribution

parameterized by |X|, |Y |, and �(X,Y). We observe Z = z from
HLL sketches of X and Y , and we want to choose �(X,Y) to
maximize the likelihood of our observation.

�mle = argmax�pr (Z = z | �(X,Y) = �) . (3)

Next we introduce our MLE-based estimation algorithm called
BML (Binomial Mean-Lookup). Suppose |X| and |Y | are known
(or estimated from their HLL sketches), there are still two remain-
ing questions. First, we need to characterize the distribution of Z
with �(X,Y) as a parameter (§3.2.1). Second, we need an efficient
algorithm to maximize the likelihood as in Equation 3 (§3.2.2). We
prove the correctness of our algorithm, i.e., show that our algorithm
indeed gives a solution to Equation 3, and analyze its estimation
error in §3.2.3. Finally, we briefly discuss how BML can leverage
additional memory if available to improve accuracy (§3.4).

3.2 BML: Binomial Mean-Lookup Estimator
As shown in Figure 2, pr(V X

 V Y) increases monotonically
as �(X,Y) increases. We first show how to derive the closed form
of pr(V X

 V Y) as a function of �(X,Y) then we discuss the
detail of our inclusion coefficient estimator BML.

3.2.1 Calculating pr(V X
 V Y)

Given columns X and Y , V X and V Y are both random vari-
ables. Let us first consider a simpler case where there is only one
random variable V X and discuss how to find pr(V X

� k), where
k is constant. Then we show how to use this simple case to derive
the general case pr(V X

 V Y).
Given column X with nX distinct values, when there is only one

bucket (m = 0), based on the Definition 2, the HLL value of the
column X is in fact the maximum over nX independent random
variables. As we discussed in §2.2, for each hash value si, we find
the position of the leftmost 1 represented by ⇢(si) and the maxi-
mum of {⇢(si) : si = h(X[i])} is the HLL sketch of the column
X. Obviously every bit in the si is a Bernoulli trial given that it is
a random experiment with exactly two possible outcomes, ”0” and
”1” and from property of the universal hashing every bit of a hash
value is independent from each other. Thus, the bits in si are in-
dependent Bernoulli trials. Each random variable ⇢(si) represents
the leftmost one in si, i.e, first one after ⇢(si) � 1 zeros. Thus
as also pointed out in [14] each random variable is geometrically
distributed and pr(V X

 k) is:

pr(V X k) = ⇧nX
i=1(1� Pr(first k bits are zero)) = (1�

1

2k
)nX

(4)
By Equation 4, pr(V X = k) is pr(V X

 k)�pr(V X
 k� 1).

pr(V X = k) = (1�
1

2k
)nX � (1�

1

2k�1
)nX (5)

Next we show how to use these equations to derive pr(V X

V Y), where both V X and V Y are random variables. When the
intersection of X and Y is non empty V X and V Y are not inde-
pendent. Let T be X \Y . To resolve the dependency of X and Y ,
we consider three disjoint sets: T , X = X \ T , and Y = Y \ T .
As shown in Figure 3 based on the cardinality of these sets there
are three different cases. (1) X and Y are disjoint, i.e. nT = 0,
nX = nX , nY = nY . (2) Y is subset of X , i.e., Y = Y \ T is
empty (nT = nY , nX = nX � nY , nY = 0). (3) X and Y are

partially overlapped Y = Y \ T is not empty (nT 6= 0,nX 6= 0,
nY 6= 0). Next we show how to use Equations 4, and 5 to derive the
pr(V X

 V Y) for each case.
Case1: Clearly, if T = X \ Y is empty (nT = 0), then V X and
V Y are independent. As shown in Figure 3, since we are interested
in V X

 V Y if X and Y are disjoint and V Y = k, then V X

should be at most k. Based on Definition 2 we have 0 k `�m.
Thus the pr(V X

 V Y) with the help of Equations 4 and 5 can be
calculated by Equation 6. Note that since nT = 0, nX = nX and
nY = nY .

pr(V X V Y) =
`�mX

k=0

pr(V X k) ^ pr(V Y = k)

=
`�mX

k=0

(1�
1

2k
)nX

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆ (6)

For example, by Equation 6 when |X| = |Y | = 104, nT = 0,
�(X,Y) is 0 the pr(V X

 V Y) ⇡ 0.58 (Figure 2).
Case2: If Y ⇢ X , then T = Y and Y is empty (nY = 0). Similar
to case 1, if V T = k, then V X should be at most k, where k can
be any value in [0, `�m]. So pr(V X

 V Y) is as follows:

pr(V X V Y) =
`�mX

k=0

pr(V X k) ^ pr(V T = k)

=
`�mX

k=0

(1�
1

2k
)nX

✓
(1�

1

2k
)nT � (1�

1

2k�1
)nT

◆ (7)

For example, when |X| = |Y | = 104, and nT = 104 the �(X,Y)
is 1 and the pr(V X

 V Y) ⇡ 1 (Figure 2).
Case3: Finally, if X and Y are partially overlapped, as shown in
Figure 3, given k there three scenarios 1) V X

 k, V T
 k �

1, V Y = k, 2) V X
 k, V T = k, V Y

 k � 1, and , and 3)
V X

 k, V T = k, V Y = k � 1. Thus the pr(V X
 V Y) can be

derived by Equation 8.

pr(V X V Y) =
`�mX

k=0

pr(V X k) ^ pr(V T k � 1) ^ pr(V Y = k)

+ pr(V X k) ^ pr(V T = k) ^ pr(V Y k � 1)

+ pr(V X k) ^ pr(V T = k) ^ pr(V Y = k)

=
`�mX

k=0

(1�
1

2k
)nX (1�

1

2k�1
)nT

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆

+ (1�
1

2k
)nX

✓
(1�

1

2k
)nT � (1�

1

2k�1
)nT

◆
(1�

1

2k�1
)nY

+ (1�
1

2k
)nX

✓
(1�

1

2k
)nT � (1�

1

2k�1
)nT

◆

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆

(8)
For example, when |X| = |Y | = 104, and nT = 6200 the
�(X,Y) is 0.62 and the pr(V X

 V Y) ⇡ 0.8 (Figure 2).
Multiple buckets: When there are 2m buckets (m > 0), inspired
by stochastic averaging [15] we consider the average case where
the HLL value of column X in Definition 2 will be the maximum
over on average nX

2m independent random variables for each bucket
i and Equations 4 and 5 are updated as:

pr(V X
i k) = (1�

1
2k

)
nX
2m (9)

pr(V X
i = k) = (1�

1

2k
)
nX
2m � (1�

1

2k�1
)
nX
2m (10)

Later in §3.3, we discuss how considering the average case affects
the number of buckets.

1100

Lo
ok

up

=

Figure 2: |X| = |Y | = 104, Lookup ap-
proach

Figure 3: For columns X and Y (|X| � |Y |) cases
are (1) disjoint, (2) overlapped and (3) partially over-
lapped, where T = X \ Y , X = X \ T , Y = Y \ T

=

e

eP e
eP

=

(0.62)=
eP
e

Figure 4: ep and e� are the error of esti-
mating pr(V X V Y) and inclusion coeffi-
cient �(X,Y).

3.2.2 Efficient Algorithm to Maximize the Likelihood
Recall from Equation (3) that we formulate the problem of es-

timating inclusion coefficient as a maximum likelihood estimation
problem, where we observe the number of buckets (among all 2m

buckets) where V X
i V Y

i is z and the goal is to choose �(X,Y)
to maximize the likelihood of our observation. Here we propose
our estimator, BML, to efficiently solve the MLE. BML has two
main steps. Step one is to estimate pr(V X

 V Y) using only SX

and SY . Step two is to use lookup approach to map the estimated
probability into the inclusion coefficient.

