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ABSTRACT
We present a system called Cümülön-D for matrix-based data anal-
ysis in a spot market of a public cloud. Prices in such markets
fluctuate over time: while users can acquire machines usually at a
very low bid price, the cloud can terminate these machines as soon
as the market price exceeds their bid price. The distinguishing fea-
tures of Cümülön-D include its continuous, proactive adaptation
to the changing market, and its ability to quantify and control the
monetary risk involved in paying for a workflow execution. We
solve the dynamic optimization problem in a principled manner
with a Markov decision process, and account for practical details
that are often ignored previously but nonetheless important to per-
formance. We evaluate Cümülön-D’s effectiveness and advantages
over previous approaches with experiments on Amazon EC2.

1 Introduction
There has been growing interest in the so-called spot markets in
public clouds. Contrary to the standard way of paying for the use
of computing resources at a fixed price, users bid in a spot market
by the specifying the type and number of machines as well as the
maximum unit price (per machine-hour) they are willing to pay.
Driven by supply and demand, the cloud provider adjusts the mar-
ket prices in real time. Machines in use are charged at their market
price, which usually remains low; however, if the market price ex-
ceeds their bid price (specified when they were acquired), they are
terminated immediately, and any ongoing work will be lost.

This paper studies how best to use a spot market for data analyt-
ics. We consider this problem from the perspective of an individual
use: the user specifies a workflow and a deadline, and we want to
find the “best” strategy for provisioning the cluster and executing
the given workflow by the deadline. Because future market prices
are uncertain, we do not know how much the execution will cost
exactly. Furthermore, many users, especially those who do not use
the spot market on a regular basis, tend to be very risk-averse on
individual executions—what if they miss the deadline or end up
spending far more than using non-spot machines with fixed prices?
Therefore, the “best” strategy should minimize some combination
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of the expected cost and risk, where the trade-off between the two
can be set according to user preference.

We postulate that the best way to cope with a dynamic, uncertain
spot market is with continuous, proactive optimization and adap-
tation during execution. A simpler reactive approach could be to
leave the execution alone and not act until we lose the machines
in our cluster because the market price has risen higher than the
bid price. But there are missed opportunities. If the current mar-
ket price is very low, shouldn’t we bid for more machines and add
them to our cluster? Wouldn’t it also make sense to release some
machines in our cluster that were acquired at higher bid prices? On
the other hand, if the price is tending up, shouldn’t we proactively
shut down our cluster and wait for the price to come down?

While one can act on intuition, the consequence of an action of-
ten involves intricate trade-offs. First, the best action depends on
the execution progress. For example, if we are close to the dead-
line and there is much work left, we should act conservatively—it
will be risky to shut down the cluster and wait for the price to drop,
because we might be forced to pay high for a large cluster when
the deadline is imminent. Second, the best action may depend on
the time of the day. Prices tend to fall during off-peak hours; if our
deadline is after peak hours, the option of shutting down and wait-
ing becomes more appealing. Third, the best action also depends
on the workflow. Different types of computation exhibit varying
degrees of parallelism; even within a single workflow, a big cluster
may be cost-effective for some of the steps but not the others. The
decision to change the cluster size must balance the benefit and
cost of parallelism not only at the current point of execution, but
also those in the future. Overall, making good adaptation decisions
can be overwhelming and tricky without proper system support.

A system that automates or recommends adaptation actions must
also deal with a host of messy practical issues. Each cloud provider
has its own particularities. For example, Amazon EC2 charges ma-
chines by hour, at the market price when each hour of usage begins;
if a machine is terminated by Amazon, its last partial hour will be
free. If we have added machines to a cluster over time, these ma-
chines can be charged at different rates—even though there is only
one underlying time series of market prices—because machines ac-
quired at different times may not have their usage hours aligned.
Furthermore, adaptation actions are not instantaneous. Ideally, one
could look at the market price at beginning of a usage hour and
release the machine if that price is too high. In practice, however,
because of delay in actuating the release, one has to examine the
price and make a decision before the hour begins. Then, it is possi-
ble for the machine to be charged at a new, different price—hence,
uncertainty cannot be eliminated. In comparison, Google charges
by minutes instead of hours. Google also sets fixed low prices for
“preemptible” instances, but can terminate them at any time. Effec-
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tively, prices in this market transition between a known low state
and some (hidden) high state. In today’s fast-moving and competi-
tive cloud computing landscape, we expect that these particularities
will likely continue to exist and evolve.

