
READS: A Random Walk Approach for Efficient and
Accurate Dynamic SimRank

Minhao Jiang†, Ada Wai-Chee Fu‡, Raymond Chi-Wing Wong†
†The Hong Kong University of Science and Technology ‡The Chinese University of Hong Kong

{mjiangac, raywong}@cse.ust.hk, adafu@cse.cuhk.edu.hk

ABSTRACT
Similarity among entities in graphs plays a key role in data
analysis and mining. SimRank is a widely used and popular
measurement to evaluate the similarity among the vertices.
In real-life applications, graphs do not only grow in size,
requiring fast and precise SimRank computation for large
graphs, but also change and evolve continuously over time,
demanding an efficient maintenance process to handle dy-
namic updates. In this paper, we propose a random walk
based indexing scheme to compute SimRank efficiently and
accurately over large dynamic graphs. We show that our al-
gorithm outperforms the state-of-the-art static and dynamic
SimRank algorithms.

1. INTRODUCTION
SimRank has been proposed as a measure of similarity be-

tween two vertices in a graph based on links among vertices.
The idea behind is that similar objects are linked to objects
that are similar. This is a recursive concept, since the neigh-
boring similar objects are themselves linked to other simi-
lar objects, and so on. The base case is that an object is
most similar to itself. SimRank has attracted much atten-
tion since its introduction [2, 5, 6, 7, 10, 11, 12, 13, 15, 17,
22, 24, 25, 27, 30].

SimRank is useful in applications with object-to-object
relationships. Many applications require a measure of “sim-
ilarity” between objects. For example, within a citation net-
work we may want to find publications similar to a given
publication, or we may ask for the most similar journals to
a given journal. For collaborative filtering in a recommender
system, an important process is to cluster objects, so that
similar users or items are grouped together based on a simi-
larity measure [1]. A recent study shows that SimRank can
produce good results for a recommender system over web
data [19]. SimRank is also found to be useful in a mul-
titude of other applications, such as sponsored search [2],
natural language processing [18, 20], link prediction [14],
graph clustering [31], and web spam detection [3]. Since

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 9
Copyright 2017 VLDB Endowment 2150-8097/17/05.

most data graphs are dynamic in nature, it is worth noting
that many such applications are in need of a dynamically
adaptive SimRank algorithm. A recommender system or
web spam detection requires spontaneous responses on top
of fast-evolving datasets. However, handling dynamic up-
dates is challenging, and amid the vast amount of work on
SimRank, only [21] is scalable and efficient.

Given a directed and unweighted graph G = (V,E), where
V is the vertex set and E is the directed edge set, the Sim-
Rank value sim(u, v) for vertices u and v in graph G is

sim(u, v) =


1 u = v∑
u′∈In(u),v′∈In(v)

c× sim(u′, v′)

|In(u)||In(v)| u 6= v
(1)

where c is a constant value in [0, 1], commonly set to 0.6
or 0.8, and In(u) is the set of incoming neighbours of ver-
tex u [9]. We consider the computation of SimRank values
among the vertices in V . The following shows some of the
main variations of the problem. [Single Pair (One-to-one)]:
Given a pair of query vertices u and v, return the SimRank
value sim(u, v). [Single Source (One-to-all)]: Given a query
vertex u, return the SimRank value between u and every ver-
tex in V . [Top-k]: Given a query vertex u, return the top
k SimRank values of sim(u, v) between u and other vertices
v ∈ V . [All Pairs]: Return the SimRank value sim(u, v)
between every pair of vertices u and v in G. [Partial Pairs]:
Given two vertex subsets A and B, return the SimRank val-
ues for all vertex pairs (u, v) where u ∈ A and v ∈ B.

1.1 Limitations of Existing Solutions
Although there are various studies on SimRank, most of

them focus on static graphs, and only very few of them are
capable of handling dynamic updates. Most dynamic algo-
rithms, either [13, 24] which require an all-pair matrix lead-
ing to unaffordable O(|V |2) space cost, or [12] with O(D2t)
querying time, where t is the max depth, and relying on
heuristic pruning without stable performance guarantee, fail
to handle dynamic updates on large graphs efficiently.

The only scalable and efficient dynamic algorithm for large
graphs is TSF, proposed by Shao et al. in [21]. TSF builds
an index for top-k SimRank querying. The preprocessing
step randomly samplesRg one-way graphs, where each graph
contains the coupling of random walks with one random
walk for each vertex. The one-way graphs serve as an in-
dex for the querying process. For each one-way graph, Rq
new random walks of vertex u are sampled at query time.
The query time is O(RqRgt|V |+|V |log k) (see Section 2 for
explanation), where t is typically 10. The index requires

937

O(Rg|V |) space. However, the probabilistic guarantee for
the error bound is based on the assumption that no cycle in
the given graph has a length shorter than t. This may not
hold in general, and thus in some cases its precision is low.

The best-known method for the computation of SimRank
is SLING by Tian and Xiao [23]. SLING consists of a near-
optimal index structure. With this structure, the single
source (one-to-all) query time is O(|V |/ε) or O(|E|log2 1/ε),
with respect to two proposed querying algorithms, and the
preprocessing time is O(|E|/ε + |V |log(|V |/δ)/ε2), where ε
is a bound on the additive error, with at least (1 − δ) suc-
cess probability. The single-source algorithm can be adapted
for computing top-k SimRank by selecting the top values
with an additional O(|V |log k) time cost. However, the al-
gorithm is static, while the given graphs are dynamic in
many applications. Changes in the graph require rebuilding
the indexing components, which is highly inefficient. Be-
sides, from our empirical studies, the precision of SLING in
top-k querying is not high in some cases, which may be due
to the pruning process in the indexing.

1.2 Contributions
We propose a new method called READS (Randomized

Efficient Accurate Dynamic SimRank computation) for the
computation of SimRank for static and dynamic graphs.
The main contributions are as follows:

1. Compared with the state-of-the-art dynamic algorithm
TSF[21] and static algorithm SLING[23], READS makes
no assumption about cycle lengths as in TSF, and
unlike SLING, READS is dynamic. Our theoretical
and empirical performances are also better. In exper-
iments, our algorithms are typically one to two orders
of magnitude faster than our most relevant competitor
TSF in querying and updating while returning better
accuracy.

2. Our algorithm is based on a new definition of random
walks, we show that it is optimal under a condition
noted for efficiency.

3. In indexing, efficient local search techniques are devel-
oped to boost the accuracy. In querying, an online
sampling technique improves the querying accuracy
significantly with only slightly additional cost.

4. While our discussion is based on single-source Sim-
Rank, our indexing also can support single-pair, top-k,
all-pairs, and partial-pairs SimRank querying.

This paper is organized as follows. We summarize the
related work in Section 2. In Section 3, we present some
definitions and a baseline Monte Carlo method. In Section
4, we describe our main indexing and querying method based
on sets. Section 5 introduces our boosting techniques based
on local search. Section 6 is about dynamic update handling
and an improvement by online walks. Our experimental
results are reported in Section 7. We conclude in Section 8.

2. RELATED WORK
Jeh and Widom first introduced SimRank as a measure

of structural and contextual similarity between two vertices
in a graph [9]. Since its introduction, there has been much
interest on the study of efficient and accurate computation
for different variations of the problem.

Dynamic Algorithms
Li et al. [13] first studied the problem of SimRank com-

putation on dynamic graphs. Their idea is to factorize the
backward transition matrix of the given graph via SVD and
to incrementally update the component matrices. Yu et al.
[24] improve on this approach via a rank-one Sylvester ma-
trix equation. A problem about the correctness of their Sim-
Rank formulation has been pointed out in [11, 23]. The
scalability of these matrix approaches is limited since they
require O(|V |2) space.

For top-k search, Lee et al. in [12] propose an index-free
algorithm TopSim that is based on a random walk coupling
mechanism with random walk pruning techniques. The com-
plexity is O(D2t), where D is the average degree and t is the
max depth. Note that [12], being index-free, supports dy-
namic updates but the query efficiency is low.

The state-of-the-art index for dynamic updates is TSF
proposed by Shao et al. in [21] by sampling one-way graphs
to index raw random walks. The query time for top-k Sim-
Rank is O(RqRgt|V | +|V |log k) where t is the max depth.
The |V | factor is due to the time to traverse the reversed
one-way graph, which depends on

∑t
i=1 di, where di is the

total degree of the vertices visited at iteration i. In the worst
case, all vertices are visited. Thus, the complexity for the
traversal is O(|V |). See Section 1.1 for more discussion.