Before describing the details of these two steps, we first provide
an overview of how BML works. As shown in Figure 2, pr(V X

V Y) increases by increasing the �(X,Y) (proof in theorem 2).
Clearly, if BML estimates pr(V X

 V Y), it can be used to find
the �(X,Y). For example, let us assume the estimated value of
pr(V X

 V Y) be 0.8 (P̂ = 0.8). As shown in Figure 2, after
projection to blue line (§3.2.1) BML estimates �(X,Y) to be ⇡

0.62. Algorithm 1 shows the detail of the two main steps of BML.
The input to this algorithm is the HLL sketches of column X and
Y (SX ,SY). In §3.3, we discuss how to choose number of buckets
for these sketches.

In the first step, in order to calculate P̂ , since the event V X
i

V Y
i in each bucket bi is an independent Bernoulli trial (§3.1). Thus

P̂ is the ratio of the number of buckets where V X
i V Y

i to the
total number of buckets (2m) (lines 3-7). Later in Theorem 4, we
use Hoeffding inequality to provide the error bound of the P̂ .

Algorithm 1: BML// inclusion coefficient estimator
1: Input: SX ,SY

2: //Step 1: Estimate pr(V X V Y) using SX ,SY

3: z = 0
4: for bi, where i 2 [1, 2m]
5: if V X

i V Y
i then z = z + 1

6: P̂ = z
2m

7: //Step 2: Lookup step
8: nX = Estimated number of distinct values from SX

9: nY = Estimated number of distinct values from SY

10: return �̂(X,Y) = Lookup(P̂, 0,min(nX , nY), nX , nY)

In the second step, BML (Algorithm 1) calls Lookup function
(Algorithm 2) to estimate inclusion coefficient �(X,Y) as the one
that produces the P̂ . The key idea is that since pr(V X

 V Y)
in an increasing function of �(X,Y) (Theorem 2), given an esti-
mated probability P̂ we can use binary search to estimate �(X,Y).
Algorithm 2 shows the pseudo code of the lookup approach. The
input to this algorithm are P̂ , minInc, maxInc, nX , nY , and ✏ where
P̂ is the estimation of the pr(V X

 V Y), minInc and maxInc are

the boundary of the search, nX , nY are the estimated cardinality of
the X and Y ([14]), and ✏ is the error or tolerance. Algorithm 2
is doing binary search over the possible intersection size nT and at
each iteration based on the value of nT depends on which case it is,
it uses the suitable Equation from §3.2.1 (lines 5-8). For example,
if X \ Y = ;, it uses Equation 6. Such simple bisection pro-
cedure for iteratively converging on a solution which is known to
lie inside some interval [a, b] has been introduced in [8] for root
finding. They showed the number of iterations required to ob-
tain an error smaller than ✏ is ln(a�b)�ln ✏

ln 2 . In our problem since
0 �(X,Y) 1, the number of iteration would be � ln ✏

ln 2 . For
example, Algorithm 2 only needs 17 iterations to obtain an error
smaller than ✏ = 10�5. It worth mentioning that the cost of each
iteration is very cheap (analysis in §3.2.3).

Algorithm 2: Lookup // Map P̂ into �̂(X,Y)

1: Input: P̂ , minInc, maxInc, nX , nY , ✏
2: Outputs: �̂(X,Y)
3: nT = minInc+maxInc

2 ; �̂ = nT
nX

4: if (nT = nX & nT = nY) then Prob = 1.0 //X = Y
5: else if (nT = 0) then Prob = Equation 6 //X \ Y = ;

6: else if (nX > nY & nT = nY) then Prob = Equation 7
7: else Prob = Equation 8
8: if |Prob� P̂| ✏ return �̂
9: if Prob > P̂ return Lookup(P̂, nT ,maxInc, nX , nY)

10: if Prob < P̂ return Lookup(P̂,minInc, nT , nX , nY)

3.2.3 Algorithm Correctness and Error Analysis
We provide the following analysis to show the correctness, effi-

ciency, and the error bound of BML.
⇤ We prove pr(V X

 V Y) is an increasing function of �(X,Y),
i.e., in lookup step there is a one to one mapping between the
probability pr(V X

 V Y) and the inclusion coefficient.
⇤ In (3), we formulated the problem of estimating inclusion coeffi-

cient as maximum likelihood problem. We prove that the results
of BML and the MLE formulation (3) are identical.

⇤ We also provide the error bound of the BML for estimation of
the pr(V X

 V Y) and inclusion coefficient.
⇤ Finally, we show the time complexity of the BML Algorithm.

Algorithm Correctness: BML uses binary search in order to find
the mapping between the probability P̂ and the inclusion coeffi-
cient (Algorithm 2). This approach only works if there is a one
to one mapping from pr(V X

 V Y) into �(X,Y). Theorem 2
shows that probability pr(V X

 V Y) (§3.2.1) is an increasing
function of �(X,Y). Clearly an increasing function is a one to
one function, hence is invertible.

1101

THEOREM 2. Given two columns X , and Y with intersection
T , where |T | = nT , probability pr(V X

 V Y) is an increasing
function of �(X,Y).

PROOF. Please find the proof in Appendix B.

In Theorem 3 we prove that the results of Algorithm 1 and the
MLE formulation (3) are identical.

THEOREM 3. The inclusion coefficient estimate �̂ from Algo-
rithm 1 and the inclusion coefficient estimate �mle from MLE for-
mulation (3) are identical.

PROOF. Please find the proof in Appendix C.

Error Bound of the Probability Estimation: Let P and P̂ be
the exact and estimated value of the pr(V X

 V Y) respectively.
BML (Algorithm 1) calculates P̂ as the ratio of the number of buck-
ets where V X

i V Y
i to the total number of buckets 2m. As shown

in Figure 4, this estimation may produce error ep, e.g., P̂ = 0.8
while P = 0.8 ± ep. This figure also show that when P̂ = 0.8,
the lookup step in BML returns 0.62 as the estimated inclusion
coefficient while the actual one is 0.62 ± e� (Figure 4). Thus,
estimation error ep result in e�, i.e., estimation error of the inclu-
sion coefficient �(X,Y). Here we first show that given an error
ep (0 ep 1), what is the probability that the estimation error
of Algorithm 1 be at most ep. Next we show how to use the ep in
order to bound estimation error of the inclusion coefficient.

THEOREM 4. Probability that estimation error of P̂ be at most
ep is: pr

⇣
|P̂ � P| ep

⌘
� 1� 2 exp

�
�2m+1e2p

�

PROOF. Please find the proof in Appendix D.

For example, when m = 7 and estimation error ep is 0.014, the
pr(|P̂ � P| ep) is at least 0.95, i.e., with 95% confidence the
estimation error is at most 1.4%.
Error Bound of the Inclusion Coefficient Estimation: From Fig-
ure 4 one can see that the slope of P (the blue line) at any point
represent the ratio of ep to e�, e.g., when P̂ = 0.8, the estimated
inclusion coefficient is 0.62 and the slope of P at 0.62, P 0(0.62),
is ep

e�
. One can numerically find this slope of P for a given a point

↵, e.g., P 0(0.62) = 0.7. Moreover, as we discussed in theorems 4,
with 95% confidence the estimation error ep is 0.014. Thus e� at
this point can be calculated as 0.014

0.7 = 0.02. More formally at any
point ↵ we have: e� =

ep
P 0(↵) (11)

So far we have shown how to find e� for a given point. Clearly
in Figure 4 the slope of P at different points are different. Thus in
order to bound e� of two columns X and Y the key observation is
to first find the minimum and maximum slopes of P and then the
ratio of ep to those slopes will be the bound of e�. Table 2 shows
the minimum and maximum slopes of the P and the ep bound for
columns X and Y with different cardinalities. For example, when
the cardinality of both X and Y is 104, the minimum and maximum
slopes of P , in Figure 4 are 0.241 and 0.719 and the minimum and
maximum e� are 0.014

0.719 = 0.02 and 0.014
0.241 = 0.05, where the ep

is 0.014. Figures 6 to 8 shows how the slope of P varies for the
columns with different cardinalities. One can see that the slope of
P reduces as the difference of the cardinalities of the X and Y
increases e.g., when |X| = 1000, |Y | = 104 the minimum and
maximum slopes of P are 0.062 and 0.072 respectively. Clearly,
when the slope of P reduces, e� will increase (Table 2).
Time complexity of the BML Algorithm: In BML Algorithm 1,
the estimation of pr(V X

 V Y) using SX ,SY takes 2m steps

Table 2: The minimum and maximum e� for synthetic data
�(X,Y)

|X| |Y | min(
ep
e�

) max(
ep
e�

) max(e�) min(e�)

10000 10000 0.241 0.719 0.05 0.02
9000 10000 0.235 0.646 0.06 0.02
7000 10000 0.219 0.503 0.06 0.03
5000 10000 0.192 0.359 0.07 0.04
3000 10000 0.145 0.216 0.09 0.06
1000 10000 0.062 0.072 0.23 0.2

(lines 4-6), where 2m is the number of buckets. As we discussed in
§3.2.2 the binary search in the lookup step takes � ln ✏

ln 2 iterations to
obtain an error smaller than ✏. The cost of each iteration is in O(`�
m) due to the fact that the Equations 6, 7, 8 used in Algorithm 2 (
lines 6-8) is the sum of `�m values. Thus, the time complexity of
BML Algorithm is O(2m + � ln ✏

ln 2 (` � m)) which is linear in the
number of buckets.