Therefore, instead of relying on rules of thumb, or strategies spe-
cific to a spot market’s current particularities, we strive for a princi-
pled, general approach towards dynamic adaptation, where we can
quantify the benefit and risk of our actions, and account for vari-
ous practical details that matter to performance. To meet this goal,
we present a solution based on Markov decision processes (MDPs).
For our solution to be practical, we make judicious choices on the
level of details in modeling and optimization; we devise methods to
speed up optimization; and we further decouple the step of solving
the optimization problem from that of applying the solution at run
time, so the former, more expensive step does not add overhead or
complexity to execution.

This paper continues the line of work on supporting scalable,
matrix-based data analysis in the cloud—specifically Cumulon [4]
and Cümülön [5], the latter of which also uses the spot market.
Matrix-based data analysis has seen increasing applications in re-
cent years because of the growing popularity of statistical and ma-
chine learning methods. Two nice characteristics of such workloads
make their automatic optimization more effective than for black-
box workloads: declarative specification (in the language of lin-
ear algebra) and performance predictability (relatively speaking).
Interestingly, declarative specification and cost-based optimization
are also pillars of modern databases. Therefore, even though this
work focuses on matrix-based workloads, we believe some of our
ideas and techniques will also be relevant to database workloads or
other declaratively specified data-parallel workloads.

This paper borrows many cost estimation and optimization meth-
ods from [4, 5], as well as the stochastic price model for spot mar-
kets from [5]. However, as motivated earlier, Cümülön-D takes the
new approach of continuous, proactive adaptation, dynamically ad-
justing its cluster and bidding strategy according to current market
condition and execution progress. This new approach is a funda-
mental departure from our previous work on Cümülön [5], which
was reactive—e.g., it would not opportunistically acquire more spot
machines when the spot price drops, or release them in anticipation
of price hikes. The new proactive adaptation approach of Cümülön-
D introduces new opportunities as well as challenges. Thanks to
the power of proactive adaptation, Cümülön-D is competitive even
without making use of any regular, non-spot machines. On the
other hand, highly dynamic adaptation not only requires solving
a new, harder optimization problem, but also necessitates a simpler
system to tame model complexity and reduce adaptation overhead.

We evaluate Cümülön-D and compare it with other approaches
using machines from the Amazon EC2 spot market. We show that
Cümülön-D adapts intelligently, not only to the dynamic spot mar-
ket, but also to performance variations during execution. Our re-
sults illustrate the price of uncertainty as well as the advantage of
dynamic adaptation. Given the same market price model, Cümülön-
D produces more economical results than previous approaches, be-
cause of better adaptivity, more realistic workload modeling, and
ability to account for various particularities that impact cost.

2 System Overview
We now briefly describe the system design of Cümülön-D. As men-
tioned in Section 1, Cümülön-D builds on previous work [4, 5], so
we shall focus on aspects that are new or different, while referring
readers to [4, 5] for other details. We close this section with a dis-
cussion highlighting the difference in design philosophy between
Cümülön-D and Cümülön.

Cluster and Storage A Cümülön-D (compute) cluster consists
of machines from the spot market that can be terminated by the
cloud provider.1 This cluster does not need to include non-spot
machines (called on-demand instances on Amazon EC2) that have
fixed prices and will not be terminated by the provider. For sim-
plicity (and to answer the interesting question of how far we can go
with spot machines alone), we shall assume that we do not use non-
spot machines for computation for now; our technical report [6]
shows how to extend our system and optimization framework in a
relatively straightforward way to include this option.

A separate, reliable master schedules computation on the com-
pute cluster, monitors the execution progress and the spot market
price, and dynamically adjusts the cluster and execution as needed.
During execution, the master itself does not perform computation in
the workload or solve any hard optimization problem on the fly—it
simply looks up appropriate actions from a precomputed cookbook
(details to be given later). It can run inside the cloud on a non-spot
machine or outside the cloud on the user’s client machine. We do
not consider the cost of the master.

