
When Engagement Meets Similarity: Efficient (k,r)-Core
Computation on Social Networks

Fan Zhang‡†, Ying Zhang†, Lu Qin†, Wenjie Zhang§, �Xuemin Lin‡§

‡East China Normal University, †CAI, University of Technology Sydney, §University of New South Wales
fanzhang.cs@gmail.com, {ying.zhang, lu.qin}@uts.edu.au, {zhangw, lxue}@cse.unsw.edu.au

ABSTRACT
In this paper, we investigate the problem of (k,r)-core which in-
tends to find cohesive subgraphs on social networks considering
both user engagement and similarity perspectives. In particular, we
adopt the popular concept of k-core to guarantee the engagement
of the users (vertices) in a group (subgraph) where each vertex in a
(k,r)-core connects to at least k other vertices. Meanwhile, we con-
sider the pairwise similarity among users based on their attributes.
Efficient algorithms are proposed to enumerate all maximal (k,r)-
cores and find the maximum (k,r)-core, where both problems are
shown to be NP-hard. Effective pruning techniques substantially
reduce the search space of two algorithms. A novel (k,k′)-core
based (k,r)-core size upper bound enhances performance of the
maximum (k,r)-core computation. We also devise effective search
orders for two mining algorithms where search priorities for ver-
tices are different. Comprehensive experiments on real-life data
demonstrate that the maximal/maximum (k,r)-cores enable us to
find interesting cohesive subgraphs, and performance of two min-
ing algorithms is effectively improved by proposed techniques.

1. INTRODUCTION
Nowadays data becomes diverse and complex in real-life social

networks, which not only consist of users and friendship, but also
have various attribute values on each user. As such, social networks
can be naturally modeled as attributed graphs where vertices repre-
sent users, edges represent friendship and vertex attribute is associ-
ated with specific properties, such as locations or keywords. Min-
ing cohesive subgraphs is one of the most fundamental graph prob-
lems which aims to find groups of well-connected nodes (e.g., peo-
ple), and a variety of models have been proposed such as clique [8],
k-core [24], and k-truss [17]. Most of the existing work only con-
sider the structure cohesiveness of the subgraphs. However, in
practice we usually need to consider both structure and attribute
perspectives when we aim to find a cohesive subgraph. In this pa-
per, we move beyond the simple structure-based cohesive subgraph
models and advocate a complicated but more realistic cohesive sub-
graph model on attributed graphs, namely (k,r)-core. Particularly,
we consider two intuitive and important criteria for a cohesive sub-
graph in real-life social networks: engagement and similarity.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 10
Copyright 2017 VLDB Endowment 2150-8097/17/06.

Engagement. It is a common practice to encourage the engage-
ment of the group members by using the positive influence from
their friends in the same group (e.g., [3, 11, 21, 22, 29]); that is,
ensure there are a considerable number of friends for each individ-
ual user (vertex) in the group (subgraph). In [3], Bhawalkar and
Kleinberg et al. use the game-theory to formally demonstrate that
the popular k-core model can lead to a stable group (i.e., a cohe-
sive subgraph regarding graph structure). In this paper, we adopt
the k-core model on the graph structure, where each vertex in the
subgraph has at least k neighbors (structure constraint).
Similarity. In addition to the engagement, we usually need to con-
sider attribute similarities among users (vertices) in the group (sub-
graph). The similarity of two users can be derived from a given set
of attributes (e.g., location, interests, and user generated content),
which varies in different scenarios (e.g., [4, 15, 16, 23, 25]). By
connecting two users (vertices) whose similarity exceeds a given
threshold r, we get a similarity graph to capture the similarities a-
mong users. In this paper, we adopt the well-known clique model to
capture the cohesiveness of users from similarity perspective; that
is, the vertices of a cohesive subgraph in this paper form a clique on
the similarity graph, which can ensure pairwise similarity among
users (similarity constraint).
(k, r)-Core. The engagement and similarity criteria may often be
used together to measure the sustainability of social groups. For
instance, Facebook shows that both engagement (the number of
friends in the group) and similarity (e.g., similar pages liked and
distance closeness) are two important criteria when an existing
Facebook group is recommended to a user [1]. To capture both en-
gagement and similarity, we introduce the (k,r)-core model which
is defined as follows. We say a connected subgraph of G is a
(k,r)-core if and only if it satisfies both structure and similarity
constraints. More specifically, given an attributed graph G, a (k,r)-
core is a k-core of G (structure constraint) and the vertex set of the
(k,r)-core induces a clique on the corresponding similarity graph
(similarity constraint). A (k,r)-core is maximal if none of its su-
pergraphs is a (k,r)-core. It is less interesting to find non-maximal
(k,r)-cores. In this paper, we aim to efficiently enumerate the max-
imal (k,r)-cores.

Applications. In many social network applications, (k,r)-core can
help to discover interesting groups, which are promising to become
stable and active. These groups can greatly enhance the users’
stickiness and their experience. For instance, game designers
should increase the stickiness of games by encouraging, or even
forcing, team playing [7]. By identifying candidate groups with
high quality in terms of the engagement and similarity, (k,r)-core
can help to quickly discover and recommend new groups. These
groups have good potential to become active and stable. Below are
detailed examples.

998

Figure 1: Group by Friendship and Interests

EXAMPLE 1 (INTEREST-BASED SOCIAL GROUPS). In
social networks such as Facebook and Weibo, the friendship
information and mutual interests are widely used to recommend
existing groups to users. In this paper, (k,r)-core can be used
for group discovery, which recommends new promising groups to
relevant users. In Figure 1, we use a set of keywords to describe
the interests of each user (e.g., Facebook user). Jaccard similarity
metric can be employed to measure the user similarity. Suppose
k = 3 and the similarity threshold r = 0.5, the group within
red circle is a maximal (k,r)-core 1. In this group, each user has
at least 3 friends and their interests are similar to others. This
group is likely to remain stable, become active and enhance the
interactions among users.

EXAMPLE 2 (LOCATION-BASED GAME TEAMS). By rec-
ommending game teams (groups) with potential to become sustain-
able and active, the game companies can greatly enhance user
stickiness and improve game experience [7]. In many location-
based online games such as Pokemon Go and Ingress, users play
the games based on their locations and surroundings. For Pokemon
Go, players would like to play the game with a group of people, in
which there are some friends, to catch pokemons and attack gyms
together. Because it is a location-based mobile game, players usu-
ally play it within a geographical range of frequently visited places
such as their homes. Due to the diverse distribution of pokemons
and pokestops, the places near the home of every player are likely
to be visited, which naturally requires pairwise closeness (i.e., sim-
ilarity) among group members. Consequently, (k,r)-cores can be
good candidate groups where user engagement and similarity are
guaranteed. With similar rationale, (k,r)-cores are useful to party
games (e.g., Werewolf) which may be hosted at the homes of the
team players.

As illustrated in Figure 2, we can model the players, their friend-
ship and locations as a graph on the map. Suppose k = 3 and
the distance (similarity) threshold r = 1 km, G4 and G5 are not
good candidate groups. Although each player pair in G4 has close
distance, their friendship is weak. Likewise, although each play-
er in G5 has at least k friends, some players cannot conveniently
play with others because they are far away from others. However,
maximal (k,r)-cores (i.e., G1 and G2) can effectively identify good
candidate groups because each player has at least k friends in the
same group, and the distance for every two players is at most r (i.e.,
they are similar). Note that although G3 is also a (k,r)-core, it is
less interesting because it is fully contained by a larger group, G1.

1Note that the values of k and r can be tuned or learned for different
cohesiveness requirements.

Figure 2: Group by Friendship and Locations

The size of a social group is an important factor to measure
the potential impact and influence of this group. The groups with
larger size are more likely to attract attention from the social net-
work companies and users. Thus, it is interesting to find the max-
imum (k,r)-core which is the (k,r)-core with the largest number
of vertices, and find the top-m maximal (k,r)-cores with the top-m
largest numbers of vertices. In Example 1, the maximum (k,r)-core
can help to evaluate the social impact potential of the interest-based
social groups. In Example 2, the top-m maximal (k,r)-cores can i-
dentify m groups in which the game companies are more likely to
be interested. In this paper, we also study the problem of efficiently
finding the maximum (k,r)-core and top-m maximal (k,r)-cores.

Challenges and Contributions. Although there is a linear al-
gorithm for k-core computation [2] (i.e., only consider structure
constraint), we show that the problem of enumerating all maximal
(k,r)-cores and finding the maximum (k,r)-core are both NP-hard
because of the similarity constraint involved. A straightforward
solution is the combination of the existing k-core and clique algo-
rithms, e.g., enumerating the cliques on similarity graph and then
checking the structure constraint on the graph. In Section 3 and the
empirical study, we show that this is not promising because of the
isolated processing of structure and similarity constraints. In this
paper, we show that the performance can be immediately improved
by considering two constraints (i.e., two pruning rules) at the same
time without explicitly materializing the similarity graph. Then our
technique contributions focus on further reducing the search space
of two mining algorithms from the following three aspects: (i) ef-
fective pruning, early termination and maximal check techniques.
(ii) (k,k′)-core based approach to derive tight upper bound for the
problem of finding the maximum (k,r)-core. and (iii) good search
orders in two mining algorithms. Following is a summary of our
principal contributions.