3.3 Choosing Number of Buckets
Algorithm 3 (Appendix A) shows the steps to construct a HLL

sketch for a fixed m. In this section, we first discuss given two
columns X , and Y how to choose the parameter m (number of
bits for the buckets). Next, we show how this algorithm changes
when we consider all pair of columns since parameter m needs to
be varied.
Parameter m for a given column pair: The HLL construction
of column X can be viewed as bins and balls problem [2], where
buckets are the bins and distinct values in column X are balls. As
we discussed in §3.2.1, given column X with nX distinct values,
when there is only one bucket the HLL value of column X is in
fact the maximum over nX independent random variables (Defini-
tion 2). When there are 2m buckets (m > 0), the HLL value of
column X will be the maximum over, on average, nX

2m indepen-
dent random variables for each bucket, i.e, balanced load in each
bucket. In bins and balls problem [2], it is shown that as the number
of bins increases the probability of balanced load will decrease. In
other words, given nX balls and 2m bins the probability that all bins
contains exactly nX

2m balls reduces as the number of bins increases.
Thus in HLL construction of column X , we should also expect that
as the number of buckets increases the probability that all buckets
have the same load decreases. However, it is also shown in [15,
14] that having large number of buckets reduces the variance of
cardinality estimation using a HLL sketch.

Thus in one hand, having less number of buckets increases the
probability of balanced load (nX

2m), but in the other hand more num-
ber of buckets reduces the variance of estimation. For the perfect
balanced load, there should be only one bucket, and for the lowest
variance number of buckets should be nX (m = log(nX)). Given
two columns X , and Y , in this paper, as a trade-off between the
variance and the balanced load we heuristically pick a mid point
between the best variance and the best balanced load by consider-
ing the number of buckets as equation 12. Note to say that it is a
heuristic and it is not the optimal choice.

m =
log(max(nX , nY))

2
(12)

Parameter m for multiple pairs of columns: Our goal is to ef-
ficiently estimate inclusion coefficient for all column pairs in a
database. When we consider multiple pairs of columns Equation 12
might returns different m for a given column. For example, con-
sider three columns X , Y , and Z with cardinality nX , nY , and
nZ where cardinality of X is smaller than Y and Z (nX < nY ,
nX < nZ) and cardinality of Y and Z are not equal (nY 6= nZ). In
this example, for column pair X and Y , parameter m is log(nY)

2 ,

1102

Figure 5: |X| = 5000, |Y | = 104 Figure 6: |X| = 104, |Y | = 5000 Figure 7: |X| = 103, |Y | = 104 Figure 8: |X| = 104, |Y | = 103

while for column pair X and Z parameter m is log(nZ)
2 . Thus, for

column X the m has two values log(nY)
2 and log(nZ)

2 .
To address this problem, we change Algorithm 3 such that it

still reads data only once but it keeps all the sketches for differ-
ent m 2 {0, · · · , l} (value of k can be determined by Theorem 5).
More specifically, after reading the data in line 4, we iterate over
different values of m from 0 to l and the rest of the algorithm is the
same. Observe that even if we keep all sketches for m from 0 to
l, the memory required only doubles because

Pk
m=0 2

m log(`) =
2l+1 log(`), where 2m log(`) is the size of sketch for each column
(§2.2). After constructing the sketches, given two columns X and
Y , we decide which m produces better estimation of inclusion co-
efficient (Equation 12) and we pass those sketches to Algorithm 1.

Finally, we discuss how to set the parameter l. Suppose the mem-
ory bound for each column is M. In Theorem 5, we prove that
given column X , bounded memory M, and ` bits hash function h,
the parameter l should be at most ln(M

log(`))� 1.

THEOREM 5. Given column X , bounded memory M, and `
bits hash function h, l ln(M

log(`))� 1.

PROOF. We hash each value X[i] 2 X only once but we gener-
ate l + 1 sketches h for each m 2 {0, · · · , l}. Since we only keep
the maximum ⇢ for each bucket bj , the amount of memory for each
bucket is log(`). Each sketch has 2m buckets so in total it requiresPl

i=0 2
i
⇥ log(`) = 2l+1

⇥ log(`) bits. Since M is the bounded
memory, 2l+1 should be at most M

log(`) ,i.e. (2l+1

M
log(`)) which

gives us l ln(M
log(`))� 1.

3.4 Discussion: Leveraging more memory
We briefly discuss how BML can leverage additional memory,

when available, to improve its accuracy. It is shown in [14] that in-
creasing the number of buckets for HLL sketches reduces the vari-
ance of cardinality estimation. In other words, the bucketization
(with stochastic averaging) emulates the effect of n hash functions
with only one single hash function [15]. However, as discussed
in §3.3, increasing the number of buckets reduces the probability
of balanced load (nX

2m) which can ultimately reduce the accuracy
BML. Thus, leveraging additional memory by increasing the num-
ber of buckets is not adequate for our problem.

One approach is to combine the use of multiple hash functions
and stochastic averaging in order to take advantage of additional
memory. In other words, given two columns X , and Y we fix num-
ber of buckets to 2m, where m can be find by Equation 12. Then
we use multiple hash functions in HLL construction. BML uses the
sketches built by each hash function in order to estimate inclusion
coefficient (Algorithm 1), and the final estimation of inclusion co-
efficient is the average of those results. A thorough empirical study
of the trade-offs between estimation error and the above method of
leveraging additional memory is an interesting area of future work.

4. EXTENSION OF HLL CONSTRUCTION
TO SUPPORT DELETION

HLL sketches are becoming increasingly popular for estimating
cardinality in different applications, and are even being adopted in
commercial database engines, e.g., [16] uses Hyperloglog to sup-
port approximate distinct count functionality. However, in data
warehousing scenarios, it is not uncommon for recent data to be
added and older data to be removed from the database. Clearly
HLL sketches can be maintained incrementally in the presence of
insertions. When a new data item X[k] inserted to column X , the
same Algorithm 3 finds the hash value of the X[k] (sk = h(X[k]))
and the affected bucket bj can be identified by the leftmost m bits
of sk. It then finds ⇢(sk) which is the position of the leftmost 1
in the l � m bits of sk and it updates the value of bucket j as
V X
j = max(SX [bj], ⇢(sk)) (Definition 2). For example, Figure 1

shows the HLL sketch of the column X , i.e., SX . let us assume a
new value X[k] is added to column X such that the first m bits of
the sk = h(X[k]) represents the first bucket (b1) in SX and ⇢(sk)
be 5. Thus the value of the b1 will be updated to max(4, 5) = 5.
On the other hand, when X[i] is deleted, similar to insertion we
can find which bucket is affected. Lets bj be the affected bucket.
Since X[i] exists in database, ⇢(si) SX [bj]. If ⇢(si) < SX [bj],
no update is required but if ⇢(si) = SX [bj], it means ⇢(si) is the
largest and should be deleted. Since we do not know what the sec-
ond largest value for that bucket, we cannot handle deletion.

