Leveraging Set Relations in Exact Set Similarity Join

Xubo Wang[†], Lu Qin[‡], Xuemin Lin[†], Ying Zhang[‡], and Lijun Chang[†] [†]University of New South Wales, Australia [‡]University of Technology Sydney, Australia

*{xwang,lxue,ljchang}@cse.unsw.edu.au, *{lu.qin,ying.zhang}@uts.edu.au

ABSTRACT

Exact set similarity join, which finds all the similar set pairs from two collections of sets, is a fundamental problem with a wide range of applications. The existing solutions for set similarity join follow a filtering-verification framework, which generates a list of candidate pairs through scanning indexes in the filtering phase, and reports those similar pairs in the verification phase. Though much research has been conducted on this problem, set relations, which we find out is quite effective on improving the algorithm efficiency through computational cost sharing, have never been studied. Therefore, in this paper, instead of considering each set individually, we explore the set relations in different levels to reduce the overall computational costs. First, it has been shown that most of the computational time is spent on the filtering phase, which can be quadratic to the number of sets in the worst case for the existing solutions. Thus we explore index-level set relations to reduce the filtering cost to be linear to the size of the input while keeping the same filtering power. We achieve this by grouping related sets into blocks in the index and skipping useless index probes in joins. Second, we explore answer-level set relations to further improve the algorithm based on the intuition that if two sets are similar, their answers may have a large overlap. We derive an algorithm which incrementally generates the answer of one set from an already computed answer of another similar set rather than compute the answer from scratch to reduce the computational cost. Finally, we conduct extensive performance studies using 21 real datasets with various data properties from a wide range of domains. The experimental results demonstrate that our algorithm outperforms all the existing algorithms across all datasets and can achieve more than an order of magnitude speedup against the stateof-the-art algorithms.

1. INTRODUCTION

Set similarity join is a fundamental problem. Given two collections of sets, each of which contains a set of elements, set similarity join finds all similar set pairs from the collections. Here, two sets are similar if their similarity value is above a user-defined threshold regarding a given similarity function. Two commonly used similarity functions are Jaccard similarity and Cosine similarity. Set similarity join is adopted in a

Copyright 2017 VLDB Endowment 2150-8097/17/05.

variety of application domains including data cleaning [19, 25], infomation extraction [24], data integration [26], personalized recommendation [27], community mining [38], entity resolution [41], near duplicate detection [39, 46] and machine learning [48]. In the literature, two categories of set similarity join problems are widely studied, namely, exact set similarity join [19, 25, 47, 38, 46] and approximate set similarity join [36, 30]. In this paper, we focus on the exact set similarity join problem.

State-of-the-art. The existing solutions for exact set similarity join follow a filtering-verification framework [20, 45, 42, 31, 28, 32]. In the filtering phase, a set of candidate pairs is generated and in the verification phase, all candidate pairs are verified and those with similarity above the threshold are reported as answers. The most widely used filter is the prefix filter [20, 45, 42, 31, 32], which is based on the property that if two sets are similar, they must share at least one common element in their prefixes. For a certain set, to compute its answer (i.e., its similar sets) using this property, one only needs to probe the inverted lists for the elements in its prefix, where the inverted list for an element consists of the sets containing the element. In [32], a comprehensive empirical evaluation of set similarity join techniques was conducted on ten real-world datasets from various domains. The experimental results demonstrate that for prefix-filter based algorithms, the verification can be performed very efficiently in practice and the majority of computational costs are spent on the filtering phase. Therefore, the authors conclude that the key to improve the set similarity join algorithms is to reduce the filtering cost.

Motivation. The main cost of the filtering phase for prefix-filter based algorithms is spent on probing inverted lists for elements in the prefix of each set. Existing solutions mainly focus on how to reduce the cost when computing the answer for each individual set. Nevertheless, none of the existing solutions consider the relations among sets. Intuitively, if we consider some related sets together, rather than individually, we can leverage their relations to share the computational costs and thus speed up the algorithm. Motivated by this, in this paper, we aim to investigate different relations among sets to explore possible computational cost sharing in exact set similarity join.

Contributions. In order to leverage set relations in exact set similarity join, the following issues need to be addressed: (1) What relations can be used to speed up exact set similarity join? and (2) How can we use the set relations to effectively reduce the overall computational cost? In this paper, we answer these questions and make the following contributions.

(1) Theoretical analysis of existing algorithms. We conduct a comprehensive theoretical analysis of the time and space complexities of existing algorithms for exact set similarity join. We discover that although only linear space is required for existing

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any use beyond those covered by this license, obtain permission by emailing info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 9

prefix-filter based algorithms, the time complexity can be $O(n^2 \cdot l_{avg} + V)$, where *n* is the number of sets in the input, l_{avg} is the average set size, and *V* is the verification cost, which is small in practice according to [32]. We show that the main reason for the high cost in the filtering phase is that cost sharing is not considered when computing the answers for different sets.

(2) Skipping technique based on index-level set relations. We first explore the relations of sets in the inverted list of each element and propose a light-weight inverted index where the sets indexed in the same inverted list are partitioned into different skipping blocks, and the sets in the same skipping block are sorted according to a predefined order. Using these skipping blocks, we show that once a certain set is filtered, when probing a skipping block in the filtering phase, the set along with all the remaining sets in the same skipping block can be skipped thereafter. This property enables us to design an algorithm with a space complexity linear to the input size and a time complexity of $O(n \cdot l_{avg} + V)$, which improves the time complexity of $O(n^2 \cdot l_{avg} + V)$ for the existing algorithms. The improvement is significant because the verification cost V is much smaller than the filtering cost in practice.

(3) Skipping technique based on answer-level set relations. We then investigate the relations of the answers for different sets. Intuitively, if two sets are similar, their answers should have a large overlap. Given two similar sets where the answer for one set has been computed, we can generate the answer for the other set by adding and removing a small number of sets incrementally without computing the answer from scratch. Based on this intuition, we design a method that can compute the answer for one set based on the answer for another set incrementally. We also derive a cost model to determine whether to apply the answer-level skipping technique when computing the answer of each set to reduce the overall computational cost.

(4) Extensive performance studies. Finally, we conduct extensive experiments using 21 real-world datasets from different domains to compare our algorithm with the state-of-the-art algorithms. The datasets are selected from different domains with various data properties. According to the experimental results, our algorithm outperforms all the other algorithms in all tests which shows the effectiveness of merging the two different level skipping techniques; and with comparable memory usage, our algorithm can achieve a speedup of more than an order of magnitude compared to the state-of-the-art algorithms.

Outline. The remainder of this paper is organized as follows: Section 2 formally defines the problem of exact set similarity join. Section 3 shows the existing solutions and provides a theoretical analysis of the time and space complexities for the existing solutions. Section 4.1 and Section 4.2 detail our skipping techniques based on index-level relations and answerlevel relations respectively. Section 5 evaluates our algorithm through extensive performance studies. Section 6 reviews related work and Section 7 concludes the paper. Due to lack of space, we put the proofs of all lemmas and theorems in our technical report [43].

2. PROBLEM DEFINITION

Suppose $\mathcal{E} = \{e_1, e_2, \dots, e_m\}$ is a finite universe of elements and a record (we use record and set interchangeably in this paper) r is a subset of elements in \mathcal{E} , i.e., $r \subseteq \mathcal{E}$. Given two records r_i and r_j , we use a similarity function $Sim(r_i, r_j) \in [0, 1]$ to measure the similarity between r_i and r_j . Two commonly used similarity functions, namely Jaccard Similarity and Cosine Similarity, are

 Table 1: Frequently Used Notations

Notation	Description
$\mathcal{R} = \{r_1, \ldots, r_n\}$	The collection of records
$\mathcal{E} = \{e_1, \ldots, e_m\}$	The set of elements in \mathcal{R}
τ	The similarity threshold
$\mathcal{A}, \mathcal{A}(r_i)$	The join answer and the answer set for record r_i
$I(e_i)$	The inverted list for element e_i
lavg, lmax	The average and maximum record lengths in R
$\text{pre}_{t_i}(r_i)$	The prefix of length t_i for record r_i
$pos_{e_i}^{'}(r_j)$	The position of element e_i in r_j
$B_{e_i}(l)$	The skipping block for element e_i and length l
$I^*(e_i)$	The inverted list with skipping blocks for element e_i

respectively defined as $\operatorname{Jac}(r_i, r_j) = \frac{|r_i \cap r_j|}{|r_i \cup r_j|}$ and $\operatorname{Cos}(r_i, r_j) = \frac{|r_i \cap r_j|}{|r_i \cup r_j|}$.

 $\sqrt{|r_i| \times |r_j|}$

Given two collections of records \mathcal{R} and \mathcal{S} , a similarity function Sim, and a threshold τ , the R-S join of \mathcal{R} and \mathcal{S} finds all record pairs $r \in \mathcal{R}$ and $s \in \mathcal{S}$ such that $Sim(r, s) \geq \tau$. In this paper, for simplicity and without loss of generality, we focus on the selfjoin, i.e., $\mathcal{R} = \mathcal{S}$ and we use the Jaccard similarity to describe our techniques. We show how to support R-S join with $\mathcal{R} \neq \mathcal{S}$ and how to handle Cosine Similarity in our technical report [43]. The problem studied in this paper is formally defined as follows:

Problem Statement. Given a database of records $\mathcal{R} = \{r_1, r_2, ..., r_n\}$ and a threshold τ , set similarity join computes the set of pairs $\mathcal{A} = \{(r_i, r_j) | r_i \in \mathcal{R}, r_j \in \mathcal{R}, j > i, \mathsf{Jac}(r_i, r_j) \ge \tau\}.$

Definition 2.1: (Answer Set). Given a database of records $\mathcal{R} = \{r_1, r_2, ..., r_n\}$ and a threshold τ , for any $1 \le i \le n$, the answer set of r_i is defined as:

$$\mathcal{A}(r_i) = \{(r_i, r_j) | r_j \in \mathcal{R}, j > i, \operatorname{Jac}(r_i, r_j) \ge \tau\}.$$
(1)

П

Obviously, $\mathcal{A} = \bigcup_{r_i \in \mathcal{R}} \mathcal{A}(r_i)$.