• We advocate a novel cohesive subgraph model for attribut-
ed graphs, called (k,r)-core, to capture the cohesiveness of
subgraphs from both the graph structure and the vertex at-
tributes. We prove that the problem of enumerating all maxi-
mal (k,r)-cores and finding the maximum (k,r)-core are both
NP-hard. (Section 2)

• We develop efficient algorithms to enumerate the maximal
(k,r)-cores with candidate pruning, early termination and
maximal checking techniques. (Section 5)

• We also develop an efficient algorithm to find the maximum
(k,r)-core. Particularly, a novel (k,k′)-core based approach
is proposed to derive a tight upper bound for the size of the
candidate solution. (Section 6)

999

• Based on some key observations, we propose three search
orders for enumerating maximal (k,r)-cores, checking maxi-
mal (k,r)-cores, and finding maximum (k,r)-core algorithm-
s, respectively. (Section 7)

• Our empirical studies on real-life data demonstrate that in-
teresting cohesive subgraphs can be identified by maximal
(k,r)-cores and maximum (k,r)-core. The extensive perfor-
mance evaluation shows that the techniques proposed in this
paper can greatly improve the performance of two mining
algorithms. (Section 8)

2. PRELIMINARIES
In this section, we first formally introduce the concept of (k,r)-

core, then show that the two problems are NP-hard. Table 1 sum-
marizes the mathematical notations used throughout this paper.

2.1 Problem Definition
We consider an undirected, unweighted, and attributed graph

G = (V, E , A), where V (G) (resp. E(G)) represents the set of
vertices (resp. edges) in G, and A(G) denotes the attributes of the
vertices. By sim(u, v), we denote the similarity of two vertices
u, v in V (G) which is derived from their corresponding attribute
values (e.g., users’ geo-locations and interests) such as Jaccard sim-
ilarity or Euclidean distance. For a given similarity threshold r, we
say two vertices are dissimilar (resp. similar) if sim(u, v) < r
(resp. sim(u, v) ≥ r) 2.

For a vertex u and a set S of vertices, DP (u, S) (resp.
SP (u, S)) denotes the number of other vertices in S which are
dissimilar (resp. similar) to u regarding the given similarity thresh-
old r. We use DP (S) denote the number of dissimilar pairs in
S. We use S ⊆ G to denote that S is a subgraph of G where
E(S) ⊆ E(G) and A(S) ⊆ A(G). By deg(u, S), we denote the
number of adjacent vertices of u in V (S). Then, degmin(S) is the
minimal degree of the vertices in V (S). Now we formally intro-
duce two constraints.

DEFINITION 1. Structure Constraint. Given a positive in-
teger k, a subgraph S satisfies the structure constraint if
deg(u, S) ≥ k for each vertex u ∈ V (S), i.e., degmin(S) ≥ k.

DEFINITION 2. Similarity Constraint. Given a similarity
threshold r, a subgraph S satisfies the similarity constraint if
DP (u, S) = 0 for each vertex u ∈ V (S), i.e., DP (S) = 0.

We then formally define the (k,r)-core based on structure and
similarity constraints.

DEFINITION 3. (k,r)-core. Given a connected subgraph S ⊆
G, S is a (k,r)-core if S satisfies both structure and similarity con-
straints.

In this paper, we aim to find all maximal (k,r)-cores and the
maximum (k,r)-core, which are defined as follows.

DEFINITION 4. Maximal (k,r)-core. Given a connected sub-
graph S ⊆ G, S is a maximal (k,r)-core if S is a (k,r)-core of G
and there exists no (k,r)-core S′ of G such that S ⊂ S′.

DEFINITION 5. Maximum (k,r)-core. Let R denote all (k,r)-
cores of an attributed graph G, a (k,r)-core S ⊆ G is maximum if
|V (S)| ≥ |V (S′)| for every (k,r)-core S′ ∈ R.
2Following the convention, when the distance metric (e.g., Eu-
clidean distance) is employed, we say two vertices are similar if
their distance is not larger than the given distance threshold.

Table 1: The summary of notations
Notation Definition

G a simple attributed graph
S,J ,R induced subgraphs
u, v vertices in the attributed graph

sim(u, v) similarity between u and v
deg(u, S) number of adjacent vertex of u in S
degmin(S) minimal degree of the vertices in S
DP (u, S) number of dissimilar vertices of u w.r.t S
DP (S) number of dissimilar pairs of S
SP (u, S) number of similar vertices of u w.r.t S

M vertices chosen so far in the search
C candidate vertices set in the search
E relevant exclusive vertices set in the search

R(M ,C) maximal (k,r)-cores derived from M ∪ C
SF (S) (i.e.,SFC(S)) every u in S with DP (u,C) = 0

SFC∪E(S) every u in S with DP (u,C ∪ E) = 0

Problem Statement. Given an attributed graph G, a positive in-
teger k and a similarity threshold r, we aim to develop efficient
algorithms for the following two fundamental problems: (i) enu-
merating all maximal (k,r)-cores in G; (ii) finding the maximum
(k,r)-core in G.

EXAMPLE 3. In Figure 2, all vertices are from the k-core
where k = 2. G1, G2 and G3 are the three (k,r)-cores. G1 and
G2 are maximal (k,r)-cores while G3 is fully contained by G1. G1

is the maximum (k,r)-core.

2.2 Problem Complexity
We can compute k-core in linear time by recursively removing

the vertices with a degree of less than k [2]. Nevertheless, the two
problems studied in this paper are NP-hard due to the additional
similarity constraint.

THEOREM 1. Given a graph G(V, E), the problems of enu-
merating all maximal (k,r)-cores and finding the maximum (k,r)-
core are NP-hard.

PROOF. Given a graph G(V, E), we construct an attributed
graph G′(V ′, E ′, A′) as follows. Let V (G′) = V (G) and E(G′) =
{(u, v) | u ∈ V (G′), v ∈ V (G′), u �= v}, i.e., G′ is a com-
plete graph. For each u ∈ V (G′), we let A(u) = adj(u,G)
where adj(u,G) is the set of adjacent vertices of u in G. Suppose

a Jaccard similarity is employed, i.e., sim(u, v) = |A(u)∩A(v)|
|A(u)∪A(v)|

for any pair of vertices u and v in V (G′), and let the similarity
threshold r = ε where ε is an infinite small positive number (e.g.,
ε = 1

2|V (G′)|). We have sim(u, v) ≥ r if the edge (u, v) ∈ E(G),

and otherwise sim(u, v) = 0 < r. Since G′ is a complete graph,
i.e., every subgraph S ⊆ G′ with |S| ≥ k satisfies the structure
constraint of a (k,r)-core, the problem of deciding whether there is
a k-clique on G can be reduced to the problem of finding a (k,r)-
core on G′ with r = ε, and hence can be solved by the problem
of enumerating all maximal (k,r)-cores or finding the maximum
(k,r)-core. Theorem 1 holds due to the NP-hardness of the k-clique
problem [14].

3. THE CLIQUE-BASED APPROACH
Let G′ denote a new graph named similarity graph with

V (G′) = V (G) and E(G′) = {(u, v) | sim(u, v) ≥ r & u, v ∈
V (G)}, i.e., G′ connects the similar vertices in V (G). Then, the
set of vertices in a (k,r)-core satisfies the structure constraint on G
and is a clique (i.e., a complete subgraph) on the similarity graph
G′ (because every vertex pair is similar in a (k,r)-core). This im-
plies that we can use the existing clique algorithms on the similarity

1000

graph to enumerate the (k,r)-core candidates, followed by a struc-
ture constraint check. More specifically, we may first construct
the similarity graph G′ by computing the pairwise similarity of the
vertices. Then we enumerate the cliques in G′, and compute the
k-core on each induced subgraph of G for each clique. We can
find the maximal (k,r)-cores after the maximal check. We may fur-
ther improve the performance of this clique-based approach in the
following three ways.

• Instead of enumerating cliques on the similarity graph G′,
we can first compute the k-core of G, denoted by S. Then,
we apply the clique-based method on the similarity graph of
each connected subgraph in S.

• An edge in S can be deleted if its corresponding vertices are
dissimilar, i.e., there is no edge between these two vertices
in similarity graph S′.

• We only need to compute k-core for each maximal clique
because any maximal (k,r)-core derived from a non-maximal
clique can be obtained from the maximal cliques.

The above three methods substantially improve the performance
of the clique-based approach. Nevertheless, our experiments later
will demonstrate that the improved clique-based approach are sub-
stantially outperformed by our baseline algorithm (Section 8.3), al-
though the state-of-the-art k-core and clique computation methods
have been applied [2, 27]. This further validates the effectiveness of
the following techniques, which integrates computation of k-core
and clique at each search step with effective optimizations.

4. WARMING UP FOR OUR APPROACH
For ease of understanding, we start with a straightforward set

enumeration approach . The pseudo-code is given in Algorithm 1.
At the initial stage (Line 1-2), we remove the edges in E(G) whose
corresponding vertices are dissimilar, and then compute the k-core
S of the graph G. For each connected subgraph S ∈ S, the pro-
cedure NaiveEnum (Line 5) identifies all possible (k,r)-cores by
enumerating and validating all the induced subgraphs of S. By R,
we record the (k,r)-cores seen so far. Lines 6-8 eliminate the non-
maximal (k, r)-cores by checking all (k,r)-cores.