We can modify Algorithm 3 such that for each bucket we keep
track of all ⇢(si)s in order to support deletion. Since V X

j is the max
over all those value (Definition 2), and when a deletion happens
knowing the second largest for each bucket is crucial, as shown
in Figure 9, rather than only keeping the maximum value in each
bucket (Figure 1), we keep all ⇢(si)s in a max-heap. Interestingly,
we can show that by maintaining a heap of constant size (at most `)
for each bucket we are able to support incremental deletion. Recall
that during HLL sketch construction, we apply a hash function h :
dom(X) ! {0, 1}` on each X[i] 2 dom(X) which returns `
bits si, and if m is the number of bits for the buckets, ⇢(si) is
always an integer number smaller than equal ` �m (1 ⇢(si)
` � m). For example, if it uses 64 bits hash function and m = 0,
then 1 ⇢(si) 64. In the worst case, if we keep all distinct
⇢(si)s, we are required to keep only ` �m values, which requires
(` � m) log(` � m) bits. This explains why with only a heap of
constant size (at most `�m) incremental deletion can be supported.

One issue we need to consider is that it is possible that X[i] and
X[k] are assigned to same bucket bj and ⇢(si) is equal to ⇢(sj). In
this case, if V X

j = ⇢(si) and X[i] is deleted, the value of bucket bj
(V X

j) should still be ⇢(si) because X[k] 2 dom(X) still exists and
⇢(sj) = ⇢(si). To handle this scenario and keep the max heap size
still limited to `�m, we keep a counter for each node in heap. For

1103

X

i

…

(X[i])
0	 1	 0	 0	 1	
1 m

0…0
b1

si
:

…

(si)

b2^m

…

0	 1	 0		 0	 0	 1	sj
:

…j
 = 3

(sj) = 4

0…0

Buckets

(X[j])
1

4
Max-Heap

3 …<4

1

c 1

Figure 9: HLL sketch of the column X for deletion support.

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

0	 100	 200	 300	 400	

Ca
rd
in
al
it
y	
Lo
g	
sc
al
e	

Columns	

TPCH-10	
TPCDS-300	

Figure 10: Cardinality of the
columns in TPCH-10 and TPCDS-
300

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

0	 1000	 2000	 3000	 4000	

Ca
rd
in
al
it
y	
Lo
g	
sc
al
e	

Columns	

Real-3	
Real-4	

Figure 11: Cardinality of the
columns in Real-3 and Real-4

example in Figure 9, since there is only one X[i] that its ⇢(si) = 4,
value 1 is attached to node 4. So, a node in heap is deleted if the
counter is one; otherwise we just reduce the counter by one.

Space complexity: For each bucket bi the heap size is at most
`�m and each value in the heap is an integer number at most `�m.
Thus each bucket only needs (` �m) log(` �m) bits. Thus total
memory to store the sketch SX is O(2m(`�m) log(`�m)). Since
the space complexity of the original HLL is O(2m log(` � m))
(§2.2), with a constant overhead we are able to support deletion.

5. EXPERIMENTS
The main goals of our experimental evaluation are: (a) Evaluate

the accuracy of the BML estimator for inclusion coefficient against
the existing approach using Bottom-k sketches [31]. (b) Evaluate
the impact of inclusion coefficient estimates instead of exact in-
clusion coefficient on precision and recall of two existing foreign
detection techniques [11, 29]. The key takeaways from the experi-
ments are:
• On databases containing columns with large cardinality BML re-

sults in substantially smaller estimation error (ranging from 0.1
to 0.15) compared to the Bottom-k sketch approach (where er-
rors range from 0.3 to 0.59).

• As expected, Bottom-k performs well when the cardinality of
the columns are small (less than k). In databases where most
columns have cardinality smaller than k, the estimation error of
the BML range between 0.04 and 0.07 and the error of Bottom-k
ranges between 0.03 and 0.06.

• The running time of the BML estimator is comparable to the
approach that uses Bottom-k sketches.

• When we use BML instead of the exact inclusion coefficients, it
has only a small impact on the F1 measure of the two foreign-key
algorithms. In contrast, using the estimator based on Bottom-k
sketches significantly reduces F1 measure in some databases.

5.1 Setup
Hardware and Platform: We implemented algorithm for con-
structing the sketches on Microsoft’s big data system Cosmos [10].
Cosmos is designed to run on large clusters consisting of thou-
sands of commodity servers and it is based on map-reduce model

to achieve parallelism. The rest of our experiments, including the
estimation of inclusion coefficient between pairs of columns using
sketches, were performed on a 6-core, 2.2 GHz, Intel Xeon E-5-
2620 machine with 384 GB of RAM.
Datasets: Table 3 shows the details of the datasets we used in
our experiments. Specifically, we used TPC-H with 10GB scaling
factor and TPCDS with 300GB, 500GB, and 2000GB(2TB) scal-
ing factors as benchmark databases. We also evaluated our tech-
nique on four real-world databases, Real-1 and Real-2 are publicly
available in [23] and Real-3 and Real-4 are real-world customer
databases. Figures 10 and 11 show the distribution over the cardi-
nality of the columns over the synthetic (TPCH-10, TPCDS-300)
and the largest real databases (Real-3, Real-4). As these figures
show, in TPCDS-300, Real-3 and Real-4 there are many columns
with small and large cardinality.

Table 3: Databases used in experimental evaluation.
Database #of tables # of columns # of FKs Size
TPCH-10 9 61 9 10GB
TPCDS-300 25 362 98 300GB
TPCDS-500 25 362 98 500GB
TPCDS-2000 25 362 98 2TB
Geeea(Real-1) 19 128 20 61.4MB
Mondial(Real-2) 34 167 78 3.2MB
Real-3 612 4331 unknown 80GB
Real-4 339 1648 unknown 700GB

Bottom-k: Since the inclusion coefficient estimator in [31] used
Bottom-k sketches, we refer to it as Bottom-k in the rest of this
section. In brief, the inclusion coefficient of X and Y (�(X,Y) =
|X\Y |
|X|) can be calculated using the Jaccard coefficient, i.e., �(X,Y) =
'(X,Y)

'({X[Y },Y) . They use Bottom-k sketches to estimate Jaccard co-

efficient, '(X,Y) = |X\Y |
|X[Y | . Another approach to estimate �(X,Y)

is to divide the estimated value of |X \ Y | [5] by the estimated
value of |X|. The authors in [31] have shown that the Bottom-k ap-
proach is more accurate than the estimator based on the [5] so we
only compare the accuracy of BML against the estimator in [31].
Setting k in Bottom-k: We used a 64-bit hash function (Mur-
murHash 1) for the sketch construction of both HLL and Bottom-k.
For the fair comparison we fixed the amount of memory per column
used by both estimators (BML and Bottom-k). In §3.3 we discussed
how to pick number of buckets m. For example, in TPCDS-300
the maximum number of buckets used by our algorithm is 213, and
since we used 64-bits hash function and HLL keeps the position of
the leftmost 1, so each bucket only requires log 64 = 6 bits. Since
we keep all the sketches for m 2 {0, 1, ..., 13}, total memory is
214 ⇤ 6 bits (12.28 KB). On the other hand, Bottom-k keeps the k
smallest hash values, i.e, k ⇤ 64 bits. Thus, to ensure equal mem-
ory, we configure the k in Bottom-k as k = 214⇤6

64 = 1536. Table 4
shows the m and k parameters for each database.