For stable storage, Cümülön-D uses a reliable distributed file
system shared by but separate from the machines in the cluster.
The contents of file system will not be lost if the machines are ter-
minated. For Amazon EC2, EFS (Elastic File System) is a natural
choice. Another option would be to run a separate storage clus-
ter such as GlusterFS or HDFS using non-spot machines. Because
Cümülön-D’s focus on matrix workloads, its storage layer supports
accesses to matrix data in the unit of tiles, or submatrices of fixed
but configurable sizes. By design, tiles are never updated in place.
Data integrity is maintained at the tile-level: missing or partially
written tiles are detected and do not affect other tiles’ integrity.

Besides the stable storage, Cümülön-D deploys a distributed cache
on all machines in the compute cluster. This cache employs write-
through and cache-on-read policies: every write goes to both the
cache and the stable storage; if a tile to be read is not in the cache,
the request goes to the stable storage and a copy of the tile fetched
is cached. Cached tiles may be lost if some (or all) machines are
terminated, but because of the stable storage and the write-through
policy, there is no need to recover lost tiles in the cache.
Compilation and Execution Cümülön-D compiles an input pro-
gram into a workflow, or a sequence of jobs for execution. Each
job is executed in a data-parallel fashion using multiple indepen-
dent tasks that do not communicate with each other. Each machine
in the cluster is configured into several slots, each of which exe-
cutes one task at a time. Cümülön-D’s scheduler, which runs on
the master, assigns tasks to slots. Each task reads its designated
input split (portions of the job input, possibly overlapping with the
other tasks) and writes its designated output split (a portion of the
job output, disjoint from the other tasks). Passing of data between
jobs happens through the shared stable storage.

At compilation time, Cümülön-D’s optimizer produces a triple
(Q,A, S) given an input program and user-specified deadline and
risk tolerance (more on these in Section 5).

• Q, the optimized workflow template, contains a template for
each job in the workflow, which encodes the execution strat-
egy for all tasks in the job (using a DAG of standard operators;
see [4] for details). However, templates leave open how input
and output are split among tasks; that decision depends on the
cluster configuration and will be made at run time (see below).

1We also note that Cümülön-D provisions a cluster from a public cloud
solely for the purpose of executing a given workflow; we are not targeting
scenarios where a cluster is maintained on an ongoing basis to handle a
workload mix over time.
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• A, the (action) cookbook, instructs Cümülön-D how to adapt at
run time, and will be detailed in Section 5. For now, think of it
as a look-up table that maps a current price and execution state
to an adaptation “action.” The action may change the cluster
and in turn affect how work is split among tasks in a job.

• S is the split guide. For each job, given the current cluster con-
figuration, S returns the optimal split dimensions for a task in
this job. When Cümülön-D’s scheduler assigns a task, it con-
sults S to determine what portion of the work should be given
to the task. Since this decision is based on the current cluster
configuration, task scheduling automatically adapts according
to the actions given by A.

How to come up with the workflow template Q and split guide
S is not the focus of this paper—we refer readers to [4] for details.
On a high level, to find Q, we start with an algebraic representa-
tion of the input program, and apply rule-based rewriting to trans-
form the program and partition it into jobs. To find S, we employ
a suite of cost models, including an I/O performance model, I/O
volume and execution time models for each operator (constructed
by benchmarking across a wide range of input shapes and sizes for
each machine type), as well as models for predicting job progress
from task execution times. Specific to Cümülön-D, when model-
ing I/O performance, we ignore performance variations due to the
contents of the distributed cache. This simplification saves us from
having to model the cache contents in the event that subset of ma-
chines are terminated. In practice, this assumption is reasonable:
as distributed file systems continue to improve, variations in I/O
performance will account for a smaller fraction of the total time.

A machine can be terminated by either the cloud provider or
Cümülön-D itself. In either case, the master simply returns the
input splits assigned to any failed tasks to the pool of remaining
work, and then continues scheduling remaining work on remain-
ing machines. By consulting S, it ensures that new assignments are
optimal for the updated cluster configuration. Thanks to the stable
storage, termination of machines does not affect output of tasks that
have already completed, so none of their work needs to be redone.