Algorithm 1: EnumerateMKRC(G, k, r)
Input : G : attributed graph, k : degree threshold, r : similarity

threshold
Output : M : Maximal (k,r)-cores
for each edge (u, v) in E(G) do1

Remove edge (u, v) from G If sim(u, v) < r;2

S ← k-core(G); R := ∅;3
for each connected subgraph S in S do4

R := R ∪ NaiveEnum(∅, S);5

for each (k,r)-core R in R do6
if there is a (k,r)-core R′ ∈ R s.t. R ⊂ R′ then7

R := R \R;8

return R9

During the NaiveEnum search procedure (Algorithm 2), the ver-
tex set M incrementally retains the chosen vertices, and C retain-
s the candidate vertices. As shown in Figure 3, the enumeration
process corresponds to a binary search tree in which each leaf n-
ode represents a subset of S. In each non-leaf node, there are two
branches. The chosen vertex will be moved to M from C in expand
branch, and will be deleted from C in shrink branch, respectively.

Algorithm Correctness. We can safely remove dissimilar edges
(i.e., edges whose corresponding vertices are dissimilar) at Line 1

Algorithm 2: NaiveEnum(M , C)
Input : M : chosen vertices, C : candidate vertices
Output : R : (k,r)-cores
if C = ∅ and degmin(M) ≥ k and DP (M) = 0 then1

R := R ∪ R for every connected subgraph R ∈ M ;2

else3
u ← choose a vertex in C;4
NaiveEnum(M ∪ u, C \ u); /* Expand */;5
NaiveEnum(M , C \ u); /* Shrink */;6

Figure 3: Example of the Search Tree

and 2, since they will not be considered in any (k,r)-core due to
the similarity constraint. For every (k,r)-core R in G, there is one
and only one connected k-core subgraph S from S with R ⊆ S.
Since all possible subsets of S (i.e., 2|S| leaf nodes) are enumer-
ated in the corresponding search tree, every (k,r)-core R can be
accessed exactly once during the search. Together with the struc-
ture/similarity constraints and maximal property validation, we can
output all maximal (k,r)-cores.

Algorithm 1 immediately finds the maximum (k,r)-core by re-
turning the maximal (k,r)-core with the largest size.

5. FINDING ALL MAXIMAL (K,R)-CORES
In this section, we propose pruning techniques for the enumer-

ation algorithm including candidate reduction, early termination,
and maximal check techniques, respectively. Note that we defer
discussion on search orders to Section 7.

5.1 Reducing Candidate Size
We present pruning techniques to explicitly/implicitly exclude

some vertices from C.

5.1.1 Eliminating Candidates
Intuitively, when a vertex in C is assigned to (i.e., expand

branch) M or discarded (i.e., shrink branch), we shall recursively
remove some non-promising vertices from C due to structure and
similarity constraints. The following two pruning rules are based
on the definition of (k,r)-core.

THEOREM 2. Structure based Pruning. We can discard a ver-
tex u in C if deg(u,M ∪ C) < k.

THEOREM 3. Similarity based Pruning. We can discard a
vertex u in C if DP (u,M) > 0.

Candidate Pruning Algorithm. If a chosen vertex u is extend-
ed to M (i.e., to the expand branch), we first apply the similarity
pruning rule (Theorem 3) to exclude vertices in C which are dis-
similar to u. Otherwise, none of the vertices will be discarded by
the similarity constraint when we follow the shrink branch. Due to
the removal of the vertices from C (expand branch) or u (shrink
branch), we conduct structure based pruning by computing the k-
core for vertices in M ∪ C. Note that the search terminates if any
vertex in M is discarded.

1001

It takes at most O(|C|) time to find dissimilar vertices of u from
C. Due to the k-core computation, the structure based pruning
takes linear time to the number of edges in the induced graph of
M ∪ C.

After applying the candidate pruning, following two important
invariants always hold at each search node.

Similarity Invariant. We have

DP (u,M ∪ C) = 0 for every vertex u ∈ M (1)

That is, M satisfies similarity constraint regarding M ∪ C.

Degree Invariant. We have

degmin(M ∪ C) ≥ k (2)

That is, M and C together satisfy the structure constraint.

5.1.2 Retaining Candidates
In addition to explicitly pruning some non-promising vertices,

we may implicitly reduce the candidate size by not choosing some
vertices from C. In this paper, we say a vertex u is similarity free
w.r.t C if u is similar to all vertices in C, i.e., DP (u,C) = 0. By
SF (C) we denote the set of similarity free vertices in C.

THEOREM 4. Given that the pruning techniques are applied in
each search step, we do not need to choose vertices from SF (C) on
both expand and shrink branches. Moreover, M ∪C is a (k,r)-core
if we have C = SF (C).

PROOF. For every vertex u ∈ SF (C), we have DP (u,M ∪C)
= 0 due to the similarity invariant of M (Equation 1) and the defi-
nition of SF (C). Let M1 and C1 denote the corresponding chosen
set and candidate after u is chosen for expansion. Similarly, we
have M2 and C2 if u is moved to the shrink branch. We have
M2 ⊂ M1 and C2 ⊆ C1, because there are no discarded vertices
when u is extended to M while some vertices may be eliminated
due to the removal of u in the shrink branch. This implies that
R(M2, C2) ⊆ R(M1, C1). Consequently, we do not need to ex-
plicitly discard u as the shrink branch of u is useless. Hence, we
can simply retain u in C in the following computation.

However, C = SF (C) implies every vertex u in M ∪ C satis-
fies the similarity constraint. Moreover, u also satisfies the struc-
ture constraint due to the degree invariant (Equation 2) of M ∪ C.
Consequently, M ∪ C is a (k,r)-core.

Note that a vertex u ∈ SF (C) may be discarded in the following
search due to the structural constraint. Otherwise, it is moved to M
when the condition SF (C) = C holds. For each vertex u in C, we
can update DP (u,C) in a passive way when its dissimilar vertices
are eliminated from the computation. Thus, it takes O(nd) time in
the worst case where nd denotes the number of dissimilar vertex
pairs in C.

REMARK 1. With similar rationale, we can move a vertex u
directly from C to M if it is similarity free (i.e., u ∈ SF (C)) and
is adjacent to at least k vertices in M . As this validation rule is
trivial, it will be used in this paper without further mention.

EXAMPLE 4. In Figure 4, initially we have M = {u6} and
C = {u1, . . . , u5, u7, . . . , u10}. We use the spatial distance of two
vertices as their similarity, and the only dissimilar pair is u4 and
u7. Suppose u7 is chosen from C, following the expand branch, u7

will be moved from C to M and then u4 will be pruned due to the
similarity constraint. Then we need to prune u8 as deg(u8,M ∪
C) < 3. Thus, M = {u6, u7}, E = {u4, u8}. Since we have

Figure 4: Pruning and Retaining Candidates

SF (C) = C, this search branch is terminated and we get a (k,r)-
core of M ∪ C. Regarding the shrink branch, u7 is moved from C
to E, which leads to the deletion of u10 due to structure constraint.
Thus, M = {u6}, E = {u7, u10}. Since we have SF (C) = C,
this search branch is terminated and we get a (k,r)-core of M ∪C.

5.2 Early Termination
Trivial Early Termination. There are two trivial early termination
rules. As discussed in Section 5.1, we immediately terminate the
search if any vertex in M is discarded due to the structure con-
straint. We also terminate the search if M is disconnected to C.
Both these stipulations will be applied in the remainder of this pa-
per without further mention.

In addition to identifying the subtree that cannot derive any (k,r)-
core, we further reduce the search space by identifying the subtrees
that cannot lead to any maximal (k,r)-core. By E, we denote the
related excluded vertices set for a search node of the tree, where the
discarded vertices during the search are retained if they are similar
to M , i.e., DP (v,M) = 0 for every v ∈ E and E ∩ (M∪C) = ∅.
We use SFC(E) to denote the similarity free vertices in E w.r.t the
set C; that is, DP (u,C) = 0 for every u ∈ SFC(E). Similarly,
by SFC∪E(E) we denote the similarity free vertices in E w.r.t the
set E ∪ C.

THEOREM 5. Early Termination. We can safely terminate the
current search if one of the following two conditions hold:
(i) there is a vertex u ∈ SFC(E) with deg(u,M) ≥ k;
(ii) there is a set U ⊆ SFC∪E(E), such that deg(u,M ∪ U) ≥ k
for every vertex u ∈ U .

PROOF. (i) We show that every (k,r)-core R derived from cur-
rent M and C (i.e., R ⊆ R(M,C)) can reveal a larger (k,r)-core
by attaching the vertex u. For any R ∈ R, we have deg(u,R) ≥ k
because deg(u,M) ≥ k and M ⊆ V (R). u also satisfies the
similarity constraint based on the facts that u ∈ SFC(E) and
R ⊆ M ∪ C. Consequently, V (R) ∪ {u} forms a (k,r)-core.
(ii) The correctness of condition (ii) has a similar rationale. The
key idea is that for every u ∈ U , u satisfies the structure constraint
because deg(u,M ∪ U) ≥ k; and u also satisfies the similarity
constraint because U ⊆ SFE∪C(E) implies that DP (u, U ∪ R)
= 0.

