
Accelerating Dynamic Graph Analytics on GPUs

Mo Sha, Yuchen Li, Bingsheng He, Kian-Lee Tan
School of Computing, National University of Singapore, Singapore

{sham, liyuchen, hebs, tankl}@comp.nus.edu.sg

ABSTRACT
As graph analytics often involves compute-intensive oper-
ations, GPUs have been extensively used to accelerate the
processing. However, in many applications such as social
networks, cyber security, and fraud detection, their repre-
sentative graphs evolve frequently and one has to perform a
rebuild of the graph structure on GPUs to incorporate the
updates. Hence, rebuilding the graphs becomes the bottle-
neck of processing high-speed graph streams. In this paper,
we propose a GPU-based dynamic graph storage scheme
to support existing graph algorithms easily. Furthermore,
we propose parallel update algorithms to support e�cient
stream updates so that the maintained graph is immediately
available for high-speed analytic processing on GPUs. Our
extensive experiments with three streaming applications on
large-scale real and synthetic datasets demonstrate the su-
perior performance of our proposed approach.

PVLDB Reference Format:

M. Sha, Y. Li, B. He, and K.-L. Tan. Accelerating Dynamic
Graph Analytics on GPUs. PVLDB, 11(1): xxxx-yyyy, 2017.
DOI: https://doi.org/10.14778/3136610.3136619

1. INTRODUCTION
Due to the rising complexity of data generated in the big

data era, graph representations are used ubiquitously. Mas-
sive graph processing has emerged as the de facto standard
of analytics on web graphs, social networks (e.g., Facebook
and Twitter), sensor networks (e.g., Internet of Things) and
many other application domains which involve high-dimen-
sional data (e.g., recommendation systems). These graphs
are often highly dynamic: network tra�c data averages 109

packets/hour/router for large ISPs [23]; Twitter has 500 mil-
lion tweets per day [41]. Since real-time analytics is fast be-
coming the norm [27, 12, 36, 44], it is critical for operations
on dynamic massive graphs to be processed e�ciently.

Dynamic graph analytics has a wide range of applications.
Twitter can recommend information based on the up-to-
date TunkRank (similar to PageRank) computed based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 1
Copyright 2017 VLDB Endowment 2150-8097/17/09... $ 10.00.
DOI: https://doi.org/10.14778/3136610.3136619

a dynamic attention graph [14] and cellular network oper-
ators can fix tra�c hotspots in their networks as they are
detected [28]. To achieve real-time performance, there is
a growing interest to o✏oad graph analytics to GPUs due
to its much stronger arithmetical power and higher mem-
ory bandwidth compared with CPUs [45]. Although ex-
isting solutions, e.g. Medusa [58] and Gunrock [50], have
explored GPU graph processing, we are aware of only one
work [30] that considers a dynamic graph scenario which is
a major gap for running analytics on GPUs. In fact, a de-
lay in updating a dynamic graph may lead to undesirable
consequences. For instance, consider an online travel insur-
ance system that detects potential frauds by running ring
analysis on profile graphs built from active insurance con-
tracts [5]. Analytics on an outdated profile graph may fail to
detect frauds which can cost millions of dollars. However,
updating the graph will be too slow for issuing contracts
and processing claims in real time, which will severely influ-
ence legitimate customers’ user experience. This motivates
us to develop an update-e�cient graph structure on GPUs
to support dynamic graph analytics.
There are two major concerns when designing a GPU-

based dynamic graph storage scheme. First, the proposed
storage scheme should handle both insertion and deletion
operations e�ciently. Though processing updates against
insertion-only graph stream could be handled by reserving
extra spaces to accommodate updates, this näıve approach
fails to preserve the locality of the graph entries and cannot
support deletions e�ciently. Considering a common sliding
window model on a graph edge stream, each element in the
stream is an edge in a graph and analytic tasks are per-
formed on the graph induced by all edges in the up-to-date
window [51, 15, 17]. A näıve approach needs to access the
entire graph in the sliding window to process deletions. This
is obviously undesirable against high-speed streams. Sec-
ond, the proposed storage scheme should be general enough
for supporting existing graph formats on GPUs so that we
can easily reuse existing static GPU graph processing solu-
tions for graph analytics. Most large graphs are inherently
sparse. To maximize the e�ciency, existing works [6, 33, 32,
30, 53, 24] on GPU sparse graph processing rely on opti-
mized data formats and arrange the graph entries in certain
sorted order, e.g. CSR [33, 6] sorts the entries by their
row-column ids. However, to the best of our knowledge, no
schemes on GPUs can support e�cient updates and main-
tain a sorted graph format at the same time, other than
a rebuild. This motivates us to design an update-e�cient

107

107-120

sparse graph storage scheme on GPUs while keeping the lo-
cality of the graph entries for processing analytics instantly.

In this paper, we introduce a GPU-based dynamic graph
analytic framework followed by proposing the dynamic graph
storage scheme on GPUs. Our preliminary study shows that
a cache-oblivious data structure, i.e., Packed Memory Ar-
ray (PMA [10, 11]), can potentially be employed for main-
taining dynamic graphs on GPUs. PMA, originally designed
for CPUs [10, 11], maintains sorted elements in a partially
contiguous fashion by leaving gaps to accommodate fast up-
dates with a constant bounded gap ratio. The simultane-
ously sorted and contiguous characteristic of PMA nicely fits
the scenario of GPU streaming graph maintenance. How-
ever, the performance of PMA degrades when updates oc-
cur in locations which are close to each other, due to the
unbalanced utilization of reserved spaces. Furthermore, as
streaming updates often come in batches rather than one
single update at a time, PMA does not support parallel in-
sertions and it is non-trivial to apply PMA to GPUs due to
its intricate update patterns which may cause serious thread
divergence and uncoalesced memory access issues on GPUs.

We thus propose two GPU-oriented algorithms, i.e. GPMA
and GPMA+, to support e�cient parallel batch updates. GPMA
explores a lock-based approach which becomes increasingly
popular due to the recent GPU architectural evolution for
supporting atomic operations [18, 29]. While GPMA works ef-
ficiently for the case where few concurrent updates conflict,
e.g., small-size update batches with random updating edges
in each batch, there are scenarios where massive conflicts oc-
cur and hence, we propose a lock-free approach, i.e. GPMA+.
Intuitively, GPMA+ is a bottom-up approach by prioritizing
updates that occur in similar positions. The update opti-
mizations of our proposed GPMA+ are able to maximize coa-
lesced memory access and achieve linear performance scaling
w.r.t the number of computation units on GPUs, regardless
of the update patterns.

The contributions of this paper are summarized as follows:

• We introduce a framework for GPU dynamic graph ana-
lytics and propose, the first of its kind, a GPU dynamic
graph storage scheme to pave the way for real-time dy-
namic graph analytics on GPUs.

• We devise two GPU-oriented parallel algorithms: GPMA

and GPMA+, to support e�cient updates against high-
speed graph streams.

• We conduct extensive experiments to show the perfor-
mance superiority of GPMA and GPMA+. In particular,
we design di↵erent update patterns on real and synthetic
graph streams to validate the update e�ciency of our pro-
posed algorithms against their CPU counterparts as well
as the GPU rebuild baseline. In addition, we implement
three real world graph analytic applications on the graph
streams to demonstrate the e�ciency and broad appli-
cability of our proposed solutions. In order to support
larger graphs, we extend our proposed formats to multi-
ple GPUs and demonstrate the scalability of our approach
with multi-GPU systems.

The remainder of this paper is organized as follows. The
related work is discussed in Section 2. Section 3 presents
a general workflow of dynamic graph processing on GPUs.
Subsequently, we describe GPMA and GPMA+ in Sections 4-
5 respectively. Section 6 reports results of a comprehensive
experimental evaluation. We conclude the paper and discuss
some future works in Section 7.

2. RELATED WORK
In this section, we review related works in three di↵erent

categories as follows.

2.1 Graph Stream Processing
Over the last decade, there has been an immense inter-

est in designing e�cient algorithms for processing massive
graphs in the data stream model (see [36] for a detailed sur-
vey). This includes the problems of PageRank-styled scores
[39], connectivity [21], spanners [20], counting subgraphs e.g.
triangles [48] and summarization [46]. However, these works
mainly focus on the theoretical study to achieve the best ap-
proximation solution with linear bounded space. Our pro-
posed methods can incorporate existing graph stream algo-
rithms with ease as our storage scheme can support most
graph representations used in existing algorithms. Many
systems have been proposed for streaming data processing,
e.g. Storm [47], Spark Streaming [55], Flink [1]. Attracted
by its massively parallel performance, several attempts have
successfully demonstrated the advantages of using GPUs to
accelerate data stream processing [49, 57].
However, the aforementioned systems focus on general

stream processing and lack support for graph stream pro-
cessing. Stinger [19] is a parallel solution to support dynamic
graph analytics on a single machine. More recently, Kineo-
graph [14], CellIQ [28] and GraphTau [27] are proposed to
address the need for general time-evolving graph processing
under the distributed settings. However, to our best knowl-
edge, existing works focusing on CPU-based time-evolving
graph processing will be ine�cient on GPUs, because CPU
and GPU are two architectures with di↵erent design princi-
ples and performance concerns in the parallel execution. We
are aware of only one work [30] that explores the direction
of using GPUs to process real-time analytics on dynamic
graphs. However, this work only supports insertions and
lacks an e�cient indexing mechanism.