We use *n* to denote the number of records in the record database \mathcal{R} , and use *m* to denote the number of distinct elements in \mathcal{R} . For each record $r_i \in \mathcal{R}$, the length of r_i is the number of elements in r_i , which is denoted as $|r_i|$. For each record *r* and a position $k \in [1, |r|]$, we use r[k] to denote the *k*-th element of *r*. For each element $e_i \in \mathcal{E}$, we use $I(e_i)$ to denote the set of records in \mathcal{R} that contains e_i , i.e., $I(e_i) = \{r \in \mathcal{R} | e_i \in r\}$. We call $I(e_i)$ the inverted list for element e_i . The number of records in $I(e_i)$ is denoted as $|I_{avg}$, i.e., $|I_{avg} = \sum_{r_i \in \mathcal{R}} |r_i|$, and the maximum record length is denoted as I_{avg} , i.e., i.e., $I_{max} = \max_{r_i \in \mathcal{R}} |r_i|$. Following [20, 45, 42, 31, 32], we assume that the records $r \in \mathcal{R}$ are sorted according to the non-decreasing order of $|I(e_i)|$, i.e., $|I(e_i)| \leq |r_j|$ for any $1 \leq i < j \leq n$, and we assume that the elements $e \in \mathcal{E}$ are sorted according to the non-decreasing order of $|I(e_i)|$, i.e., $|I(e_i)| \leq |I(e_j)|$ for any $1 \leq i < j \leq m$.

Table 2:	Α	Collection	of Records
----------	---	------------	------------

r_1	$\{e_1, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{13}, e_{14}, e_{15}, e_{17}, e_{18}\}$
r_2	$\{e_3, e_7, e_8, e_9, e_{10}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
<i>r</i> ₃	$\{e_2, e_7, e_8, e_9, e_{10}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
r_4	$\{e_6, e_7, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
r ₅	$\{e_5, e_6, e_8, e_9, e_{10}, e_{11}, e_{12}, e_{13}, e_{15}, e_{16}, e_{17}, e_{18}\}$
r_6	$\{e_2, e_3, e_4, e_5, e_8, e_{11}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
r_7	$\{e_2, e_3, e_4, e_5, e_9, e_{11}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
r_8	$\{e_3, e_4, e_5, e_6, e_7, e_8, e_{10}, e_{11}, e_{12}, e_{14}, e_{16}, e_{17}, e_{18}\}$
r 9	$\{e_3, e_4, e_5, e_6, e_7, e_8, e_{10}, e_{12}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$
r_{10}	$\{e_2, e_4, e_5, e_6, e_7, e_9, e_{11}, e_{12}, e_{13}, e_{14}, e_{15}, e_{16}, e_{17}, e_{18}\}$

Example 2.1: Consider the dataset in Table 2. Assume the given threshold is $\tau = 0.7$. The answer set of r_1 is $\mathcal{A}(r_1) = \{(r_1, r_4)\}$ as only $\mathsf{Jac}(r_1, r_4) = \frac{10}{14} \ge \tau$. For the element e_3 , we have $I(e_3) = \{r_2, r_6, r_7, r_8, r_9\}$.

Frequently used notations are summarized in Table 1.

3. EXISTING SOLUTIONS

The state-of-the-art solutions are based on a *filtering-verification* framework. In the filtering phase, a set of candidate pairs is generated. In the verification phase, the similarity of each candidate pair is calculated and those pairs with similarity no smaller than the threshold are output. Based on different filtering schemes, existing solutions can be divided into two categories: prefix-filter based methods and partition-filter based methods.

3.1 Prefix-Filter based Methods

Given a record $r \in \mathcal{R}$, a prefix of r, denoted as $pre_t(r)$, is the first t elements in r. To compute $\mathcal{A}(r_i)$, instead of exploring all records in $\bigcup_{e \in r_i} I(e)$, prefix-filter based algorithms only need to probe the inverted lists of elements in $pre_t(r)$ based on the following lemma:

Lemma 3.1: Given two records r_i and r_j , if $\mathsf{Jac}(r_i, r_j) \ge \tau$, we have $\mathsf{pre}_{t_i}(r_i) \cap \mathsf{pre}_{t_j}(r_j) \ne \emptyset$, where $t_i = \lfloor (1 - \tau) \cdot |r_i| \rfloor + 1$ and $t_j = \lfloor (1 - \tau) \cdot |r_j| \rfloor + 1$.

According to Lemma 3.1, given a record r_i , in order to compute $\mathcal{A}(r_i)$, we only need to consider those records that are in the inverted lists of the first t_i elements in r_i , i.e.,

$$\mathcal{A}(r_i) \subseteq \{(r_i, r_j) | r_j \in \bigcup_{e \in \mathsf{pre}_t.(r_i)} I(e), j > i\}.$$
(2)

Based on Equation (2), existing prefix-filter based methods aim to reduce the size of candidates according to the following three categories of filtering techniques [20, 45, 31, 42]:

- Prefix Filter: Instead of exploring *I*(*e*) for all *e* ∈ *r_i*, we only need to probe *I*(*e*) for the elements *e* ∈ pre_{*i*}(*r_i*).
- Length Filter: For each $e \in pre_{i_i}(r_i)$, we do not need to visit all records in I(e). Instead, we only need to visit those r_j (j > i) with length no larger than a length threshold $u_i(e)$.
- **Position Filter:** When visiting a certain $r_j \in I(e)$ for element $e \in pre_{i_i}(r_i)$, the position of e in r_j can be used to filter r_j .

A self-explanatory algorithm framework for the prefix-filter based approaches that incorporates the above filters is shown in Algorithm 1. We assume that records in I(e) are sorted in non-decreasing order of record length. Below, we briefly introduce each of the state-of-the-art prefix-filter based algorithms.

Algorithm AllPairs. We do not need to probe all records in the inverted list I(e) for each element $e \in \text{pre}_{t_i}(r_i)$. In AllPairs [20], a *length filter* is proposed according to the lemma shown below:

Lemma 3.2: Given two records r_i and r_j , if $Jac(r_i, r_j) \ge \tau$, we have $|r_i| \le u_i(e) = \lfloor \frac{|r_i|}{2} \rfloor$.

Algorithm PPJ/PPJ+. In PPJ [45], a *position filter* is proposed. Given a record r and an element $e_i \in r$, the position of e_i in r, denoted as $pos_{e_i}(r)$ is defined as:

$$\mathsf{pos}_{e_i}(r) = |\{e_j | e_j \in r, j \le i\}|.$$
 (3)

 $\mathsf{pos}_{e_i}(r)$ can be precomputed together with the inverted list $I(e_i)$ for each $r \in I(e_i)$. With the position information, the *position filter* introduced in PPJ [45] is based on the following lemma:

Lemma 3.3: Given two records r_i and r_j , if $\mathsf{Jac}(r_i, r_j) \ge \tau$, for any $e \in r_i \cap r_j$, we have $|r_j| - \mathsf{pos}_e(r_j) + |\mathsf{pre}_{\mathsf{pos}_e(r_i)}(r_i) \cap \mathsf{pre}_{\mathsf{pos}_e(r_j)}(r_j)| \ge \lceil \frac{\tau}{1+\tau}(|r_i| + |r_j|) \rceil$.

Specifically, if *e* is the first element in $r_i \cap r_j$, the *position filter* in Lemma 3.3 can be formulated as: $|r_j| - pos_e(r_j) + 1 \ge \lceil \frac{\tau}{1+\tau}(|r_i|+|r_j|) \rceil$.

In addition, in PPJ [45], an improved *prefix filter* is proposed according to the lemma shown below:

Lemma 3.4: Given two records r_i and r_j with $|r_j| \ge |r_i|$, if $\text{Jac}(r_i, r_j) \ge \tau$, we have $\text{pre}_{t_i}(r_i) \cap \text{pre}_{t_j}(r_j) \ne \emptyset$, where $t_i = \lfloor \frac{1-\tau}{1+\tau} \cdot |r_i| \rfloor + 1$ and $t_j = \lfloor (1-\tau) \cdot |r_j| \rfloor + 1$.

Algorithm 1: Prefix-Filter based Framework

Input: A set of records \mathcal{R} ; a similarity threshold τ **Output**: All similar record pairs (r_i, r_j) with $Jac(r_i, r_j) \ge \tau$ **1** for each *record* $r_i \in \mathcal{R}$ do

- 2 $C(r_i) \leftarrow \emptyset$; Calculate the prefix length t_i (prefix filter);
- 3 **for each** *element* $e \in \text{pre}_{t_i}(r_i)$ **do**
- 4 Calculate the length threshold $u_i(e)$ (length filter); 5 **for each** record $r_i \in I(e)$ with j > i **do**
- 5 for each record $r_j \in I(e)$ with j 6 | if $|r_j| > u_i(e)$ then break;
- 7 **if** $(r_i, r_j) \notin C(r_i)$ **and** r_j is not filtered by the position of e in r_i
 - (position filter) then $C(r_i) \leftarrow C(r_i) \cup \{(r_i, r_j)\};$

```
8 for each (r_i, r_j) \in C(r_i) do
```

```
9 if \operatorname{Jac}(r_i, r_j) \ge \tau then output (r_i, r_j);
```

Compared to Lemma 3.1, Lemma 3.4 improves the prefix length of r_i from $\lfloor (1 - \tau) \cdot |r_i| \rfloor + 1$ to $\lfloor \frac{1-\tau}{1+\tau} \cdot |r_i| \rfloor + 1$.

In [45], the authors further proposed an algorithm PPJ+ by making use of the suffix information to filter more candidates after applying the basic filters.

Algorithm PEL. In PEL [31], the authors improved the *length filter* proposed in AllPairs [20] using the position information according to the following lemma:

Lemma 3.5: Given two records r_i and r_j with $Jac(r_i, r_j) \ge \tau$, for the first element e in $r_i \cap r_j$, i.e., the element $e \in r_i \cap r_j$ with the smallest $pos_e(r_i)$, we have $|r_j| \le u_i(e) = \lfloor \frac{|r_i| - (pos_e(r_i) - 1)(\tau + 1)}{\tau} \rfloor$.

Based on Lemma 3.5, when exploring the inverted list of the *k*-th element of r_i , i.e., I(e) for $e = r_i[k]$, we only need to consider those records r_j with length no larger than $\lfloor \frac{|r_i| - (k-1) \cdot (\tau+1)}{\tau} \rfloor$, which improves the bound of $\lfloor \frac{|r_i|}{\tau} \rfloor$ shown in Lemma 3.2.