Early Termination Check. It takes O(|E|) time to check the con-
dition (i) of Theorem 5 with one scan of the vertices in SFC(E).
Regarding condition (ii), we may conduct k-core computation on
M ∪SFC∪E(E) to see if a subset of SFC∪E(E) is included in the
k-core. The time complexity is O(ne) where ne is the number of
edges in the induced graph of M ∪ C ∪ E.

5.3 Checking Maximal
In Algorithm 1 (Lines 6-8), we need to validate the maximal

property based on all (k,r)-cores of G. The cost increases with
both the number and the average size of the (k,r)-cores. Similar to
the early termination technique, we use the following rule to check
the maximal property.

1002

Figure 5: Early Termination and Check Maximal

THEOREM 6. Checking Maximal. Given a (k,r)-core R, R is
a maximal (k,r)-core if there doesn’t exist a non-empty set U ⊆ E
such that R ∪ U is a (k,r)-core, where E is the excluded vertices
set when R is generated.

PROOF. E contains all discarded vertices that are similar to M
according to the definition of the excluded vertices set. For any
(k,r)-core R′ which fully contains R, we have R′ ⊆ E∪R because
R = M and C = ∅, i.e., the vertices outside of E ∪ R cannot
contribute to R′. Therefore, we can safely claim that R is maximal
if we cannot find R′ among E ∪R.

EXAMPLE 5. In Figure 5, we have M = {u2, u5, u6}, C =
{u1, u3, u4, u7, u8, u9, u10}. u4 and u7 is the only dissimilar pair.
If u9 is chosen from C on the shrink branch, u9 is moved from
C to E. Because u9 is similar to every vertex in C and has
3 neighbors in M , the search is terminated for u9 ∈ SFC(E)
and deg(u9,M) ≥ 3 according to Theorem 5. If we expand
and shrink the initial graph several times, the graph becomes
M = {u1, u2, u3, u5, u6, u9} and E = {u4, u7, u8, u10}. Here
M is a (k,r)-core, but we can further extend u7 and u10 to M and
get a larger (k,r)-core. So M is not a maximal (k,r)-core.

Since the maximal check algorithm is similar to our advanced
enumeration algorithm, we delay providing the details of this algo-
rithm to Section 5.4.

REMARK 2. The early termination technique can be regarded
as a lightweight version of the maximal check, which attempts to
terminate the search before a (k,r)-core is constructed.

5.4 Advanced Enumeration Method
Algorithm 3: AdvancedEnum(M , C, E)

Input : M : chosen vertices set, C : candidate vertices set, E :
relevant excluded vertices set

Output : R : maximal (k,r)-cores
Update C and E based on candidate pruning techniques (Theorem 21
and Theorem 3);
Return If current search can be terminated (Theorem 5);2
if C = SF (C) (Theorem 4) then3

M := M ∪ C;4
R := R∪M If CheckMaximal(M , E) (Theorem 6);5

else6
u ← a vertex in C \ SF (C) (Theorem 4);7
AdvancedEnum(M ∪ u, C \ u, E);8
AdvancedEnum(M , C \ u, E ∪ u);9

In Algorithm 3, we present the pseudo code for our advanced
enumeration algorithm which integrates the techniques proposed in
previous sections. We first apply the candidate pruning algorithm
outlined in Section 5.1 to eliminate some vertices based on struc-
ture/similarity constraints. Along with C, we also update E by in-
cluding discarded vertices and removing the ones that are not sim-
ilar to M . Line 2 may then terminate the search based on our early

termination rules. If the condition C = SF (C) holds, M ∪ C is
a (k,r)-core according to Theorem 4, and we can conduct the max-
imal check (Lines 3-5). Otherwise, Lines 7-9 choose one vertex
from C \ SF (C) and continue the search following two branches.

Algorithm 4: CheckMaximal(M , C)
Input : M : chosen vertices, C : candidate vertices
Output : isMax : true if M is a maximal (k,r)-core
Update C based on similarity and structure constraint;1
if M is a (k,r)-core then2

Exit the algorithm with isMax = false If |M∗| < |M |;3

else if |C| > 0 then4
u ← a vertex in C;5
CheckMaximal(M ∪ u, C \ u);6
CheckMaximal(M , C \ u);7

Checking Maximal Algorithm. According to Theorem 6, we
need to check whether some of the vertices in E can be included
in the current (k,r)-core, denoted by M∗.This can be regarded as
the process of further exploring the search tree by treating E as
candidate C (Line 5 of Algorithm 3). Algorithm 4 presents the
pseudo code for our maximal check algorithm.

To enumerate all the maximal (k,r)-cores of G, we need to re-
place the NaiveEnum procedure (Line 5) in Algorithm 1 using our
advanced enumeration method (Algorithm 3). Moreover, the naive
checking maximals process (Line 6-8) is not necessary since check-
ing maximals is already conducted by our enumeration procedure
(Algorithm 3). Since the search order for vertices does not affect
the correctness, the algorithm correctness can be immediately guar-
anteed based on above analyses. It takes O(ne+nd) times for each
search node in the worst case, where ne and nd denote the total
number of edges and dissimilar pairs in M ∪ C ∪ E.

6. FINDING THE MAXIMUM (K,R)-CORE
In this section, we first introduce the upper bound based algo-

rithm to find the maximum (k,r)-core. Then a novel (k, k′)-core
approach is proposed to derive tight upper bound of the (k,r)-core
size. Finally, we show the proposed upper bound and algorithm can
be easily applied to finding the top-m maximal (k,r)-cores.

6.1 Algorithm for Finding the Maximum One
Algorithm 5 presents the pseudo code for finding the maximum

(k,r)-core, where R denotes the largest (k,r)-core seen so far.
There are three main differences compared to the enumeration al-
gorithm (Algorithm 3). (i) Line 2 terminates the search if we find
the current search is non-promising based on the upper bound of
the core size, denoted by KRCoreSizeUB(M ,C). (ii) We do not
need to validate the maximal property. (iii) Along with the order
of visiting the vertices, the order of the two branches also matter-
s for quickly identifying large (k,r)-cores (Lines 6-12), which is
discussed in Section 7.

To find the maximum (k,r)-core in G, we need to replace the
NaiveEnum procedure (Line 2) in Algorithm 1 with the method in
Algorithm 5, and remove the naive maximal check section of Al-
gorithm 1 (Line 6-8). To quickly find a (k,r)-core with a large size,
we start the algorithm from the subgraph S which holds the ver-
tex with the highest degree. The maximum (k,r)-core is identified
when Algorithm 1 terminates.

Algorithm Correctness. Since Algorithm 5 is essentially
an enumeration algorithm with an upper bound based prun-
ing technique, the correctness of this algorithm is clear if the
KRCoreSizeUB(M,C) at Line 2 is calculated correctly.

1003

Algorithm 5: FindMaximum(M , C, E)
Input : M : chosen vertices set , C : candidate vertices set, E :

relevant excluded vertices set
Output : R : the largest (k,r)-core seen so far
Update C and E; Early terminate if possible;1
if KRCoreSizeUB(M,C) > |R| then2

if C = SF (C) then3
R := M ∪ C;4

else5
u ← choose a vertex in C \ SF (C);6
if Expansion is preferred then7

FindMaximum(M ∪ u, C \ u, E);8
FindMaximum(M , C \ u, E ∪ u);9

else10
FindMaximum(M , C \ u, E ∪ u);11
FindMaximum(M ∪ u, C \ u, E);12

Time Complexity. As shown in Section 6.2, we can efficiently
compute the upper bound of core size in O(ne + ns) time where
ns is the number of similar pairs w.r.t M ∪C ∪E. For each search
node the time complexity of the maximum algorithm is same as
that of the enumeration algorithm.

6.2 Size Upper Bound of (k,r)-Core
We use R to denote the (k,r)-core derived from M ∪ C. In this

way, |M | + |C| is clearly an upper bound of |R|. However, it is
very loose because it does not consider the similarity constraint.

Recall that G′ denotes a new graph that connects the similar ver-
tices of V (G), called similarity graph. By J and J ′, we denote the
induced subgraph of vertices M ∪ C from graph G and the sim-
ilarity graph G′, respectively. Clearly, we have V (J) = V (J ′).
Because R is a clique on the similarity graph J ′ and the size of
a k-clique is k, we can apply the maximum clique size estimation
techniques to J ′ to derive the upper bound of |R|. Color [13] and
k-core based methods [2] are two state-of-the-art techniques for
maximum clique size estimation.

Color based Upper Bound. Let cmin denote the minimum num-
ber of colors to color the vertices in the similarity graph J ′ such
that every two adjacent vertices in J ′ have different colors. S-
ince a k-clique needs k number of colors to be colored, we have
|R| ≤ cmin. Therefore, we can apply graph coloring algorithms to
estimate a small cmin [13].

k-Core based Upper Bound. Let kmax denote the maximum k
value such that k-core of J ′ is not empty. Since a k-clique is also a
(k-1)-core, this implies that we have |R| ≤ kmax + 1. Therefore,
we may apply the existing k-core decomposition approach [2] to
compute the maximal core number (i.e., kmax) on the similarity
subgraph J ′.