Static Algorithms
Jeh and Widom propose an iterative deterministic compu-

tation in [9] for the all-pairs problem, which requires O(|V |2)
space and O(K|E|2) time for K iterations. It is shown in [15]
and [23] that if K ≥ O(log(1/ε)), the worst-case error is ε,
and the time complexity becomes O(|E|2log(1/ε)). Lizorkin
et al. [15] propose optimization techniques for reducing the
computation of vertex pairs: eliminating vertex pairs with
zero scores, caching partial simularities for later iterations,
and the use of a similarity threshold. The time complexity is
O(k|V |3) for k iterations and it requires O(|V |2) space. [28]
proposes effective optimization techniques and improves the
time to O(log(1/ε) min{|E||V |, |V |ω}) where ω ≈ 2.4, and
the space to O(|V |2). They are still steep for large graphs.

Fogaras and Racz first introduced a random walk based
approximation algorithm [5]. Their indexing method is based
on fingerprint trees, which can represent a set of reversed
walks for each vertex with a size of O(|V |). The query time
for single pair SimRank is O(rt), where r is the number of
sets of random walks, and t is the length of a random walk.
The space requirement is O(|E|+r|V |). It is shown in [16,
23, 21] that the algorithm is not scalable and the precision
is not competitive for the top-k SimRank problem.

Kusumoto et al. in [11] introduce a linear recursive for-
mula for SimRank, and propose an efficient algorithm for
top-k search, which involves search pruning based on upper
bounds on the SimRank score. A Monte Carlo approach
is used for the single-pair SimRank problem via a random
walk interpretation of their formula. Their algorithm re-
quires O(|E|+|V |) indexing time and O(rt|V |) space for r
random walks of length t, single-pair querying requires O(rt)
time. A diagonal correction matrix is employed in some re-
lated work to reduce the computation cost for top-k search
[13] [6], and [26]. For example, the use of SVD can be used
to approximate the original matrix by low-ranked matrices.
As noted in [11], though such a SimRank formulation devi-
ates from the original definition, it can be effective for pre-
serving the similarity ranking. However, these algorithms

938

require quadratic time and space, which become prohibitive
for large graphs. A linearization technique in [16] improves
the query time for single pair to O(|E|log(1/ε)), and single
source to O(|E|log2(1/ε)), with at most ε additive error.

Tao et al. consider the problem of top-k similarity join
based on SimRank [22], which is to find the k most similar
pairs of vertices with the largest SimRank similarities among
all possible pairs. They consider using the factor of

√
c for

each of two paths that meet in the computation of SimRank.
Yu and McCann consider partial-pairs SimRank querying
[26]. For vertex subsets A and B, their algorithm requires
O(w|E|min{|A|, |B|}) query time and O(|E|+w|V |) space
for w iterations.

The state-of-the-art method for static graphs is SLING,
proposed by Tian and Xiao in [23]. SLING involves two pre-
processing steps: (1) an estimation of multi-meeting prob-
abilities of vertices, and (2) a deterministic computation to
correct the multi-meeting probabilities to first-meeting prob-
abilities. See Section 1.1 for more discussion.

An experimental evaluation of 10 algorithms from 2002
to 2015 is reported in [29]. It shows that despite the vast
amount of work, the precision and runtime of known algo-
rithms still leave much room for improvement. Our work
advances the status quo in both aspects.

3. DEFINITION AND APPROXIMATION
The SimRank measurement is first defined by Equation

(1), which is recursive. Here, we describe another definition
of SimRank and a natural Monte Carlo method based on
this definition. Some of our notations are as follows:

G = (V,E) the given directed unweighted graph
In(u) the set of in-neighbors of vertex u
c the decay factor in the definition of SimRank
r the number of simulations
sim(u, v) the SimRank score of vertices u and v in G
t the maximum length of a random walk
s(u, v) SimRank score based on length t random walks
πu a reversed random walk from u of length t
first(πu, πv) the first meeting point of πu and πv
f(πu, πv) the first meeting point of πu and πv within t steps

Given a directed unweighted graph G = (V,E), where V is
the vertex set and E is the directed edge set. For u ∈ V , let
In(u) be the set of in-neighbors of u. Another interpretation
of SimRank is based on random walks [9]. Let t be an integer
parameter which is the maximum length of a random walk.
We call a path πu = (u0 ← u1 ← ... ← ut) a reversed
random walk from u if the following conditions are met:

(C1) u0 = u
(C2) ui ∈ V or ui = null for 0 ≤ i ≤ t
(C3) ui+1 = null if |In(ui)|= 0 or ui = null
(C4) Pr(ui+1 = v) = 0 if v 6∈ In(ui) for 0 ≤ i < t
(C5) Pr(ui+1 = v) = 1

|In(ui)|
if v ∈ In(ui) and 0 ≤ i < t

In the above, we assume that In(null) = ∅. The posi-
tion of the first-meeting-point of πu and πv is denoted by
first(πu, πv), i.e., (1) for i < first(πu, πv), ui 6= vi and (2)
for i = first(πu, πv), ui = vi 6= null. If ui 6= vi for 0 ≤ i ≤ t,
then first(πu, πv) = ∞. SimRank can be rewritten based
on the first meeting point of reversed random walks [9]:

sim(u, v) =

∞∑
i=1

Pr(first(πu, πv) = i)× ci = E[cfirst(πu,πv)]

The above equation takes all the paths up to length∞ into
consideration, which may be computationally expensive. A

practical approximation is to only count short paths. Given
the parameter t, the approximated first(πu, πv), denoted by
f(πu, πv), only takes early meeting-points that are within t
steps into consideration. The value of t is set as 10 in [9, 5,
15, 11, 21].

f(πu, πv) =

{
first(πu, πv) if first(πu, πv) ≤ t
∞ if first(πu, πv) > t

(2)

The approximated sim(u, v) denoted by s(u, v) is naturally
given based on f(πu, πv).

s(u, v) =

t∑
i=1

Pr(f(πu, πv) = i)× ci = E[cf(πu,πv)] (3)

Since sim(u, v) − s(u, v) =
∑∞
i=t+1 Pr(first(πu, πv) = i) ×

ci ≤ ct+1, the error of s(u, v) is bounded within a small gap:

Theorem 1. sim(u, v)− s(u, v) ∈ [0, ct+1]

A Monte Carlo Method: In Equation (3), we need
to estimate Pr(f(πu, πv) = i), and a natural approach is a
Monte Carlo method. Given a graph G, and vertices u and
v, we generate a set of r reversed random walks with length
up to t from u = {π1

u, π
2
u, ..., π

r
u} and another set from v

= {π1
v, π

2
v, ..., π

r
v}. The meeting-point of πju and πjv is the

outcome of f(πju, π
j
v), so that the r independent tests serve

as an estimator P̃r(f(πu, πv) = i). Formally,

P̃r(f(πu, πv) = i) = |{j ∈ [1, r]|f(πju, π
j
v) = i}|/r (4)

Embedding P̃r(f(πu, πv) = i) into Equation (3) gives an
estimated value of s0(u, v) for s(u, v). Its accuracy depends
on r. We can derive a guarantee on the error bound based
on Hoeffding’s inequality.

Lemma 1 (Hoeffding [8]). Let X1, X2, ..., Xr be inde-
pendent random variables where Xi are strictly bounded by
the interval [ai, bi], let X = 1

r
(X1 + ...+Xr). Then, for all

ε > 0: Pr(|X − E[X]|≥ ε) ≤ 2e−2r2ε2/
∑r
i=1(bi−ai)

2

Since each meeting point contributes a value in [0, c] to-
wards s0(u, v), from Lemma 1, we derive the following.

Theorem 2. Pr(|s0(u, v)− s(u, v)|≥ ε) ≤ 2e−2rε2/c2

Our indexing methods are based on a similar strategy of
generating r sets of random walks for each vertex, though
the random walks are generated in a different way by revis-
ing Conditions (C1)-(C5). In the following, we shall refer to
the r sets of random walks as r simulations.

4. SIMRANK INDEXING BY SETS
Based on the basic Monte Carlo method, we propose a

new indexing scheme to efficiently answer various SimRank
queries, including single-pair, single-source, and top-k query-
ing. We call our method READS.

4.1 Generalization
We first generalize the definition of “reversed random walk”.

Given G(V,E), a path πu = (u0 ← u1 ← ...← ut) is called a
generalized reversed random walk from u if it satisfies
Conditions (C1)-(C4), and Condition (C6) below

(C6)
∑
v∈V Pr(ui+1 = v) ≤ 1 for 0 ≤ i < t

Clearly, reverse random walk is a special case of gener-
alized reverse random walk, since Condition (C5) always

939

implies Condition (C6). Thus, for a reverse random walk,
if |In(ui)|> 0, there always exists a non-null next vertex of
ui+1. Condition (C6) in the above definition relaxes this
requirement, and allows a reverse random walk to stop at
ui (i.e., ui+1 becomes null), even if |In(ui)|> 0. Note that
Condition (C6) allows us to set Pr(ui+1 = v) to be different
from Pr(uj+1 = v) for i 6= j even if ui = uj . It means that
the transition probability for a vertex can depend on its po-
sition in the random walk. Thus, such a random walk may
not be a Markov chain with a vertex being a state. However,
certain features of Markov chains can be useful, one of them
is coupling.