Algorithm ADP. In [32] the authors proposed an algorithm ADP using an extended prefix filter. The main idea is based on a generalization of Lemma 3.1, which is shown below:

Lemma 3.6: Given two records r_i and r_j , if $\operatorname{Jac}(r_i, r_j) \ge \tau$, we have $|\operatorname{pre}_{t_{i,l}}(r_i) \cap \operatorname{pre}_{t_{j,l}}(r_j)| \ge l$, where $t_{i,l} = \lfloor (1 - \tau) \cdot |r_i| \rfloor + l$ and $t_{j,l} = \lfloor (1 - \tau) \cdot |r_j| \rfloor + l$.

According to Lemma 3.6, if one probes a longer prefix of r_i , more prefix information is gained and therefore more dissimilar pairs can be pruned. The length of the prefix to be probed is computed adaptively according to a cost function.

Some other heuristics are introduced in [34] and [21]. However, as compared in [32], these heuristics cannot significantly improve the efficiency of the prefix-filter based algorithms.

Result Verification. In [32], Mann et al. introduced a new verification algorithm to efficiently verify whether the similarity of two records reaches a certain threshold τ . The verification algorithm uses a merge-like method and adopts an early termination condition based on Lemma 3.3. As stated in [32], based on the early termination condition, verification is surprisingly fast in practice.

Summary. To summarize, in order to compute $\mathcal{A}(r_i)$, the most effective filters are shown below:

• **Prefix Filter:** We only need to probe I(e) for $e \in \text{pre}_{t_i}(r_i)$, where

$$t_i = \lfloor \frac{1 - \tau}{1 + \tau} \cdot |r_i| \rfloor + 1 \tag{4}$$

• Length Filter: For each $e \in pre_{t_i}(r_i)$, we only need to visit those r_j (j > i) with $|r_j| \le u_i(e)$, where

$$u_i(e) = \lfloor \frac{|r_i| - (\mathsf{pos}_e(r_i) - 1) \cdot (\tau + 1)}{\tau} \rfloor$$
(5)

• **Position Filter:** When visiting a new record $r_j \in I(e)$ for $e \in pre_{t_i}(r_i)$, (r_i, r_j) is a candidate pair if

$$|r_{j}| - \mathsf{pos}_{e}(r_{j}) + 1 \ge \lceil \frac{\tau}{1+\tau}(|r_{i}| + |r_{j}|) \rceil$$
 (6)

Time/Space Complexity. The following theorem shows that the filtering cost of the prefix-filter based algorithms that follow Algorithm 1 can be quadratic to the number of records in \mathcal{R} .

Theorem 3.1: The time complexity of Algorithm 1 is $O(n^2 \cdot l_{avg} + V)$, where V is the time cost to verify all candidate pairs.

The following lemma shows that the memory usage of Algorithm 1 is linear to the size of the input:

Theorem 3.2: The space complexity of Algorithm 1 is $O(n \cdot l_{avg})$.

3.2 Partition-Filter based Methods

In [28], a partition-filter based algorithm PTJ was proposed. In PTJ, each record in \mathcal{R} is partitioned into several disjoint subrecords such that two records are similar only if they share a common sub-record. Specifically, given an integer p, a partition scheme scheme(\mathcal{E}, p) is a partition of \mathcal{E} which divides the element universe \mathcal{E} into p subsets $\mathcal{E}^1, \mathcal{E}^2, \dots, \mathcal{E}^p$, where $\bigcup_{i=1}^p \mathcal{E}^i = \mathcal{E}$ and $\mathcal{E}^i \cap \mathcal{E}^j = \emptyset$ for any $1 \le i < j \le p$. Under a partition scheme scheme(\mathcal{E}, p), a record r can be partitioned into p sub-records r^1 , r^2, \dots, r^p where $r^i = r \cap \mathcal{E}^i$ for any $1 \le i \le p$. The partition-filter based methods are designed based on the following lemma:

Lemma 3.7: For any two records r_i and r_j , suppose we use the same partition scheme scheme (\mathcal{E}, p_i) to partition r_i and r_j into $p_i = \lfloor \frac{1-\tau}{\tau} |r_i| \rfloor + 1$ sub-records, if $Jac(r_i, r_j) \ge \tau$, then there exist at least one integer $k \in [1, p_i]$ with $r_i^k = r_i^k$.

The PTJ algorithm is designed following a filtering-verification framework. The filtering phase consists of two steps:

- In the first step, for each record $r_i \in \mathcal{R}$, we generate all its sub-records under the partition scheme $scheme(\mathcal{E}, p_i)$ and index them using the inverted list.
- In the second step, for each record r_j ∈ R, we generate all the sub-records of r_j under the partition schemes scheme(ε, [^{1-τ}/_τl]+1) for any τ|r_j| ≤ l ≤ |r_j|. For each such sub-record r^k_j in each of the generated partition schemes, we probe all records r_i in the inverted list of r^k_i and consider (r_i, r_j) as a candidate pair.

In the verification phase, all candidate pairs are verified and those pairs (r_i, r_j) with $Jac(r_i, r_j) \ge \tau$ are output.

The time and space complexities of PTJ are shown below:

Theorem 3.3: The time complexity of PTJ is $O(n \cdot l_{max}^2 + V')$, where V' is the time cost to verify all candidate pairs.

Theorem 3.4: The space complexity of PTJ is $O(n \cdot l_{max})$.

4. SPEED UP JOINS BY SKIPPING

As shown in Section 3, the time complexities of the existing prefix-filter based algorithms and partition-filter based algorithms are $O(n^2 \cdot l_{avg} + V)$ and $O(n \cdot l_{max}^2 + V')$ respectively. Here, the dominant costs are spent on the filtering phase, which are $O(n^2 \cdot l_{avg})$ and $O(n \cdot l_{max}^2)$ for prefix-filter and partition-filter based algorithms respectively. As indicated in [32], it does not pay off to use more sophisticated filters to further reduce the number of candidates to be verified. Therefore, in this paper, we do not intend to use more filters to reduce the number of candidates. Instead we aim to improve the efficiency of the filtering phase without increasing the verification cost.

We observe that in the existing prefix-filter based algorithms, the records are processed independently, and thus the relations among records are never considered when computing the answer sets for different records. Specifically, first, when computing the candidate set $C(r_i)$ for a certain record r_i , the records indexed in the inverted lists of elements in the prefix of r_i are probed independently; and second, the answer sets $\mathcal{A}(r_i)$ for all records r_i are computed independently. To address this problem, in this section, we develop effective skipping techniques to reduce the number of index probes by considering two levels of record relations, namely, index-level skipping, and answer-level skipping, which will be introduced in Section 4.1 and Section 4.2 respectively. Note that the two skipping techniques can be independently studied, and each technique has a significant contribution to the improvement of the algorithm efficiency as demonstrated in Section 5.

4.1 Index-Level Skipping

Motivation. In this section, we introduce the skipping technique that uses the index-level record relations. Before introducing the technique details, we first look at a motivating example below:

Example 4.1: Suppose we compute $\mathcal{A}(r_1)$ for the dataset shown in Table 2. The prefix $\operatorname{pre}_{r_1}(r_1)$ contains e_1, e_6 , and e_7 . Assume that we are now probing the inverted list $I(e_6) = \{r_1, r_4, r_5, r_8, r_9, r_{10}\}$. The number of probed entries is 5 according to Algorithm 1. However, it is worth noticing that, for any record $r_j \in \{r_8, r_9\}$, the record length and element position are the same with $|r_j| = 13$ and $\operatorname{pos}_{e_6}(r_j) = 4$. They all fail the position condition as $|r_j| - \operatorname{pos}_{e_6}(r_j) + 1 = 10 < [\frac{r}{1+r}(|r_1| + |r_j|)] = 11$. In fact, whenever we probe the inverted list $I(e_6)$, once $r_j = r_8$ fails the position condition, we can skip the position condition checking for $r_j = r_9$.

This example demonstrates that by considering the relations of the records in the inverted list of a certain element, the cost of probing the inverted list can potentially be reduced. Note that we have three types of filters: prefix filter, length filter, and position filter. The key to reduce the cost of probing the inverted lists is to reduce the number of failed attempts (the record probes that fail the filter condition) for each filter. Below, we analyze each of the three types of the filters individually:

- For the prefix filter (line 2 of Algorithm 1), when probing the inverted list I(e) for $e \in r_i$, we guarantee that e is selected from the prefix $pre_{t_i}(r_i)$ of r_i . In other words, the prefix condition in Equation (4) will never fail.
- For the length filter (line 4-6 of Algorithm 1), when probing the inverted list *I*(*e*) for *e* ∈ *r_i*, we need to prune those records *r_j* with |*r_j*| > *u_i*(*e*) (Equation (5)). By sorting the records in each inverted list *I*(*e*) according to the non-decreasing order of length, such a condition can be satisfied without failed attempts.
- For the position filter (line 7 of Algorithm 1), in order to avoid failed attempts, we need to find an appropriate order of records in the inverted list I(e) for $e \in r_i$. However, this is difficult since when probing I(e), we need to consider three factors $|r_i|$, $|r_j|$ and $pos_e(r_i)$ at the same time as shown in Equation (6).

Based on the above analysis, the key to avoid failed attempts is to avoid the failure of the position condition in Equation (6). In the remainder of the paper, we use *failed attempt* to denote the attempt that fails the position condition in Equation (6).

The Rationale. In the position condition in Equation (6) used in the position filter, there are three factors, namely, $|r_i|$, $|r_j|$, and $pos_e(r_j)$. For ease of analysis, we rewrite Equation (6) as:

$$(1 + \tau) \cdot \text{pos}_{e}(r_{j}) + \tau \cdot |r_{i}| \le |r_{j}| + \tau + 1$$
 (7)

It is easy to see that if a certain pair (r_i, r_j) fails the position condition in Equation (7) when probing the inverted list I(e), all the pairs $(r_{i'}, r_{j'})$ with $|r_{j'}| = |r_j|, |r_{i'}| \ge |r_i|$, and $\mathsf{pos}_e(r_{j'}) \ge \mathsf{pos}_e(r_j)$

Figure 1: Illustration of inverted list *I*^{*}(*e*)

will also fail the position condition in Equation (7) when probing the inverted list I(e). Making use of such a domination relationship can possibly reduce the number of failed attempts when probing the inverted list I(e). Recall that the records r_j in the inverted list I(e) are sorted by non-decreasing order of $|r_j|$. We need to keep this order since the length filter relies on it. To use the domination relationship, we further group all the records r_j with the same $|r_j|$ in I(e), and construct a new inverted list $I^*(e)$ which is defined as:

Definition 4.1: (Inverted list $I^*(e)$). For each element *e*, the inverted list $I^*(e)$ consists of all entries $(r_j, \mathsf{pos}_e(r_j))$ such that $e \in r_j$. The entries in $I^*(e)$ are grouped into *skipping blocks*. Each skipping block $B_e(l)$ consists of all entries $(r_j, \mathsf{pos}_e(r_j))$ in $I^*(e)$ with $|r_j| = l$. Skipping blocks $B_e(l)$ in $I^*(e)$ are sorted in non-decreasing order of *l*, and entries $((r_j), \mathsf{pos}_e(r_j))$ in each skipping block are sorted in non-decreasing order of $\mathsf{pos}_e(r_j)$.