At the first glance, both the structure and similarity constraints
are used in the above method because J itself is a k-core (structure
constraint) and we consider the kmax-core of J ′ (similarity con-
straint). The upper bound could be tighter by choosing the smaller
one from color based upper bound and k-core based upper bound.
Nevertheless, we observe that the vertices in kmax-core of J ′ may
not form a k-core on J since we only have J itself as a k-core. If
so, we can consider kmax-1 as a tighter upper bound of R. Repeat-
edly, we have the largest kmax-i as the upper bound such that the
corresponding vertices form a k-core on J and a (kmax-i)-core on
J ′. We formally introduce this (k, k′)-core based upper bound in
the following.

(k,k’)-Core based Upper Bound. We first introduce the concept
of (k,k′)-core to produce a tight upper bound of |R|. Theorem 7

(a) Friendship Graph (J) (b) Similarity Graph (J ′)

Figure 6: Upper Bound Examples

shows that we can derive the upper bound for any possible (k,r)-
core R based on the largest possible k′ value, denoted by k′

max,
from the corresponding (k,k′)-core.

DEFINITION 6. (k,k′)-core. Given a set of vertices U , the
graph J and the corresponding similarity graph J ′, let JU and J ′

U

denote the induced subgraph by U on J and J ′, respectively. If
degmin(JU) ≥ k and degmin(J

′
U) = k′, U is a (k,k′)-core of J

and J ′.

THEOREM 7. Given the graph J , the corresponding similarity
graph J ′, and the maximum (k,r)-core R derived from J and J ′,
if there is a (k,k′)-core on J and J ′ with the largest k′, i.e., k′

max,
we have |R| ≤ k′

max + 1.

PROOF. Based on the fact that a (k,r)-core R is also a (k,k′)-
core with k′ = |R| − 1 according to the definition of (k,r)-core,
the theorem is proven immediately.

EXAMPLE 6. In Figure 6, we have k = 3, M = {u3} and
C = {u1, u2, u4, u5, u6}. Figure 6(a) shows the induced sub-
graph J from M ∪ C on G and Figure 6(b) shows the similar-
ity graph J ′ from M ∪ C on the similarity graph G′. We need
at least 5 colors to color J ′, so the color based upper bound is
5. By core decomposition on similarity graph J ′, we get that
the k-core based upper bound is 5 since kmax = 4 with 4-core
{u2, u3, u4, u5, u6}. Note that the vertices of this 4-core do not
form a 3-core on J . Regarding the (k, k′)-core based upper bound,
we can find k′

max = 3 because there is a (3, 3)-core on J and J ′

with four vertices {u2, u3, u5, u6}, and there is no other (k, k′)-
core with a larger k′ than k′

max. Consequently, the (k, k′)-core
based upper bound is 4, which is tighter than 5.

6.3 Algorithm for (k,k′)-Core Upper Bound
Algorithm 6 shows the details of the (k,k′)-core based upper

bound (i.e.,k′
max) computation, which conducts core decomposi-

tion [2] on J ′ with additional update which ensures the correspond-
ing subgraph on J is a k-core. We use deg[u] and degsim[u] to
denote the degree and similarity degree (i.e., the number of similar
pairs from u) of u w.r.t M ∪ C, respectively. Meanwhile, NB[u]
(resp. NBsim[u]) denotes the set of adjacent (resp. similar) ver-
tices of u. The key idea is to recursively mark the k′ value of the
vertices until we reach the maximal possible value. Line 1 sorts all
vertices based on the increasing order of their similarity degrees.
In each iteration, the vertex u with the lowest similarity degree has
already reached its maximal possible k′ (Line 3). Then Line 4 in-
vokes the procedure KK’coreUpdate to remove u and decrease the
degree (resp. similarity degree) of its neighbors (resp. similarity
neighbors) at Lines 9-11 (resp. Lines 12-15). Note that we need
to recursively remove vertices with degree smaller than k (Line 15)
in the procedure. At Line 5, we need to reorder the vertices in H
since their similarity degree values may be updated. According to
Theorem 7, k′ + 1 is returned at Line 6 as the upper bound of the
maximum (k,r)-core size.

1004

Algorithm 6: KK’coreBound(M , C)
Input : M : vertices chosen, C : candidate vertices
Output : k′max : the upper bound for the size of the maximum

(k,r)-core in M ∪ C
H := vertices in M ∪ C with increasing order of their similarity1
degrees;
for each u ∈ H do2

k′ := degsim(u);3
KK’coreUpdate(u, k′, H);4
reorder H accordingly;5

return k′ + 16

KK’coreUpdate(u, k′, H)7
Remove u from H;8
for each v ∈ NBsim[u] ∩H do9

if degsim[v] > k′ then10
degsim[v] := degsim[v]− 1;11

for each v ∈ NB[u] ∩H do12
deg[v] := deg[v]− 1;13
if deg[v] < k then14

KK’coreUpdate(v, k′, H);15

Time Complexity. We can use an array H to maintain the vertices
where H[i] keeps the vertices with similarity degree i. Then the
sorting of the vertices can be done in O(|J |) time. The time com-
plexity of the algorithm is O(ne + ns), where ne and ns denote
the number of edges in the graph J and the similarity graph J ′,
respectively.

Algorithm Correctness. Let k′
max(u) denote the largest k′ value

u can contribute to (k,k′)-core of J . By Hj , we represent the ver-
tices {u} with k′

max(u) ≥ j according to the definition of (k,k′)-
core. We then have Hj ⊆ Hi for any i < j. This implies that a
vertex u on Hi with k′

max(u) = i will not contribute to Hj with
i < j. Thus, we can prove correctness by induction.

6.4 Finding the Top-m Maximal (k,r)-Cores
Besides the maximum (k,r)-core, social network service

providers would also like to see the top-m maximal (k,r)-cores
whose activeness reflects the hotness of the network. Users may
be interested in these top-m communities which are most repre-
sentative and appealing groups in the network. To find the top-m
maximal (k,r)-cores, we can record current top-m largest maxi-
mal (k,r)-cores in Algorithm 5. In Line 2, the size upper bound is
compared with the size of the minimum maximal (k,r)-core record-
ed. And in Line 4, we replace the minimum maximal (k,r)-core
with current larger one if it is maximal. More specifically, the out-
put of Algorithm 5 should be “{Rj | j ∈ N+ & j ≤ m}: the
top-m largest maximal (k,r)-cores seen so far”. Line 2 should be
replaced by “If {KRCoreSizeUB(M,C) > |min(Rj)|} then”
where min(Rj) is the minimum maximal (k,r)-core in {Rj | j ∈
N+ & j ≤ m}. Line 4 should be replaced by “min(Rj) := M∪C
If CheckMaximal(M,E);”. Since there is no difference for Algo-
rithm 6 towards finding the maximum and the top-m, the algorithm
keeps same.

7. SEARCH ORDER
Section 7.1 briefly introduces some important measurements

that should be considered for an appropriate visiting order. Then
we investigate the visiting orders in three algorithms: finding the
maximum (k,r)-core (Algorithm 5), advanced maximal (k,r)-core
enumeration (Algorithm 3) and maximal check (Algorithm 4) at
Section 7.2, Section 7.3, and Section 7.4, respectively.

7.1 Important Measurements
In this paper, we need to consider two kinds of search orders:

(i) the vertex visiting order: the order of which vertex is chosen
from candidate set C and (ii) the branch visiting order: the or-
der of which branch goes first (expand first or shrink first). It is
difficult to find simple heuristics or cost functions for two prob-
lems studied in this paper because, generally speaking, finding a
maximal/maximum (k,r)-core can be regarded as an optimization
problem with two constraints. On one hand, we need to reduce the
number of dissimilar pairs to satisfy the similarity constraint, which
implies eliminating a considerable number of vertices from C. On
the other hand, the structure constraint and the maximal/maximum
property favors a larger number of edges (vertices) in M ∪ C; that
is, we prefer to eliminate fewer vertices from C.

To accommodate this, we propose three measurements where
M ′ and C′ denote the updated M and C after a chosen vertex
is extended to M or discarded.

• Δ1 : the change of number of dissimilar pairs, where

Δ1 =
DP (C)−DP (C′)

DP (C)
(3)

Note that we have DP (u,M ∪ C) = 0 for every u ∈ M
according to the similarity invariant (Equation 1).

• Δ2 : the change of the number of edges, where

Δ2 =
|E(M ∪ C)| − |E(M ′ ∪C′)|

|E(M ∪ C)| (4)

Recall that |E(V)| denote the number of edges in the induced
graph from the vertices set V .

• deg(u,M ∪ C): Degree. We also consider the degree of the
vertex as it may reflect its importance. In our implementa-
tion, we choose the vertex with highest degree at the initial
stage (i.e., M = ∅).