We call two generalized reverse random walks πu = (u0 ←
u1 ← ...← ut) and πv = (v0 ← v1 ← ...← vt) mergeable if
given ui = vi, Pr(ui+1 = v) = Pr(vi+1 = v) for each v ∈ V
holds. Clearly, any two reverse random walks in a graph
are mergeable. The definition of mergeable walk guarantees
that if two paths πu and πv meet at a point, say at the i-th
step with ui = vi, then by setting uj = vj for j ≥ i, we
get another path πu which is also a valid generalized reverse
random walk from u. As a result, it is possible to merge a
set of walks into a tree. E.g., given graph G1 in Figure 1,
two walks starting from v3 and v2 meet at v0, then we only
need to keep one of the two successor vertices v1 and v2. As
shown in Section 6, the resulting tree structures can support
very simple and efficient dynamic updates.

Figure 1: Graph G1, Walks, and Merged Walks

The merging or coupling of random walks, which is a use-
ful concept in the theory of random walks, has been utilized
in [5], the algorithms in [5] are not competitive as shown in
[21, 23]. Our purpose in generalizing the concept of reverse
random walk is that it offers us a more flexible interpretation
of SimRank from the perspective of “random walks”. Our
first idea is to design a set of sampling probabilities to refine
Condition (6) of the generalized walk, which brings about
some desirable properties. Secondly, we introduce optimiza-
tion techniques to further boost the accuracy guarantee in
Section 5. These strategies together result in a scheme that
is highly efficient and accurate.

4.2 SimRank-Aware Random Walks
There are many ways to generate a set of mergeable re-

verse generalized random walks for all vertices in a graph.
We discuss in the following which sets should be generated
to optimize SimRank querying (see Section 4.3).

We specialize the generalized reverse random walk by spec-
ifying the transition probability setting for the steps in the
walk. Let (u0 ← u1...← ut) be a generalized reverse random
walk. Let u0 = u. We randomly assign the next vertex u1

to be one of its in-neighbors with a probability of 1/|In(u)|.
For each of the remaining steps, at ui, i > 0, with a proba-
bility of

√
c, we randomly assign one of the in-neighbors of

ui to be ui+1. There is a probability of 1 −
√
c that ui+1

becomes null so that the walk ends. Thus, we replace Con-
dition (C6) with the following 2 conditions:

(C6a) Pr(u1 = v) = 1
|In(u0)|

for v ∈ In(u0)

(C6b) Pr(ui+1 = v) =
√
c

|In(ui)|
for v ∈ In(ui), 0 < i < t

We call a generalized reversed random walk that follows
Conditions (C1)-(C4), (C6a) and (C6b) an SA random
walk (SimRank-Aware random walk). Clearly, SA random
walks are mergeable.

Based on standard reversed random walks, from Equation
(3), we have s(u, v) =

∑t
i=1 Pr(f(πu, πv) = i)× ci.

With the newly defined SA random walks, we denote the
probability that (f(πu, πv) = i) by PrSA(f(πu, πv) = i) and
we can prove PrSA(f(πu, πv) = i) = Pr(f(πu, πv) = i)×ci−1

by induction. Therefore, we can rewrite s(u, v) as:

s(u, v) =

t∑
i=1

PrSA(f(πu, πv) = i)× c (5)

As discussed in Section 3, we can adopt a Monte Carlo
method that gives an estimation to PrSA(f(πu, πv) = i) by
means of r simulations of sampling SA random walk pairs
πu and πv that follow Conditions (C6a) and (C6b).

P̃ r
SA

(f(πu, πv) = i) = |{j ∈ [1, r]|f(πju, π
j
v) = i}|/r (6)

Let s1(u, v) be the estimated value of s(u, v) based on this
approach. As we collect the occurrences of pairs of random
walks that first meet within t steps, according to Equation
(5), each occurrence as such contributes an additive value of
c/r to s1(u, v). It is easy to show that a similar guarantee
as Theorem 2 holds, substituting s1(u, v) for s0(u, v).

A uniform contribution from each pair of meet-
ing walks: From Equations (5) and (6), the additive con-
tribution of each pair of meeting walks in the simulations
is uniformly c/r. This is an important difference from the
baseline case in Section 3, where the contribution, namely
ci, depends on the depth i of the meeting point. The ad-
vantage of having such a uniform value is that in order to
derive the SimRank approximation value of s1(u, v), we can
simply count the number of simulations in which the paths
from u and v meet. That is, we compute the following for
approximating s(u, v):∑t

i=1 P̃ r
SA

(f(πu, πv) 6=∞) = |{j ≤ r|f(πju, π
j
v) 6=∞}|/r

We shall see that for any vertex u, we can store in a set S
all other vertices with SA random walks that meet with the
SA random walk from u in a simulation. To compute the
single source SimRank s1(u, ∗), we only need to increase by
c/r the SimRank value s(u, v) for each v ∈ S for each sim-
ulation. This greatly reduces the computation cost and the
storage requirement as compared to the baseline approach.

4.3 Optimality of SA Random Walks
From the previous subsection, we see that a uniform weight

contribution for each pair of SA random walks that meet is
a key to the effectiveness of the set-based algorithm. More
precisely, since the sets for different simulations are handled
separately, a desirable feature of such an indexing scheme is
that for each of the r simulations, we have a unique uniform
weight contribution for each meeting pair of random walks.
Here, we show that the SA random walk induces an optimal
error bound within such a context.

In our estimation of s(u, v), we carry out r simulations,
where each simulation essentially consists of a random walk
starting from each vertex in the graph. In the generalized
reversed random walk model, at each step of the random

940

walk, we can set an additional weight factor on the transi-
tion probability to the in-neighbors of the current vertex. A
general way to set this factor is to assign a value at each
distance from the starting vertex. Thus, for the i-th simu-

lation, let the factor be given by
√
aij for the sampling at

the j-th step of a random walk. Thus, for a path πu =
(u = u0 ← u1... ← uj), the transition probability to an in-

neighbor of uj−1 at step j is given by

√
aij

|In(uj−1)|
. We call it

c-walk (Canonical random walk).
Let fC(u, v, `1) be the first meeting point of vertices u

and v, where u and v are at the `-th step of two c-walks,
respectively, and the two walks have not met up to the `1-
th step. Let PrCi (fC(u, v, `1) = `2), where `2 > `1, be the
probability that in the i-th simulation, fC(u, v, `1) = `2.
We first derive a relationship between this probability and
a counterpart probability of a reversed random walk.

Lemma 2. Let `1 and `2 be two integers and `2 > `1 > 0.

PrCi (fC(u, v, `1) = `2) = Pr(f(πu, πv) = `2 − `1)
∏`2
j=`1+1 a

i
j

Proof. We prove by induction on `2− `1. The base case
is when `2 = `1+1. With one more step, the sampling prob-

ability of a c-walk from u is
√
ai`2 times that of a reversed

random walk, being

√
ai
`2

|In(u)| . Similarly for v. Thus,

PrC(fC(πu, πv, `1) = `2) = Pr(f(πu, πv) = 1)× ai`2
Assume it holds for `2 − `1 ≤ j, so when `2 = `1 + j + 1,

PrCi (f(u, v, `1) = `2)

=

√
ai
`1+1

|In(u)|

√
ai
`1+1

|In(v)|
∑
u′∈In(u)
v′∈In(v)

PrCi (f(u′, v′, `1 + 1) = `2)

=
ai`1+1

|In(u)||In(v)|
∑
u′∈In(u)
v′∈In(v)

Pr(f(πu′ , πv′)) = j)
∏`2
j=`+2 a

i
j

= Pr(f(πu, πv) = j + 1)×
∏`2
j=`+1 a

i
j

Corollary 1. Let ` be a positive integer.

PrCi (fC(u, v, 0) = `) = Pr(f(πu, πv) = `)×
∏`
j=1 a

i
j (7)

We aim to find aij , 1 ≤ i ≤ r, 0 ≤ j ≤ t, so that

s(u, v) = 1
r

∑r
i=1

∑t
j=1 Pr

C
i (fC(u, v, 0) = j)× ai0 (8)

If Equality (8) holds, then we can apply a Monte Carlo ap-
proach so that each pair of meeting random walks in the
i-th simulation contributes the same weight of ai0/r to the
estimation of s(u, v). The value of each random variable Xi
in the corresponding Hoeffding bound in Theorem 1 is in the
range of [0, ai0], since Xi is either 0 or ai0. Next, we derive
the setting to optimize a bound on the estimation error.