Index Construction. From the above definition, we can see that the main difference between $I^*(e)$ and I(e) is the sorting order. That is, each record is added to $I^*(e)$ based on record size and element position. Therefore, the time complexity of constructing $I^*(e)$ and I(e) are the same. So are the space complexity. Note that the index can be built offline since it is independent of any user given parameter. Below, we give an example to illustrate the inverted index $I^*(e)$ with skipping blocks.

Example 4.2: The inverted lists $I^*(e)$ of elements e in the dataset of Table 2 are illustrated in Figure 1. Take element e_3 as an example. The records that contain e_3 are r_2 , r_6 , r_7 , r_8 and r_9 . Records r_2 , r_6 , and r_7 are grouped into skipping block $B_{e_3}(12)$ since their lengths are all 12. Likewise, records r_8 and r_9 are grouped into $B_{e_3}(13)$. Inside each skipping block, the records are sorted in non-decreasing order of the position of e_3 . For example in $B_{e_3}(12)$, the entries are $(r_2, 1)$, $(r_6, 2)$, and $(r_7, 2)$, with the non-decreasing order of positions 1, 2, and 2 respectively.

Next, we show how the skipping blocks are used to reduce the number of failed attempts by skipping useless index probes. The key is to make use of the non-decreasing order of $pos_e(r_j)$ for all entries $(r_j, pos_e(r_j))$ in the same skipping block. Based on such an order, we can derive the following lemma:

Lemma 4.1: When computing $C(r_i)$ by probing $B_e(l)$, once an entry $(r_j, \mathsf{pos}_e(r_j))$ fails the position condition in Equation (7), we have: (1) All un-probed entries in $B_e(l)$ will fail Equation (7) when

computing $C(r_i)$; and (2) All un-probed entries in $B_e(l)$ along with $(r_j, pos_e(r_j))$ will

fail Equation (7) when computing $C(r_{i'})$ for any i' > i. Based on Lemma 4.1, we know that once an entry fails the position condition in Equation (7), we have: (1) the un-probed entries in the same skipping block $B_e(l)$ can be skipped for the

current iteration; and (2) the entry along with all the un-probed entries in the same skipping block $B_e(l)$ can be skipped for all future iterations when probing the same inverted list $I^*(e)$. Below, we show our algorithm for index-level skipping.

The Algorithm. To make use of Lemma 4.1, in each skipping block $B_e(l)$, we define $B_e(l)$.pos to be the position of the first entry that fails the position condition in Equation (7). Initially $B_e(l)$ pos is set to be $|B_e(l)| + 1$. Our algorithm for index-level skipping is shown in Algorithm 2. To compute the answer set for each $r_i \in \mathcal{R}$, we use the prefix filter and length filter the same as those used in Algorithm 1 (line 2-4). For each element $e \in \text{pre}_{t_i}(r_i)$, we probe all the skipping blocks $B_e(l)$ in the inverted list $I^*(e)$ according to the non-decreasing order of l (line 5). Once l exceeds the length threshold $u_i(e)$, we skip all the remaining skipping blocks (line 6). Otherwise, we probe the first $B_{e}(l)$.pos – 1 entries in the current skipping block $B_e(l)$. For each entry $(r_i, pos_e(r_i))$ (line 7), if the position condition Equation (7) fails, we set $B_e(l)$ pos as the position of $(r_i, pos_e(r_i))$ in $B_e(l)$ and skip all the remaining entries in the skipping block (line 8-10); Otherwise, we add (r_i, r_j) as a candidate pair (line 11). Once all entries in the skipping block $B_e(l)$ can be skipped, i.e., $B_e(l)$.pos = 1, we remove $B_e(l)$ from $I^*(e)$ (line 12). The verification phase is the same as that used in Algorithm 1. Note that for simplicity, we do not add the constraint i < j for each candidate pair (r_i, r_j) generated in Algorithm 2. To ensure such a constraint, when probing an entry $(r_i, pos_e(r_i)) \in B_e(l)$, if $j \leq i$, we just need to remove the entry from $B_e(l)$ since it will never be used afterwards. The correctness of Algorithm 2 is guaranteed by Lemma 4.1.

Example 4.3: Consider the dataset in Table 2. Suppose the threshold $\tau = 0.7$ and we have built the inverted index with skipping blocks for all elements in Table 2. We use record r_1 as an example to illustrate Algorithm 2 (see Figure 2). The prefix of r_1 includes e_1, e_6 and e_7 . Their inverted lists are $I^*(e_1) = \{B_{e_1}(12) : \{(r_1, 1)\}\},\$ $I^*(e_6) = \{B_{e_6}(12) : \{(r_4, 1), (r_1, 2), (r_5, 2)\}, B_{e_6}(13) : \{(r_8, 4), (r_9, 4)\},\$ $B_{e_6}(14)$: {(r_{10} , 4)}}, and $I^*(e_7) = \{B_{e_7}(12) : \{(r_2, 2), (r_3, 2), (r_4, 2), (r_4, 2), (r_6, 2), (r_7, 2), (r_8, 2),$ $(r_1, 3)$, $B_{e_7}(13)$: { $(r_8, 5), (r_9, 5)$ }, $B_{e_7}(14)$: { $(r_{10}, 5)$ } respectively. For element e_1 , since $I^*(e_1)$ only contains record r_1 , we probe the inverted list $I^*(e_6)$ for element e_6 . The length threshold $u_1(e_6) = 14$ where all records in the dataset will pass the length filter. Then we access each skipping block in inverted list $I^*(e_6)$. For skipping block $B_{e_6}(12)$, all entries pass the position filter. So we add $\{(r_1,$ (r_1, r_5) into $C(r_1)$. For skipping block $B_{e_6}(13)$, $(r_8, 4)$ fails the position filter. This results in $B_{e_6}(13).pos = 1$ (as shown in Figure 2). Thus, the whole block $B_{e_6}(13)$ is removed from $I^*(e_6)$. For skipping block $B_{e_6}(14)$, $(r_{10}, 4)$ passes the position filter and thus $\{(r_1, r_{10})\}$ is added into $C(r_1)$. After similarly processing

skipping blocks in $I^*(e_7)$, we get the candidate set $C(r_1) = \{(r_1, r_2), (r_1, r_3), (r_1, r_4), (r_1, r_5), (r_1, r_{10})\}$.

Cost Saving. It is easy to see that Algorithm 2 and Algorithm 1 have the same verification cost since they generate the same set of candidates. Therefore, the major cost saving of Algorithm 2 is the reduction of the number of failed attempts when probing the inverted lists in the filtering phase. To illustrate the cost saving of our algorithm, we define the failure space as follows:

Definition 4.2: (Failure Space). For each element *e* and $1 \le l \le l_{max}$, the failure space w.r.t. *e* and *l* is the set of points $(|r_i|, \mathsf{pos}_e(r_j))$ with $|r_j| = l$ that fails the position condition in Equation (7) when applying a prefix-filter based algorithm. For each element *e* and $1 \le l \le l_{max}$, we denote the failure space of Algorithm 1 and Algorithm 2 w.r.t. *e* and *l* as $\mathcal{F}_e(l)$ and $\mathcal{F}_e^*(l)$ respectively.

For any two points $(|r_i|, \mathsf{pos}_e(r_j))$ and $(|r_{i'}|, \mathsf{pos}_e(r_{j'}))$, $(|r_{i'}|, \mathsf{pos}_e(r_{j'}))$ is dominated by $(|r_i|, \mathsf{pos}_e(r_j))$ if $|r_{i'}| \ge |r_i|, \mathsf{pos}_e(r_{j'}) \ge \mathsf{pos}_e(r_j)$, and $(|r_{i'}|, \mathsf{pos}_e(r_{j'})) \ne (|r_i|, \mathsf{pos}_e(r_j))$. Given a set of points \mathcal{F} , the skyline of \mathcal{F} , denoted as skyline(\mathcal{F}), is the set of points that are not dominated by any other points in \mathcal{F} . We have:

Lemma 4.2: For any element e and $1 \le l \le l_{max}$, we have $\mathcal{F}_e^*(l) =$ skyline($\mathcal{F}_e(l)$).

Figure 3 (a) and Figure 3 (b) illustrate the failure spaces of Algorithm 1 and Algorithm 2 respectively for each element *e* and $1 \le l \le l_{max}$. In each figure, the *x* axis is $|r_i|$, and the *y* axis is $\mathsf{pos}_e(r_j)$. The total space is $[0, l_{max}] \times [0, l_{max}]$. The failure space $\mathcal{F}_e(l)$ is the grey area in the upper right part of the line $(1 + \tau) \cdot \mathsf{pos}_e(r_j) + \tau \cdot |r_i| = l + \tau + 1$ as shown in Figure 3 (a); and the failure space $\mathcal{F}_e^*(l)$ only consists of the skyline points of $\mathcal{F}_e(l)$ as shown in Figure 3 (b). Compared to Algorithm 1, Algorithm 2 reduces the two-dimensional failure space $\mathcal{F}_e(l)$ to the one-dimensional skyline space $\mathcal{F}_e^*(l)$. We use the following example to further illustrate the cost saving.

Example 4.4: Consider the dataset in Table 2 and the threshold $\tau = 0.7$. The number of failed attempts for Algorithm 1 is 22 while Algorithm 2 only produces 5 failed attempts. This represents a 77% reduction in failed attempts comparing to Algorithm 1 and shows that our index-level skipping technique is effective on reducing the number of failed attempts.