7.2 Finding the Maximum (k,r)-Core
Since the size of the largest (k,r)-core seen so far is critical to

reduce the search space, we aim to quickly identify the (k,r)-core
with larger size. One may choose to carefully discard vertices such
that the number of edges in M is reduced slowly (i.e., only pre-
fer smaller Δ2 value). However, as shown in our empirical study,
this may result in poor performance because it usually takes many
search steps to satisfy the structure constraint. Conversely, we may
easily fall into the trap of finding (k,r)-cores with small size if we
only insist on removing dissimilar pairs (i.e., only favor larger Δ1

value).
In our implementation, we use a cautious greedy strategy where

a parameter λ is used to make the trade-off. In particular, we use
λΔ1 −Δ2 to measure the suitability of a branch for each vertex in
C \SF (C). In this way, each candidate has two scores. The vertex
with the highest score is then chosen and its branch with higher
score is explored first (Line 6-12 in Algorithm 5).

For time efficiency, we only explore vertices within two hops
from the candidate vertex when we compute its Δ1 and Δ2 values.
It takes O(nc × (d21 + d22)) time where nc denote the number of
vertices in C \ SF (C), and d1 (resp. d2) stands for the average
degree of the vertices in J (resp. J ′).

7.3 Enumerating All Maximal (k,r)-Core
The ordering strategy in this section differs from finding the

maximum in two ways.

1005

(i) We observe that Δ1 has much higher impact than Δ2 in the
enumeration problem, so we adopt the Δ1-then-Δ2 strategy; that
is, we prefer the larger Δ1, and the smaller Δ2 is considered if there
is a tie. This is because the enumeration algorithm does not prefer
(k,r)-core with very large size since it eventually needs to enumer-
ate all maximal (k,r)-cores. Moreover, by the early termination
technique proposed in Section 5.2, we can avoid exploring many
non-promising subtrees that were misled by the greedy heuristic.

(ii) We do not need to consider the search order of two branches
because both must be explored eventually. Thus, we use the score
summation of the two branches to evaluate the suitability of a ver-
tex. The complexity of this ordering strategy is the same as that in
Section 7.2.

7.4 Checking Maximal
The search order for checking maximals is rather different than

the enumeration and maximum algorithms. Towards the checking
maximals algorithm, it is cost-effective to find a small (k,r)-core
which fully contains the candidate (k,r)-core. To this end, we adopt
a short-sighted greedy heuristic. In particular, we choose the vertex
with the largest degree and the expand branch is always preferred
as shown in Algorithm 4. By continuously maintaining a priority
queue, we fetch the vertex with the highest degree in O(log |C|)
time.

8. PERFORMANCE EVALUATION
This section evaluates the effectiveness and efficiency of our al-

gorithms through comprehensive experiments.

8.1 Experimental Setting
Algorithms. To the best of our knowledge, there are no existing
works that investigate the problem of (k,r)-core. In this paper, we
implement and evaluate 2 baseline algorithms, 2 advanced algo-
rithms and the clique-based algorithm which are described in Ta-
ble 3. Since the naive method in Section 4 is extremely slow even
on a small graph, we employ BasEnum and BasMax as the base-
line algorithms in the empirical study for the problem of enumer-
ating all maximal (k,r)-cores and finding the maximum (k,r)-core,
respectively. In Table 3, we also show the name for each technique,
which may be equipped or unloaded for the mentioned algorithms.

Datasets. Four real datasets are used in our experiments. The
original data of DBLP was downloaded from http://dblp.
uni-trier.de and the remaining three datasets were download-
ed from http://snap.stanford.edu. In DBLP, we con-
sider each author as a vertex with attribute of counted “attended
conferences” and “published journals” list. There is an edge for a
pair of authors if they have at least one co-authored paper. We use
Weighted Jaccard Similarity between the corresponding attributes
(counted conferences and journals) to measure the similarity be-
tween two authors. In Pokec, we consider each user to be a vertex
with personal interests. We use Weighted Jaccard Similarity as the
similarity metric. And there is an edge between two users if they
are friends. In Gowalla and Brightkite, we consider each us-
er as a vertex along with his/her location information. The graph
is constructed based on friendship information. We use Euclidean

Table 2: Statistics of Datasets
Dataset Nodes Edges davg dmax

Brightkite 58,228 194,090 6.67 1098
Gowalla 196,591 456,830 4.65 9967
DBLP 1,566,919 6,461,300 8.25 2023
Pokec 1,632,803 8,320,605 10.19 7266

Table 3: Summary of Algorithms
Technique Description
CR The candidate retaining technique (Theorem 4).
ET The early termination technique (Theorem 5).
CM The checking maximal technique (Theorem 6).
CK A tighter upper bound from the color based and the

k-core based upper bound. (Section 6.2).
UB The (k,k′)-core upper bound technique (Theorem 7).
SO The best search order is applied (Section 7).

Algorithm Description
Clique+ The advanced clique-based algorithm proposed in

Section 3, using the clique and k-core computation
algorithms in [27] and [2], respectively. The source
code for maximal clique enumeration was down-
loaded from http://www.cse.cuhk.edu.hk/

˜jcheng/publications.html.
BasEnum The basic enumeration method proposed in Algorith-

m 1 including the structure and similarity constraints
based pruning techniques (Theorems 2 and 3 in Sec-
tion 5.1). The best search order (Δ1-then-Δ2, in Sec-
tion 7.3) is applied.

AdvEnum AdvEnum = BasEnum+CR+ET+CM. The advanced
enumeration algorithm proposed in Section 5.4 that
applies all advanced pruning techniques including:
candidate size reduction (Theorems 2, 3 and 4 in Sec-
tion 5.1), early termination (Theorem 5 in Section 5.2)
and checking maximals (Theorem 6 in Section 5.3).
Moreover, the best search order is used (Δ1-then-Δ2,
in Section 7.3).

BasMax The algorithm proposed in Section 6.1 with the upper
bound replaced by a naive one: |M | + |C|. The best
search order is applied (λΔ1 −Δ2, in Section 7.2).

AdvMax AdvMax = BasMax+UB. The advanced finding maxi-
mum (k,r)-core algorithm proposed in Section 6.1 in-
cluding (k,k′)-core based upper bound technique (Al-
gorithm 6). Again, the best search order is applied
(λΔ1 −Δ2, in Section 7.2).

Distance between two locations to measure the similarity between
two users. Table 2 shows the statistics of the four datasets.

Parameters. We conducted experiments using different settings
of k and r. We set reasonable positive integers for k, which var-
ied from 3 to 15. In Gowalla and Brightkite, we used Eu-
clidean distance as the distance threshold r, ranging from 1 km to
500 km. The pairwise similarity distributions are highly skewed in
DBLP and Pokec. Thus, we used the thousandth of the pairwise
similarity distribution in decreasing order which grows from top
1‰ to top 15‰ (i.e., the similarity threshold value drops). Regard-
ing the search orders of the AdvMax and BasMax algorithms, we
set λ to 5 by default.

All programs were implemented in standard C++ and compiled
with G++ in Linux. All experiments were performed with Intel X-
eon 2.3GHz CPUs and a Redhat Linux system. The time cost is
set to INF if an algorithm did not terminate within one hour. The
source code is available at https://sites.google.com/
view/fanzhang.

8.2 Effectiveness
We conducted a case study on DBLP to demonstrate the effec-

tiveness of our (k,r)-core model. Compared to k-core, (k,r)-core
enables us to find more valuable information with the additional
similarity constraint on the vertex attribute. Figure 7 shows a case
of DBLP with k = 15 and r= 3‰3.

In Figure 7, all authors come from the same k-core based on their
co-authorship information alone (their structure constraint). While

3To avoid the noise, we enforce that there are at least three co-
authored papers between two connected authors in the case study.

1006

Figure 7: Case Study on DBLP (k=15, r=top 3‰)

#(k,r)-cores Maximum Size Average Size

0

0.4K

0.8K

1.2K

1.6K

2K

10 50 100 150 200
0

0.4K

0.8K

1.2K

1.6K

2K

Si
ze

#(
k,

r)-
co

re
s

r (km)

(a) Gowalla, k=5

0
0.1K
0.2K
0.3K
0.4K
0.5K
0.6K

6 7 8 9 10
0
2K
4K
6K
8K
10K
12K

Si
ze

#(
k,

r)-
co

re
s

k

(b) DBLP, r=top 3‰

Figure 8: (k,r)-core Statistics

there are two (k,r)-cores with one common author named Steven
P. Wilder, if we also consider their research background (their sim-
ilarity constraint). We find the result of (k,r)-cores is consistent
with reality that there are two groups of people with Dr. Wilder
from both side.

We also report the number of (k,r)-cores, the average size and
maximum size of (k,r)-cores on Gowalla and DBLP. Figure 8(a)
and (b) show that both maximum size of (k,r)-cores and the number
of (k,r)-cores are much more sensitive to the change of r or k on
the two datasets, compared to the average size.

8.3 Efficiency
In this section, we evaluate the efficiency of the techniques pro-

posed in this paper and report the time costs of the algorithms.

Evaluating the Clique-based Method. In Figure 9, we evaluate
the time cost of the maximal (k,r)-core enumeration for Clique+
and BasEnum on the Gowalla and DBLP datasets. In the experi-
ments, BasEnum always outperform Clique+ by a stable margin
because we apply pruning rules in BasEnum with the best search
order and a large number of of cliques are materialized in the sim-
ilarity graphs for Clique+. Consequently, we exclude Clique+
from the following experiments. This supports the insight that for a
problem of computing cohesive subgraphs on dual graphs, a care-
ful integration of existing cohesive subgraph computations at each
search step (e.g., BasEnum) is better than computing the two kinds
of cohesive subgraphs sequentially (e.g., Clique+).