Discussion and Comparison with Cümülön [5] As discussed in
Section 1, the key feature of Cümülön-D that distinguishes it from
Cümülön is its continuous, proactive adaptation. This fundamental
difference in approaches manifests itself not only in terms of the
optimization problem being solved, but also in system design. One
notable difference is Cümülön-D’s assumption of stable storage in-
dependent of its compute cluster. In contrast, Cümülön assumes
none and uses one cluster for both computation and storage of in-
termediate results. Consequently, Cümülön needs to include some
non-spot machines in its cluster to provide stable storage. To avoid
overwhelming these machines, however, Cümülön does not send
every write to its stable storage, but instead adopts a dual-store ar-
chitecture where useful intermediate results become persisted in
the stable storage either through reads naturally occurring during
execution or by explicit checkpoint operations strategically added
by the system. Nonetheless, data written by completed tasks can
be lost under Cümülön, which is not possible under Cümülön-D.
This difference in turn leads to other features required by Cümülön
but not Cümülön-D, e.g., lineage-based recovery of lost interme-
diate results, as well as modeling of data access and caching pat-
terns so the Cümülön optimizer can estimate recovery cost. Over-
all, Cümülön-D has a vastly simpler system than Cümülön.

On the other hand, Cümülön-D’s nimbler system enables more
sophisticated optimization and adaptation—it can proactively grow
and shrink the cluster with relatively low overhead, as there is no
complex recovery process after termination of machines. In con-

trast, Cümülön only makes a one-time decision on how to bid for
spot machines, and assumes a single batch of spot machines at any
time during execution—not because of any lack of system support
but because of the limit of optimization: recovery costs would be
difficult to predict otherwise. One could re-invoke Cümülön’s opti-
mizer to get another batch of spot machines after losing the original
batch, but this adaptation is reactive, not proactive.

In sum, Cümülön-D and Cümülön represent rather different de-
sign trade-offs between the system and its optimization. Cümülön’s
system is more complex, self-sufficient, and has more “smarts”
built-in, but predicting its behavior (especially when machines are
terminated) becomes so complicated that the scope of optimiza-
tion needs to be limited. Cümülön-D opts for a simpler, nimbler,
and more predictable system with a more sophisticated optimizer.
We made this design trade-off for Cümülön-D not only because it
presents an interesting opportunity to compare the two approaches,
but also because of cloud technology and market trends: cloud
providers have been steadily improving their distributed storage of-
ferings in terms of both cost and performance, and Amazon EFS
has just become available in mid-2016.

3 Preliminaries for Optimization
As mentioned in Section 2, Cümülön-D compiles a “cookbook”
that it consults at run time to generate adaptation actions. Before
describing how this process works, we need to first introduce nota-
tions and assumptions, clarify what we mean precisely by an adap-
tation action, and show how we estimate the progress and cost of
an execution resulted from applying a sequence of such actions.
Charging Scheme We assume that the cloud provider can an-
nounce at any time a new market price for each machine type in a
spot market. The market price remains the same until further no-
tice, but there is no guarantee of when and how much the price
will change again. Users can acquire machines any time by plac-
ing a bid, which consists of a bid price, as well as the number and
type of machines requested. For the bid to succeed, the bid price
must be no less than the current market price for the machine type
requested. Once a bid is placed, it cannot be modified.

The cloud provider charges each machine in use in time incre-
ments of τcharge. Specifically, usage time is rounded up to a multiple
of τcharge, and each period of τcharge is charged by the market price
at the beginning of that period. For Amazon, τcharge = 3600s (one
hour) although the last partial hour is free if the machine is termi-
nated by Amazon. For Google, τcharge = 60s (one minute).
Cluster Configuration For simplicity, we assume a homogeneous
cluster, i.e., all machines come from one spot market, have the same
type, and are configured into the same number of slots.2 These ma-
chines can, of course, be acquired and terminated at different times.
At compile time, given the workflow, Cümülön-D optimizes for
each machine type and each spot market, and picks the best. The
optimal number of slots per machine can be determined given the
machine type and workflow template [4]. Therefore, in the remain-
der of this paper, we focus on the problem of optimally adapting
the cluster size, given the machine type and the number of slots per
machine. For brevity, we shall refer to “machines of given type and
configuration” simply as “machines” when the context is clear.
Jobs and Speedup Functions Let J denote the number of jobs
in the workflow template of interest. Let T (j)(n) denote the ex-
ecution time of job j (j = 1, ..., J) using n machines, assuming
no interruption. Let w(j) = T (j)(1) represent the total amount of
work in job j, whose unit of measurement is the amount of work
2We leave as future work the more general case of a heterogeneous cluster
where machines have different types and/or come from different markets.
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performed by a single machine in unit time. Let W =
∑J
j=1 w