Complexity Analysis. The cost saving on the failed attempts results in the reduction of the time complexity of the algorithm. We can derive the following two theorems:

Theorem 4.1: The time complexity of Algorithm 2 is
$$O(n \cdot l_{avg} + V)$$
.

Theorem 4.2: The space complexity of Algorithm 2 is
$$O(n \cdot l_{avg})$$
.

Comparing theorems 4.1 and 4.2 to theorems 3.1 and 3.2, our Algorithm 2 improves the time complexity of the filtering phase from $O(n^2 \cdot l_{avg})$ to $O(n \cdot l_{avg})$ with the same space complexity which is linear to the size of the input. Comparing theorems 4.1 and 4.2 to theorems 3.3 and 3.4, our Algorithm 2 improves the time

Figure 3: Illustration of Failure Spaces $\mathcal{F}_{e}(l)$ and $\mathcal{F}_{e}^{*}(l)$

complexity of the filtering phase from $O(n \cdot l_{max})$ to $O(n \cdot l_{avg})$, and improves the space complexity from $O(n \cdot l_{max})$ to $O(n \cdot l_{avg})$.

4.2 Answer-Level Skipping

Motivation. In this section, we discuss the skipping technique that uses the answer-level record relations. Recall that for each record $r_i \in \mathcal{R}$, Algorithm 1 calculates the answer set $\mathcal{A}(r_i)$ for r_i from scratch without considering the relations among records. Note that after computing $\mathcal{A}(r_i)$ for record r_i , each answer record r_i' of r_i , that is $(r_i, r_{i'}) \in \mathcal{A}(r_i)$, has a high similarity with record r_i . Therefore, for each record r_j , if r_j is similar to r_i , it is highly possible that r_j is also similar to $r_{i'}$. In other words, it is highly possible that the answer set $\mathcal{A}(r_i)$ is similar to the answer set $\mathcal{A}(r_{i'})$. Based on this observation, if we can compute $\mathcal{A}(r_{i'})$ incrementally based on $\mathcal{A}(r_i)$, we can avoid computing $\mathcal{A}(r_{i'})$ from scratch and therefore reduce the computational cost. Next, we show how to incrementally generate $\mathcal{A}(r_{i'})$ based on $\mathcal{A}(r_i)$.

The Rationale. Suppose $\mathcal{A}(r_i)$ is computed for a certain record r_i . For a record $r_{i'}$ that is similar to r_i , to compute $\mathcal{A}(r_{i'})$ based on $\mathcal{A}(r_i)$, we need to consider the difference between r_i and $r_{i'}$. Specifically, we show that it is sufficient to only consider the elements in $r_{i'} \setminus r_i$ to find all new candidates that need to be added to the current answer set based on the following lemma:

Lemma 4.3: Given a record r_i and the answer set $\mathcal{A}(r_i)$, for any record $r_{i'}$ with i' > i, we have:

$$\mathcal{A}(r_{i'}) \subseteq \mathcal{C}_{CM}(r_i, r_{i'}) \cup \mathcal{C}_{CR}(r_i, r_{i'}), \tag{8}$$

where $C_{CM}(r_i, r_{i'}) = \{(r_{i'}, r_j) | r_j \in \bigcup_{e \in r_{i'} \setminus r_i} I(e)\}$ (9)

$$C_{CR}(r_i, r_{i'}) = \{(r_{i'}, r_j) | (r_i, r_j) \in \mathcal{A}(r_i)\}.$$
(10)

Here $C_{CM}(r_i, r_{i'})$ and $C_{CR}(r_i, r_{i'})$ are called the complementary candidates and current candidates of $r_{i'}$ w.r.t. r_i respectively.

According to Lemma 4.3, for any two similar records r_i and $r_{i'}$, suppose the answer set of r_i is computed, we can use the complementary candidates $C_{CM}(r_i, r_{i'})$ and current candidates $C_{CR}(r_i, r_{i'})$ to generate the candidate set of $\mathcal{A}(r_{i'})$. We discuss the two types of candidates below.

- Complementary Candidates. In the complementary candidates $C_{CM}(r_i, r_{i'})$, we only consider those elements that appear in $r_{i'}$ but not in r_i . For all such elements e, we union the records in their inverted lists I(e) to form the complementary candidates $C_{CM}(r_i, r_{i'})$ as shown in Equation (9).
- *Current Candidates.* In the current candidates $C_{CR}(r_i, r_{i'})$, we only consider the records r_j that are similar to r_i , i.e., $(r_i, r_j) \in \mathcal{A}(r_i)$. We union all these records r_j to form the current candidates $C_{CR}(r_i, r_{i'})$ as shown in Equation (10).

Since we require r_i and $r_{i'}$ to be similar in order to compute $\mathcal{A}(r_{i'})$ based on $\mathcal{A}(r_i)$, we only consider those $r_{i'}$ such that

ar

Figure 4: Illustration of Lemma 4.3.

 $(r_i, r_{i'}) \in \mathcal{A}(r_i)$. The two types of candidates and their relationships are demonstrated in Figure 4. We use the following example to illustrate the cost saving by using the answer-level skipping technique.

Example 4.5: Figure 5 shows a simple example to illustrate the cost saving by using answer-level skipping. Suppose e_w is contained in all records of $\mathcal{R}' = \{r_i, r_j, \ldots, r_{j+1000}\} \subset \mathcal{R}$ as the second element, r_i and r_j only differ in the first element, and all records in \mathcal{R}' have the same length, and suppose $\mathcal{A}(r_i) = \{(r_i, r_j)\}$ has been computed. It is easy to see that without answer-level skipping, we need to verify 1000 candidate pairs to compute $\mathcal{A}(r_j)$. With answer-level skipping, we can get that $C_{CM}(r_i, r_j) = (r_j, r_j)$ and $C_{CR}(r_i, r_j) = (r_j, r_j)$. Therefore, no candidate pairs need to be verified if we compute $\mathcal{A}(r_j)$ using Lemma 4.3.

Next, we show how to reduce the number of probed complementary candidates in $C_{CM}(r_i, r_{i'})$ and improve the computation of the current candidates $C_{CR}(r_i, r_{i'})$ using two steps, namely, complementary candidates probe and current candidates update as follows:

- In the first step, we probe the inverted lists of elements in r_{i'} \ r_i and try to reduce the number of probed candidates.
- In the second step, we try to avoid computing the similarity between r_{i'} and each other answer record of r_i from scratch. Instead, we aim to incrementally compute the similarity by exploring the differences between r_i and r_{i'}.

In addition, the answer-level skipping technique may not always be of benefit. For each answer record $r_{i'}$, we need a cost function to determine whether using the answer-level skipping technique to compute $\mathcal{A}(r_{i'})$ is better than computing $\mathcal{A}(r_{i'})$ from scratch. Below, we will introduce the two steps in detail, followed by a discussion on the skipping condition.

Step 1: Complementary Candidates Probe. In this step, we handle $C_{CM}(r_i, r_{i'}) = \{(r_{i'}, r_j) | r_j \in \bigcup_{e \in r_{i'} \setminus r_i} I(e)\}$. For each element $e \in r_{i'} \setminus r_i$, we probe the inverted list I(e), and consider the pairs $(r_{i'}, r_j)$ for $r_j \in I(e)$ as candidates. It is not necessary to consider all the records in I(e). Therefore, we try to reduce the number of probed records by considering the three conditions:

- For the prefix filter, the element *e* may not be in the prefix $pre_{t_i}(r_{i'})$ of $r_{i'}$. Therefore, the prefix filter cannot be used.
- For the length filter, since *e* is not necessarily the first element in $r_i \cap r_{i'}$, the length filter in Lemma 3.5 cannot be used. However, the length filter in Lemma 3.2 can still be used since it only requires $|r_j| \le \lfloor \frac{|r_{i'}|}{\tau} \rfloor$.
- For the position filter, Equation (6) also requires e to be the first element in $r_i \cap r_{i'}$. Therefore, the position filter cannot be used.

Based on the above analysis, for each element $e \in r_{i'} \setminus r_i$, we probe

Figure 5: Illustration of Cost Saving by Answer-Level Skipping the records $r_j \in I(e)$ with j > i' in non-decreasing order of $|r_j|$ and add $(r_{i'}, r_j)$ into the candidate set $C(r_{i'})$. Then we report $(r_{i'}, r_j)$ to be an answer in $\mathcal{A}(r_{i'})$ if it passes the verification. Once the length condition $|r_j| \leq \lfloor \frac{|r_{i'}|}{\tau} \rfloor$ fails, we break the current iteration and visit the next element $e \in r_{i'} \setminus r_i$. Here, before adding $(r_{i'}, r_j)$ into $C(r_{i'})$, we need to make sure that (1) $(r_{i'}, r_j) \notin C(r_{i'})$, which is used to avoid duplicated answers; and (2) $(r_i, r_j) \notin \mathcal{A}(r_i)$, since for those $(r_i, r_j) \in \mathcal{A}(r_i)$, the possible answer $(r_{i'}, r_j)$ will be handled in the next step - current candidates update.

Step 2: Current Candidates Update. In this step, we handle $C_{CR}(r_i, r_{i'}) = \{(r_{i'}, r_j) | (r_i, r_j) \in \mathcal{A}(r_i)\}$. For each $(r_i, r_j) \in \mathcal{A}(r_i)$, we aim to verify whether $Jac(r_{i'}, r_j) \ge \tau$ incrementally without computing $Jac(r_{i'}, r_j)$ from scratch. Note that for any (r_i, r_j) , $Jac(r_i, r_j) \ge \tau$ is equivalent to $|r_i \cap r_j| \ge \lceil \frac{\tau}{1+\tau}(|r_i| + |r_j|)\rceil$. After computing $\mathcal{A}(r_i)$, for each $(r_i, r_j) \in \mathcal{A}(r_i)$, the value of $|r_i \cap r_j|$ is already computed. Therefore, the key to incrementally verify $Jac(r_{i'}, r_j) \ge \tau$ is to compute $|r_{i'} \cap r_j|$ based on $|r_i \cap r_j|$ incrementally. In order to do so, we can derive the following lemma:

Lemma 4.4: For any three records r_i , $r_{i'}$, and r_j , we have:

$$|r_{i'} \cap r_j| = |r_i \cap r_j| + \delta(r_i, r_{i'}, r_j)$$
(11)

П

where $\delta(r_i, r_{i'}, r_j) = |(r_{i'} \setminus r_i) \cap r_j| - |(r_i \setminus r_{i'}) \cap r_j|.$

In order to make use of Lemma 4.4, we can initialize $|r_{i'} \cap r_j|$ as $|r_i \cap r_j|$ for all $(r_i, r_j) \in \mathcal{A}(r_i)$. Then we go through the inverted index of each element $e \in r_{i'} \setminus r_i$, and for each $r_j \in I(e)$, if $(r_i, r_j) \in \mathcal{A}(r_i)$, we increase $|r_{i'} \cap r_j|$ by one. Next, we go through the inverted index of each element $e \in r_i \setminus r_{i'}$, and for each $r_j \in I(e)$, if $(r_i, r_j) \in \mathcal{A}(r_i)$, we decrease $|r_{i'} \cap r_j|$ by one. In this way, we incrementally update $|r_{i'} \cap r_j|$ from $|r_i \cap r_j|$ by only considering the differences between $r_{i'}$ and r_i . Finally, for each (r_i, r_j) , we check whether $|r_{i'} \cap r_j| \geq \left\lceil \frac{\tau}{1+\tau}(|r_{i'}| + |r_j|) \right\rceil$ holds. If so, we report $(r_{i'}, r_j)$ as an answer in $\mathcal{A}(r_{i'})$ without further verification.