Let Pi = Pr(f(πu, πv) = i). Substituting Equation (7)
into Equation (8), we get∑t

j=1 Pj × c
j = 1

r

∑t
j=1 Pj ×

∑r
i=1

∏j
h=0 a

i
h

Equating the similar terms for each Pj , we get a set of
equations, where aij ∈ [0, 1] for 1 ≤ j ≤ t, 1 ≤ i ≤ r.

1
r

∑r
i=1 a

i
0a
i
1a
i
2...a

i
j = cj (9)

With r simulations to collect random walks that first meet
at different lengths, we can bound the error by Hoeffd-
ing’s Inequality (see Lemma 1). In the i-th simulation, the
value of

∑t
j=1 Pr

C
i (fC(u, v, 0) = j) can be approximated

by examining the existence of a meeting point for the c-
walks of u and v. The expected value of Xi is given by∑t
j=1 Pr

C
i (fC(u, v, 0) = j) × ai0. Let sC(u, v) be the esti-

mated SimRank for u,v, from Inequality (1), we get

Pr(|sC(u, v)− s(u, v)|≥ ε) ≤ 2e−2r2ε2/
∑r
i=1(a

i
0)

2

To optimize the bound, we minimize
∑r
i=1(ai0/r)

2. Given
the condition of Equation (9), it is easy to see that an opti-
mal setting is ai0 = c, ai1 = 1, ai2 = c, ..., ait = c.

This matches exactly the setting of Conditions (C6a) and
(C6b) for SA random walks.

4.4 Set based Indexing and Querying
Given the probabilistic settings to generate the sample

sets in the previous subsections, we describe the process of
indexing and querying.

For the indexing, r sets of samples are generated in r
independent simulations. In each simulation, we first create
|V | trees with a single (leaf) node in each tree. Each vertex
v ∈ V is stored in one of the leaf nodes. If v ∈ V is stored in
tree node a, we say that vertex(a) = v, and we say that a
leaf node a is at level 0, or level(a) = 0. Higher level nodes
in the trees are generated by reversed random walks level-
by-level, and during this process, two intermediate trees are
merged whenever their roots contain the same v ∈ V . The
growth stops at level t. Thus, a forest is built, and we call
it an SA forest. The trees in the forest are called SA trees.

We use a queue Q to facilitate the level-by-level growth
of the trees. Initially, the first |V | leaf nodes created are
enqueued. For each popped tree node a, where vertex(a) =
u and level(a) = `, we attempt to assign one of the in-
neighbors of u to be stored in its father. If a is a leaf node,
i.e., ` = 0, we select each in-neighbor with a probability of

1
|In(u)| . If u is at level 1 or above, we select each in-neighbor

with probability
√
c

|In(u)| . The selected vertex, v, if there is

one, is then entered into the queue Q if it has not been
pushed as a node at level ` + 1. If v already exists at level
`+ 1, merging of trees is triggered.

Figure 2: Indexing the Merged Walks

After Q becomes empty, a set of SA trees is constructed.
The vertices stored at the leaf nodes of an SA tree forms
a set, which we call an SA set. To store the SA sets, an
array Nexti is created for the i-th simulation. Each element
of Nexti is a vertex ID, where Nexti[v] is the right sibling
of vertex v in simulation i. For the rightmost leaf node v
of a tree, Nexti[v] is set to the leftmost leaf node in this
tree. Figure 2 is an example of indexing the merged walks
generated by a simulation. In this figure, the vertex IDs are
0 to 4. From Nexti[0] = 4, we go to Nexti[4] = 0, so we
detect a loop and this means we have collected all leaf nodes
of one tree, namely 0 and 4.

941

Algorithm 1: Basic Indexing

Input: G, r, t
Output: index Next

1 for i = 1→ r do
2 Queue Q← ∅;
3 for each u ∈ V do
4 Create a tree T with only one leaf node a with

vertex(a) = u and level(a) = 0;
5 enqueue(Q, a)

6 while Q 6= ∅ do
7 a← dequeue(Q);
8 if level(a) < t then
9 if level(a) = 0 then θ = 1 else θ =

√
c;

10 With probability θ, select a vertex v from
In(vertex(a)) uniformly at random and

11 if v exists at node b at level(a) + 1 in a tree T ′

then
12 Link a as a child of b in T ′ ... merging

13 else
14 Create a father node f of a with

vertex(f) = v; enqueue(Q, f)

15 for each tree T do
16 for each leaf node v in T do
17 if v is the right most leaf node of T then
18 Nexti[v]← the left most leaf node of T ;

19 else
20 Nexti[v]← the right sibling of v ;

21 return Next = {Next1, ..., Nextr, };

In the implementation, although a forest of SA trees is
built in each simulation, keeping the leaf nodes (SA set)
only for each tree is sufficient to support the basic querying
process. This is because given a query vertex u, only the
leaf nodes located at the same SA tree as the leaf node for
u are relevant, and they can be visited through Nexti.

Given r sets of Nexti, it is easy to see how querying
goes. For one-to-all/top-k querying, to compute the Sim-
Rank value from u to all the others vertices, we enumerate i,
visit Nexti[u], followed by its right sibling Nexti[Nexti[u]],
etc, until we meet u again. When v is scanned, s1[v] is in-
cremented by c/r. For one-to-one querying, Nexti[v] stores
the tree ID that v belongs to in simulation i. Counting the
number of times Nexti[u] = Nexti[v] gives SimRank(u, v).

Algorithm 2: Basic One-to-all Querying

Input: Next, u
Output: s1(u, ∗)

1 for i = 1→ r do
2 v ← Nexti[u];
3 while v 6= u do
4 s1(u, v)+ = c/r;
5 v ← Nexti[v];

6 s1(u, u)← 1;

7 return s1(u, ∗);

We only show the one-to-all querying in Algorithm 2 since
the other variations are straightforward. When a coexisting
occurrence of u and v is encountered, a weight of c/r is
added to the SimRank estimation. Therefore, Hoeffding’s
inequality leads to the same error bound as Theorem 2.

[Index size and Indexing Time]: The expected size of
the forest is O(|V |r), because the number of nodes in each

level is expected to be
√
c times less than the previous level,

leading to O(|V |) nodes in the trees generated in a simula-
tion. In practice, the

√
c effect together with the merging

effect reduce the number of nodes very rapidly when level
grows. Thus, the expected indexing time is O(|V |r). For
each simulation, array Nexti takes O(|V |) space, and the
total index size is O(|V |r). Single source querying time is
O(|V |r). We shall discuss the setting of r after we introduce
our optimization steps in the next section.

4.5 Comparison with previous work
The factor

√
c is also used in the computation of SimRank

in [22] and [23]. However, the way in which this factor is
used is entirely different. In both [22] and [23], the

√
c factor

is used in a deterministically computation of SimRank. In
contrast, we sample SA walks to form SA forests, and intro-
duce techniques for high accuracy and efficiency. Another
important difference is that the first step of a SA walk has
a zero stopping probability, due to an optimality study in
Section 4.3. In the following section, we will show that the
second step is also assigned with a zero stopping probability
when using local search. This position-dependent probabil-
ity and the optimality are not shared by [22] and [23].

There is coupling of random walks in the fingerprint trees
in [5], as is commonly used in the theory of random walks.
However, there are significant differences with the SA trees.
Firstly, unlike SA walks, there is no probabilistic stopping at
each step in [5]. Secondly, with SA forests, querying checks
whether two nodes are in the same tree, while [5] computes
the depths of two nodes in the same tree. Thus, we only
need O(r) time for computing a single pair SimRank value,
while O(rt) time is needed in [5].

5. OPTIMIZATION
It is possible to further boost precision(from Theorem 2

to 3) by incorporating our basic querying with local search.
Two local search boosters are introduced in this section,
with which we can give a better bound for the approximation
error, which in turn improves the query time and indexing
space while preserving the approximation guarantee.

5.1 Neighborhood Average
We call the first technique Neighborhood Average. Let

us rewrite the SimRank definition and analyze the relation-
ship between the querying vertices and the neighborhood.
Let us first introduce a term st−1(u, v) which has the same
definition as s(u, v) except that we replace t by t − 1. If
u 6= v, let us define su(v′) as:

su(v′) =
∑

u′∈In(u)

st−1(u′, v′)

|In(u)| (10)

Then, we can rewrite s(u, v) as:

s(u, v) = c×
∑
v′∈In(v)

su(v
′)

|In(v)| (11)

The high-level idea of using the neighborhood average is that
when the neighbours of u and v are known, we use su(v′),
the average of r simulations (with random walks of length
t− 1), to approximate the term su(v′). In each simulation,
we randomly choose a u′ ∈ In(u), and visit the vertices v′

that coexist with u′ in the same SA set to update su(v′). We
search the out-going neighbours v of each v′ with su(v′) > 0
to update the SimRank value of (u, v) by aggregating the

942

weights. The details are given in Algorithm 3, integrating
neighborhood average with neighborhood exact search.

