
Errata for
“Lightning Fast and Space Efficient Inequality Joins”

(PVLDB 8(13): 2074-2085)

Zuhair Khayyat3 William Lucia§ Meghna Singh§ Mourad Ouzzani§
Paolo Papotti† Jorge-Arnulfo Quiané-Ruiz§ Nan Tang§ Panos Kalnis3

§Qatar Computing Research Institute, HBKU
3King Abdullah University of Science and Technology (KAUST)

†Arizona State University
{zuhair.khayyat,panos.kalnis}@kaust.edu.sa, williamlucia.wl@gmail.com

{mesingh,mouzzani,jquianeruiz,ntang}@hbku.edu.qa ppapotti@asu.edu

This is in response to recent feedback from some readers,
which requires some clarifications regarding our IEJoin al-
gorithm published in [1]. The feedback revolves around four
points: (1) a typo in our illustrating example of the join pro-
cess; (2) a naming error for the index used by our algorithm
to improve the bit array scan; (3) the sort order used in our
algorithms; and (4) a missing explanation on how duplicates
are handled by our self join algorithm.

Notice that these four points were addressed in our ex-
tended version presented in [2]. We explain each of these
points and provide the correction below.

(1) Typo. In Figure 3 of our VLDB paper [1], we wrongly
put the value 12 in the second cell of the array L2. The
correct value in the second cell for L2 should be 9. We
corrected this typo error in [2].

(2) Naming error. Although our index to improve the
bit array scan follows the same spirit as a Bloom Filter, the
index we described in Section 4.1 in [1] is a BitMap index.
We corrected this naming error in our journal version [2].

We consider the following query for the remaining two
points mentioned above:

SELECT r.id, s.id

FROM Employees, Employees s

WHERE r.salary < s.salary AND r.tax > s.tax;

(3) Sort order. It is important to clarify that the way we
wrote the conditions to perform the sort order (ascending
or descending) in Algorithms 1 & 2 was a bit misleading
in [1]. We wrongly stated that if the operand in the first
non-equi-join condition (e.g., in r.salary < s.salary) is >
or ≤ then the first two arrays on salary (i.e., L1 and L′

1)
must be in descending order, otherwise in ascending order.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 9
Copyright 2017 VLDB Endowment 2150-8097/17/05.

The error is on the kind of operands for L1 and L′
1 to be on

descending order. To be in descending order, the operand
must be > or ≥. Otherwise (i.e., < or ≤), L1 and L′

1 are
in ascending order. The same holds for the array L2 and
L′

2. Our extended paper at VLDBJ [2] has this correction
in both Algorithms 1 & 2.

(4) Dealing with duplicates. Overall, the implementa-
tion of Algorithm 2 uses a secondary order mechanism to
output correct results in the presence of duplicate values.
Basically, we first sort on the first attribute we focus on
(e.g., salary). In the case of having the same salary values
for more than one tuple, we sort such duplicates on the sec-
ond attribute in the non-equi-join condition (e.g., on tax).
If we still have the same values for tax, we finally sort the
duplicates based on their tuple ids. These secondary sort or-
ders allow us to produce correct results in the self join case.
We did not explicitly state this aspect in Section 3.2 of our
original paper [1]. However, we explain so in Section 3.2 of
the extended version [2].

1. REFERENCES
[1] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani,

P. Papotti, J. Quiané-Ruiz, N. Tang, and P. Kalnis.
Lightning fast and space efficient inequality joins.
PVLDB, 8(13):2074–2085, 2015.

[2] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and P. Kalnis.
Fast and scalable inequality joins. The VLDB Journal,
pages 1–26, 2016.

985