5.2 Comparing BML and Bottom-k

5.2.1 Execution Time
Figure 12 shows the execution time of estimating �(X,Y) for

all pair of columns belonging to different tables using BML and
Bottom-k. The total execution time depends on the number of such
column-pairs, and hence varies across the different databases. For
example, BML computes the inclusion coefficient of the 17,635,800
column-pairs in Real-3 which takes roughly 600 seconds, i.e., 0.03
ms per column-pair. Not surprisingly, for each database, the execu-
tion times of the BML and Bottom-k are quite close to each other
(BML is slightly more expensive computationally).
1http://code.google.com/p/smhasher/

1104

0	

100	

200	

300	

400	

500	

600	

700	

Re
al-
1	

Re
al-
2	

TP
CH
-10
	

Re
al-
3	

Re
al-
4	

TP
CD
S-3
00
	

TP
CD
S-5
00
	

TP
CD
S-2
00
0	

Es
#
m
a#

o
n
	

Ex
ec
u
#
o
n
	#
m
e	
in
	s
ec
o
n
d
	

BML	
Bo2om-K		

Figure 12: Execution time of es-
timating �(X,Y) for all pair of
columns

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

Re
al-
1	

Re
al-
2	

TP
CH
-10
	

Re
al-
3	

TP
CD
S-3
00
	

Re
al-
4	

TP
CD
S-5
00
	

TP
CD
S-2
00
0	

Er
ro
r	

BML	
Bo(om-K		

Figure 13: Average Error of esti-
mated �(X,Y)

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0-0
.1	

0.1
-0.
2	

0.2
-0.
3	

0.3
-0.
4	

0.4
-0.
5	

0.5
-0.
6	

0.6
-0.
7	

0.7
-0.
8	

0.8
-0.
9	

0.9
-1	

Er
ro
r	

Exact	Inclusion	Coefficient	

BML	
Bottom-k	

Figure 14: Average Error of esti-
mated �(X,Y) in TPCDS-300: all
pair of columns, k = 1536

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0-0
.1	

0.1
-0.
2	

0.2
-0.
3	

0.3
-0.
4	

0.4
-0.
5	

0.5
-0.
6	

0.6
-0.
7	

0.7
-0.
8	

0.8
-0.
9	

0.9
-1	

Er
ro
r	

Exact	Inclusion	Coefficient	

BML	 Bottom-k	

Figure 15: Average Error of es-
timated �(X,Y) in TPCDS-300:
|X| t, |Y | t, t = 5000, k = 1536

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0-0
.1	

0.1
-0.
2	

0.2
-0.
3	

0.3
-0.
4	

0.4
-0.
5	

0.5
-0.
6	

0.6
-0.
7	

0.7
-0.
8	

0.8
-0.
9	

0.9
-1	

Er
ro
r	

Exact	Inclusion	Coefficient	

BML	
Bottom-k	

Figure 16: Average Error of es-
timated �(X,Y) in TPCDS-300:
|X| > t, |Y | > t, t = 5000, k = 1536

0	

0.2	

0.4	

0.6	

0.8	

0-0
.1	

0.1
-0.
2	

0.2
-0.
3	

0.3
-0.
4	

0.4
-0.
5	

0.5
-0.
6	

0.6
-0.
7	

0.7
-0.
8	

0.8
-0.
9	

0.9
-1	

Er
ro
r	

Exact	Inclusion	Coefficient	

BML	
Bottom-k	

Figure 17: Average Error of es-
timated �(X,Y) in TPCDS-300:
|X| > t, |Y | t or |X| t,
|Y | > t, t = 5000, k = 1536

0	

0.05	

0.1	

0.15	

0.2	

0.25	

k*1	 k*2	 k*3	 k*4	 k*5	 k*6	 k*7	 k*8	 k*9	

Er
ro
r	

Cardinality	Threshold	(t)	

BML	 Bottom-k	

Figure 18: Average Error of es-
timated �(X,Y) in TPCDS-300:
|X| > t, |Y | > t, k = 1536

0	

0.05	

0.1	

0.15	

0.2	

k*1	 k*2	 k*3	 k*4	 k*5	 k*6	 k*7	 k*8	 k*9	

Er
ro
r	

Cardinality	Threshold	(t)	

Bottom-k	 BML	

Figure 19: Average Error of es-
timated �(X,Y) in TPCDS-300:
|X| > t, |Y | t or |X| t,
|Y | > t, k = 1536

Table 4: Parameter m is the number of bits that define a bucket
in HLL, and k and number hash values kept for Bottom-k.

TPCH-
10

TPCDS-
300

TPCDS-
500

TPCDS-
2000

Real-1 Real-2 Real-3 Real-4

m 9 13 15 18 6 5 11 16
k 96 1536 3072 24576 12 6 384 6144

5.2.2 Estimation Error
Next we compare the average error of the two estimators. The

estimation error is the difference between the estimated inclusion
coefficient �̂ and its actual value �(X,Y), i.e.,|�(X,Y)��̂|. Re-
call that both estimators rely on sketches that use an equal amount
of memory (§5.1). As shown in Figure 13, the estimation error in
the databases where most columns have small cardinality (Real-1,
Real-2, and TPCH-10) is almost similar for the BML and Bottom-
k. However, BML results in substantially smaller error for the other
databases (TPCDS-300, Real-3, and Real-4) where many columns
have large cardinality (significantly larger than k).

To better understand these results, Figures 14-17 breakdown the
result for TPCDS-300 database. In Figure 14, the x-axis shows the
buckets that each bucket (lets say a � b) contains those column
pairs whose exact inclusion coefficients are in [a, b), and the y-axis
represents the absolute error of BML and Bottom-k for those col-
umn pairs. For example, 0.2� 0.3 in x-axis is the bucket contains
those columns pairs whose their exact inclusion coefficients are in
[0.2,0.3) and the error of both BML and Bottom-k (k=1536 in Ta-
ble 4) is around 0.2. The results show that in TPCDS-300 when
exact inclusion coefficient is smaller than 0.5, Bottom-k is slightly
better than BML, however, BML performs better when inclusion
coefficient is large. In applications like foreign-key detection where
the high containment (e.g., inclusion coefficient � 0.8) is an im-
portant signal an estimator with low error for large coefficients is
preferable. Next, we show that, the reason is the cardinality of the

columns. As we discussed in §2.1.1, the error of the inclusion co-
efficient estimators depends on the cardinality of the columns.
Analyzing error based on cardinality threshold t: In Figures 15-
17, we evaluate the error of the estimators over three different sets
of column-pairs in TPCDS-300 based on a cardinality threshold
t = 5000 (we later vary t in Figures 18, 19). In particularly, Fig-
ure 15 only considers the column-pairs (X ,Y) where both columns
have cardinality less than 5000. Figure 16 considers the column-
pairs where both columns have cardinality more than 5000. Fig-
ure 17 considers pairs of columns where the cardinality of one
column is smaller than 5000 and the cardinality of the other col-
umn is more than 5000. When the cardinality of the columns are
small, Bottom-K performs better than BML (Figure 15). In effect,
for columns with cardinality less than k, if a good hash function
is used, Bottom-k keeps the hashes of all distinct values, thereby
behaving similar to full hash table of the column. On the other
hand, for large columns (Figure 16) and the one that one column is
large and the other column is small (Figure 17), BML outperforms
Bottom-k significantly.

Figures 18, and 19 show the error of BML against Bottom-K
when the cardinality threshold t in above experiments is varied.
We show the cardinality threshold t as a factor of k in Bottom-k.
Figures 18 shows the error for those columns whose cardinalities
are more than t, and Figure 19 shows the error when the cardinality
of one column is smaller than t and the cardinality of the other
column is more than t. Figure 18 shows that for the large columns
BML significantly outperforms Bottom-K. In the unbalanced case
(Figure 19), when t is exactly k, Bottom-k performs slightly better
than BML but as t grows BML outperforms Bottom-K.
Effect of deletion: Next we evaluate the error and scalability of the
version of BML that uses a HLL sketch that supports data deletions
(discussed in §4) vs. Bottom-k . Recall, that we keep a constant size

1105

0	

0.2	

0.4	

0.6	

0.8	

1	

0%	 10%	 15%	 20%	 25%	 30%	

Er
ro
r	

Percentage	of	Deletion	

BML	
Bottom-k	(1536)		
Bottom-k	(12288)	

Figure 20: Deletion: Average Er-
ror of estimated � in TPCDS-300
when data is read once

0	

2000	

4000	

6000	

8000	

10000	

0%	 10%	 15%	 20%	 25%	 30%	

Ex
e
cu
ti
o
n
	t
im

e
	in
	s
e
co
n
d
	

Percentage	of	Deletion	

BML	
Bottom-k	(1536)		
Bottom-k	(12288)	