2.2 Graph Analytics on GPUs
Graph analytic processing is inherently data- and compute-

intensive. Massively parallel GPU accelerators are power-
ful to achieve supreme performance of many applications.
Compared with CPU, which is a general-purpose proces-
sor featuring large cache size and high single core process-
ing capability, GPU devotes most of its die area to a large
number of simple Arithmetic Logic Units (ALUs), and exe-
cutes code in a SIMT (Single Instruction Multiple Threads)
fashion. With the massive amount of ALUs, GPU o↵ers
orders of magnitude higher computational throughput than
CPU in applications with ample parallelism. This leads to
a spectrum of works which explore the usage of GPUs to
accelerate graph analytics and demonstrate immense po-
tentials. Examples include breath-first search (BFS) [33],
subgraph query [32], PageRank [6] and many others. The
success of deploying specific graph algorithms on GPUs mo-
tivates the design of general GPU graph processing systems
like Medusa [58] and Gunrock [50]. However, the aforemen-
tioned GPU-oriented graph algorithms and systems assume
static graphs. To handle dynamic graph scenario, existing
works have to perform a rebuild on GPUs against each sin-
gle update. DCSR [30] is the only solution, to the best of
our knowledge, which is designed for insertion-only scenar-
ios as it is based on linked edge block and rear appending
technique. However, it does not support deletions or e�-

108

3/23/2017

1

CPU

GPU

Active Graph Structure

Graph Update Graph Analytics

Graph Stream Streaming Applications

Graph Stream Buffer Dynamic
Query Buffer

Continuous
Monitoring

Figure 1: The dynamic graph analytic framework

cient searches. We propose GPMA to enable e�cient dynamic
graph updates (i.e. insertions and deletions) on GPUs in a
fine-grained manner. In addition, existing graph analytics
and systems optimized for GPUs can replace their storage
layers directly with ease since the fundamental graph storage
schemes used in existing works can be directly implemented
on top of our proposed storage scheme.

2.3 Storage Formats on GPUs
Sparse matrix representation is a popular choice for stor-

ing large graphs on GPUs [3, 2, 58, 50]. The Coordinate
Format [16] (COO) is the simplest format which only stores
non-zero matrix entries by their coordinates with values.
COO sorts all the non-zero entries by the entries’ row-column
key for fast entry accesses. CSR [33, 6] compresses COO’s
row indices into an o↵set array to reduce the memory band-
width when accessing the sparse matrix. To optimize matri-
ces with di↵erent non-zero distribution patterns, there ex-
ists many customized storage formats proposed, e.g., Block
COO [52] (BCCOO), Blocked Row-Column [7] (BRC) and
Tiled COO [53] (TCOO). Existing formats require to main-
tain a certain sorted order of their storage base units ac-
cording to the unit’s position in the matrix, e.g. entries for
COO and blocks for BCCOO, and still ensure the locality
of the units. As mentioned previously, few prior schemes
can handle e�cient sparse matrix updates on GPUs. To
the best of our knowledge, PMA [10, 11] is a common struc-
ture which maintains a sorted array in a contiguous manner
and supports e�cient insertions/deletions. However, PMA
is designed for CPU and no concurrent updating algorithm
is ever proposed. Thus, we are motivated to propose GPMA
and GPMA+ for supporting e�cient concurrent updates on
all existing storage formats.

3. A DYNAMIC FRAMEWORK ON GPUS
To address the need for real-time dynamic graph analyt-

ics, we o✏oad the tasks of concurrent dynamic graph main-
tenance and its corresponding analytic processing to GPUs.
In this section, we introduce a general GPU dynamic graph
analytic framework. The design of the framework takes into
account two major concerns: the framework should not only
handle graph updates e�ciently but also support existing
GPU-oriented graph analytic algorithms without forfeiting
their performance.

Model. We adopt a common sliding window graph stream
model [36, 28, 46]. The sliding window model consists of

Active	Graph	
Update

(Summarization	&	
Update)

Graph	Analytics	
Processing

Active	Graph	
Update

(Summarization	&	
Update)

Graph	
Stream

Query	Transfer	
(host	to	device)
Results	Transfer	
(device	to	host)

Query
Stream

Step	1 Step	2 Step	3 Repeat…

Data	transfer	on	PCIe GPU	computation

Query	Transfer	
(host	to	device)
Results	Transfer	
(device	to	host)

Graph	Stream	
Transfer	

(host	to	device)

Graph	Stream	
Transfer	

(host	to	device)

Figure 2: Asynchronous streams

an unbounded sequence of elements (u, v)
t

1 which indicates
the edge (u, v) arrives at time t, and a sliding window which
keeps track of the most recent edges. As the sliding window
moves with time, new edges in the stream are inserted into
the window and expiring edges are deleted. In real world
applications, the sliding window of a graph stream can be
used to monitor and analyze fresh social actions that appear
on Twitter [51] or the call graph formed by the most recent
CDR data [28]. In this paper, we focus on how to handle
edge streams but our proposed scheme can also handle the
dynamic hyper graph scenario with hyper edge streams.
Apart from the sliding window model, the graph stream

model which involves explicit insertions and deletions (e.g., a
user requests to add or delete a friend in the social network)
is also supported by our scheme as the proposed dynamic
graph storage structure is designed to handle random up-
date operations. That is, our system supports two kinds of
updates, implicit ones generated from the sliding window
mechanism and explicit ones generated from upper level ap-
plications or users.
The overview of the dynamic graph analytic framework is

presented in Figure 1. Given a graph stream, there are two
types of streaming tasks supported by our framework. The
first type is the ad-hoc queries such as neighborhood and
reachability queries on the graph which is constantly chang-
ing. The second type is the monitoring tasks like tracking
PageRank scores. We present the framework by illustrat-
ing how to handle the graph streams and the corresponding
queries while hiding data transfer between CPU and GPU,
as follows:

Graph Streams. The graph stream bu↵er module batches
the incoming graph streams on the CPU side (host) and
periodically sends the updating batches to the graph update
module located on GPU (device). The graph update module
updates the “active” graph stored on the device by using the
batch received. The “active” graph is stored in the format of
our proposed GPU dynamic graph storage structure. The
details of the graph storage structure and how to update
the graph e�ciently on GPUs will be discussed extensively
in later sections.

Queries. Like the graph stream bu↵er, the dynamic query
bu↵er module batches ad-hoc queries submitted against the
stored active graph, e.g., queries to check the dynamic reach-
ability between pairs of vertices. The tracking tasks will
also be registered in the continuous monitoring module, e.g.,
tracking up-to-date PageRank. All ad-hoc queries and mon-
itoring tasks will be transferred to the graph analytic mod-
ule for GPU accelerated processing. The analytic module

1Our proposed framework handles both directed and undi-
rected edges.

109

[0,15]

[16,19]

[0,31]

[12,15] [24,27][8,11]

[24,31]

[4,7]

[0,7]

[0,3]

[16,23]

[20,23]

[8,15]

[28,31]

[16,31]

2 5 8 13 16 17 23 27 28 31 34 37 42 46 48 51 62

2 5 8 13 16 17 23 27 28 31 34 37 42 46 51 62 48

2 5 8 13 16 17 23 27 28 31 34 37 42 46 51 62Original

Inserted

Final

Leaf

Level	1

Level	2

Level	3

non-zero entry
balanced
rebalanced
unbalanced

Leaf Level 1 Level 2 Level 3
segment size 4 8 16 32

density lower bound ⇢ 0.08 0.19 0.29 0.40
density upper bound ⌧ 0.92 0.88 0.84 0.80

min # of entries 1 2 4 8
max # of entries 3 6 12 24

Figure 3: PMA insertion example (Left: PMA for insertion; Right: predefined thresholds)

interacts with the active graph to process the queries and
the tracking tasks. Subsequently, the query results will be
transferred back to the host. As most existing GPU graph
algorithms use optimized array formats like CSR to accel-
erate the performance [18, 29, 35, 53], our proposed storage
scheme provides an interface for storing the array formats.
In this way, existing algorithms can be integrated into the
analytic module with ease. We describe the details of the
integration in Section 4.2.

Hiding Costly PCIe Transfer. Another critical issue
on designing GPU-oriented systems is to minimize the data
transfer between the host and the device through PCIe. Our
proposed batching approach allows overlapping data trans-
fer by concurrently running analytic tasks on the device.
Figure 2 shows a simplified schedule with two asynchronous
streams: graph streams and query streams respectively. The
system is initialized at Step 1 where the batch containing
incoming graph stream elements is sent to the device. At
Step 2, while PCIe handles bidirectional data transfer for
previous query results (device to host) and freshly submit-
ted query batch (host to device), the graph update module
updates the active graph stored on the device. At Step 3, the
analytic module processes the received query batch on the
device and a new graph stream batch is concurrently trans-
ferred from the host to the device. It is clear to see that, by
repeating the aforementioned process, all data transfers are
overlapped with concurrent device computations.

4. GPMADYNAMIC GRAPH PROCESSING
To support dynamic graph analytics on GPUs, there are

two major challenges discussed in the introduction. The
first challenge is to maintain the dynamic graph storage in
the device memory of GPUs for e�cient update as well as
compute. The second challenge is that the storage strat-
egy should show its good compatibility with existing graph
analytic algorithms on GPUs.

In this section, we discuss how to address the challenges
with our proposed scheme. First, we introduce GPMA for
GPU resident graph storage to simultaneously achieve up-
date and compute e�ciency (Section 4.1). Subsequently, we
illustrate GPMA’s generality in terms of deploying existing
GPU based graph analytic algorithms (Section 4.2).