Example 4.6: Consider the dataset in Table 2 with threshold $\tau = 0.7$. Take r_2 and r_3 as an example. Assume that we have already computed answer set of r_2 which is $\mathcal{A}(r_2) = \{(r_2, r_3), (r_2, r_4)\}$. Now we want to compute the answer set of record r_3 based on $\mathcal{A}(r_2)$. Here, $r_3 \setminus r_2 = \{e_2\}$. We probe the inverted list $I(e_2) = \{r_3, r_6, r_7, r_{10}\}$. Thus, $C_{CM}(r_2, r_3) = \{(r_3, r_6), (r_3, r_7), (r_3, r_{10})\}$. After result verification for candidates in $C_{CM}(r_2, r_3) = \{(r_3, r_4)\}$. Instead of computing the similarity of r_3 and r_4 from scratch, we use Lemma 4.4. That is, $|r_3 \cap r_4| = |r_2 \cap r_4| + \delta(r_2, r_3, r_4)$. Instead to compute $\delta(r_2, r_3, r_4) = |(r_3 \setminus r_2) \cap r_4| - |(r_2 \setminus r_3) \cap r_4|$. Since $|(r_3 \setminus r_2) \cap r_4| = |\emptyset| = 0$ and $|(r_2 \setminus r_3) \cap r_4| = |\emptyset| = 0$, $\delta(r_2, r_3, r_4) = 0$. Thus, $|r_3 \cap r_4| = 10 \ge \lceil \frac{\tau}{1+\tau}(|r_3| + |r_4|)\rceil$. Therefore, we have $\mathcal{A}(r_3) = \{(r_3, r_4)\}$. Using the answer-level skipping technique,

when computing $\mathcal{A}(r_3)$, we reduce the number of probed records from 11 to 7 and reduce the number of verifications from 5 to 3. \Box

When to Skip. After computing $\mathcal{A}(r_i)$ for a record r_i , for each answer record $r_{i'}$ where $(r_i, r_{i'}) \in \mathcal{A}(r_i)$, we need to determine whether to compute $r_{i'}$ from scratch or to use the above answerlevel skipping technique. In order to do so, we need to estimate the cost to compute $\mathcal{A}(r_{i'})$ from scratch and the cost to compute $\mathcal{A}(r_{i'})$ using the answer-level skipping technique. The number of probed records is employed to estimate the cost since the exact cost is hard to compute. We use $cost_{scratch}$ to denote the estimated cost to compute $\mathcal{A}(r_{i'})$ from scratch, and use $cost_{skip}$ to denote the estimated cost to compute $\mathcal{A}(r_{i'})$ using the answer-level skipping technique. Below, we discuss how to compute $cost_{scratch}$ and $cost_{skip}$:

• The best way to calculate $cost_{scratch}$ is scanning the inverted lists of the elements in the prefix of $r_{i'}$. However, it will increase the estimation cost and reduce the algorithm efficiency. Therefore, we directly use the length of the inverted lists for the elements in the prefix of $r_{i'}$ to estimate the cost as this is the only existing information that we can use without probing the records in the corresponding inverted lists. Intuitively, the larger the length of the inverted lists for the elements in the prefix of $r_{i'}$, the more records will be expected to be probed when computing $\mathcal{A}(r_{i'})$ from scratch. We have:

$$\text{cost}_{scratch} = c \times \sum_{e \in \text{pre}_{te}} |I(e)|.$$
 (12)

Here, *c* is a constant with $0 < c \le 1$.

To compute cost_{skip}, we need to investigate the two steps to compute A(r_{i'}) incrementally. In step 1, we probe the records in the inverted lists of elements in r_{i'} \ r_i. Therefore, the number of probed records in step 1 is bounded by ∑<sub>e∈r_{i'},r_i |I(e)|. In step 2, we probe the records in the inverted lists of elements in r_{i'} \ r_i and r_i \ r_{i'} to compute δ(r_i, r_{i'}, r_j) for all (r_i, r_j) ∈ A(r_i), and then we go through all answer records to update the new answer set A(r_{i'}). Therefore, the number of probed records in step 2 is bounded by ∑<sub>e∈r_{i'},r_{i'} |I(e)| + ∑<sub>e∈r_{i'},r_{i'} |I(e)| + |A(r_i)|. To summarize, the estimated cost to compute A(r_{i'}) using the skipping technique can be computed as:
</sub></sub></sub>

$$\mathsf{cost}_{skip} = 2 \times \sum_{e \in r_{i'} \setminus r_i} |I(e)| + \sum_{e \in r_i \setminus r_{i'}} |I(e)| + |\mathcal{A}(r_i)|. \tag{13}$$

After computing $\text{cost}_{scratch}$ and cost_{skip} , if $\text{cost}_{skip} \ge \text{cost}_{scratch}$, we compute $\mathcal{A}(r_{i'})$ from scratch. Otherwise, we compute $\mathcal{A}(r_{i'})$ using the answer-level skipping technique.

The Algorithm. Based on the above discussion, the algorithm for answer-level skipping is shown in Algorithm 3. We use \mathcal{R}_{skip} to maintain the set of records whose answer sets have been computed using the answer-level skipping technique (line 1). For each record $r_i \in \mathcal{R}$ (line 2), if $r_i \in \mathcal{R}_{skip}$, we simply skip it and continue to handle the next r_i (line 3). Otherwise, we compute $\mathcal{A}(r_i)$ using Algorithm 2 (line 4). After computing $\mathcal{A}(r_i)$, we go through all record pairs $(r_i, r_{i'})$ in $\mathcal{A}(r_i)$ to find possible opportunities for answer-level skipping (line 5). For each $(r_i, r_{i'}) \in \mathcal{A}(r_i)$, we compute $cost_{scratch}$ (line 6) and cost_{skip} (line 7) as discussed above, and only apply the answer-level skipping technique if $cost_{skip} < cost_{scratch}$ (line 8). When applying the answer-level skipping technique for record $r_{i'}$, we first add $r_{i'}$ into \mathcal{R}_{skip} and initialize $C(r_{i'})$ and $\mathcal{A}(r_{i'})$ (line 9). Next, we apply the first step, complementary candidates probe, by probing the inverted lists I(e) for $e \in r_{i'} \setminus r_i$ as discussed above (line 10-15). Then, we apply the second step, current candidates update, by probing the inverted lists I(e) for $e \in r_{i'} \setminus r_i$ (line 16-18) and $e \in r_i \setminus r_{i'}$ (line 19-21), and updating $\mathcal{A}(r_{i'})$ based on $\mathcal{A}(r_i)$ (line 22-24) as discussed above. Finally, we output $\mathcal{A}(r_{i'})$ as $\mathcal{A}(r_{i'})$.

Example 4.7: We use the dataset from Table 2 to illustrate Algorithm 3. Suppose the threshold $\tau = 0.7$ and c = 1. Initially, \mathcal{R}_{skip} is \emptyset . We consider the first record r_1 . Since $r_1 \notin \mathcal{R}_{skip}$, we use Algorithm 2 to compute its answer set $\mathcal{A}(r_1) = \{(r_1, r_4)\}$. Then we consider $(r_1, r_4) \in \mathcal{A}(r_1)$. Since $r_4 \setminus r_1 = \{e_{12}, e_{16}\}$ and $r_1 \setminus r_4 = \{e_1, e_8\}$, we have $\cot_{skip} = 2 \times \sum_{e \in r_4 \setminus r_1} |I(e)| + \sum_{e \in r_1 \setminus r_4} |I(e)| + |\mathcal{A}(r_1)| = 2 * 16 + 8 + 1 = 41 > \cot_{scratch} = c \times \sum_{e \in \mathsf{pre}_{r_4}} |I(e)| = 20$. Therefore, r_4 is not added into \mathcal{R}_{skip} . Next, we process record $r_2 \notin \mathcal{R}_{skip}$. We can get $\mathcal{A}(r_2) = \{(r_2, r_3), (r_2, r_4)\}$ using Algorithm 2. For (r_2, r_3) , since $r_3 \setminus r_2 = \{e_2\}$ and $r_2 \setminus r_3 = \{e_3\}$, we have $\cot_{skip} = 2 \times \sum_{e \in r_3 \setminus r_2} |I(e)| + \sum_{e \in r_2 \setminus r_3} |I(e)| + |\mathcal{A}(r_2)| = 2 * 4 + 5 + 2 = 15 < \cot_{scratch} = c \times \sum_{e \in \mathsf{pre}_{r_3}} |I(e)| = 18$. Therefore, r_3 is added to \mathcal{R}_{skip} and the answer set of r_3 is computed incrementally using Algorithm 3 as explained in Example 4.6. The remaining records are processed similarly.

Cost Analysis. We first analyze the time cost for Algorithm 3. We divide the cost into two parts, namely, C_1 : the cost to compute the answer sets for the non-skipped records $\mathcal{R} \setminus \mathcal{R}_{skip}$, and C_2 : the cost to compute the answer sets for the skipped records \mathcal{R}_{skip} . Below, we analyze the two costs individually:

- For C_1 , the failed attempts when computing the answer set for each individual record in $\mathcal{R} \setminus \mathcal{R}_{skip}$ using Algorithm 3 may be different from those when computing the answer set for the same record using Algorithm 2. However, it is easy to see that with the index level skipping technique, the total failed attempts in Algorithm 3 is subsumed by the total failed attempts in Algorithm 2.
- For C_2 , with the skipping condition, for each record $r_i \in \mathcal{R}_{skip}$, the cost to compute $\mathcal{A}(r_i)$ from scratch is expected to be more expensive than the cost to compute $\mathcal{A}(r_i)$ using the answer-level skipping technique.