(j)

denote the total amount of work in the workflow.
The speedup function (well studied in [3]) of job j is given by

g(j)(n) = T (j)(1)

T (j)(n)
. In general, parallelism produces diminish-

ing returns because of its overhead and any inherently serial por-
tion of the computation. In practice, we observe g(j)(n) to be
increasing, concave, and sublinear (even for highly parallelizable
jobs like matrix multiply), with g(j)(1) = 1 and g(j)(n) ≤ n.
Cümülön-D makes no assumption at all on the speedup functions,
except that when analyzing our optimization algorithms later, we
note g(j)(n)’s diminishing-return property naturally caps the num-
ber of machines in use simultaneously because a larger cluster would
no longer be cost-effective—we denote this cap N .

Note that T (j)(n) = w(j)

g(j)(n)
; i.e., we can interpret g(j)(n) as the

effective “speed” of an n-machine cluster in calculating the execu-
tion time of job j. In Section 2, we briefly outlined how to estimate
T (j)(n), from which w(j) and g(j)(n) are defined; in subsequent
sections, we shall primarily work with w(j) and g(j)(n) instead.

Plan, Actions, and Overhead Given a deadline, we look for a
plan that encodes the sequence of actions over time in order to
finish the workload before the deadline. An action can be bidding
for more machines at some price, or releasing a subset of machines.
In formulating and solving the optimization problem, we make two
simplifications, but they do not limit our solution in practice:

• First, we discretize time into steps of size τopt, and consider ac-
tions only at the beginning of each time step. Later in Sec-
tion 5.4, we discuss how to apply our solution in practice such
that Cümülön-D can take actions at any time. The choice of
τopt reflects the trade-off between optimization time and solution
quality, which we will study experimentally in Section 6.

• Second, we ignore the problem of setting bid price for now,
and assume we always bid “high enough.” For the purpose of
optimization, we simply set bid price to ∞, which means ma-
chines will not be terminated by the cloud provider (but can still
be released voluntarily by Cümülön-D).3 Of course, in reality,
Cümülön-D does not bid at∞, and it handles termination by the
provider; Section 5.3 discusses how to further derive a practical
bidding strategy given a solution to the optimization problem.

Hence, with the simplifications above, assuming the current time is
0 and given deadline d (in the unit of τopt), we just need to pick the
sequence 〈nt : 0 ≤ t ≤ d−1〉, where nt denotes the chosen cluster
size in time step t. When the context is clear, we will abbreviate
the plan as 〈nt〉.

As discussed in Section 2, a change in the cluster size at run
time automatically affects (through the split guide S) how remain-
ing work is divided into tasks. This effect is also captured by the
speedup functions defined earlier in this section. In reality, chang-
ing the size of a cluster also incurs various overheads. For example,
when new machines are acquired, they require time to initialize,
during which they perform no useful work but are charged nonethe-
less. When machines are terminated or released, some work may
be lost in incomplete tasks, which needs to be redone by other ma-
chines, thereby delaying execution progress. Let Overhead($,n, n′)
denote the adaptation overhead in terms of the amount of non-
useful or wasted work incurred, where $ is the amount of work
left in the workflow at the time when the cluster size changes from

3If bidding at∞ sounds crazy, recall that machines are charged not at their
bid price, but at their market price. Again, we stress that bidding at∞ is a
only a simplification to the optimization problem. The effect of bidding at
∞ on the result of optimization is limited, because Cümülön-D’s optimizer
considers releasing machines proactively when the price becomes too high.

n to n′. We derived an estimate for this quantity by benchmark-
ing the initialization overhead and by using the techniques outlined
in Section 2 for estimating work wasted due to termination. We
can reasonably assume that overhead processing for one adaptation
action does not extend beyond the duration of one time step (other-
wise we should choose a longer τopt to avoid excessive adaptation).
Plan Progress We now show how to measure the progress of
execution under a plan. Given a workflow with J jobs and total
work W =

∑J
j=1w

(j), let Progress($,n, n′) denote the progress
made by a cluster in a time step. Specifically, $ is the amount
of work left at the beginning of the time step; n and n′ are the
cluster sizes in the previous and current time steps, respectively;
Progress($,n, n′) returns the amount of work left in the workflow at
the end of the current time step.