4.1 GPMA Graph Storage on GPUs
In this subsection, we first discuss the design principles

our proposed dynamic graph storage should follow. Then
we introduce how to implement our proposal.

Design Principles. The proposed graph storage on GPUs
should take into account the following principles:

• The proposed dynamic graph storage should e�ciently
support a broad range of updating operations, including

insertions, deletions and modifications. Furthermore, it
should have a good locality to accommodate the highly
parallel memory access characteristic of GPUs, in order
to achieve high memory e�ciency.

• The physical storage strategy should support common log-
ical storage formats. Existing graph analytic solutions on
GPUs based on such formats can be adapted easily.

Background of PMA. GPMA is primarily motivated by a
novel structure, Packed Memory Array (PMA [10, 11]), which
is proposed to maintain sorted elements in a partially contin-
uous fashion by leaving gaps to accommodate fast updates
with a bounded gap ratio. PMA is a self-balancing binary
tree structure. Given an array of N entries, PMA separates
the whole memory space into leaf segments with O(logN)
length and defines non-leaf segments as the space occupied
by their descendant segments. For any segment located at
height i (leaf height is 0), PMA designs a way to assign the
lower and upper bound density thresholds for the segment
as ⇢

i

and ⌧
i

respectively to achieve O(log2 N) amortized up-
date complexity. Once an insertion/deletion causes the den-
sity of a segment to fall out of the range defined by (⇢

i

, ⌧
i

),
PMA tries to adjust the density by re-allocating all elements
stored in the segment’s parent. The adjustment process is
invoked recursively and will only be terminated if all seg-
ments’ densities fall back into the range defined by PMA’s
density thresholds. For an ordered array, modifications are
trivial. Therefore, we mainly discuss insertions because dele-
tions are the dual operation of insertions in PMA.

Example 1. Figures 3 presents an example for PMA in-
sertion. Each segment is uniquely identified by an interval
(starting and ending position of the array) displayed in the
corresponding tree node, e.g., the root segment is segment-

[0,31] as it covers all 32 spaces. All values stored in PMA are
displayed in the array. The table in the figure shows prede-
fined parameters including the segment size, the assignment
of density thresholds (⇢

i

, ⌧
i

) and the corresponding mini-
mum and maximum entry sizes at di↵erent heights of the
tree. We use these setups as a running example throughout
the paper. To insert an entry. i.e. 48, into PMA, the corre-
sponding leaf segment is firstly identified by a binary search,
and the new entry is placed at the rear of leaf segment. The
insertion causes the density (=4) of the leaf segment to ex-
ceed the threshold (⌧=3). Thus, we need to identify the near-
est ancestor segment which can accommodate the insertion
without violating the thresholds, i.e., the segment-[16,31].
Finally, the insertion is completed by re-dispatching all en-
tries evenly in segment-[16,31].

Lemma 1 ([10, 11]). The amortized update complexity
of PMA is proved to be O(log2 N) in the worst case and
O(logN) in the average case.

110

[0,15]

[16,19]

[0,31]

[12,15] [24,27][8,11]

[24,31]

[4,7]

[0,7]

[0,3]

[16,23]

[20,23]

[8,15]

[28,31]

[16,31]

2 5 8 13 16 17 23 27 28 31 34 37 42 46 51 62

1 2 5 8 9 13 16 17 23 27 28 31 34 37 42 46 48 51 62

1 4 9 35 48…… ……

Thread	Pool

Insertion	Buffer

Level	2

Level	1

Leaf

Level	3

Original

Round1

non-zero entry
balanced
rebalanced

balanced
unbalanced

trylock failed
rebalanced

Figure 4: GPMA concurrent insertions

It is evident that PMA could be employed for dynamic
graph maintenance as it maintains sorted elements e�ciently
with high locality on CPU. However, the update procedure
described in [11] is inherently sequential and no concurrent
algorithms have been proposed. To support batch updates
of edge insertions and deletions for e�cient graph stream
analytic processing, we devise GPMA to support concurrent
PMA updates on GPUs. Note that we focus on the inser-
tion process for a concise presentation because the deletion
process is a dual process w.r.t. the insertion process in PMA.

Concurrent Insertions in GPMA. Motivated by PMA

on CPUs, we propose GPMA to handle a batch of insertions
concurrently on GPUs. Intuitively, GPMA assigns an inser-
tion to a thread and concurrently executes PMA algorithm
for each thread with a lock-based approach to ensure consis-
tency. More specifically, all leaf segments of insertions are
identified in advance, and then each thread checks whether
the inserted segments still satisfy their thresholds from bot-
tom to top. For each particular segment, it is accessed in a
mutually exclusive fashion. Moreover, all threads are syn-
chronized after updating all segments located at the same
tree height to avoid possible conflicts as segments at a lower
height are fully contained in the segments at a higher level.

Algorithm 1 presents the pseudocode for GPMA concurrent
insertions. We highlight the lines added to the original PMA
update algorithm in order to achieve concurrent update of
GPMA. As shown in line 2, all entries in the insertion set
are iteratively tried until all of them take e↵ect. For each
iteration shown in line 9, all threads start at the leaf seg-
ments and attempt the insertions in a bottom-up fashion. If
a particular thread fails the mutex competition in line 11, it
aborts immediately and waits for the next attempt. Other-
wise, it inspects the density of the current segment. If the
current segment does not satisfy the density requirement, it
will try the parent segment in the next loop iteration (lines
13-14). Once an ancestor segment is able to accommodate
the insertion, it merges the new entry in line 16 and the
entry is removed from the insertion set. Subsequently, the
updated segment will re-dispatch all its entries evenly and
the process is terminated.

Example 2. Figure 4 illustrates an example with five in-
sertions, i.e. {1, 4, 9, 35, 48}, for concurrent GPMA insertion.
The initial structure is the same as in Example 1. After
identifying the leaf segment for insertion, threads responsi-
ble for Insertion-1 and Insertion-4 compete for the same
leaf segment. Assuming Insertion-1 succeeds in getting the
mutex, Insertion-4 is aborted. Due to enough free space
of the segment, Insertion-1 is successfully inserted. Even
though there is no leaf segment competition for Insertions-

9,35,48, they should continue to inspect the corresponding

Algorithm 1 GPMA Concurrent Insertion

1: procedure GPMAInsert(Insertions I)
2: while I is not empty do
3: parallel for i in I

4: Seg s BinarySearchLeafSegment(i)
5: TryInsert(s, i, I)

6: synchronize

7: release locks on all segments

8: procedure TryInsert(Seg s, Insertion i, Insertions I)
9: while s 6= root do
10: synchronize

11: if fails to lock s then
12: return . insertion aborts

13: if (|s|+ 1)/capacity(s) � ⌧ then
14: s parent segment of s
15: else
16: Merge(s, i)
17: re-dispatch entries in s evenly
18: remove i from I
19: return . insertion succeeds
20: double the space of the root segment

parent segments because none of the left segments satisfy the
density requirement after the insertions. Insertions-35,48

still compete for the same level-1 segment and Insertion-

48 wins. For this example, three of the insertions are suc-
cessful and the results are shown in the bottom of Figure 4.
Insertions-4,35 are aborted in this iteration and will wait
for the next attempt.

4.2 Adapting Graph Algorithms to GPMA
Existing graph algorithms often use sparse matrix format

to store the graph entries since most large graphs are natu-
rally sparse[5]. Although many di↵erent sparse storage for-
mats have been proposed, most of the formats assume a spe-
cific order to organize the non-zero entries. These formats
enforce the order of the graph entries to optimize their spe-
cific access patterns, e.g., row-oriented (COO2), diagonal-
oriented (JAD), and block-/tile-based (BCCOO, BRC and
TCOO). It is natural that the ordered graph entries can be
projected into an array and these similar formats can be
supported by GPMA easily. Among all formats, we choose
CSR as an example to illustrate how to adapt it to GPMA.

CSR as a case study. CSR is most widely used by ex-
isting algorithms on sparse matrices or graphs. CSR com-
presses COO’s row indices into an o↵set array, which con-
tributes to reducing the memory bandwidth when accessing
the sparse matrix, and achieves a better workload estimation
for skewed graph distribution (e.g., power-law distribution).
The following example demonstrates how to implement CSR
on GPMA.

Example 3. In Figure 5, we have a graph of three ver-
tices and six edges. The number on each edge denotes the
weight of the corresponding edge. The graph is represented
as a sparse matrix and is further transformed to the CSR
format shown in the upper right. CSR sorts all non-zero en-
tries in the row-oriented order, and compresses row indices
2Generally, COO means ordered COO and it can also be
column-oriented.

111

Algorithm 2 Breadth-First Search

1: procedure BFS(Graph G, Vertex s)
2: for each vertex u 2 G.V � {s} do
3: u.visited = false
4: Q �
5: s.visited true
6: ENQUEUE(Q, s)
7: while Q 6= � do
8: u DEQUEUE(Q)
9: for each v 2 G.Adj[u] do
10: if IsEntryExist(v) then
11: if v.visited = false then
12: v.visited true
13: ENQUEUE(v)

Algorithm 3 GPU-based BFS Neighbour Gathering

1: procedure Gather(Vertex frontier, Int csrO↵set)
2: {r, rEnd} csrO↵set [frontier, frontier + 1]
3: for (i r+threadId; i<rEnd ; i+=threadNum) do
4: if IsEntryExist(i) then ParallelGather(i)

into intervals as a row o↵set array. The lower part denotes
the GPMA representation of this graph. In order to maintain
the row o↵set array without synchronization among threads,
we add a guard entry whose column index is 1 during con-
current insertions. That is to say, when the guard is moved,
the corresponding element in row o↵set array will change.