Based on the above analysis, the time cost consumed by Algorithm 3 is expected to be smaller than that consumed by

Table 3: Characteristics of datasets										
Dataset	Abbreviation	Туре	Record	Elements	# Record	l _{max}	lavg	# Elements	# Pairs	Index Time(s)
Amazon [1]	AMAZ	Rating	Product	Rating	2,146,057	12,180	2.68	1,230,915	5,743,258	0.12
AOL [2]	AOL	Text	Query	Keyword	10,054,183	245	3.01	3,873,246	30,272,560	1.30
Bookcrossing [3]	BOOKC	Rating	Book	User	340,523	2,502	3.38	105,278	1,149,739	0.02
Citeulike [4]	CITEU	Folksonomy	Tag	User	153,277	8,814	3.51	22,715	538,761	0.01
DBLP [28]	DBLP	Text	Biboliography	3-gram	873,524	1,538	94.06	44,798	82,160,425	4.49
Delicious [5]	DELIC	Folksonomy	User	Tag	833,081	16,996	98.42	4,512,099	81,989,133	2.50
Discogs [6]	DISCO	Affiliation	Artist	Label	1,754,823	47,522	3.02	270,771	5,302,276	0.14
Enron [7]	ENRON	Text	Email	Word	517,431	3,162	133.57	1,113,219	69,114,932	2.51
Flickr [21]	FLICK	Folksonomy	Photo	Word/Tag	1,235,799	102	10.05	810,659	12,425,560	0.42
Kosarak [8]	KOSA	Interaction	User	Link	990,001	2,497	8.10	41,269	8,018,988	0.27
Lastfm [9]	LAST	Interaction	User	Song	1,084,620	773	4.07	992	4,413,833	0.16
Linux [10]	LINUX	Interaction	Thread	User	337,509	6,627	1.78	42,045	599,858	0.01
Livejournal [11]	LIVEJ	Affiliation	User	Group	3,201,203	300	35.08	7,489,073	112,307,385	4.52
Reuters [12]	RUTRS	Text	Story	Word	781,265	1585	77.53	283,911	60,569,726	2.72
Spotify [13]	SPOT	Interaction	User	Track	437,836	11,608	12.75	759,041	5,583,222	0.09
Stack [14]	STACK	Rating	User	Post	545,196	4,917	2.39	96,680	1,301,941	0.02
Sualize [15]	SUALZ	Folksonomy	Picture	Tag	495,402	433	3.63	82,035	1,800,330	0.06
Teams [16]	TEAMS	Affiliation	Athlete	Team	901,166	17	1.52	34,461	1,366,466	0.03
Trackers [17]	TRKRS	Hyperlink	Trackers	Domain	12,756,245	11,571,952	11.02	27,665,731	140,613,762	2.88
Tweet [28]	TWEET	Text	Tweet	Word	2,000,000	70	21.57	1,713,437	43,133,623	2.44
Wikipedia [37]	WIKI	Authorship	User	Article	3,819,691	1,916,898	31.96	21,504,191	122,075,170	1.65

Figure 6: Evaluating the Skipping Techniques

Algorithm 2. Regarding the space cost, it is easy to see that Algorithm 3 consumes linear space $O(n \cdot l_{avg})$ w.r.t. the size of the input by keeping the inverted lists for all elements in memory, which is the same as that consumed by Algorithm 2.

5. PERFORMANCE STUDIES

In this section, we present our experimental results. All of our experiments are conducted on a machine with an Intel Xeon E5-2690 (8 Cores) 2.9GHz CPU and 32GB main memory running Linux (Red Hat Enterprise Linux 6.4, 64 bit).

Datasets. We used 21 real datasets selected from different domains with various data properties. The datasets include those datasets used in existing works. The detailed characteristics of the 21 datasets are shown in Table 3. For each dataset, we show the type of the dataset, what each record and each element represents, the number of records in the dataset, the maximum and average record length, the number of different elements in the dataset, the number of record-element pairs in the dataset, and the time to build the index with skipping blocks. As shown in Table 3, the index can be built very efficiently since the longest index time for the 21 datasets is only 4.52 seconds.

Algorithms. We compared our algorithm (Algorithm 3), denoted as SKJ, with all the state-of-the-art algorithms for exact set similarity join, including PPJ and PPJ+ [45], ADP [42], PEL [31] and PTJ [28]. For PPJ, PPJ+, ADP and PEL, we obtained the source codes from the authors of [32], since the authors claimed in [32] that their implementation is faster than the available implementation provided by the original authors. The source code of PTJ was obtained from the authors of [28]. In all algorithms, we used the same candidate verification algorithm provided by the authors of [32], which was claimed to be much faster than other implementations. All algorithms were implemented in C++ and compiled with GCC with the -O3 flag. The preprocessing time is not included in all tests. We use 0.9 as the default threshold value τ , and we vary τ from 0.5 to 0.95 in Section 5.3.

5.1 Evaluation of the Skipping Techniques

We first evaluate the efficiency of our index-level skipping and answer-level skipping techniques. We use PSKJ to denote the algorithm with the index-level skipping technique, i.e., Algorithm 2, and use SKJ to denote the algorithm with both the index-level skipping technique and answer-level skipping technique, i.e., Algorithm 3. We compare the two skipping based algorithms with the state-of-the-art prefix-filter based algorithm PEL with all the three filtering techniques introduced in Section 3.1. We test the three algorithms over six representative datasets. The experimental results are shown in Figure 6(a) and Figure 6(b) for the Jaccard similarity function and Cosine similarity function respectively.

The experimental results demonstrate the power of our indexlevel and answer-level skipping techniques for the two similarity functions. First, we can see that PSKJ consistently outperforms PEL and is faster than PEL by 2-3 times. This is because PSKJ saves the index probing cost by skipping useless entry visits and filtering condition checks. The experimental results are consistent with our theoretical analysis in Section 4.1. Second, we find that SKJ further improves PSKJ and performs best over all datasets. This is because the answer-level skipping technique effectively reduces the computational cost by incrementally computing the answer sets for records. Remarkably, SKJ can achieve more than an order of magnitude faster than PEL. For example, on the DISCO

(c) Memory Usage (Jaccard Similarity)

Figure 7: Comparison with Existing Algorithms

dataset for the Cosine similarity function, the algorithms SKJ, PSKJ and PEL finish in 2.49 seconds, 13.38 seconds, and 26.16 seconds, respectively. For the two similarity functions, the relative performances for the three algorithms are similar. In the following we use SKJ to compare with other algorithms.

5.2 Comparison with Existing Solutions

This experiment compares our algorithm SKJ with the state-ofthe-art algorithms PPJ, PPJ+, ADP, PEL, and PTJ for exact set similarity join. We conduct the experiment over all 21 datasets for Jaccard and Cosine similarities. The experimental results are shown in Figure 7.

Figure 7(a) and Figure 7(b) show the processing time of all algorithms for the Jaccard similarity and Cosine similarity respectively. We can see that our algorithm SKJ consistently outperforms all the state-of-the-art algorithms in all datasets. For example, on the TEAMS dataset for the Jaccard similarity, SKJ is 11, 15, 12, 5, and 26 times faster than PPJ, PPJ+, PEL, ADP, and PTJ, respectively. The results demonstrate the large cost saving achieved by using our index-level and answer-level skipping techniques. The performances of the existing prefix-filter based algorithms PPJ, PPJ+, PEL, and ADP are quite similar, which is consistent with the result obtained by [32]. PPJ+ performs the worst among the four algorithms PPJ, PPJ+, PEL, and ADP, because with the fast candidate verification algorithm [32], the sophisticated filters used in PPJ+ do not pay off. The performance of ADP is dependent on the balance between the overhead of extended prefix searching and the cost saved by reducing candidate size. For the partition-filter based algorithm PTJ, it cannot outperform the prefix-filter based algorithms PPJ, PPJ+, PEL, and ADP in most cases. It is worth noting that, we do reproduce the results in [28] to compare PTJ with the original implementations of PPJ+ and ADP over the three datasets used in [28]. However, as stated in [32], their implementations of prefix-filter based algorithms is much faster than the original implementations in all cases. On the other hand, PTJ uses complex index structures such as hash table to reduce the number of candidates, and thus spends too much time on the filtering phase. As a result, PTJ can hardly outperform the prefix-filter based algorithms, which use a light-weight index structure and spend much less time on the filtering phase. Nevertheless, PTJ wins the existing prefix-filter based algorithms on some datasets such as DBLP and TWEET for the Cosine similarity. This is because the candidate number generated by PTJ is much closer to the number of results than that of PPJ, PPJ+, PEL and ADP. However, our algorithm SKJ still outperforms PTJ in these cases.

We also compare the memory cost of the six algorithms and show the experimental results for Jaccard similarity in Figure 7(c). We can see that the memory usage for the prefix-filter based algorithms PPJ, PPJ+, PEL, ADP, as well as our algorithm SKJ are similar since they all consume a memory size linear to the size of the input dataset. The small difference is due to the different auxiliary data structures used for different algorithms. The partition-filter based algorithm PTJ consumes much larger memory than the prefixfilter based algorithms in all datasets. For example, for the DELIC dataset, the memory usages for PPJ, PPJ+, PEL, ADP, SKJ, and PTJ are 1.3 GB, 1.3 GB, 1.3 GB, 1.9 GB, 1.5 GB, and 10.1 GB respectively. This is because PTJ needs to build the inverted lists for all sub-records which consumes $O(n \cdot l_{max})$ space as shown in Section 3.2. The memory cost of the six algorithms for the Cosine similarity are similar to that for the Jaccard similarity, and therefore we omit the result here. In the following, when varying

Figure 8: Vary Threshold τ (Jaccard Similarity)

different parameters, we only show our experimental results for Jaccard similarity since the performance of the algorithms for Cosine similarity are similar to that for Jaccard similarity.