Evaluating the Pruning Techniques. In Figure 10, we e-
valuate the efficiency of our pruning techniques on Gowalla
and DBLP by incrementally integrating these techniques from
BasEnum, BasEnum+CR, BasEnum+CR+ET to AdvEnum
(BasEnum+CR+ET+CM). Note that the best search order is used

10-1

100

101

102

103

2 4 6 8 10

Ti
m

e
Co

st
 (s

ec
)

r (km)

Clique+
BasEnum

(a) Gowalla, k=5

10-1

100

101

102

103

10 12 14 16 18

Ti
m

e
Co

st
 (s

ec
)

k

Clique+
BasEnum

(b) DBLP, r=top 3‰

Figure 9: Evaluate Clique-based Method

101

102

103

INF

10 50 100 150 200

Ti
m

e
Co

st
 (s

ec
)

r (km)

BasEnum
BasEnum+CR
BasEnum+CR+ET
AdvEnum

(a) Gowalla, k=5

101

102

103
INF

6 7 8 9 10

Ti
m

e
Co

st
 (s

ec
)

k

BasEnum
BasEnum+CR
BasEnum+CR+ET
AdvEnum

(b) DBLP, r=top 3‰

Figure 10: Evaluate Pruning Techniques

10-1

100

101

102

103
INF

1 2 3 4 5

Ti
m

e
Co

st
 (s

ec
)

r (‰)

BasMax
BasMax+CK
AdvMax

(a) DBLP, k=10

10-1

100

101

102

103
INF

10 11 12 13 14

Ti
m

e
Co

st
 (s

ec
)

k

BasMax
BasMax+CK
AdvMax

(b) DBLP, r=top 3‰

Figure 11: Evaluate Upper Bounds

for all algorithms. Among these techniques, Theorem 4 achieves
the best speedup because the search on SF (C) is skipped and
SF (C) may be large. The results in Figure 10 confirm that all
techniques contribute to enhance the performance of AdvEnum.

Evaluating the Upper Bound Technique. Figure 11 demonstrates
the effectiveness of the (k,k′)-core based upper bound technique
(Algorithm 6) on DBLP by varying the values of r and k. In
BasMax+CK, we used the better upper bound from color and k-
core based upper bound techniques (Section 6.2) [13, 2]. Studies
show that BasMax+CK greatly enhances performance compared
to the naive upper bound |M | + |C| (used in BasMax). Never-
theless, our (k,k′)-core based upper bound technique (AdvMax)
outperforms BasMax+CK by a large margin because it can better
exploit the structure/similarity constraints.

Evaluating the Search Orders. In this experiment, we evalu-
ate the effectiveness of the three search orders proposed for the
maximum algorithm (Section 7.2, Figure 12(a)-(c)), enumeration
algorithm (Section 7.3, Figure 12(d)-(e)) and the checking max-
imal algorithm (Section 7.4, Figure 12(f)). We first tune λ val-
ue for the search order of AdvMax in Figure 12(a) against DBLP
and Gowalla. In the following experiments, we set λ to 5 for
maximum algorithms. Figure 12(b) verifies the importance of the
adaptive order for the two branches on DBLP where Expand (resp.
Shrink) means the expand (resp. shrink) branch is always preferred
in AdvMax. In Figure 12(c), we investigate a set of possible order
strategies for AdvMax. As expected, the λΔ1−Δ2 order proposed
in Section 7.2 outperforms the other alternatives including random
order, degree based order (Section 7.4, used for checking maximal-
s), Δ1 order, Δ2 order and Δ1-then-Δ2 order (Section 7.3, used
by AdvEnum). Similarly, Figure 12(d) and (e) confirm that the
Δ1-then-Δ2 order is the best choice for AdvEnum compared to the
alternatives. Figure 12(f) shows that the degree order achieves the
best performance for the checking maximal algorithm (Algorith-
m 4) compared to the two orders used by AdvEnum and AdvMax.

Effect of Different Datasets. Figure 13 evaluates the performance
of the enumeration and maximum algorithms on four datasets with
k = 10. We use AdvEnum-SO to denote the AdvEnum algorithm
without the best search order while all other advanced techniques
applied (degree order is used instead). Figure 13(a) demonstrates
the efficiency of those techniques and search orders on four dataset-
s. We also demonstrate the efficiency of the upper bound and search
order for the maximum algorithm in Figure 13(b), where three al-
gorithms are evaluated (AdvMax-SO, BasMax, and AdvMax).

1007

8

10

12

14

16

2 4 6 8 10

Ti
m

e
Co

st
 (s

ec
)

λ

DBLP, k=15, r=top 3‰
Gowalla, k=5, r=100km

(a) Maximum(Maxm), λ

101

102

103

INF

3 4 5 6 7

Ti
m

e
Co

st
 (s

ec
)

k

Expand
Shrink
AdvMax

(b) Maxm, DBLP, r=top 3‰

101

102

103
INF

3 4 5 6 7

Ti
m

e
Co

st
 (s

ec
)

k

Random
Degree
Δ2

Δ1
Δ1-then-Δ2
λΔ1−Δ2

(c) Maxm, DBLP, r=top 3‰

10-2
10-1
100
101
102
103INF

1 2 3 4 5

Ti
m

e
Co

st
 (s

ec
)

r (km)

Random
Degree
Δ1-then-Δ2

(d) Enumeration, Gow., k=5

101

102

103

INF

10 50 100 150 200

Ti
m

e
Co

st
 (s

ec
)

r (km)

Δ1
λΔ1−Δ2
Δ1-then-Δ2

(e) Enumeration, Gow., k=5

 0

 0.5

 1

 1.5

 2

10 50 100 150 200

Ti
m

e
Co

st
 (s

ec
)

r (km)

λΔ1−Δ2
Δ1-then-Δ2
Degree

(f) Maximal, Gow., k=5

Figure 12: Evaluate Search Orders

10-1

100

101

102

103
INF

Brightkite Gowalla DBLP Pokec

Ti
m

e
C

os
t (

se
c)

Datasets

AdvEnum-SO
BasEnum
AdvEnum

(a) Enumeration

 0
 1
 2
 3
 4
 5
 6

Brightkite Gowalla DBLP Pokec

Ti
m

e
C

os
t (

se
c)

Datasets

AdvMax-SO
BasMax
AdvMax

(b) Maximum

Figure 13: Performance on Four Datasets

Effect of k and r. Figure 14 studies the impact of k and r for
the three enumeration algorithms on Gowalla and DBLP. As ex-
pected, Figure 14(a) shows that the time cost drops when k grows
because many more vertices are pruned by the structure constrain-
t. In Figure 14(b), the time costs grow when r increases because
more vertices will be included in (k,r)-cores when the similarity
threshold drops. Similar trends are also observed in Figure 15 for
three maximum algorithms. Moreover, Figure 14 and 15 further
confirm the effectiveness of proposed techniques. AdvMax great-
ly outperforms AdvEnum under the same setting because AdvMax
can further cut-off the search tree based on the derived upper bound
of the (k,r)-core size and does not need maximal check.

9. RELATED WORK
Mining Cohesive Subgraphs on Graphs. A variety of cohe-
sive subgraph models have been proposed such as clique [8], k-
core [24], and k-truss [17]. Below, we introduce k-core and clique,
which are used in this paper to capture user engagement and at-
tribute similarity, respectively.

k-core. The model of k-core, proposed by [24], has been wide-
ly used in many applications such as social contagion [26], influ-
ence study [19], and user engagement [3, 22, 33, 34]. Batagelj and
Zaversnik presented a liner in-memory algorithm for core decom-
position [2]. I/O efficient algorithms [28] were proposed for core
decomposition on graphs that cannot fit in the main memory. Lee et
al. [21] proposed an extension of k-core, namely (k,d)-core, which

100

101

102

103
INF

 5 6 7 8 9 10

Ti
m

e
Co

st
 (s

ec
)

k

AdvEnum-SO
BasEnum
AdvEnum

(a) Gowalla, r=100

10-1

100

101

102

103
INF

1 3 5 7 9 11 13 15

Ti
m

e
Co

st
 (s

ec
)

r (top ‰)

AdvEnum-SO
BasEnum
AdvEnum

(b) DBLP, k=15

Figure 14: Effect of k and r for Enumeration

10-1

100

101

102

 5 6 7 8 9 10

Ti
m

e
Co

st
 (s

ec
)

k

AdvMax-SO
BasMax
AdvMax

(a) Gowalla, r=100

10-1

100

101

102

103
INF

1 3 5 7 9 11 13 15

Ti
m

e
Co

st
 (s

ec
)

r (top ‰)

AdvMax-SO
BasMax
AdvMax

(b) DBLP, k=15

Figure 15: Effect of k and r for Maximum

is different with our model because they enforce both k-core and
d-truss structures on the same graph.