Given a graph stored on GPMA, the next step is to adapt
existing graph algorithms to GPMA. In particular, how exist-
ing algorithms access the graph entries stored on GPMA is of
vital importance. As for the CSR example, most algorithms
access the entries by navigating through CSR’s ordered ar-
ray[18, 29, 35, 53]. We note that a CSR stored on GPMA is
also an array which has bounded gaps interleaved with the
graph entries. Thus, we are able to e�ciently replace the
operations of arrays with the operations of GPMA. We will
demonstrate how we can do this replacement as follows.

Algorithm 2 illustrates the pseudocode of the classic BFS
algorithm. We should pay attention to line 10, which is
highlighted. Compared with the raw adjacency list, the ap-
plications based on GPMA need to guarantee the current ver-
tex being traversed is a valid neighbour instead of an invalid
space in GPMA’s gap.

Algorithm 2 provides a high-level view for GPMA adaption.
Furthermore, we present how it adapts GPMA in the parallel
GPU environment with some low-level details. Algorithm 3
is the pseudocode of the Neighbour Gathering parallel pro-
cedure, which is a general primitive for most GPU-based
vertex-centric graph processing models [37, 18, 22]. This
primitive plays a role similar to line 10 of Algorithm 2 but
in a parallel fashion in accessing the neighbors of a particular
vertex. When traversing all neighbours of frontiers, Neigh-
bour Gathering follows the SIMT manner, which means that
there are threadNum threads as a group assigned to one of
the vertex frontier and the procedure in Algorithm 3 is exe-
cuted in parallel. For the index range (in the CSR on GPMA)
of the current frontier given by csrO↵set (shown in line 2),
each thread will handle the corresponding tasks according
to its threadId. For GPU-based BFS, the visited labels of
neighbours for all frontiers will not be judged immediately
after the neighbours are accessed. Instead, they will be com-

0 2 1

6

1

5

34

2

Example Graph

Row O↵set [0 2 3 6]
Column Index [0 2 2 0 1 2]

Value [1 2 3 4 5 6]
CSR Format

(0,0) (0,2) (0,∞) (1,2) (1,∞) (2,0) (2,1) (2,2) (2,∞)
1 2 3 4 5 6

[12,15]

[8,15]

[8,11]

[0,15]

[4,7]

[0,7]

[0,3]

4 8 14Row	Offset

Figure 5: GPMA based on CSR

pacted to contiguous memory in advance for higher memory
e�ciency. Similarly, we can also check for the existence of
entries for other graph applications to adapt them to GPMA.
To summarize, GPMA can be adapted to common graph an-
alytic applications which are implemented in di↵erent rep-
resentation and execution models, including matrix-based
(e.g., PageRank), vertex-centric (e.g., BFS) and edge-centric
(e.g., Connected Component).

5. GPMA+: GPMA OPTIMIZATION
Although GPMA can support concurrent graph updates on

GPUs, the update algorithm is basically a lock-based ap-
proach and can su↵er from serious performance issue when
di↵erent threads compete for the same lock. In this section,
we propose a lock-free approach, i.e. GPMA+, which makes
full utilization of GPU’s massive multiprocessors. We care-
fully examine the performance bottleneck of GPMA in Sec-
tion 5.1. Based on the issues identified, we propose GPMA+
for optimizing concurrent GPU updates with a lock-free ap-
proach in Section 5.2.

5.1 Bottleneck Analysis
The following four critical performance issues are identi-

fied for GPMA:

• Uncoalesced Memory Accesses: Each thread has to
traverse the tree from the root segment to identify the
corresponding leaf segment to be updated. For a group
of GPU threads which share the same memory controller
(including access pipelines and caches), memory accesses
are uncoalesced and thus, cause additional IO overheads.

• Atomic Operations for Acquiring Lock: Each thread
needs to acquire the lock before it can perform the update.
Frequently invoking atomic operations for acquiring locks
will bring huge overheads, especially for GPUs.

• Possible Thread Conflicts: When two threads conflict
on a segment, one of them has to abort and wait for the
next attempt. In the case where the updates occur on
segments which are located proximately, GPMA will end
up with low parallelism. As most real world large graphs
have the power law property, the e↵ect of thread conflicts
can be exacerbated.

• Unpredictable Thread Workload: Workload balanc-
ing is another major concern for optimizing concurrent
algorithms [45]. The workload for each thread in GPMA is
unpredictable because: (1) It is impossible to obtain the
last non-leaf segment traversed by each thread in advance;

112

(2) The result of lock competition is random. The unpre-
dictable nature triggers the imbalanced workload issue for
GPMA. In addition, threads are grouped as warps on GPUs.
If a thread has a heavy workload, the remaining threads
of the same warp are idle and cannot be re-scheduled.

5.2 Lock-Free Segment-Oriented Updates
Based on the discussion above, we propose GPMA+ to lift

all bottlenecks identified. The proposed GPMA+ does not
rely on lock mechanism and achieves high thread utilization
simultaneously. Existing graph algorithms can be adapted
to GPMA+ in the same manner as GPMA.

Compared with GPMA, which handles each update sepa-
rately, GPMA+ concurrently processes updates based on the
segments involved. It breaks the complex update pattern
into existing concurrent GPU primitives to achieve maxi-
mum parallelism. There are three major components in the
GPMA+ update algorithm:
(1) The updates are first sorted by their keys and then dis-

patched to GPU threads for locating their corresponding
leaf segments according to the sorted order.

(2) The updates belonging to the same leaf segment are
grouped for processing and GPMA+ processes the updates
level by level in a bottom-up manner.

(3) At any particular level, we leverage GPU primitives to
invoke all computing resources for segment updates.

We note that, the issue of uncoalesced memory access in
GPMA is resolved by component (1) as the updating threads
are sorted in advance to achieve similar traversal paths.
Component (2) completely avoids the use of locks, which
solves the problem of atomic operations and thread con-
flicts. Finally, component (3) makes use of GPU primitives
to achieve workload balancing among all GPU threads.

We present the pseudocode for GPMA+’s segment-oriented
insertion in the procedure GpmaPlusInsertion of Algo-
rithm 4. Note that, similar to Section 4 (GPMA), we focus on
presenting the insertions for GPMA+ and the deletions could
be naturally inferred. The inserting entries are first sorted
by their keys in line 2 and the corresponding segments are
then identified in line 3. Given the update set U , GPMA+
processes updating segments level by level in lines 4-15 un-
til all updates are executed successfully (line 11). In each
iteration, UniqueInsertion in line 7 groups update entries
belonging to the same segments into unique segments, i.e.,
S⇤, and produces the corresponding index set I for quick
accesses of update entries located in a segment from S⇤. As
shown in lines 19-20, UniqueSegments only utilizes stan-
dard GPU primitives, i.e. RunLenghtEncoding and Ex-

clusiveScan. RunLenghtEncoding compresses an input
array by merging runs of an element into a single element.
It also outputs a count array denoting the length of each
run. ExclusiveScan calculates, for each entry e in an ar-
ray, the sum of all entries before e. Both primitives have
very e�cient parallelized GPU-based implementation which
makes full utilization of the massive GPU cores. In our
implementation, we use the NVIDIA CUB library [4] for
these primitives. Given a set of unique updating segments,
TryInsert+ first checks if a segment s has enough space
for accommodating the updates by summing the valid en-
tries in s (CountSegment) and the number of updates in
s (CountUpdatesInSegment). If the density threshold is
satisfied, the updates will be materialized by merging the in-
serting entries with existing entries in the segment (as shown

in line 26). Subsequently, all entries in the segment will be
re-dispatched to balance the densities. After TryInsert+,
the algorithm will terminate if there are no entries to be
updated. Otherwise, GPMA+ will advance to higher levels
by setting all remaining segments to their parent segments
(lines 12-15). The following example illustrates GPMA+’s
segment-oriented updates.

Example 4. Figure 6 illustrates an example for GPMA+
insertions with the same setup as in example 2. The left
part is GPMA+’s snapshots in di↵erent rounds during this
batch of insertions. The right part denotes the corresponding
array information after the execution of each round. Five
insertions are grouped into four corresponding leaf segments
(denoted in di↵erent colors and their starting positions).
For the first iteration at the leaf level, Insertions-1,4 of

the first segment (denoted as red) are merged into the cor-
responding leaf segment, then its success flag is marked and
will not be considered in the next round. The remaining in-
tervals fail in this iteration and their corresponding segments
will upgrade to their parent segments. It should be noted that
the purple and the orange grids belong to the same parent
segment and therefore, will be merged and then dispatched to
their shared parent segment (as shown in Round 1). In this
round, both segments (denoted as yellow and purple) can-
not satisfy the density threshold, and their successful flags
are not checked. In Round 2, both update segments can be
merged by the corresponding insertions and no update seg-
ments will be considered in the next round since all of them
are flagged.
In Algorithm 4, TryInsert+ is the most important func-

tion as it handles all the corresponding insertions with no
conflicts. Moreover, it achieves a balanced workload for each
concurrent task. This is because GPMA+ handles the updates
level by level and each segment to be updated in a particu-
lar level has exactly the same capacity. However, segments
at di↵erent levels have di↵erent capacities. Intuitively, the
probability of updating a segment with a larger size (a seg-
ment closer to the root) is much lower than that of a seg-
ment with a smaller size (a segment closer to the leaf). To
optimize towards the GPU architecture, we propose the fol-
lowing optimization strategies for TryInsert+ for segments
with di↵erent sizes.
• Warp-Based: For a segment with entries not larger than

the warp size, the segment will be handled by a warp.
Since all threads in the same warp are tied together and
warp-based data is held by registers, updating a segment
by a warp does not require explicit synchronization and
will obtain superior e�ciency.