Definition 1. If n′ = 0, Progress($,n, n′) = $. Otherwise,

• let job j` = max{j :
∑j
=1 w

() ≤ W − $} + 1 be the one
that the current time step starts in;
• let$` =

(∑j`
=1 w

()
)
− (W −$) denote the amount of work

in job j` remaining at the beginning of the current time step;
• let job ja = max{j :

(
$`+Overhead($,n,n′)

gj` (n′)

)
+
(∑j

=ja+1
w()

g()(n′)

)
<

τopt}+ 1 be the one that the current time step stops in;

• let$a = g(ja)(n′) ·
((

$`+Overhead($,n,n′)
gj` (n′)

)
+
(∑ja

=ja+1
w()

g()(n′)

)
− τopt

)
(or 0 if ja = J + 1) denote the amount of work in job ja re-
maining at the end of the current time step.

Then, Progress($,n, n′) = $a +
∑J
=ja+1 w

().

With Progress, we can define WorkLeft(〈ni : i ≤ t〉), the amount of
work left in the workflow after time step t by following the plan.

Definition 2. The following recurrence defines WorkLeft:
• WorkLeft(〈〉) = W .
• WorkLeft(〈ni : i ≤ t〉) = Progress(WorkLeft(〈ni : i ≤ t− 1〉), nt−1, nt),

with n−1 = 0 for notational convenience.

Plan Cost Let p(τ) denote the market price at time τ ; recall that
it may change at any time. Cost(〈nt〉), the (monetary) cost of ex-
ecuting a plan, can be hard to derive analytically in general, be-
cause of the discrepancy between τopt and τcharge. τcharge is defined by
the cloud provider, but we can choose τopt ourselves. We limit the
choice of τopt to two cases: τcharge divides τopt, or τopt divides τcharge.

We start with the easier case when τcharge divides τopt. The nt ma-
chines during time step t will be charged τopt/τcharge times. Thus
we have Cost(〈nt〉) =

∑d−1
t=0

(
nt
∑τopt/τcharge−1

i=0 p(tτopt + iτcharge)
)

,
where d is the deadline. When τopt = τcharge, Cost(〈nt〉) simplifies to∑d−1
t=0 ntp(tτopt).
Now consider the case when τopt divides τcharge. The situation is

more complicated because at the beginning of time step t, not all
nt machines will be charged as some of them were already charged
at earlier time steps. To help us define Cost, we derive from 〈nt〉
another sequence 〈mt〉, wheremt denotes the number of machines
that actually get charged at time step t. Let κ = τcharge/τopt. Note
that once a machine has been charged (for another τcharge), there is
no incentive for us to terminate it before κ time steps as we have al-
ready paid for its usage. Hence, for time step t, we should retain all∑κ−1
i=1 mt−i machines charged in the previous κ− 1 time steps. In

addition, we pick mt = nt −
∑κ−1
i=1 mt−i machines to be charged

in time step t. These mt machine should come as much as possi-
ble from the mt−κ machines that we paid for in time step t − κ;
we can actively terminate some if mt < mt−κ, or bid for more if
mt > mt−κ. Hence, 〈mt〉 can be derived from 〈nt〉 using the re-
currence mt = nt −

∑
1≤i<κ, t−i≥0 mt−i. (Alternatively, we can
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derive 〈nt〉 from 〈mt〉 using nt =
∑

0≤i<κ, t−i≥0 mt−i.) With
〈mt〉 defined, we can now derive the cost under the case where τopt
divides τcharge as Cost(〈nt〉) =

∑d−1
t=0 mtp(tτopt).

Finally, we unify the definitions for the above cases into one.

Definition 3. Cost(〈nt〉) =
∑d−1
t=0 mtCharge(t), where

• κ = dτcharge/τopte,
• mt = nt −

∑
1≤i<κ, t−i≥0 mt−i for t = 0, . . . , d− 1, and

• Charge(t) =
∑dτopt/τchargee−1

i=0 p(tτopt + iτcharge).

Note that if τcharge divides τopt, we have κ = 1 and 〈mt〉 is the
same as 〈nt〉 per above definition.

We have so far omitted the monetary cost of I/Os themselves (al-
though as discussed in Section 2, we already account for their con-
tribution to execution time, and in turn, cost of machines). Charg-
ing schemes for I/Os vary greatly. For example, Amazon EFS
charges by the amount of data stored over time, but Amazon S3
additionally charges by the number of requests. Running a sepa-
rate storage cluster, on the other hand, incurs only machine cost for
that cluster. It is straightforward to incorporate various I/O charg-
ing schemes into our cost model, but for simplicity, we will ignore
the monetary cost of I/Os for this paper, and revisit this issue in the
context of experiments in our technical report [6].