Clique. As a fundamental graph problem, maximal clique enu-
meration has been extensively studied. Most clique algorithm-
s (e.g., [5]) are based on backtracking search. Eppstein and S-
trash [9] further speedup maximal clique enumeration by selecting
pivots with good potential to reduce the search space in backtrack-
ing. Chang et al. study maximal clique enumeration in a sparse
graph [6]. Recently, Wang et al. [27] utilize the overlaps among
cliques to speedup the maximal cliques enumeration.

None of the above algorithms considered the computation of k-
core and clique at the same time. In this paper, we show that the
computation of (k,r)-core is much more challenging than the indi-
vidual computation of k-core and clique. Moreover, Our empirical
study shows that it is less efficient to compute (k,r)-core by se-
quentially applying the k-core and clique techniques.

Mining Attributed Graphs. It is common to use attributed graphs
under various scenarios for real-world social network studies on
both research and industry [12, 18]. A large amount of classi-
cal graph queries have been investigated on attributed graphs such
as clustering [31], community detection [32], and network model-
ing [18]. None of these work combine k-core and pairwise similar-
ity computation on attributed graphs.

Recently, there are some investigations on the problem of cohe-
sive subgraph computation on attributed graphs. Wu et al. [30]
developed efficient algorithms to find a set of nodes which are
connected in structural graph and the corresponding subgraph on
conceptual graph is the densest. Their result excludes some cohe-
sive subgraphs where vertices have high engagement and similari-
ty. Zhu et al. [35] studied finding the k-core within a given spatial
region and contains a query point. Their approach is designed for
community search on geo-social networks while we detect commu-
nities considering similarity of various attributes instead of a spe-
cific region. Fang et al. [11] proposed algorithms to find a subgraph
related to a query point considering cohesiveness on both structure
and keyword similarity, while it focuses on maximizing the number
of common keywords of the vertices in the subgraph. Their recent
work [10] aims to find a connected cohesive subgraph which satis-
fies a minimum degree of k for every vertex in the subgraph and has
the minimum spatial radius. To the best of our knowledge, this pa-
per is the first work to advocate a general cohesive subgraph model
to consider both user engagement and attribute similarity on vari-
ous kinds of attributed graphs. The techniques developed in related
papers have not been found applicable to solving our problem.

1008

10. DISCUSSION
In many real-life networks, it is rather natural to consider both

structure and attribute values in many graph problems. As cohe-
sive subgraph mining is one of the most fundamental problems,
we can expect a variety of extensions of (k,r)-core model can be
used for different scenarios by (i) applying possible combinations
of existing cohesive subgraph models (e.g., k-core, k-truss, clique,
quasi-clique, and dense subgraph); and (ii) considering the cohe-
sive subgraph computation on multi-dimensional networks [20].

The techniques developed in this paper can shed light on the
computation of these models. For instance, our study suggests
that it is less efficient to sequentially apply the state-of-the-art tech-
niques for each constraint (i.e., cohesive subgraph model). Instead,
we need to carefully integrate the computation of the multiple con-
straints at each search step. Our study also indicates that, to deal
with the multiple constraints, it is crucial to develop advanced early
termination and maximal check techniques as well as design good
visiting orders. When finding the (k,r)-trusses whose vertices form
k-truss on the graph and clique on the similarity graph, the (k,k′)-
core upper bound technique can be directly applied to this problem
because a k-truss is also a (k-1)-core. As to the problem of (k, λ)-
core in which vertices form k-core on the graph and λ-quasi-clique
on the similarity graph, the (k,k′)-core upper bound is also appli-
cable. With similar rationale, other proposed techniques can also
be extended or provide insights to the counterparts of new cohesive
subgraph models on attributed graphs.

11. CONCLUSION
In this paper, we propose a novel cohesive subgraph model,

called (k,r)-core, which considers the cohesiveness of a subgraph
from the perspective of both graph structure and vertex attribute.
We show that the problem of enumerating the maximal (k,r)-cores
and finding the maximum (k,r)-core are both NP-hard. Several
novel pruning techniques are proposed to improve algorithm ef-
ficiency. We also devise effective search orders for enumeration,
maximum and maximal check algorithms. Extensive experiments
on real-life networks demonstrate the effectiveness of the (k,r)-
core model, as well as the efficiency of our techniques.

12. ACKNOWLEDGMENTS
Ying Zhang is supported by ARC DE140100679 and D-

P170103710. Lu Qin is supported by ARC DE140100999 and D-
P160101513. Wenjie Zhang is supported by ARC DP150103071
and DP150102728. Xuemin Lin is supported by NSFC61232006,
ARC DP150102728, DP140103578 and DP170101628.

13. REFERENCES
[1] How does facebook suggest groups for me to join?

https://www.facebook.com/help/382485908586472?
helpref=uf_permalink. Accessed: 14 Mar. 2017.

[2] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores
decomposition of networks. CoRR, cs.DS/0310049, 2003.

[3] K. Bhawalkar, J. M. Kleinberg, K. Lewi, T. Roughgarden, and
A. Sharma. Preventing unraveling in social networks: The anchored
k-core problem. SIAM J. Discrete Math., 29(3):1452–1475, 2015.

[4] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swaminathan.
Mining email social networks. In MSR, pages 137–143, 2006.

[5] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM, 16(9):575–576, 1973.

[6] L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in
sparse graphs. Algorithmica, 66(1):173–186, 2013.

[7] K. Chen and C. Lei. Network game design: hints and implications of
player interaction. In NETGAMES, page 17, 2006.

[8] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for maximal
clique enumeration with limited memory. In KDD, pages 1240–1248,
2012.

[9] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse
real-world graphs. In SEA, pages 364–375, 2011.

[10] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community
search over large spatial graphs. PVLDB, 10(6):709–720, 2017.

[11] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search
for large attributed graphs. PVLDB, 9(12):1233–1244, 2016.

[12] Y. Fang, H. Zhang, Y. Ye, and X. Li. Detecting hot topics from
twitter: A multiview approach. J. Information Science,
40(5):578–593, 2014.

[13] M. R. Garey and D. S. Johnson. The complexity of near-optimal
graph coloring. JACM, 23(1):43–49, 1976.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[15] M. K. Goldberg, S. Kelley, M. Magdon-Ismail, K. Mertsalov, and
A. Wallace. Finding overlapping communities in social networks. In
SocialCom/PASSAT, pages 104–113, 2010.

[16] D. Hristova, M. Musolesi, and C. Mascolo. Keep your friends close
and your facebook friends closer: A multiplex network approach to
the analysis of offline and online social ties. In ICWSM, 2014.

[17] X. Huang, W. Lu, and L. V. S. Lakshmanan. Truss decomposition of
probabilistic graphs: Semantics and algorithms. In SIGMOD, pages
77–90, 2016.

[18] J. J. P. III, S. Moreno, T. L. Fond, J. Neville, and B. Gallagher.
Attributed graph models: modeling network structure with correlated
attributes. In WWW, pages 831–842, 2014.

[19] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse. Identification of influential spreaders in
complex networks. Nature physics, 6(11):888–893, 2010.

[20] M. Kivelä and e. Arenas. Multilayer networks. Journal of Complex
Networks, 2(3):203–271, 2014.

[21] P. Lee, L. V. S. Lakshmanan, and E. E. Milios. CAST: A
context-aware story-teller for streaming social content. In CIKM,
pages 789–798, 2014.

[22] F. D. Malliaros and M. Vazirgiannis. To stay or not to stay: modeling
engagement dynamics in social graphs. In CIKM, pages 469–478,
2013.

[23] A. Nanopoulos, H. Gabriel, and M. Spiliopoulou. Spectral clustering
in social-tagging systems. In WISE, pages 87–100, 2009.

[24] S. B. Seidman. Network structure and minimum degree. Social
networks, 5(3):269–287, 1983.

[25] P. Singla and M. Richardson. Yes, there is a correlation - from social
networks to personal behavior on the web. In WWW, pages 655–664,
2008.

[26] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural
diversity in social contagion. PNAS, 109(16):5962–5966, 2012.

[27] J. Wang, J. Cheng, and A. W. Fu. Redundancy-aware maximal
cliques. In KDD, pages 122–130, 2013.

[28] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O efficient core
graph decomposition at web scale. In ICDE, pages 133–144, 2016.

[29] S. Wu, A. D. Sarma, A. Fabrikant, S. Lattanzi, and A. Tomkins.
Arrival and departure dynamics in social networks. In WSDM, pages
233–242, 2013.

[30] Y. Wu, R. Jin, X. Zhu, and X. Zhang. Finding dense and connected
subgraphs in dual networks. In ICDE, pages 915–926, 2015.

[31] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based
approach to attributed graph clustering. In SIGMOD, pages 505–516,
2012.

[32] J. Yang, J. J. McAuley, and J. Leskovec. Community detection in
networks with node attributes. In ICDM, pages 1151–1156, 2013.

[33] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin. OLAK: an
efficient algorithm to prevent unraveling in social networks. PVLDB,
10(6):649–660, 2017.

[34] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. Finding critical
users for social network engagement: The collapsed k-core problem.
In AAAI, pages 245–251, 2017.

[35] Q. Zhu, H. Hu, J. Xu, and W. Lee. Geo-social group queries with
minimum acquaintance constraint. CoRR, abs/1406.7367, 2014.

1009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