• Block-Based: For a segment of which the data can be
loaded in GPU’s shared memory, block-based approach
is chosen. Block-based approach executes all updates in
the shared memory. As shared memory has much larger
size than warp registers, block-based approach can handle
large segments e�ciently.

• Device-Based: For a segment with a size larger than
the size of the shared memory, we handle them via global
memory and rely on kernel synchronization. Device-based
approach is slower than the two approaches above, but it
has much less restriction on memory size (less than device
memory amount) and is not invoked frequently.

We refer interested readers to the appendix of the ex-
tended technical report [42] for the detailed algorithm of
the optimizations above.

113

2 5 8 13 16 17 23 27 28 31 34 37 42 46 51 62

1 4 9 35 48

Update	Segments:

Update	Offsets:

Update	Keys:

0 2 3 4 5

0 4 24 28

Successful	Flag: Y N N N

1 2 4 5 8 13 16 17 23 27 28 31 34 37 42 46 51 62

1 2 4 5 8 9 13 16 17 23 27 28 31 34 35 37 42 46 48 51 62

Original

Round	1

Round	2

Original

9 35 48

Update	Segments:

Update	Offsets:

Update	Keys:

0 1 3

0 24

Successful	Flag: N N

Round	1

9 35 48

Update	Segments:

Update	Offsets:

Update	Keys:

0 1 3

0 16

Successful	Flag: Y Y

Round	2

[0,15]

[16,19]

[0,31]

[12,15] [24,27][8,11]

[24,31]

[4,7]

[0,7]

[0,3]

[16,23]

[20,23]

[8,15]

[28,31]

[16,31]

Leaf

Level	1

Level	2

Level	3 non-zero entry

balanced

rebalanced

Figure 6: GPMA+ concurrent insertions (best viewed in color)

Algorithm 4 GPMA+ Segment-Oriented Insertion

1: procedure GpmaPlusInsertion(Updates U)
2: Sort(U)
3: Segs S BinarySearchLeafSegments(U)
4: while root segment is not reached do
5: Indices I ;
6: Segs S⇤ ;
7: (S⇤, I) UniqueSegments(S)
8: parallel for s 2 S⇤

9: TryInsert+(s, I, U)

10: if U = ; then
11: return
12: parallel for s 2 S

13: if s does not contain any update then
14: remove s from S
15: s parent segment of s

16: r double the space of the old root segment
17: TryInsert+(r, ;, U)

18: function UniqueSegments(Segs S)
19: (S⇤, Counts) RunLengthEncoding(S)
20: Indices I ExclusiveScan(Counts)
21: return (S⇤, I)

22: procedure TryInsert+(Seg s, Indices I, Updates U)
23: n

s

 CountSegment(s)
24: U

s

 CountUpdatesInSegment(s,I,U)
25: if (n

s

+ |U
s

|)/capacity(s) < ⌧ then
26: Merge(s, U

s

)
27: re-dispatch entries in s evenly
28: remove U

s

from U

Theorem 1. Given there are K computation units in the
GPU, the amortized update performance of GPMA+ is O(1+
log

2
N

K

), where N is the maximum number of edges in the
dynamic graph.

Proof. Let X denote the set of updating entries con-
tained in a batch. We consider the case where |X| � K as
it is rare to see |X| < K in real world scenarios. In fact,
our analysis works for cases where |X| = O(K). The total
update complexity consists of three parts: (1) sorting the
updating entries; (2) searching the position of the entries in
GPMA; (3) inserting the entries. We study these three parts
separately below.

For part (1), the sorting complexity of |X| entries on the

GPU is O(|X|
K

) since parallel radix sort is used (keys in GPMA
are integers for storing edges). Then, the amortized sorting

complexity is O(|X|
K

)/|X| = O(1).

For part (2), the complexity of concurrently searching |X|
entries on GPMA is O(|X|·logN

K

) since each entry is assigned
to one thread and the depth of traversal is the same for
one thread (GPMA is a balanced tree). Thus, the amortized

searching complexity is O(|X|·logN
K

)/|X| = O(logN
K

).
For part (3), we need to conduct a slightly complicated

analysis. We denote the total insertion complexity ofX with
GPMA+ as cX

GPMA+

. As GPMA+ is updated level by level, cX
GPMA+

can be decomposed into: cX
GPMA+

= c0 + c1 + ...+ c
h

where h
is the height of the PMA tree.
Given any level i, let z

i

denote the number of segments
to be updated by GPMA+. Since all segments at level i have
the same size, we denote p

i

as the sequential complexity
to update any segment s

i,j

at level i (TryInsert+ in Al-
gorithm 4). GPMA+ evenly distributes the computing re-
sources to each segment. As processing each segment only
requires a constant number of scans on the segment by GPU
primitives, the complexity for GPMA+ to process level i is
c
i

= pi·zi
K

. Thus we have:

cX
GPMA+

=
X

i=0,..,h

p
i

· z
i

K
 1

K

X

x2X

cx
PMA

where cx
PMA

is the sequential complexity for PMA to process
the update of a particular entry x 2 X. The inequal-
ity holds because for each segment updated by GPMA+, it
must be updated at least once by a sequential PMA pro-
cess. With Lemma 1, we have cx

PMA

= O(log2N) and thus

cX
GPMA+

= O(|X|·log2N
K

). Then the amortized complexity to
update one single entry under the GPMA scheme naturally

follows as O(1 + log

2
N

K

).
Finally, we conclude the proof by combining the complex-

ities from all three parts.

Theorem 1 proves that the speedups of GPMA+ over se-
quential PMA is linear to the number of processing units
available on GPUs, which showcases the theoretical scala-
bility of GPMA+.

6. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

our proposed methods. First, we present the setup of the ex-
periments. Second, we examine the update costs of di↵erent
schemes for maintaining dynamic graphs. Finally, we imple-
ment three di↵erent applications to show the performance
and the scalability of the proposed solutions.

6.1 Experimental Setup
Datasets. We collect two real world graphs (Reddit and
Pokec) and synthesize two random graphs (Random and
Graph500) to test the proposed methods. The datasets are

114

Table 1: Experimented Graph Algorithms and the Compared Approaches
Compared Approaches Graph Container BFS ConnectedComponent PageRank

CPU Approaches
AdjLists

Standard Single Thread Algorithms
PMA [10, 11]
Stinger [19] Stinger built-in Parallel Algorithms

GPU Approaches
cuSparseCSR [3]

D. Merrill et al.[37] J. Soman et al.[43] CUSP SpMV [2]
GPMA/GPMA+

101 103 105

SlLGLng SLze

0100

101

102

103

104

TL
P

e
(P

s)

UnLfRUP 5anGRP

101 103 105

SlLGLng SLze

0100

101

102

103

104

TL
P

e
(P

s)
GUaSh500

101 103 105

SlLGLng SLze

0100

101

102

103

104

TL
P

e
(P

s)

5eGGLt

101 103 105

SlLGLng SLze

0100

101

102

103

104

TL
P

e
(P

s)

3Rkec

AGMLLsts 30A StLngeU cuSSaUseCS5 G30A G30A+

Figure 7: Performance comparison for updates with di↵erent batch sizes. The dashed lines represent CPU-
based solutions whereas the solid lines represent GPU-based solutions.

Table 2: Statistics of Datasets
Datasets |V | |E| |E|/|V | |E

s

| |E
s

|/|V |
Reddit 2.61M 34.4M 13.2 17.2M 6.6
Pokec 1.60M 30.6M 19.1 15.3M 9.6

Graph500 1.00M 200M 200 100M 100
Random 1.00M 200M 200 100M 100

described as follows and their statistics are summarized in
Table 2.

• Reddit is an online forum where user actions include post
and comment. We collect all comment actions from a
public resource3. Each comment of a user b to a post
from another user a is associated with an edge from a to
b, and the edge indicates an action of a has triggered an
action of b. As each comment is labeled with a timestamp,
it naturally forms a dynamic influence graph.

• Pokec is the most popular online social network in Slo-
vakia. We retrieve the dataset from SNAP [31]. Unlike
other online datasets, Pokec contains the whole network
over a span of more than 10 years. Each edge corresponds
to a friendship between two users.

• Graph500 is a synthetic dataset obtained by using the
Graph500 RMAT generator [38] to synthesize a large power
law graph.

• Random is a random graph generated by the Erdős-Renyi
model. Specifically, given a graph with n vertices, the ran-
dom graph is generated by including each edge with prob-
ability p. In our experiments, we generate a Erdős-Renyi
random graph with 0.02% of non-zero entries against a
full clique.

Stream Setup. In our datasets, Reddit has a timestamp
on every edge whereas the other datasets do not possess
timestamps. As commonly used in existing graph stream
algorithms [56, 54, 39], we randomly set the timestamps of
all edges in the Pokec, Graph500 and Random datasets.
Then, the graph stream of each dataset receives the edges
with increasing timestamps.
For each dataset, a dynamic graph stream is initialized

with a subgraph consisting of the dataset’s first half of its
total edges according to the timestamps, i.e., E

s

in Table 2
3https://www.kaggle.com/reddit/reddit-comments-may-
2015

denotes the initial edge set of a dynamic graph before the
stream starts. To demonstrate the update performance of
both insertions and deletions, we adopt a sliding window
setup where the window contains a fixed number of edges.
Whenever the window slides, we need to update the graph
by deleting expired edges and inserting arrived edges until
there are no new edges left in the stream.