5.2 Neighborhood Exact Search
The second local search booster aims to search the neigh-

borhood of u and v to obtain the exact value of Pr(f(πu, πv) =
1). We call it Neighborhood Exact Search. In Algo-
rithm 2, the sum of weights increases by either 0 or c in
each simulation. Reducing the range [0, c] could improve
the precision according to Hoeffding’s inequality. To this
end, we define s′(u, v) to rewrite SimRank for u 6= v.
s′(u, v) = Pr(f(πu, πv) = 1)c2 +

∑t
i=2 Pr(f(πu, πv) = i)ci

s(u, v) = s′(u, v) + Pr(f(πu, πv) = 1)× (c− c2)
In s′(u, v), each term is associated with a weight of at

most c2, rather than c in s(u, v). The index structure can
be modified to capture s′(u, v), so that the weights from
the simulations become either 0 or c2, narrowing the range
from [0, c] to [0, c2]. The gap between s(u, v) and s′(u, v) is
Pr(f(πu, πv) = 1)× (c− c2), but when neighborhood search
is applied, we get the exact value of Pr(f(πu, πv) = 1) easily.

When indexing, we replace Conditions (C6a) and (C6b)
with the following Conditions (C7a) and (C7b), so that the
walks generated by Conditions (C1)-(C4), (C7a) and (C7b)
are used to build forests as index to capture s′(u, v).

(C7a) Pr(ui+1 = v) = 1
|In(ui)|

for v ∈ In(ui), 0 ≤ i ≤ 1

(C7b) Pr(ui+1 = v) =
√
c

|In(ui)|
for v ∈ In(ui), 1 < i < t

In this way, the probability that two nodes u and v being
in a same tree is Pr(f(πu, πv) = 1) +

∑t
i=2 Pr(f(πu, πv) =

i) × ci−2 = s′(u, v)/c2, so giving a coexisting occurrence a
weight of c2 can capture s′(u, v).

In order to combine the neighborhood exact search booster
with the neighbourhood average technique, when approxi-
mating s(u, v), we consider the relationship between u and
v′ where v′ ∈ In(v). We define s′u(v′) and pu(v′) as follows:

s′u(v′) =
∑
u′∈In(u)

s′t−1(u
′,v′)

|In(u)|

pu(v′) =
∑
u′∈In(u)

Pr(f(πu′ ,πv′)=1)×(c−c2)+1u′=v′
|In(u)|

where s′t−1(u′, v′) has the same definition as s′(u′, v′) ex-
cept that t is replaced by t−1. Then, these terms are embed-
ded into s(u′, v′) in Equation (10), su(v′) = s′u(v′) + pu(v′),
and Equation (11) becomes

s(u, v) = c×
∑

v′∈In(v)

s′u(v′)

|In(v)| + c×
∑

v′∈In(v)

pu(v′)

|In(v)| (12)

In Algorithm 3, we obtain pu(v′) by local search, and
s′u(v′) is the average of r simulations to approximate s′u(v′),
then they are used to compute s2(u, v) by

s2(u, v) = c×
∑

v′∈In(v)

s′u(v′)

|In(v)| + c×
∑

v′∈In(v)

pu(v′)

|In(v)| (13)

The worst-case runtime of Algorithm 3 is O(r|V |+|E|),
since the time for local search is O(|E|) and that to check co-
existing nodes isO(r|V |). The index size becomesO(r|V |+|E|)
due to extra O(E) size to keep the original graph for local
search. Theorem 3 shows the accuracy improvement after
local search is adopted. Although local search is also used in
previous work [23], the processes are very different, and our
local search boosters based on different derivations of Sim-
Rank formula give rise to significantly improved theoretical
guarantees, which is not the case for [23].

Algorithm 3: One-to-all Querying with Local Search

Input: Nexti, u, G
Output: s2(u, ∗)

1 for u′ ∈ In(u) do
2 for w ∈ In(u′) do
3 for v′ ∈ Out(w) do
4 if u′ 6= v′ then
5 pu(v′)+ = (c− c2)/|In(u′)|/|In(v′)|/|In(u)|;

6 pu(u′)+ = 1/|In(u)|;
7 for i = 1→ r do
8 u′ ← a random node in In(u);
9 v′ ← Nexti[u

′];
10 while v′ 6= u′ do
11 s′u(v′)+ = c2/r;
12 v′ ← Nexti[v

′];

13 for v′ ∈ V with s′u(v′) + pu(v′) > 0 do
14 for v ∈ Out(v′) do

15 s2(u, v)+ = c× (s′u(v′) + pu(v′))/|In(v)|;

16 s2(u, u)← 1;

17 return s2(u, ∗);

Theorem 3.

Pr(|s2(u, v)− s(u, v)|> ε) < 2e−2rε2/c6 (14)

Proof. In each simulation, s′u(v′) grows by 0 or c2, which

means the increase of
∑
v′∈In(v)

s′u(v
′)

|In(v)| is in [0, c2]. From Ho-

effding’s inequality, we can prove that Pr(|
∑
v′∈In(v)

s′u(v
′)

|In(v)|−∑
v′∈In(v)

s′u(v
′)

|In(v)| |> ε) < 2e−2rε2/c4

Pr(|c
∑
v′∈In(v)

s′u(v
′)

|In(v)|−c
∑
v′∈In(v)

s′u(v
′)

|In(v)| |> ε) < 2e−2rε2/c6

In addition, the exact value of c ×
∑
v′∈In(v)

pu(v
′)

|In(v)| can be

obtained by local search. Based on Equation (12), (13) and
the above inequality, we can show Pr(|s2(u, v) − s(u, v)|>
ε) < 2e−2rε2/c6

6. HANDLING DYNAMIC UPDATES
In many real life applications, graphs are not only large

but also dynamic. READS can readily support efficient in-
cremental updates, as described below. We first discuss the
natural adaption from the static method and its mainte-
nance,then an online reversed random walk enhancement
for accuracy improvement(from Theorem 3 to 4) and index
size reduction is introduced next.

6.1 SA Forests for Update Maintenance
Updates to a graph can be in the form of edge or vertex

insertions and deletions. For a static graph, the leaf nodes
of the simulated SA trees are sufficient in supporting Sim-
Rank querying. However, updating the graph may result in
changes in the non-leaf levels as tree merging or splitting
can be triggered. Thus, our index is upgraded to a forest
form to capture dynamic updates on trees. The SA trees
generated during indexing are kept in the index.

Since each tree node keeps exactly one vertex, and each
vertex appears at most once in any given level of all the trees
in one simulation, the vertex ID can serve as an identifier
among nodes in the same level of the same simulation.

In the indexing phase, all the tree nodes at the same level
of all the trees in a simulation are grouped together. In
the bottom level of the trees in the i-simulation, we use an

943

array Li with n elements to keep the n leaf nodes, each with
an ID as the key and a tuple (father ID, left sibling ID,
right sibling ID) as the value, in a form of

Li[ID] = (father ID, left sibling ID, right sibling ID)

The left sibling of the leftmost leaf node of a tree is set to
NULL, and so is the right sibling of the rightmost leaf node.
Nodes in higher levels become sparse, because of the merging
effect of nodes in lower levels and the

√
c probability in the

sampling of a father node. Therefore, we adopt a hashing
scheme for effective storage of the inner nodes and efficient
look-up. All non-leaf nodes at the j-th level of the i-th
simulation are grouped in a hash table hij , using its node
ID as key and its affiliated information as value, thus,

hij [ID] = (father ID, leftmost leaf ID, rightmost leaf ID)

In the forest form, visiting the left and right siblings of a
leaf node u one-by-one serves the same purpose of visiting
Nexti in Algorithms 2 and 3, so these querying algorithms
can be directly applied to dynamic cases.

Figure 3: Forest Form of Dynamic Index

An example is given in Figure 3. For the bottom level, the
elements of the array are Li[v0] = (v2, v4, NULL),Li[v1] =
(v4, v3, v2), etc. The level above the bottom level is kept in
hi0, and its upper level is hi1 as shown, containing hi1[v0] =
(v2, v3, v2), hi1[v2] = (v1, v4, v4), etc.