Figure 21: Deletion: Execution
time in TPCDS-300 when Bottom-
k reads data multiple times

heap for each HLL bucket (at most 64-m) to support deletion. Thus,
for the fair comparison we again fix the memory and increased the
parameter k for Bottom-k. For example, in TPCDS-300, k is in-
creased to 12288 to ensure equal memory for both estimators. We
show the results for both k=1536 and k=12288. Bottom-k can not
support deletion because it only keeps the k smallest hashed val-
ues and if one of them deleted as a consequence of data deletion, it
needs to access the data again to find a replacement for the deleted
hash value. We consider two scenarios. In the first scenario, both
algorithms only read data once and after constructing the sketches
we evaluate how the error varies when deletion occurs. Note that in
this scenario, if i values in the Bottom-k sketch are deleted, it effec-
tively behaves like a Bottom-(k-i) sketch. In the second scenario,
we allow Bottom-k to read the data more than once in order to sup-
port deletion and always keep k entries. Figures 20 and 21 shows
the result of these two scenarios respectively. As one can see, as
more data is deleted the error of the Bottom-k increases while, the
error of BML remains the same. On the other hand, when Bottom-k
is allowed to read the data more than once its total execution time is
increased. The execution time of the BML increased only slightly
because when deletion occurs it needs to modify the max-heaps in
the affected buckets.

5.3 Foreign-Key detection: an application of
inclusion coefficient estimation

Foreign-key relationships (FKs) in relational databases are valu-
able for a variety of tasks such as data integration, join path enu-
meration, and query optimization. Despite the importance, many
application designers do not declare FKs in the database due to
performance considerations and data inconsistencies. For X ! Y
to be a FK, Y must be unique, and X must be contained in Y .
Although a strict definition of FK requires uniqueness and contain-
ment properties to hold exactly, in practice some tolerance is crucial
to accommodate for the fact that real-world data can be dirty. Prior
work, e.g. [29, 11] use inclusion coefficients to prune candidate
FKs. In other words, they prune any pair of columns whose inclu-
sion coefficients is less than a threshold. Since the computation of
exact inclusion coefficients are expensive so having an estimator
with fairly small error that reduces the cost is important. In this set
of experiments, we empirically investigate how the precision and
recall of the two FK detection algorithms [29, 11], change when
we use inclusion coefficient estimates rather than the exact inclu-
sion coefficients.

To evaluate how our estimator performs for these algorithms
we have considered three versions of each algorithm in [29, 11].
Rostin-Exact, and Chen-Exact prune column pairs whose exact in-
clusion coefficients are smaller than 1.0. While Rostin-BottomK
and Chen-BottomK use the inclusion coefficient estimator in [31];

Rostin-BML and Chen-BML use BML. Note that when we use es-
timated inclusion coefficients, we prune those columns whose esti-
mated inclusion coefficients are smaller than 0.95 (rather than one).
We focus on the databases where the true FKs are known (Table 3),
so that we can compute precision and recall. Since the FKs in Real-
3 and Real-4 are not known, we do not use them in our experiments.

5.3.1 Results
The FK detection algorithm in [11] ranks the column pairs by

their similarity of column names and table names and it only con-
siders those pairs whose similarity score is larger than a threshold
t. It then iteratively adds the high ranked pair as FK which does not
conflict with the existing FKs. To figure this threshold, we ran the
Chen-Exact algorithm with different t. Figure 22, shows the preci-
sion(P), Recall(R), and F1-measure(F1) of [11] when exact inclu-
sion coefficients are used for pruning (Chen-Exact) and threshold
are t = 0.6, t = 0.7, t = 0.8. As one can see the accuracy of
this algorithm depends on the threshold, e.g., for Real-2 when the
threshold is greater than 0.6, F1-measure is zero. Moreover, we
observed that the iterative approach may generate false positive re-
sult which increase the false negative. For example, at step i it may
fixes a pair as FK which is false positive and in step j > i there
is a pair which should be FK but the algorithm prunes it because it
conflicts with the one it fixed as FK in step i. For the rest of experi-
ments for [11] we set t = 0.6, since based on Figure 22 it performs
better in almost all of our datasets. Moreover, [29] used state of the
art classifiers like naive bayes classifier, SVM, and decision tree for
FK detection problem. Here we show the results for the SVM.

Figures 23 and 24 show the result of the Chen-Exact and Rostin-
Exact against the algorithms with estimated inclusion coefficients,
i.e., Chen-BottomK, Chen-BML (Figures 23) and Rostin-BottomK,
Rostin-BML (Figures 24). The accuracy of both Chen-BottomK
and Chen-BML for the TPCH-10, Real-1, and Real-2 are almost
similar to Chen-Exact. Similarly for those datasets the accuracy
of Rostin-BottomK and Rostin-BML are almost similar to Rostin-
Exact (Figures 24). The reason is that, as shown in Figure 13, for
these small datasets the error of both Bottom-k and BML are small.
However, in TPCDS-300, (see Figures 23 and 24) Chen-BML per-
forms better than Chen-BottomK and Rostin-BML performs better
than Rostin-BottomK. The reason is that, as shown in Figure 14,
the error of the Bottom-k approach is high when the exact inclu-
sion coefficient is greater than 0.9 and these algorithms prune those
columns that their inclusion coefficients are smaller than 0.95. So
Chen-BottomK prunes those column-pairs whose actual inclusion
coefficients are high; which lead to false negatives and thereby re-
duces recall of FK detection. Conversely, there are some column-
pairs whose exact inclusion coefficients are in fact small but due to
overestimation by Bottom-k, they are not pruned, which leads to
false positives and reduces precision of FK detection.

In summary, our experimental results show that when we use
our inclusion coefficient estimates the accuracy of the [29, 11] is
almost identical to when the exact inclusion coefficients are used.
Moreover, for the large databases, if we use the existing inclusion
coefficient estimator (Bottom-k) proposed in [31], the precision and
recall are significantly reduced.

6. RELATED WORK
Inclusion Dependency Discovery: In this paper, we propose an ef-
ficient general approach to estimate inclusion coefficient. Inclusion
dependency (IND) is an special case where the inclusion coefficient
is exactly one. Finding all INDs in a dataset has been extensively
studied in the literature [17, 28, 4, 22, 21, 24]. The authors in [22]

1106

0	

0.2	

0.4	

0.6	

0.8	

1	

P	 R	 F1	 P	 R	 F1	 P	 R	 F1	 P	 R	 F1	

TPCH-10	 TPCDS-300	 Real-1	 Real-2	

Chen-Exact	(t=0.8)	
Chen-Exact	(t=0.7)	
Chen-Exact	(t=0.6)	

Figure 22: Result of Chen-Exact with thresh-
old of 0.8, 0.7 and 0.6.

0	

0.2	

0.4	

0.6	

0.8	

1	

P	 R	 F1	 P	 R	 F1	 P	 R	 F1	 P	 R	 F1	

TPCH-10	 TPCDS-300	 Real-1	 Real-2	

Chen-Exact	 Chen-BottomK	 Chen-BML	

Figure 23: Result of Chen-Exact, Chen-
BottomK, and Chen-BML with threshold of 0.6

0	

0.2	

0.4	

0.6	

0.8	

1	

P	 R	 F1	 P	 R	 F1	 P	 R	 F1	 P	 R	 F1	

TPCH-10	 TPCDS-300	 Real-1	 Real-2	

Rostin-Exact	 Rostin-BottomK	 Rostin-BML	

Figure 24: Result of Rostin-Exact, Rostin-
BottomK, and Rostin-BML using SVM.