Applications. We conduct experiments on three most widely
used graph applications to showcase the applicability and
the e�ciency of GPMA+.
• BFS is a key graph operation which is extensively studied

in previous works on GPU graph processing [25, 34, 13].
It begins with a given vertex (or root) of an unweighted
graph and iteratively explores all connected vertices. The
algorithm will assign a minimum distance away from the
root vertex to every visited vertex after it terminates. In
the streaming scenario, after each graph update, we select
a random root vertex and perform BFS from the root to
explore the entire graph.

• Connected Component is another fundamental algo-
rithm which has been extensively studied under both CPU
[26] and GPU [43] environment. It partitions the graph
in the way that all vertices in a partition can reach the
others in the same partition and cannot reach vertices
from other partitions. In the streaming context, after
each graph update, we run the ConnectedComponent

algorithm to maintain the up-to-date partitions.
• PageRank is another popular benchmarking application

for large scale graph processing. Power iteration method
is a standard method to evaluate the PageRank where
the Sparse Matrix Vector Multiplication (SpMV) kernel is
recursively executed between the graph’s adjacency ma-
trix and the PageRank vector. In the streaming scenario,
whenever the graph is updated, the power iteration is in-
voked and it obtains the up-to-date PageRank vector by
operating on the updated graph adjacency matrix and the
PageRank vector obtained in the previous iteration. In
our experiments, we follow the standard setup by setting
the damping factor to 0.85 and we terminate the power
iteration once the 1-norm error is less than 10�3.

These three applications have di↵erent memory and com-
putation requirements. BFS requires little computation but

115

performs frequent random memory accesses, and PageRank
using SpMV accesses the memory sequentially and it is the
most compute-intensive task among all three applications.

Maintaining Dynamic Graph. We adopt the CSR [33,
6] format to represent the dynamic graph maintained. Note
that all approaches proposed in the paper are not restricted
to CSR but general enough to incorporate any popular rep-
resentation formats like COO [16], JAD [40], HYB [9, 35]
and many others. To evaluate the update performance of our
proposed methods, we compare di↵erent graph data struc-
tures and respective approaches on both CPUs and GPUs.

• AdjLists (CPU). AdjLists is a basic approach for CSR
graph representation. As the CSR format sorts all en-
tries according to their row-column indices, we implement
AdjLists with a vector of |V | entries for |V | vertices
and each entry is a RB-Tree to denote all (out)neighbors
of each vertex. The insertions/deletions are operated by
TreeSet insertions/deletions.

• PMA (CPU). We implement the original CPU-based PMA

and adopt it for the CSR format. The insertions/deletions
are operated by PMA insertions/deletions.

• Stinger (CPU). We compare the graph container struc-
ture used in the state-of-the-art CPU-based parallel dy-
namic graph analytic system, Stinger [19]. The updates
are handled by the internal logic of Stinger.

• cuSparseCSR (GPU). We also compare with the GPU-
based CSR format used in the NVIDIA cuSparse library [3].
The updates are executed by calling the rebuild function
in the cuSparse library.

• GPMA/GPMA+. These are our proposed approaches. Al-
though insertions and deletions could be handled simi-
larly, in the sliding window models where the numbers
of insertions and deletions are often equal, the lazy dele-
tions can be performed via marking the location as deleted
without triggering the density maintenance and recycling
for new insertions.

Note that we do not compare with DCSR [30] because,
as discussed in Section 2.2, the scheme can neither handle
deletions nor support e�cient searches, which makes it in-
comparable to all schemes proposed in this paper.
To validate if using the dynamic graph format proposed

in this paper a↵ects the performance of graph algorithms,
we implement the state-of-the-art GPU-based algorithms
on the CSR format maintained by GPMA/GPMA+ as well as
cuSparseCSR. Meanwhile, we invoke Stinger’s built-in
APIs to handle the same workloads of the graph algorithms,
which are considered as the counterpart of GPU-based ap-
proaches in highly parallel CPU environment. Finally, we
implement the standard single-threaded algorithms for each
application in AdjLists and PMA as baselines for thorough
evaluation. The details of all compared solutions for each
application is summarized in Table 1.

Experimental Environment. All algorithms mentioned
in the remaining part of this section are implemented with
CUDA 7.5 and GCC 4.8.4 with -O3 optimization. All ex-
periments except Stinger run on a CentOS server which
has Intel(R) Core i7-5820k (6-cores, 3.30GHz) with 64GB
main memory and three GeForce TITAN X GPUs (each has
12GB device memory), connected with PCIe v3.0. Stinger
baselines run on a multi-core server which is deployed 4-way
Intel(R) Xeon(R) CPU E7-4820 v3 (40-cores, 1.90GHz) with
128GB main memory.

6.2 The Performance of Handling Updates
In this subsection, we compare the update costs for di↵er-

ent update approaches. As previously mentioned, we start
with the initial subgraph consisting of each dataset’s first
half of total edges. We measure the average update time
where the sliding window iteratively shifts for a batch of
edges. To evaluate the impact of update batch sizes, the
batch size is set to range from one edge and exponentially
grow to one million edges with base two. Figure 7 shows
the average latency for all approaches with di↵erent slid-
ing batch sizes. Note that the x-axis and y-axis are plotted
in log scales. We have also tested sorted graph streams to
evaluate extreme cases. We omit the detailed results due to
limited space and interested readers are referred to [42].
We observe that, PMA-based approaches are very e�cient

in handling updates when the batch size is small. As batch
size becomes larger, the performance of PMA and GPMA quickly
degrades to the performance of simple rebuild. Although
GPMA achieves better performance than GPMA+ for small
batches since the concurrent updating entries are unlikely to
conflict, thread conflicts become serious for larger batches.
Due to its lock-free characteristic, GPMA+ shows superior
performance over PMA and GPMA. In particular, GPMA+ has
speedups of up to 20.42x and 18.30x against PMA and GPMA

respectively. Stinger shows impressive update performance
in most cases as Stinger e�ciently updates its dynamic
graph structure in a parallel fashion and the code runs on
a powerful multi-core CPU system. For now, a multi-core
CPU system is considered more powerful than GPUs for
pure random data structure maintenance but costs more (in
our experimental setup, our CPU server costs more than
5 times that of the GPU server). Moreover, we also note
that, Stinger shows extremely poor performance in the
Graph500 dataset. According to the previous study [8], the
phenomenon is due to the fact that Stinger holds a fixed
size of each edge block. Since Graph500 is a heavily skewed
graph as the graph follows the power law model, the skew-
ness causes severe performance deficiency in the utilization
of memory for Stinger.
We observe the sharp increase for GPMA+ performance

curves occur when the batch size is 512. This is because the
multi-level strategy is used in GPMA+ (which is mentioned in
Section 5.2) and shared-memory constraint cannot support
batch size which is more than 512 on our hardware. Finally,
the experiments show that, GPMA is faster than GPMA+ when
the update batch is smaller and leads to few thread conflicts,
because the GPMA+ logic is more complicated and includes
overheads by a number of kernel calls. However, using GPMA
only benefits when the update batch is extremely small and
the performance gain in such extreme case is also negligible
compared with GPMA+. Hence, we can conclude that GPMA+
shows its stability and e�ciency across di↵erent update pat-
terns compared with GPMA, and we will only show the results
of GPMA+ in the remaining experiments.

6.3 Application Performance
As previously mentioned, all compared application-specific

approaches are summarized in Table 1. We find that inte-
grating GPMA+ into an existing GPU-based implementation
requires little modification. The main one is in transforming
the array operations in the original implementation to the
operations on GPMA+, as presented in Section 4.2. The inten-
tions of this subsection are two-fold. First, we test if using

116

0.0 0.05 0.1 0.15 0.2 0.25 0.3
7LPe (seFRnG)

1%

0.1%

0.01%

6l
LG

e
6L

ze

15

14

12

4.4

2.1

2.4

0.7

0.3

8nLfRUP 5anGRP

0.0 0.05 0.1 0.15 0.2 0.25 0.3
7LPe (seFRnG)

1%

0.1%

0.01%

14

18

19

4.8

1.7

1.4

23

4.4

2.1

GUaSh500

0.0 0.01 0.02 0.03 0.04 0.05
7LPe (seFRnG)

1%

0.1%

0.01%

1.6

1.7

1.7

1.2

0.7

0.6

0.4

0.4

0.4

5eGGLt

0.0 0.01 0.02 0.03 0.04 0.05
7LPe (seFRnG)

1%

0.1%

0.01%

1.6

1.9

1.4

0.8

0.6

0.4

0.4

0.5

0.6

3RkeF

AGMLLsts 30A 6tLngeU Fu6SaUseC65 G30A+ %)6 (SatteUneG) 8SGate (unSatteUneG)

Figure 8: Streaming BFS

0.0 0.1 0.2 0.3 0.4 0.5
7LPe (secRnG)

1%

0.1%

0.01%

6l
LG

e
6L

ze

15

16

11

4.4

1.9

1.9

1.5

1.3

1.0

8nLfRUP 5anGRP

0.0 0.1 0.2 0.3 0.4 0.5
7LPe (secRnG)

1%

0.1%

0.01%

16

19

14

5.7

2.5

1.9

23

4.9

1.9

GUaSh500

0.0 0.02 0.04 0.06 0.08 0.1
7LPe (secRnG)