6.2 Edge Modification
Since vertex modification can be treated as a trivial case,

we discuss how to handle edge insertion and deletion here.
Inserting an edge (u ← v) into the graph may cause

changes in every occurrence of u in an SA forest. Let us
refer to the node at level i in the SA forest that contains
vertex v as Ni(v). In the following, we may denote Ni(v)
by N(v) for clarity. Note that only one level i node may
contain any vertex v ∈ V . Let father(a) be the father node
of a in the SA forest, if one exists. We enumerate the occur-
rences of (N(u) ← father(N(u)) one by one, and for each
occurrence, we replace the old father by a node N(v) with
a probability 1/new degree(u). If such a replacement takes
place, the replacement is to firstly detach the subtree rooted
at u, and then insert this subtree to the tree node with ver-
tex ID v one level above u. If no such tree node exists prior
to the update, a path is grown from v until level t is reached
or a successful insertion takes place. The process for edge
removal is similar. Deleting edge (u← v) in the graph leads
to removing each (N(u) ← N(v)) occurrence in the forest,
finding a new father for N(u) and then inserting the subtree
rooted at N(u).

The analysis at the end of Section 4.4 shows that the ex-
pected size of the dynamic index is O(|V |r), the same as the
static case. The indexing time and querying time is also the
same as the static case. For each edge update, O(rt) time
is used to find the occurrences of the modified edge, and

O(t) time is used to deal with each triggered subtree modi-
fication. For an edge insertion, the starting vertex appears
O(|V |r/|V |) = O(r) times in the forest, and |V |/|E| of them
triggers a subtree modification. While for an edge deletion,
an edge appears O(|V |r/|E|) times in the forest. Therefore,
the average update time is O(rt|V |/|E|+rt) = O(rt).

6.3 Online Reversed Random Walk
In previous algorithms, a forest generated in a simulation

is used only once to evaluate the similarity between a vertex
(u in Algorithm 2, or u′ in Algorithm 3) and other vertices.
The structure of our dynamic index makes it possible to use
a forest multiple times to increase the accuracy. The main
idea is to generate multiple reversed random walks online,
and each of them is matched with a forest in the index.

With the help of online reversed random walk, SA forests
can be modified to improve accuracy and reduce the index
size. We replace Condition (C7b) by Condition (C7c), and
generate walks by Conditions (C1)-(C4), (C7a) and (C7c).
Such a walk is called c-SA walk. The forests formed by
these walks are called c-SA Forests. We store c-SA forests
in the same format as SA forests by Li and hij .

(C7c) Pr(ui+1 = v) = c
|In(ui)|

for v ∈ In(ui), 1 < i < t

Figure 4: Online Sampling from v3
The following example shows how an online reversed ran-

dom walk is generated and how it is matched with a c-SA
forest in the index.

Example 1. Suppose the c-SA forest in the index is formed
by the tree nodes in circles and solid line segments in Figure
4, and we want to obtain the similarity between v3 and other
vertices. Tree nodes in squares and dotted line segments are
generated on the fly. Together with some tree nodes and
edges in the index, they form an online reversed random
walk. The walk (v3 ← v0 ← v2 ← v1 ← v′1 ← v′2 ← v′3 ← v′4)
is an online reversed random walk. It is matched with leaf
nodes v4, v0, v

′
5, ..., v

′
6.

For each c-SA forest, we generate rq reversed random
walks online. In general, an online reversed random walk
starts from a query node u′ (equivalent with u′ in line 7 Al-
gorithm 3) at leaf level, and it randomly selects an incoming
neighbor as a tree node at level 1. In the remaining steps,
if a tree node at a particular level can be found in the c-SA
forest and it has a father, then the edge to its father is used
as the next edge on the walk. Otherwise, it randomly selects
an incoming neighbor as the next tree node in a higher level.
The walk continues until its length reaches depth t or when
the last node has no incoming neighbor. The similarity be-
tween u′ and each leaf node of each crossed tree in a c-SA
forest increases by c2/r/rq if there are r c-SA forests and rq
online reversed random walks for each c-SA forests. In our
implementation, we use a hashmap cnt to count the number
of times that each root node is visited, so that after rq walks
there is only one weight update of its leaf nodes.

944

Although an online reversed random walk is not explic-
itly generated by Conditions (C1)-(C5) as in the definition
of reversed random walk, it also satisfies Conditions (C1)-
(C5). For a tree node with its father absent in the current
c-SA forest, clearly, selecting a random incoming neighbor
satisfies Condition (C5). In the case when a tree node and
its father are found in the current c-SA forest according to
Condition (C7c), and based on the condition that it has a
father, the probability of each incoming neighbor v as its fa-
ther ui+1 is Pr(ui+1 = v|ui+1 6= null) = Pr(ui+1 = v, ui+1 6=
null)/Pr(ui+1 6= null) = Pr(ui+1 = v)/c = 1/|In(ui)|. Con-
dition (C5) also holds in this case. Clearly, Conditions (C1)-
(C4) always hold. Therefore, an online reversed random
walk generated as the above is a reversed random walk.

Algorithm 4: Online Reversed Random Walk Querying

Input: Li and hij , u, G, rq
Output: s3(u, ∗)

1 Line 1-6 in Algorithm 3
2 for i = 1→ r do
3 cnt← an empty hashmap;
4 for j = 1→ rq do
5 u′ ← a random node in In(u);
6 if In(u′) = ∅ then
7 continue;

8 Queue q0 ← a random node in In(u′);
9 for k = 0→ t− 2 and In(qk) 6= ∅ do

10 if hik[qk] 6= ∅ then
11 if hik[qk].father ID = NULL then
12 cntk[qk] + +;
13 qk+1 ← a random node in In(qk);

14 else
15 qk+1 ← hik[qk].father ID ;

16 else
17 qk+1 ← a random node in In(qk);

18 for v ∈ cntj [v] with cntj [v] > 0 do
19 for v′ ∈ hij [v].leaf nodes do

20 s′u(v′)+ = cntj [v]× c2/r/rq ;

21 for v′ ∈ V with s′u(v′) + p(v′) > 0 do
22 for v ∈ Out(v′) do

23 s3(u, v)+ = c× (s′u(v′) + pu(v′))/|In(v)|;

24 s3(u, u)← 1;

25 return s3(u, ∗);

Algorithm 4 upgrades Algorithm 3 with the use of r c-
SA forests and rq online reversed random walks for each
forest. Denote the approximated SimRank value as s3. Its
querying time is O(rrqt + r|V |+|E|). Next, we show that
online sampling approach improves the theoretical guarantee
without increasing the index size. Our experiments show
that the rq factor contributes a lot to accuracy in practice
with very little overhead on the querying time.

Lemma 3 (Bernstein [4]). Let X1, X2, ..., Xr be i.i.d
random variables where Xi are strictly bounded by the inter-
val [a, b], let X = 1

r
(X1 + ...+Xr), V ar[X] is the variance

of Xi. ∀ε > 0, Then, for all ε > 0: Pr(|X − E[X]|≥ ε) ≤

2e
−rε2

2V ar[X]+2ε(b−a)/3 .

Theorem 4. Pr(|s3(u, v)− s(u, v)|> ε) < 2e

−rε2
c6
2rq

+2εc3
3

Proof. In the j-th online sampling of the i-th simula-
tion, we denote the increase of s′u(v′) by s′ijv′ . In the i-th

simulation, we denote the overall increase of s′u(v′) by s′iv′ =

∑rq
j=1 s

′
ijv′/rq, and the overall increase of

∑
v′∈In(v)

s′u(v
′)

|In(v)|

by Xi =
∑
v′∈In(v)

s′
iv′

|In(v)| . Since each s′ijv′ ∈ {0, c2}, s′iv′ ∈
[0, c2], we can conclude that Xi ∈ [0, c2]. As the r simula-
tions are independent of each other, we can consider r as
the number of independent variables Xi, and [0, c2] as the
value range in Bernstein’s inequality.

Regarding the variance, s′ijv′ ∈ {0, c2} implies that V ar[s′ijv′]

≤ c4/4. For each i and j 6= j′, s′ijv′ and s′
ij
′
v′

are indepen-

dent because they are from two independent online reversed
random walks. It means V ar[s′iv′] ≤ c4/4rq. Although Xi
is the average of several s′iv′ that may be correlated, its
largest value is bounded by V ar[Xi] ≤ c4/4rq. Adopting
Bernstein’s inequality for Xi,

Pr(|
∑
v′∈In(v)

s′u(v
′)

|In(v)| −
∑
v′∈In(v)

s′u(v
′)

|In(v)| |> ε) < 2e

−rε2
c4
2rq

+2εc2
3

Pr(|c×
∑

v′∈In(v)

s′u(v′)

|In(v)|−c×
∑

v′∈In(v)

s′u(v′)

|In(v)| |> ε) < 2e

−rε2
c6
2rq

+2εc3
3

Since s3 is also computed based on Equation (13), with
Equation (12) and the exact value of pu(v′) obtained by local

search, we get Pr(|s3(u, v)− s(u, v)|> ε) < 2e

−rε2
c6
2rq

+2εc3
3 .