propose an algorithm based on association rule mining and clique-
finding to discover INDs. SPIDER [4] needs two passes over the
data, i.e., one pass for the sort and second pass for the contain-
ment check. It has large sorting overhead and if a column does
not fit into main memory, external sorting is required. BINDER on
the other hand uses divide and conquer approach, which allows to
handle large datasets [28]. SPIDER and BINDER requires to copy
all or part of the data to the disk which has I/O overhead and they
pass over the data more than once. An approximate algorithm for
the n-ary IND discovery problem studied in [17]. Note that partial
inclusion is not addressed in these works. Partial inclusion depen-
dency is formally defined in [21]. They reduce the search space to
only those columns in query workloads. However, [21] uses full
join to find inclusion coefficients, which can be expensive. Condi-
tional dependencies have been studied in [3, 24, 1]. A conditional
dependency is a dependency with a limited scope defined by con-
ditions over one or more attributes. Our proposed BML estimator
is more general than IND discovery algorithms [17, 28, 22, 21]
because for every pair of columns it returns an estimate of their in-
clusion coefficient. In order to find exact INDs, BML can be used to
prune those columns whose inclusion coefficients are smaller than
a threshold and a IND discovery algorithms is required to validate
whether the exact containment requirement is satisfied or not. We
used Metanome [27] to evaluate the memory consumption and ex-
ecution time of the BINDER vs. BML (see Appendix E for results).
Inclusion Coefficient Estimation: There has been prior work on
estimating the inclusion coefficient efficiently using the Jaccard co-
efficient or set intersection estimators. Jaccard coefficient '(X,Y)
has been used for inclusion coefficient estimation, i.e., �(X,Y) =

'(X,Y)
'(X[Y,X) [31]. There has been a considerable amount of work for
estimating the Jaccard coefficients between the two sets [7, 20, 19,
30, 26, 12]. The authors in [31] use the Jacard coefficient estimator
based on Bottom-k sketches [12] for the inclusion coefficient esti-
mation. Bottom-k sketch uses one hash function and it keeps the k
smallest hash values. Morover, [31] uses set intersection estimation
in [5] for inclusion coefficient estimation as well. There exist sev-
eral prior work in set intersection problem over large datasets where
the memory and the pass over the data is limited [18, 6, 5, 13]. For
example [18] proposes an algorithm for efficiently computing as-
sociations, for example, word associations (co-occurrences, or joint
frequencies) which can be interpreted as a set intersection problem.
The authors in [6] propose a sampling technique to check the re-
semblance and containment of the two documents. The authors
in [13] propose an algorithm based on the Maximum Likelihood
method. They use n different hash functions and they rely on other
sketches like Hyperloglog and bottom-k sketches for the cardinal-
ity and union cardinality estimation. Among these works [31] uses
the set intersection estimator [5] for inclusion coefficient estimation
and they already show that the inclusion coefficient estimator based

on Jaccard coefficient estimator based on Bottom-k [12] is more ac-
curate than the one based on set intersection estimator in [5]. Thus,
in our experiment, we evaluate the accuracy of our inclusion coef-
ficient estimator against the estimator in [31] which uses Bottom-k
for the Jaccard coefficient estimator.
Foreign-key Detection: There has been much prior work in foreign-
key (FK) detection, e.g. [29, 31, 11]. A machine learning technique
to find the single-column FKs from the INDs is proposed by [29].
They first use the SPIDER [4] to find INDs. Then, they define a set
of characteristics/features, which are fed into a binary classification
to discover the FKs. They use different classifiers but based on their
result no classifier is consistently the best across all databases. Dis-
covering FKs in PowerPivot is studied in [11], where the data fits
in the memory and it has in-memory dictionaries of each column
that allows efficient lookup the cardinality of each column and ex-
ecute random sample based probing. The authors in [31] integrate
the IND detection in multi-column FK discovery using two passes
over the data. However, they assume all primary keys are defined
and in most cases the values in a FK column form a nearly uniform
random sample of values in the key column.

7. CONCLUSION
In this paper, we present a new estimator, BML, for inclusion

coefficient based on Hyperloglog sketches that results in signifi-
cantly lower error compared to existing approaches. Our experi-
mental results confirms the effectiveness of our algorithms on in-
dustry benchmarks such as TPC-H and TPC-DS as well as several
real-world databases. We show how to incrementally maintain Hy-
perLogLog sketches with data deletions; this broadens the applica-
bility of these sketches to additional scenarios. In the future, it is
also interesting to consider if hybrid approaches that combine HLL
and Bottom-k sketches can further improve accuracy. One chal-
lenge in such a hybrid approach is determining how much memory
to assign to each of the sketches to obtain the greatest accuracy.

8. ACKNOWLEDGMENT
We thank Arnd Christian König for his insightful comments.

APPENDIX
A. HLL CONSTRUCTION ALGORITHM

Algorithm 3 shows the steps to construct HLL sketches for a set
of columns C. This algorithm reads data only once and for each
column X 2 C it generates the HLL sketch with 2m buckets.

B. PROOF OF THEOREM 2
PROOF. We first show pr(V X

 V Y) is an increasing function
of nT . Since the inclusion coefficient �(X,Y) is nT

nX
, pr(V X

1107

Algorithm 3: ConstructHLLSketch
1: Input: Columns: C, Number of buckets: 2m, Hash function: h
2: Output: SX = {b1 : V X

1 , · · · , b2m : V X
2m}

3: for column X 2 C
4: for value X[i] 2 X
5: si = h(X[i])
6: j = bucket index determined by the leftmost m bits of si
7: ⇢(si) = position of the leftmost 1 in the l �m bits of si
8: if bj in SX then V X

j = Max(SX [bj], ⇢(si)) else V X
j = ⇢(si)

9: SX .Add(bj , V X
j)

V Y) is also an increasing function of �(X,Y). Let us assume
nT = t. Equation 8 can be written as:

pr(V X V Y) =
`�mX

k=0

(1�
1

2k�1
)t(1�

1

2k
)nX

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆

+

(1� 1

2k
)t � (1� 1

2k�1)
t

(1� 1
2k�1)

t

!
(1�

1

2k�1
)nY

+

(1� 1

2k
)t � (1� 1

2k�1)
t

(1� 1
2k�1)

t

!

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆�

(13)

for nT = t+ 1, this equation will be update to:

pr(V X V Y) =
`�mX

k=0

(1�
1

2k�1
)t+1(1�

1

2k
)nX�1

✓
(1�

1

2k
)nY�1 � (1�

1

2k�1
)nY�1

◆

+

(1� 1

2k
)t+1 � (1� 1

2k�1)
t+1

(1� 1
2k�1)

t+1

!
(1�

1

2k�1
)nY�1

+

(1� 1

2k
)t+1 � (1� 1

2k�1)
t+1

(1� 1
2k�1)

t+1

!

✓
(1�

1

2k
)nY�1 � (1�

1

2k�1
)nY�1

◆�

(14)

We show that for a given k the term in Equation 14 is larger than
the term in Equation 13.

(1�
1

2k�1
)t+1(1�

1

2k
)nX�1

✓
(1�

1

2k
)nY�1 � (1�

1

2k�1
)nY�1

◆

+

(1� 1

2k
)t+1 � (1� 1

2k�1)
t+1

(1� 1
2k�1)

t+1

!
(1�

1

2k�1
)nY�1

+

(1� 1

2k
)t+1 � (1� 1

2k�1)
t+1

(1� 1
2k�1)

t+1

!