1%

0.1%

0.01%

1.8

2.0

2.3

0.9

0.6

0.5

1.0

0.9

0.6

5eGGLt

0.0 0.02 0.04 0.06 0.08 0.1
7LPe (secRnG)

1%

0.1%

0.01%

1.5

1.6

1.7

0.7

0.4

0.4

0.5

0.5

0.5

3Rkec

AGMLLsts 30A 6tLngeU cu6SaUseC65 G30A+ CRnnecteGCRPSRnent (SatteUneG) 8SGate (unSatteUneG)

Figure 9: Streaming Connected Component

0.0 0.5 1.0 1.5 2.0 2.5 3.0
7LPe (secRnG)

1%

0.1%

0.01%

6l
LG

e
6L

ze

44

42

35

9.2

4.5

4.0

3.6

8nLfRUP 5anGRP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
7LPe (secRnG)

1%

0.1%

0.01%

70

37

30

21

5.1

4.9

25

4.8

GUaSh500

0.0 0.2 0.4 0.6 0.8 1.0
7LPe (secRnG)

1%

0.1%

0.01%

12

8.1

6.0

4.9

2.2

1.6

1.0

5eGGLt

0.0 0.2 0.4 0.6 0.8 1.0
7LPe (secRnG)

1%

0.1%

0.01%

14

9.7

6.9

3.0

1.8

1.2

3Rkec

AGMLLsts 30A 6tLngeU cu6SaUseC65 G30A+ 3age5ank (SatteUneG) 8SGate (unSatteUneG)

Figure 10: Streaming PageRank

the PMA-like data structure to represent the graph brings
significant overheads for the graph algorithms. Second, we
demonstrate how the update performance a↵ects the overall
e�ciency of dynamic graph processing.

In the remaining part of this section, we present the per-
formance of di↵erent approaches by showing their average
elapsed time to process a shift of the sliding window with
three di↵erent batch sizes, i.e., the batches contain 0.01%,
0.1% and 1% edges of the respective dataset. We have also
tested the graph stream with explicit random insertions and
deletions for all applications as an extended experiment. We
omit the detailed results here since they are similar to the
results of the sliding window model and we refer interested
readers to [42]. We distinguish the time spent on updates
and analytics with di↵erent patterns among all figures.

BFS Results: Figure 8 presents the results for BFS. Al-
though processing BFS only accesses each edge in the graph
once, it is still an expensive operation because BFS can po-
tentially scan the entire graph. This has led to the observa-
tion that CPU-based approach takes significant amount of
time for BFS computation whereas the update time is com-
paratively negligible. Thanks to the massive parallelism and
high memory bandwidth of GPUs, GPU-based approaches
are much more e�cient than CPU-based approaches for BFS
computation as well as the overall performance. For the
cuSparseCSR approach, the rebuild process is the bottle-
neck as the update needs to scan the entire group multiple
times. In contrast, GPMA+ takes much shorter time for the

update and has nearly identical BFS performance compared
with cuSparseCSR. Thus, GPMA+ dominates the compar-
isons in terms of the overall processing e�ciency.
We have also tested our framework in terms of hiding data

transfer over PCIe by using asynchronous streams to con-
currently perform GPU computation and PCIe transfer. In
Figure 11, we show the results when running concurrent ex-
ecution by using the GPMA+ approach. The data transfer
consists of two parts: sending graph updates and fetching
updated distance vector (from the query vertex to all other
vertices). It is clear from the figure that, under any cir-
cumstances, sending graph updates is overlapped by GPMA+
update processing and fetching the distance vector is over-
lapped by BFS computation. Thus, the data transfer is com-
pletely hidden in the concurrent streaming scenario. As the
observations remain similar in other applications, we omit
their results and explanations, and the details can be found
in the appendix of our extended technical report [42].

Connected Component Results: Figure 9 presents the
results for running ConnectedComponent on the dynamic
graphs. The results show di↵erent performance patterns
compared with BFS as ConnectedComponent takes more
time in processing which is caused by a number of graph
traversal passes to extract the partitions. Meanwhile, the
update cost remains the same. Thus, GPU-based solutions
enhance their performance superiority over CPU-based solu-
tions. Nevertheless, the update process of cuSparseCSR is
still expensive compared with the time spent on Connected-

117

0 20 40 60 80 100
TiPe (PV)

1%

0.1%

0.01%

6l
iG

e
6i

ze

8nifRUP 5DnGRP

0 20 40 60 80 100
TiPe (PV)

1%

0.1%

0.01%

GUDSh500

0 5 10 15 20 25
TiPe (PV)

1%

0.1%

0.01%

5eGGit

0 5 10 15 20 25
TiPe (PV)

1%

0.1%

0.01%

PRkeF

GP0A+ 8SGDte %)6)etFh %)6 DiVtDnFe VeFtRU 6enG 8SGDteV

Figure 11: Concurrent data transfer and BFS computation with asynchronous stream

0 20 40 60 80
ThURughSut (PilliRn eGges / seFRnG)

6000

1.2B

1.8B1
uP

Ee
U R

f (
Gg

es

30A 8SGate

0 2 4 6 8
ThURughSut (EilliRn eGges / seFRnG)

6000

1.2B

1.8B

3age5anN

0 1 2 3 4 5
ThURughSut (EilliRn eGges / seFRnG)

6000

1.2B

1.8B

B)6

0 1 2 3
ThURughSut (EilliRn eGges / seFRnG)

6000

1.2B

1.8B

CRnneFteG CRPSRnent

1 G38 2 G38s 3 G38s

Figure 12: Multi-GPU performance on di↵erent sizes of Graph500 datasets

Component. GPMA+ is very e�cient in processing the up-
dates. Although we have observed that, in the Reddit and
the Pokec datasets, GPMA+ shows some discrepancies for
running the graph algorithm against cuSparseCSR due to
the “holes” introduced in the graph structure, the discrep-
ancies are insignificant considering the huge performance
boosts for updates. Thus, GPMA+ still dominates the rebuild
approach for overall performance.

PageRank Results: Figure 10 presents the results for Page-
Rank. PageRank is a compute-intensive task where the
SpMV kernel is iteratively invoked on the entire graph until
the PageRank vector converges. The pattern follows from
previous results: CPU-based solutions are dominated by
GPU-based approaches because iterative SpMV is a more ex-
pensive process than BFS and ConnectedComponent, and
GPU is designed to handle massively parallel computation
like SpMV. Although cuSparseCSR shows inferior perfor-
mance compared with GPMA+, the improvement brought by
GPMA+’s e�cient update is not as significant as that in pre-
vious applications since the update costs are small compared
with the cost of iterative SpMV kernel calls. Nevertheless, the
dynamic structure of GPMA+ does not a↵ect the e�ciency of
the SpMV kernel and GPMA+ outperforms other approaches
in all experiments.

6.4 Scalability
GPMA and GPMA+ can also be extended to multiple GPUs

to support graphs with a size larger than the device memory
of one GPU. To showcase the scalability of our proposed
framework, we implement the multi-GPU version of GPMA+
and then carry out experiments of the aforementioned graph
analytic applications.
We generate three large datasets using Graph500 with

increasing numbers of edges (600 Million, 1.2 Billion and
1.8 Billion) and conduct the same performance experiments
in section 6.3 with 1% slide size, on 1, 2 and 3 GPUs respec-
tively. We evenly partition graphs according to the vertex
index and synchronize all devices after each iteration. For
a fair comparison among di↵erent datasets, we use through-
put as our performance metric. The experimental results of
GPMA+ updates and application performance are illustrated
in Figure 12. We do not compare with Stinger because

in this subsection, we focus on the evaluation on the scal-
ability of GPMA+. The memory consumption of Stinger
exceeds our machine’s 128GB main memory based on its
default configuration in the standalone mode.
Multiple GPUs can extend the memory capacity so that

analytics on larger graphs can be executed. According to
Figure 12, the improvement in terms of throughput for mul-
tiple GPUs behaves di↵erently in various applications. For
GPMA+ update and PageRank, we achieve a significant im-
provement with more GPUs, because their workloads be-
tween communications are relatively compute-intensive. For
BFS and ConnectedComponent, the experimental results
demonstrate a tradeo↵ between overall computing power
and communication cost with increasing number of GPUs,
as these two applications incur larger communication cost.
Nevertheless, multi-GPU graph processing is an emerging
research area and more e↵ectiveness optimizations are left
as future work. Overall, this set of preliminary experiments
shows that our proposed scheme is capable of supporting
large scale dynamic graph analytics.

7. CONCLUSION & FUTURE WORK
In this paper, we address how to dynamically update the

graph structure on GPUs in an e�cient manner. First, we
introduce a GPU dynamic graph analytic framework, which
enables existing static GPU-oriented graph algorithms to
support high-performance evolving graph analytics. Sec-
ond, to avoid the rebuild of the graph structure which is
a bottleneck for processing dynamic graphs on GPUs, we
propose GPMA and GPMA+ to support incremental dynamic
graph maintenance in parallel. We prove the scalability
and complexity of GPMA+ theoretically and evaluate the ef-
ficiency through extensive experiments. As future work, we
would like to explore a hybrid CPU-GPU approach for dy-
namic graph processing and more e↵ective optimizations for
involved applications.

8. ACKNOWLEDGEMENT
The project is partially supported by a MoE Tier 2 grant

(MOE2017-T2-1-141) in Singapore. Bingsheng’s work is in
part supported by a MoE AcRF Tier 1 grant (T1 251RES1610)
in Singapore.