The above proof implies that multiple online walks create
a more stable s′u(v′), so that the final aggregated SimRank
value is more accurate. Apart from accuracy improvement,
adopting online reversed random walk also reduces the index
size, as the stopping probability of walks in the index is
increased from 1−

√
c to 1− c.

We are aware of the use of Rq online walks in [21]. How-
ever, our method is very different from [21], and the over-
head in query time of our method is very small, which is
O(rrqt), versus an overall increase of a factor of Rq in [21].

7. EXPERIMENTS
We show the strength of our proposed algorithms with

experiments in this section. The experiments are conducted
on a PC with 2.3 GHz CPU and 196 GB memory running
Linux complied by G++. We implemented our READS
(Algorithm 3 static), READS-D (Algorithm 3 dynamic)
and READS-Rq (dynamic Algorithm 4 with online walks).
The major competitors are the dynamic solutions TopSim
[12], TSF, and L-TSF [21], which is a log-based imple-
mentation of TSF supporting dynamic updates. They are
implemented by the authors of [21]. We also compare with
static algorithms FR-SR [5] and Algorithm 6 of SLING
[23], which are implemented by the authors of [23]. We do
not compare with [16] and [11] since their performance is
dominated by SLING and TSF, as shown in [23] and [21].
We set r = 100, rq = 10, and t = 10 for our algorithms.
We set Rg = 100, Rq = 20 for TSF/L-TSF, and T = 10,
R = 100 for FR-SR as suggested by [21] and [5]. We set
T = 3 and adopt the PrioTopSim strategy for TopSim as
previous work [29]. We set ε in SLING as 0.25 to generate
indices that are of comparable sizes as with the others.

Datasets We use 14 datasets, listed in the following ta-
ble, and downloaded from SNAP 1 or KONECT 2. We have

1https://snap.stanford.edu/data/
2http://konect.uni-koblenz.de/networks/

945

selected graphs from different categories. The first 4 graphs
are of small sizes, so that a brute force method computing
the exact SimRank value is applicable. We summarize the
nature of each graph here. HP is a network for human pro-
tein, CA is a collaboration network, AD is a social network,
WV is a network about elections, WS is a network from the
Stanford webpage, WG is a graph on Google webpage, DB
is a network for entities, UP is a citation network, WP is an
article network, LJ is another social network, and WD is an
article network, WF is a communication network, WL is a
hyperlink network, and DL is another hyperlink network.

Graph |V | |E| Description
HumanProtein(HP) 3,133 6,726 undirected

ca-GrQc(CA) 5,242 14,496 undirected
Advogato(AD) 6,541 51,127 directed

Wiki-Vote(WV) 7,115 103,689 directed
web-Stanford(WS) 281,903 2,312,497 directed
web-Google(WG) 875,713 5,105,039 directed
WikiPolish(WP) 1,033,050 25,026,208 directed

WikiDe(WD) 2,166,669 86,337,879 directed
WikiFrench(WF) 3,023,165 102,382,410 directed
US-Patents(UP) 3,774,768 16,518,947 directed

DBpedia(DB) 3,966,924 13,820,853 directed
live-journal(LJ) 4,847,571 68,475,391 directed
WikiLink(WL) 12,150,976 378,142,420 directed

DbpediaLink(DL) 18,268,992 172,183,984 directed

7.1 Precision
In top-k querying, we measured the percentage of approx-

imated top-k nodes among the ground-truth top-k nodes as
precision to evaluate the quality of different algorithms.

Precision =
|approximated top k set ∩ exact top k set|

k

The brute-force algorithm in [9] serves as the ground truth
to obtain pairwise SimRank values, and we only compare
the precisions on the first 4 small datasets.

We derive top-k results by selecting the top k SimRank
values from the single source solution set computed by the
algorithms. Since the results of READS and READS-D are
identical, we only show READS in Figure 5, and likewise for
the case of TSF and L-TSF. The results show that READS
and READS-Rq dominate the existing two methods SLING
and TSF in all datasets. With the increase of k, the pre-
cision of SLING falls rapidly. This can be explained by
the indexing algorithm of SLING, which deterministically
prunes search space with contribution below its additive er-
ror allowance. The accuracy is high for computing high rank
values, but the result quality may deteriorate when smaller
rank values appear in the true top-k result, which will be
the case when k is large. Although TSF can achieve simi-
lar precision as READS in some datasets, its performance is
not stable, with rather low precision in some datasets, e.g.
AD and WV. This is because the probabilistic guarantee for
the error bound for TSF is based on the assumption that no
cycle in the given graph has a length shorter than t. There
can be cases where the assumption and the final guarantee
do not hold. The theoretical error bound of FR-SR is worse
than ours, and the empirical results verify the differences in
precision. TopSim uses a heuristic strategy to prune paths
among all paths in a small region, but the imprecise pruning
and only counting paths limited in a small region lead to a
low precision in experiments.

READS-Rq is more accurate than READS due to the
variance reduction via rq online reversed random walks, as

proved in Theorem 4. Comparing READS with No-Local,
which is Algorithm 2 without using local search boosters,
the effect of switching from the guarantee in Theorem 2 to
that of Theorem 3 is very significant. Non-Opt is a version
of Algorithm 2 with 1 −

√
c stopping probability at every

step, which is not optimal as proven in Section 4.3. The im-
provement from Non-Opt to No-Local shows the significance
of using a zero stopping probability at Step 1.

7.2 Querying Efficiency
In testing querying efficiency, we randomly generated 1,000

query nodes as in [21]. In Figure 6, the average single-source
query times of all algorithms are presented as a histogram,
and the standard deviations of the query times are shown
as curves. The algorithms are grouped into two categories;
dynamic algorithms and static algorithms.

In particular, READS-D, READS-Rq, L-TSF and Top-
Sim are dynamic. The difference between the first four bars
in each dataset shows that READS-D and READS-Rq are
faster than L-TSF and TopSim by 1 to 3 orders of magni-
tude. READS-Rq is slightly slower than READS-D but the
overhead of extra O(rrqt) running time is not too much. Its
improvement on accuracy shows that it is a good trade-off
between querying cost and accuracy. The standard devi-
ations show that READS and READS-Rq are much more
stable than L-TFS and TopSim. Among the static datasets,
READS, SLING and FR-SR are much more efficient than
TSF in small graphs, while READS dominates the others in
large graphs, being several times faster compared to TSF,
SLING and FR-SR. As main competitors of our algorithms,
either TSF or L-TSF answers queries much slower than our
algorithms READS, READS-D and READS-Rq.

The dynamic version L-TSF is typically several times slower
than the static version of TSF. In order to support dy-
namic updates efficiently, a log-based implementation was
employed in L-TSF which groups updates together, leading
to a slower querying efficiency. In contrast, the gap between
READS-D and READS is very small, showing that our ap-
proach supports dynamic updates more naturally.

Moreover, the real running times of 10 random queries on
live-journal are shown in Figure 11. In both dynamic and
static cases, our algorithms support very efficient querying.

7.3 Dynamic Update Cost
For datasets WP and WD with real timestamps on edges,

we insert and remove the last 1000 edges to the graph to
measure the cost of real dynamic updates. For the oth-
ers, we follow the setting in [21], randomly choosing 1,000
edges, and considering 80% of them as insertions and 20%
as deletions. As TopSim is an index-free method, it is not
list in this experiment, similar for the case of indexing cost.
The average time of READS-D, READS-Rq index and L-
TSF index for each update is reported in Figure 7. In most
graphs, the efficiencies of READS-D and READS-Rq are
much better than L-TSF, faster by about 1 order of magni-
tude. READS-Rq is slightly faster than READS-D due to
its smaller index size and higher stopping probability.