✓
(1�

1

2k
)nY�1 � (1�

1

2k�1
)nY�1

◆�

� (1�
1

2k�1
)t(1�

1

2k
)nX

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆

+

(1� 1

2k
)t � (1� 1

2k�1)
t

(1� 1
2k�1)

t

!
(1�

1

2k�1
)nY

+

(1� 1

2k
)t � (1� 1

2k�1)
t

(1� 1
2k�1)

t

! ✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆�

=

✓
(1�

1

2k
)nY � (1�

1

2k�1
)nY

◆
1

2k � 1
> 0

(15)

C. PROOF OF THEOREM 3
PROOF. As we proved in Theorem 2 given columns X and Y

the pr(V X
 V Y) is an increasing function of �(X,Y). Let

pr(V X
 V Y) be ↵(�), (↵(�) 2 [0, 1]). For the 2m buckets

of HLL sketches of X and Y let z1,z2, · · · , z2m be the indepen-
dent bernoulli random variables where zi is one when V X

i V Y
i

and zero otherwise. Thus in 2m buckets, the probability of getting
exactly z buckets where V X

i V Y
i is given by:

g(�) = B(z; 2m,↵(�)) =
⇣2m

z

⌘
↵(�)z(1� ↵(�))2

m�z = f(↵(�))

(16)
Where f(x) =

�
2m

z

�
xz(1 � x)2

m�z for x 2 [0, 1] and obvi-
ously, max� g(�) = maxx f(x). Based on MLE we have �mle =
argmax�g(�). Let �̂ be the inclusion coefficient estimate from
our Algorithm 1. In fact to show that �̂ = �mle we should prove
g(�̂) = max� g(�). Our Algorithm 1 has two important steps,
it first estimates the ↵(�) as Z

2m (lines 3-7), then it uses binary
search to estimate �̂, where ↵(�) = z

2m (line 8). Here are two
observations that we used in this proof.
1. Clearly for bionomial distribution function f(x), its mean is the

argmaxxf(x). Thus in the first step of our algorithm we have:
x⇤ = argmaxxf(x) =

z

2m
(17)

2. The binary search in our algorithm is equivalent to ↵�1(z
2m).

�̂ = ↵�1(
z

2m
) (18)

Using these observations we now prove g(�̂) = max� g(�).

g(�̂) = f(↵(�̂)) = f(↵(↵�1(x⇤)) //by Equation 18

= f(x⇤) //by Equation 17

= maxxf(x) //by Equation 16

= max�g(�) = �mle //by Equation 3

(19)

D. PROOF OF THEOREM 4
PROOF. For 2m buckets let z1,z2, · · · , z2m be the independent

random variables where zi is one when V X
i V Y

i and zero other-
wise, i.e., each zi is an independent Bernoulli trial. In Algorithm 1,
P̂ = Z

2m , where Z =
P2m

i=1 zi. Since Z is sum of independent
random variables, using the Hoeffding inequality we have:

pr
⇣
|P̂ � P| ep

⌘
= pr

⇣
P � ep P̂ P + ep

⌘

= pr (2m(P � ep) Z 2m(P + ep))

� 1� 2 exp
�
�2m+1e2p

�
(20)

E. BINDER vs. BML
We evaluated the memory consumption and the execution time

of the BINDER vs BML over TPCDS-300. BINDER uses file inputs
or database inputs. However [28], already showed that BINDER
performs worse on database inputs than on file inputs. Thus we
used BINDER on file inputs and we ran it on the same machine we
ran BML (§5.1). We imported the TPCDS-300 data as csv files
(240GB) in the Metanome [27]. We varied amount of memory in
BINDER. BINDER was able to find 3861 unary INDs in 371, 403,
and 460 minutes, where the memory sets to 384GB, 250GB, and
128GB respectively. Similar to BINDER our BML estimator read
data only once but it only keeps HLL sketches. As we discussed in
§5.1, total memory of sketches per column in TPCDS-300 is 214⇤6
bits and total number of columns are 362 (Table 3). Thus total
memory consumption of BML is 4.4GB and as shown in Figure 12
BML takes 454 seconds to estimate the inclusion coefficients of all
column pairs. Thus, BML is one to two orders of magnitude faster,
and can work with relatively small amounts of memory.

1108

F. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational

data: a survey. PVLDB, 24(4):557–581, 2015.
[2] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced

allocations. SIAM, 29(1):180–200, 1999.
[3] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and

F. Naumann. Discovering conditional inclusion
dependencies. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management,
CIKM ’12, pages 2094–2098, New York, NY, USA, 2012.
ACM.

[4] J. Bauckmann, U. Leser, and F. Naumann. Efficiently
computing inclusion dependencies for schema discovery. In
Workshop-Proceedings of the ICDE, 2006.

[5] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation under
multiset operations. In SIGMOD, SIGMOD ’07, pages
199–210, New York, NY, USA, 2007. ACM.

[6] A. Broder. On the resemblance and containment of
documents. In Proceedings of the Compression and
Complexity of Sequences 1997, pages 21–, Washington, DC,
USA, 1997. IEEE Computer Society.

[7] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations
(extended abstract). In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages
327–336, New York, NY, USA, 1998. ACM.

[8] R. L. Burden and J. D. Faires. Numerical analysis. 2011.
[9] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N.

Wegman. Exact and approximate membership testers. In
Proceedings of the 10th Annual ACM Symposium on Theory
of Computing, May 1-3, 1978, San Diego, California, USA,
pages 59–65, 1978.

[10] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: Easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276,
2008.

[11] Z. Chen, V. Narasayya, and S. Chaudhuri. Fast foreign-key
detection in microsoft sql server powerpivot for excel.
PVLDB, 7(13):1417–1428, 2014.

[12] E. Cohen and H. Kaplan. Summarizing data using bottom-k
sketches. In Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, pages
225–234. ACM, 2007.

[13] R. Cohen, L. Katzir, and A. Yehezkel. A minimal variance
estimator for the cardinality of big data set intersection. In
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 95–103. ACM, 2017.

[14] P. Flajolet, E. Fusy, O. Gandouet, and et al. Hyperloglog:
The analysis of a near-optimal cardinality estimation
algorithm. In Proceedings of the 2007 international
conference on analysis of algorithms, 2007.

[15] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,

31(2):182–209, 1985.
[16] S. Heule, M. Nunkesser, and A. Hall. Hyperloglog in

practice: algorithmic engineering of a state of the art
cardinality estimation algorithm. In Proceedings of the 16th
International Conference on Extending Database
Technology, pages 683–692. ACM, 2013.

[17] S. Kruse, T. Papenbrock, C. Dullweber, M. Finke,
M. Hegner, M. Zabel, C. Zollner, and F. Naumann. Fast
approximate discovery of inclusion dependencies.
Datenbanksysteme für Business, Technologie und Web (BTW
2017), 2017.

[18] P. Li and K. W. Church. A sketch algorithm for estimating
two-way and multi-way associations. Comput. Linguist.,
33(3):305–354, 2007.

[19] P. Li, A. Owen, and C.-H. Zhang. One Permutation Hashing
for Efficient Search and Learning. ArXiv e-prints, 2012.

[20] P. Li, A. Shrivastava, and A. C. König. b-bit minwise hashing
in. CoRR, abs/1205.2958, 2012.

[21] S. Lopes, J.-M. Petit, and F. Toumani. Discovering
interesting inclusion dependencies: Application to logical
database tuning. Inf. Syst., 27(1):1–19, 2002.

[22] F. D. Marchi and J.-M. Petit. Zigzag: A new algorithm for
mining large inclusion dependencies in databases. In
Proceedings of the Third IEEE International Conference on
Data Mining, ICDM ’03, pages 27–, Washington, DC, USA,
2003. IEEE Computer Society.

[23] J. Motl and O. Schulte. The CTU prague relational learning
repository. CoRR, abs/1511.03086, 2015.

[24] F. Naumann. Data profiling revisited. SIGMOD Rec.,
42(4):40–49, 2014.

[25] R. Pagh, G. Segev, and U. Wieder. How to approximate a set
without knowing its size in advance. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 80–89,
2013.

[26] R. Pagh, M. Stöckel, and D. P. Woodruff. Is min-wise
hashing optimal for summarizing set intersection? In
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’14,
pages 109–120, New York, NY, USA, 2014. ACM.

[27] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and
F. Naumann. Data profiling with metanome. PVLDB,
8(12):1860–1863, 2015.

[28] T. Papenbrock, S. Kruse, J.-A. Quiané-Ruiz, and
F. Naumann. Divide and conquer-based inclusion
dependency discovery. PVLDB, 8(7):774–785, 2015.

[29] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and
U. Leser. A machine learning approach to foreign key
discovery. In WebDB, 2009.

[30] A. Shrivastava and P. Li. Improved Densification of One
Permutation Hashing. ArXiv e-prints, 2014.

[31] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc,
and D. Srivastava. On multi-column foreign key discovery.
PVLDB, 3(1-2):805–814, 2010.

1109