118

9. REFERENCES
[1] Apache flink. https://flink.apache.org/.

Accessed: 2016-10-18.
[2] Cusp library.

https://developer.nvidia.com/cusp.
Accessed: 2017-03-25.

[3] cusparse.
https://developer.nvidia.com/cusparse.
Accessed: 2016-11-09.

[4] CUDA UnBound (CUB) library.
https://nvlabs.github.io/cub/, 2015.

[5] L. Akoglu, H. Tong, and D. Koutra. Graph based
anomaly detection and description: a survey. Data
Min. Knowl. Discov., 29(3):626–688, 2015.

[6] A. Ashari, N. Sedaghati, J. Eisenlohr,
S. Parthasarathy, and P. Sadayappan. Fast sparse
matrix-vector multiplication on gpus for graph
applications. In SC, pages 781–792, 2014.

[7] A. Ashari, N. Sedaghati, J. Eisenlohr, and
P. Sadayappan. An e�cient two-dimensional blocking
strategy for sparse matrix-vector multiplication on
gpus. In ICS, pages 273–282, 2014.

[8] D. A. Bader, J. Berry, A. Amos-Binks,
D. Chavarŕıa-Miranda, C. Hastings, K. Madduri, and
S. C. Poulos. Stinger: Spatio-temporal interaction
networks and graphs (sting) extensible representation.
Georgia Institute of Technology, Tech. Rep, 2009.

[9] N. Bell and M. Garland. E�cient sparse matrix-vector
multiplication on CUDA. Technical Report
NVR-2008-004, NVIDIA Corporation, 2008.

[10] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious b-trees. SIAM J. Comput.,
35(2):341–358, 2005.

[11] M. A. Bender and H. Hu. An adaptive packed-memory
array. ACM Trans. Database Syst., 32(4), 2007.

[12] L. Braun, T. Etter, G. Gasparis, M. Kaufmann,
D. Kossmann, D. Widmer, A. Avitzur, A. Iliopoulos,
E. Levy, and N. Liang. Analytics in motion: High
performance event-processing and real-time analytics
in the same database. In SIGMOD, pages 251–264,
2015.

[13] F. Busato and N. Bombieri. Bfs-4k: an e�cient
implementation of bfs for kepler gpu architectures.
TPDS, 26(7):1826–1838, 2015.

[14] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng,
M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen.
Kineograph: Taking the pulse of a fast-changing and
connected world. In EuroSys, pages 85–98, 2012.

[15] M. S. Crouch, A. McGregor, and D. Stubbs. Dynamic
graphs in the sliding-window model. In European
Symposium on Algorithms, pages 337–348. Springer,
2013.

[16] H.-V. Dang and B. Schmidt. The sliced coo format for
sparse matrix-vector multiplication on cuda-enabled
gpus. Procedia Computer Science, 9:57–66, 2012.

[17] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows.
SIAM journal on computing, 31(6):1794–1813, 2002.

[18] A. Davidson, S. Baxter, M. Garland, and J. D. Owens.
Work-e�cient parallel gpu methods for single-source
shortest paths. In Parallel and Distributed Processing

Symposium, 2014 IEEE 28th International, pages
349–359. IEEE, 2014.

[19] D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader.
STINGER - High performance data structure for
streaming graphs. HPEC, 2012.

[20] M. Elkin. Streaming and fully dynamic centralized
algorithms for constructing and maintaining sparse
spanners. ACM Trans. Algorithms, 7(2):20:1–20:17,
2011.

[21] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[22] Z. Fu, M. Personick, and B. Thompson. MapGraph: A
High Level API for Fast Development of High
Performance Graph Analytics on GPUs. A High Level
API for Fast Development of High Performance Graph
Analytics on GPUs. ACM, New York, New York,
USA, June 2014.

[23] S. Guha and A. McGregor. Graph synopses, sketches,
and streams: A survey. PVLDB, 5(12):2030–2031,
2012.

[24] W. Guo, Y. Li, M. Sha, and K.-L. Tan. Parallel
personalized pagerank on dynamic graphs. PVLDB,
11(1), 2017.

[25] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the gpu using cuda. In International
Conference on High-Performance Computing, pages
197–208. Springer, 2007.

[26] D. S. Hirschberg. Parallel algorithms for the transitive
closure and the connected component problems. In
Proceedings of the eighth annual ACM symposium on
Theory of computing, pages 55–57. ACM, 1976.

[27] A. P. Iyer, L. E. Li, T. Das, and I. Stoica.
Time-evolving graph processing at scale. In
Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems,
pages 5:1–5:6, 2016.

[28] A. P. Iyer, L. E. Li, and I. Stoica. Celliq : Real-time
cellular network analytics at scale. In NSDI, pages
309–322, 2015.

[29] R. Kaleem, A. Venkat, S. Pai, M. Hall, and K. Pingali.
Synchronization trade-o↵s in gpu implementations of
graph algorithms. In Parallel and Distributed
Processing Symposium, 2016 IEEE International,
pages 514–523. IEEE, 2016.

[30] J. King, T. Gilray, R. M. Kirby, and M. Might.
Dynamic sparse-matrix allocation on gpus. In ISC,
pages 61–80, 2016.

[31] J. Leskovec and R. Sosič. Snap: A general-purpose
network analysis and graph-mining library. TIST,
8(1):1, 2016.

[32] X. Lin, R. Zhang, Z. Wen, H. Wang, and J. Qi.
E�cient subgraph matching using gpus. In ADC,
pages 74–85, 2014.

[33] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent
breadth-first search on gpus. In SIGMOD, pages
403–416, 2016.

[34] L. Luo, M. Wong, and W.-m. Hwu. An e↵ective gpu
implementation of breadth-first search. In DAC, pages
52–55, 2010.

[35] M. Martone, S. Filippone, S. Tucci, P. Gepner, and
M. Paprzycki. Use of hybrid recursive csr/coo data

119

structures in sparse matrix-vector multiplication. In
IMCSIT, pages 327–335. IEEE, 2010.

[36] A. McGregor. Graph stream algorithms: A survey.
SIGMOD Rec., 43(1):9–20, 2014.

[37] D. Merrill, M. Garland, and A. Grimshaw.
High-Performance and Scalable GPU Graph
Traversal. TOPC, 1(2), 2015.

[38] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and
J. A. Ang. Introducing the graph 500. 2010.

[39] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi.
E�cient pagerank tracking in evolving networks. In
KDD, pages 875–884, 2015.

[40] Y. Saad. Numerical solution of large nonsymmetric
eigenvalue problems. Computer Physics
Communications, 53(1):71–90, 1989.

[41] D. Sayce. 10 billions tweets, number of tweets per day.
http://www.dsayce.com/social-media/

10-billions-tweets/. Accessed: 2016-10-18.
[42] M. Sha, Y. Li, B. He, and K.-L. Tan. Technical report:

Accelerating dynamic graph analytics on gpus. arXiv
preprint arXiv:1709.05061, 2017.

[43] J. Soman, K. Kothapalli, and P. J. Narayanan. A fast
GPU algorithm for graph connectivity. IPDPS
Workshops, 2010.

[44] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8
requirements of real-time stream processing. ACM
SIGMOD Record, 34(4):42–47, 2005.

[45] J. A. Stratton, N. Anssari, C. Rodrigues, I.-J. Sung,
N. Obeid, L. Chang, G. D. Liu, and W.-m. Hwu.
Optimization and architecture e↵ects on gpu
computing workload performance. In InPar, pages
1–10, 2012.

[46] N. Tang, Q. Chen, and P. Mitra. Graph stream
summarization: From big bang to big crunch. In
SIGMOD, pages 1481–1496, 2016.

[47] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.

Storm@twitter. In SIGMOD, pages 147–156, 2014.
[48] C. E. Tsourakakis, U. Kang, G. L. Miller, and

C. Faloutsos. DOULION: counting triangles in massive
graphs with a coin. In SIGKDD, pages 837–846, 2009.

[49] U. Verner, A. Schuster, M. Silberstein, and
A. Mendelson. Scheduling processing of real-time data
streams on heterogeneous multi-gpu systems. In
SYSTOR, page 7, 2012.

[50] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Ri↵el, and
J. D. Owens. Gunrock: A high-performance graph
processing library on the gpu. SIGPLAN Not.,
50(8):265–266, 2015.

[51] Y. Wang, Q. Fan, Y. Li, and K.-L. Tan. Real-time
influence maximization on dynamic social streams.
PVLDB, 10(7):805–816, 2017.

[52] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaspmv: yet
another spmv framework on gpus. In SIGPLAN
Notices, volume 49, pages 107–118, 2014.

[53] X. Yang, S. Parthasarathy, and P. Sadayappan. Fast
sparse matrix-vector multiplication on gpus:
Implications for graph mining. PVLDB, 4(4):231–242,
2011.

[54] Y. Yang, Z. Wang, J. Pei, and E. Chen. Tracking
influential nodes in dynamic networks. arXiv preprint
arXiv:1602.04490, 2016.

[55] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In SOSP, pages
423–438, 2013.

[56] H. Zhang, P. Lofgren, and A. Goel. Approximate
personalized pagerank on dynamic graphs. arXiv
preprint arXiv:1603.07796, 2016.

[57] Y. Zhang and F. Mueller. Gstream: A general-purpose
data streaming framework on GPU clusters. In ICPP,
pages 245–254, 2011.

[58] J. Zhong and B. He. Medusa: Simplified graph
processing on gpus. IEEE Trans. Parallel Distrib.
Syst., 25(6):1543–1552, 2014.

120