Without any mechanism supporting dynamic updates, we
have to rebuild the index from scratch with highly expensive
indexing cost, as shown in Figure 9. For example, it takes
thousands of seconds to rebuild the index for live-journal,
and the rebuilding must be carried out repeatedly with up-
dates. With READS-D and READS-Rq, each update is han-

946

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

k

Precision

HP

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

k

Precision

CA

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

k

Precision

AD

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000
k

Precision

WV
READS

READS-Rq
SLING

TSF
FR-SR

TopSim
No-Local
Non-Opt

Figure 5: Top-k Querying Precision

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

HP CA AD WV WS WG DB UP WP LJ WD WF WL DL

10
-4

10
-2

10
0

10
2

10
4

SD of Dynamic Algorithms SD of Static Algorithms

A
vg

 Q
ue

ry
 T

im
e(

m
s)

Q
ue

ry
 T

im
e

S
D

(m
s)READS-D READS-Rq L-TSF TopSim READS TSF SLING FR-SR

Figure 6: Query Time : the bars show the average query time(left y-axis) and the line curves show the query time standard
deviation(right y-axis)

 0.01

 0.1

 1

 10

 100

HP CA AD WV WS WG DB UP WP LJ WD WF WL DL

A
vg

 U
pd

at
e

T
im

e(
m

s) READS-D READS-Rq L-TSF

Figure 7: Update Time per Edge Insertion/Deletion

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

HP CA AD WV WS WG DB UP WP LJ WD WF WL DL

In
de

x
S

iz
e(

M
B

)

READS-D READS-Rq L-TSF READS TSF SLING FR-SR

Figure 8: Index Size

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

HP CA AD WV WS WG DB UP WP LJ WD WF WL DL

In
d
e
x
in

g
 T

im
e
(s

)

READS-D READS-Rq L-TSF READS TSF SLING FR-SR

Figure 9: Indexing Time

 0.8

 0.85

 0.9

 0.95

 1

 50 100 150 200 250 300

P
re

c
is

io
n

r

CA
AD

 0

 2

 4

 6

 8

 10

 12

1M 2M 3M 4M

10
-1

10
0

10
1

10
2

Q
u
e
ry

 T
im

e
(m

s
)

In
d
e
x
 S

iz
e
(G

B
)

|V|

READS Size
READS-D Size
READS Query

READS-D Query

 0.85

 0.9

 0.95

 1

1 5 10 15 20 25 30
 0

 1

 2

 3

 4

 5

 6

P
re

c
is

io
n

Q
u
e
ry

 T
im

e
(m

s
)

rq

CA Time
AD Time

CA Precision
AD Precision

Figure 10: Scalability Varying r, Graph Size, and rq

10
0

10
1

10
2

10
3

10
4

10
5

 1 2 3 4 5 6 7 8 9 10

Q
u

e
ry

 T
im

e
(m

s
)

10 Queries on LJ

READS-D
READS-Rq

L-TSF
TopSim

READS
TSF

SLING
FR-SR

Figure 11: Querying on LJ

947

dled in about 1 millisecond. The almost 10 times speedup in
update efficiency over the state-of-the art dynamic L-TSF
illustrates the strength of our method.

7.4 Indexing Cost
The index sizes in Figure 8 are also grouped into dynamic

and static categories. In each category, the index sizes of
different algorithms are similar. The sizes of READS-D and
READS-Rq are slightly larger than L-TSF, but they are still
small enough to be put in the main memory of a commodity
machine for million-vertex graphs. Among the static algo-
rithms, READS produces the smallest index in 6 of the 14
datasets. Figure 9 shows that all algorithms can generate
an index with an acceptable preprocessing time. Although
TSF is faster in preprocessing, its querying efficiency is poor,
which is an undesirable trade-off.

7.5 Scalability
For scalability testing, we vary r in READS/READS-D

and show the trend of precision of top-k querying on ca-
GrQc and Advogato when k = 100. In order to evaluate
the performance with the increase of graph size, we also
randomly sample subgraphs of live-journal from |V |= 0.5M
to |V |= 4M for our scalability test. From the results in
Figure 10, the precision of top-k queries grows with r, but
the increase becomes slower for larger r values. The query
time and index size increase linearly with |V |, reflecting the
time and space complexity of O(|V |r). The index size gap
between READS and READS-D is caused by the additional
tree structure for dynamic updates, but with the increase of
graph size, the gap remains a constant, implying that the
dynamic version is stable and scalable. The effect of varying
rq in READS-Rq in Figure 10 implies that the improvement
of rq is significant when rq is small, and the trade-off on
querying time does not increase too much.

8. CONCLUSION
We propose READS, an indexing scheme for SimRank

computation on a large dynamic graph. The scheme makes
use of a new generalized notion of random walk sampling.
Two optimization strategies further boost the accuracy of
READS. Our experiments show that READS outperforms
the state-of-the-art algorithms significantly in terms of pre-
cision, query time, and update time.

Acknowledgements This research is supported in part by
the Hong Kong RGC/GRF research grant 412313 Project
ID 2150758. The research of Minhao Jiang and Raymond
Chi-Wing Wong is supported by HKRGC GRF 16219816.

9. REFERENCES
[1] Z. Abbassi and V. S. Mirrokni. A recommender system

based on local random walks and spectral methods.
WebKDD/SNA-KDD, Lecture Notes in Computer Science,
5439:139–153, 2007.

[2] I. Antonellis, H. Garcia-Molina, C.-C. T. Chang, and
X. Xiao. SimRank++: Query rewriting through link
analysis of the click graph. In PVLDB, 2008.

[3] A. Benczur, K. Csalogany, and T. Sarlos. Link-based
similarity search to fight web spam. In AIRWeb, 2006.

[4] S. Bernstein. The theory of probabilities. Gastehizdat
Publishing House, Moscow, 1946.

[5] D. Fogars and B. Racz. Scaling link-based similarity search.
In WWW, pages 641–650. ACM, May 2005.

[6] Y. Fugiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for simrank. In ICDE, 2013.

[7] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank
computation on large graphs with iterative aggregation. In
KDD, pages 543–552. ACM, 2010.

[8] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical
Association, 58(301):13–30, 1963.

[9] G. Jeh and J. Widom. SimRank: A measure of
structural-context similarity. In KDD, 2002.

[10] R. Jin, V. Lee, and H. Hong. Axiomatic ranking of network
role similarity. In KDD, pages 922–930. ACM, 2011.

[11] M. Kusumoto, T. Maehara, and K. i. Kawarabayashi.
Scalable similarity search for SimRank. In SIGMOD, pages
325–336. ACM, 2014.

[12] P. Lee, L. Lakshmannan, and J. Yu. On top-k structural
similarity search. In ICDE, pages 774–785. IEEE, 2012.

[13] C. Li, J. Han, G. He, X. Jin, Y. Sun, and Y. Y. T. Wu.
Fast computation of SimRank for static and dynamic
information networks. In EDBT, pages 465–476, 2010.

[14] D. Liben-Nowell and J. M. Kleinberg. The link-prediction
problem for social networks. JASIST, 58(7), 2007.

[15] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for simrank
computation. VLDB J., 19(1):45–66, 2010.

[16] T. Maehara, M. Kusumoto, and K. Kawarabayashi.
Efficient simrank computation via linearization. In CoRR
abs/1411.7228, 2014.

[17] T. Maehara, M. Kusumoto, and K. Kawarabayashi.
Scalable simrank join algorithm. In ICDE, pages 603–614.
IEEE, 2015.

[18] R. Mihalcea and D. Radev. Graphbased natural language
processing and information retrieval. Cambridge University
Press, 2011.

[19] P. T. Nguyen, P. Tomeo, T. D. Noia, and E. D. Sciascio. An
evaluation of SimRank and personalized pagerank to build
a recommender system for the web of data. In WWW, 2015.

[20] C. Scheible, F. Laws, L. Michelbacher, and H. Schutze.
Sentiment translation through multi-edge graphs. In In
Proceedings of the 23rd International Conference on
Computational Linguistics: COLING, 2010.

[21] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie. An efficient
similarity search framework for simrank over large dynamic
graphs. In VLDB, 2015.

[22] W. Tao, M. Yu, and G. Li. Efficient top-k simrank-based
similarity join. In VLDB, pages 317–328, 2014.

[23] B. Tian and X. Xiao. Sling: A near-optimal index structure
for SimRank. In SIGMOD. ACM, 2016.

[24] W. Yu, X. Lin, and W. Zhang. Fast incremental simrank on
link-evolving graphs. In ICDE, pages 304–315. IEEE, 2014.

[25] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is
simpler: Effectively and effixiently assessing node-pair
similarities based on hyperlinks. PVLDB, 7(1):13–24, 2013.

[26] W. Yu and J. A. McCann. Efficient partial-pairs simrank
search on large networks. PVLDB, 8(5):569–580, 2015.

[27] W. Yu and J. A. McCann. High quality graph-based
similarity search. In SIGIR, pages 83–92. ACM, 2015.

[28] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le. A space
and time efficient algorithm for simrank computation.
World Wide Web, 15:327–353, 2012.

[29] Z. Zhang, Y. Shao, B. Cui, and C. Zhang. An experimental
evaluation of simrank-based similarity search algorithms.
PVLDB, 10(5), 2017.

[30] W. Zheng, L. Zou, Y. Feng, and D. Zhao. Efficient
SimRank-based similarity join over large graphs. PVLDB,
6(7), 2013.

[31] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based
on structural/attribute similarities. PVLDB, 2(1), 2009.

948