5.3 Variation of the Threshold

In this experiment, we test the performance of our algorithm SKJ for different threshold τ and compare it with the existing algorithms PPJ, PPJ+, PEL, ADP, and PTJ. We vary τ from 0.95 to 0.5. Figure 8 shows the experimental results on six representative datasets for the Jaccard similarity. From the experimental results, we can see that when the threshold τ decreases, the running time of all algorithms increases. The reasons are twofold. First, for prefix-filter based algorithms, a smaller τ leads to a longer prefix, and for partition based algorithms, a smaller τ leads to more partitions. Therefore, a smaller τ leads to a longer filtering time. Second, a smaller τ will result in more similar pairs which leads to more candidates and thus requires longer verification time. In all datasets, we can see that our algorithm SKJ consistently outperforms all other algorithms for different threshold values. For example, on the DISCO dataset, when $\tau = 0.95$, SKJ is 17, 25, 19, 7, and 17 times faster than PPJ, PPJ+, PEL, ADP, and PTJ respectively: When $\tau = 0.5$, SKJ is 22, 31, 24, 8, and 70 times faster than PPJ, PPJ+, PEL, ADP, and PTJ respectively. In AMAZ and WIKI, when τ decreases to be smaller than 0.8, the processing time for PTJ increases sharply. This is because when τ is small, a large number of partitions are generated by PTJ. It is worth noticing that even when τ is small, our algorithm SKJ can still achieve a high speedup comparing to existing algorithms. This is because for a smaller threshold, SKJ will produce a larger answer set which results in more computational cost sharing.

5.4 Scalability Testing

In this subsection, we test the scalability of the algorithms PPJ, PPJ+, PEL, ADP, PTJ, and SKJ by varying the number of records in six large and representative datasets. For each dataset, we randomly select 20%, 40%, 60%, 80%, and 100% of records in the original dataset, and conduct the experiments on the sampled datasets.

Figure 9: Vary # Records (Jaccard Similarity)

Figure 9 shows the experimental results for the Jaccard similarity. We can see that the running time of all algorithms increases stably as the number of record increases for all datasets. This is because when the number of records increases, the cost of both filtering and verification phase increases for all algorithms. Our algorithm SKJ consistently outperforms other algorithms in all cases. The experimental results also demonstrate the high scalability of our solution when the size of the inverted list increases.

6. RELATED WORK

Exact Set Similarity Join. Exact set similarity join has been extensively studied in the literature [18, 19, 20, 21, 28, 31, 32, 33, 34, 35, 40, 44, 45]. As we have introduced in Section 3, existing solutions all follow the filtering-verification framework and can be divided into two categories based on the filtering mechanism, namely, prefix-filter based algorithms and partition-filter based algorithms.

For prefix-filter based algorithms, Bayardo et al. [20] first proposed prefix-filter based framework. Xiao et al. [45] introduced positional filter and suffix filter to the prefix-filter based framework. An optimized length filter was proposed by Mann et al. in [31]. Wang et al. [42] devised adaptive length prefix to strengthen filtering power. Other prefix-filter based algorithms include [34] to remove the useless entries in the inverted lists of elements, and [21] to group the records with the same prefix. However, they cannot significantly improve the algorithm. The details of the state-of-the-art prefix-filter based algorithms are introduced in Section 3.1. Mann et al. [32] introduced an efficient candidate verification algorithm that improves the efficiency of all existing prefix-filter based algorithms. They conducted a comprehensive study on existing prefix-filter based techniques and demonstrated that with some basic filtering techniques, using sophisticated filters to further reduce the number of candidates does not pay off. Our method falls into this category. Since none of the existing solutions have ever considered the relations of records in join processing, in

this paper, we aim to improve the algorithm by considering such information.

For partition-filter based algorithms, Arasu et al. [19] developed a two-level algorithm with partitioning and enumerating to find exact similar sets. Deng et al. [28] designed a partition-based method for exact set similarity join, which is introduced in details in Section 3.2. The partition-filter based algorithm [28] can effectively reduce the number of candidates. However, it usually results in an expensive filtering cost and high memory overhead to maintain the complex inverted lists for partitioned sub-records.

Other work focus on processing exact set similarity join in a distributed environment using MapReduce [33, 35, 40], which is not the focus of this paper.

Approximate Set Similarity Join. Approximate set similarity join is also widely studied [22, 23, 29, 36, 30, 47], which can only produce approximate join results. Existing works on the approximate set similarity join problem are mostly based on the Locality Sensitive Hashing (LSH) technique [30], which is a probabilistic scheme by hashing similar records into the same cluster with high probability. Among them, MinHash [22] is a quick estimation method for Jaccard similarity. Zhai et al. proposed a probabilistic algorithm ATLAS for similarity search with a low threshold on records with a high dimension [47]. Satuluri et al. proposed a Bayesian algorithm BayesLSH to extend LSH to be used in candidate pruning and similarity estimation [36]. Chakrabarti et al. [23] adopted sequential hypothesis testing on LSH to adaptively prune candidates aggressively and provide tighter qualitative guarantees over BayesLSH. In this paper, we focus on exact similarity join with different problem settings from the approximate set similarity join.

7. CONCLUSION

In this paper, we study the exact set similarity join problem, which is a fundamental problem with a wide range of applications. Existing solutions compute the answer set for each record individually, which may result in a large number of redundant computations. In this paper, we aim to leverage the relations among sets to seek for possible cost sharing in the join process. We first explore index-level set relations to group the sets in the inverted index of elements and design effective skipping techniques when probing the sets in each group. We then investigate the answerlevel set relations to compute the answers of a set incrementally based on the answers of a similar set. Our algorithm improves the state-of-the-art algorithms both theoretically and in practice. We conducted extensive experiments on 21 real datasets with various data properties. The experimental results demonstrate that our algorithm outperforms all the other algorithms in all datasets and can achieve a speedup of more than one order of magnitude against the state-of-the-art algorithms.

8. ACKNOWLEDGMENTS

Lu Qin is supported by ARC DE140100999 and DP160101513. Xuemin Lin is supported by NSFC61232006, ARC DP150102728, DP140103578 and DP170101628. Ying Zhang is supported by ARC DE140100679 and DP170103710. Lijun Chang is supported by ARC DE150100563 and ARC DP160101513.

9. **REFERENCES**

- [1] http://liu.cs.uic.edu/download/data/.
- [2] http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection.
- [3] http://www.informatik.uni-freiburg.de/~cziegler/BX/.
- [4] http://www.citeulike.org/faq/data.adp.
- [5] http://dai-labor.de/IRML/datasets.

- [6] http://www.discogs.com/.
- [7] http://www.cs.cmu.edu/~enron.
- [8] http://fimi.ua.ac.be/data/.
- [9] http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/.
- [10] http://konect.uni-koblenz.de/networks/lkml_person-thread.
- [11] http://socialnetworks.mpi-sws.org/data-imc2007.html.
- [12] http://trec.nist.gov/data/reuters/reuters.html.
- [13] http://dbis-twitterdata.uibk.ac.at/spotifyDataset/.
- [14] http://www.clearbits.net/torrents/1881-dec-2011.
- [15] http://vi.sualize.us/.
- [16] http://wiki.dbpedia.org/Downloads.
- [17] http://dumps.wikimedia.org/.
- [18] D. C. Anastasiu and G. Karypis. L2AP: fast cosine similarity search with prefix L-2 norm bounds. In Proc. of ICDE'14, 2014.
- [19] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In Proc. of VLDB'06, 2006.
- [20] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In Proc. of WWW'07, 2007.
- [21] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. PVLDB, 6(1), 2012.
- [22] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent permutations (extended abstract). In *Proc. of STOC'98*, 1998.
- [23] A. Chakrabarti and S. Parthasarathy. Sequential hypothesis tests for adaptive locality sensitive hashing. In Proc. of WWW'15, 2015.
- [24] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin. An efficient filter for approximate membership checking. In Proc. of SIGMOD'08, 2008.
- [25] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data cleaning. In Proc. of ICDE'06, 2006.
- [26] W. W. Cohen. Integration of heterogeneous databases without common domains using queries based on textual similarity. In *Proc. of SIGMOD'98*, 1998.
- [27] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online collaborative filtering. In *Proc. of WWW'07*, 2007.
- [28] D. Deng, G. Li, H. Wen, and J. Feng. An efficient partition based method for exact set similarity joins. *PVLDB*, 9(4), 2015.
- [29] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In Proc. of VLDB'99, 1999.
- [30] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proc. of STOC'98, 1998.
- [31] W. Mann and N. Augsten. PEL: position-enhanced length filter for set similarity joins. In Proc. of GVD'14, 2014.
- [32] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity join techniques. PVLDB, 9(9), 2016.
- [33] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework for all-pair similarity joins of multisets and vectors. *PVLDB*, 5(8), 2012.
- [34] L. A. Ribeiro and T. Härder. Generalizing prefix filtering to improve set similarity joins. *Inf. Syst.*, 36(1), 2011.
- [35] A. D. Sarma, Y. He, and S. Chaudhuri. Clusterjoin: A similarity joins framework using map-reduce. PVLDB, 7(12), 2014.
- [36] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive hashing for fast similarity search. PVLDB, 5(5), 2012.
- [37] S. Schelter and J. Kunegis. Tracking the trackers: A large-scale analysis of embedded web trackers. In *Tenth International AAAI Conference on Web and Social Media*, 2016.
- [38] E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity measures: a large-scale study in the orkut social network. In *Proc. of SIGKDD'05*, 2005.
- [39] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: robust and efficient near duplicate detection in large web collections. In *Proc. of SIGIR'08*, 2008.
- [40] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapreduce. In Proc. of SIGMOD'10, 2010.
- [41] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution. PVLDB, 5(11), 2012.
- [42] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?: an adaptive framework for similarity join and search. In *Proc. of SIGMOD'12*, 2012.
- [43] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang. Leveraging set correlations in exact set similarity join. Technical report, 2016. Available as ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201616.pdf.
- [44] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity joins. In Proc. of ICDE'09, 2009.
- [45] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate detection. In *Proc. of WWW'08*, 2008.
- [46] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for near-duplicate detection. ACM Trans. Database Syst., 36(3), 2011.
- [47] J. Zhai, Y. Lou, and J. Gehrke. ATLAS: a probabilistic algorithm for high dimensional similarity search. In *Proc. of SIGMOD'11*, 2011.
- [48] X. Zhu and A. B. Goldberg. *Introduction to Semi-Supervised Learning*. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2009.