4 Optimization with Deterministic Price
Before considering market uncertainty in Section 5, let us study the
simpler (but unrealistic) problem where the future market prices
are known exactly. The optimization problem can be formalized
as follows: given a deadline d, pick 〈nt : 0 ≤ t ≤ d − 1〉 to
minimize Cost(〈nt〉) subject to WorkLeft(〈nt〉) = 0, i.e., the workload
completes before the deadline. We give two algorithms.
A Simple Greedy Algorithm Suppose τcharge divides τopt, and as-
sume that all per-job speedup functions are the same, i.e., g(j)(n) =
g(n) for all j. In this case we can adopt a simple approach that it-
eratively and greedily allocates one machine to one selected time
step at a time. Starting with nt = 0 for all t, we pick the time step
t that maximizes (g(nt + 1)− g(nt)) /Charge(t) and increment nt
by one. Since the future market prices are known, Charge(t) (Def-
inition 3) are known as well. Intuitively, we always choose the
allocation with the highest work/cost ratio. We repeat this process
until WorkLeft(〈nt〉) = 0.

We can show that this simple greedy algorithm is optimal assum-
ing a concave g(n) and no adaptation overhead, i.e., Overhead($,n, n′)
is always 0. For a formal proof, see our technical report [6].
A Dynamic Programming Algorithm In general, the choices of
cluster size across time steps are interrelated and the greedy strat-
egy is suboptimal. Instead, we solve the problem with dynamic pro-
gramming (DP). Let C(t,$, 〈mt−κ, . . . ,mt−1〉) denote the min-
imum cost of finishing $ amount of work left starting from time
step t, when the numbers of machines last charged at the beginning
of previous κ time steps are given by the sequence 〈mt−κ, . . . ,mt−1〉.
Note that for the mt−κ machines, a new charging period is starting
in time step t; there is need to model mi for i < t − κ, because
machines that were charged before time step t− κ must have been
either released or recharged during [t− κ, t− 1].

We have the following DP state transition function (withmi = 0
when i < 0 for notational convenience):

C(t,$, 〈mt−κ, . . . ,mt−1〉)
= min
mt≥0

{
mtCharge(t) + C(t+ 1, Progress($,nt−1, nt), 〈mt−κ+1, . . . ,mt−1,mt〉)

}
,

where nt−1 =
∑t−1
i=t−κmi and nt =

∑t
i=t−κ+1 mi.

Recall from Section 3 that the time dimension t is discretized into d
steps, and N denotes the maximum number of machines in use si-
multaneously (practically upper-bounded because of the diminish-
ing return of parallelism). We also discretize the remaining work
dimension $; finer-grained discretization makes the DP more ex-
pensive to solve but may improve solution quality. In this paper, we
set the unit amount of work to be that completed by one machine
in τopt, which we found to offer acceptable quality in our experi-
ments. The DP algorithm works backwards in time, starting with
C(d, 0, 〈md−κ, . . . ,md−1〉) = 0 for all choices ofmd−κ, . . . ,md−1

such that 0 ≤ md−κ + · · · + md−1 ≤ N . The time complex-
ity of the algorithm is O(dWN

(
N+κ
κ

)
), or simply O(dWNκ+1),

where W is discretized as an integer as discussed above.
This DP algorithm is impractical as it assumes perfect knowl-

edge of future market prices. Nonetheless, given each price trace,
we can apply this algorithm to obtain the lowest achievable cost;
comparing that with what is achievable by an algorithm with only
uncertain knowledge, we get a measure of “price of uncertainty,”
which we shall explore in Section 6.

5 Optimization with Uncertain Future Price
Given a stochastic market price model, we want to pick, at the be-
ginning of each time step, the “best” action based on the current
market price, time remaining before the deadline, as well as clus-
ter and execution states. To handle uncertainty, intuitively, we de-
fine the “best” action to one that minimizes a linear combination
of expected remaining cost and its standard deviation, whose coef-
ficient captures the user’s risk tolerance. We first describe how to
approach this problem as an MDP. Then, we discuss how to apply
the solution to adapt dynamically in practice.

5.1 Formulation as an MDP
We assume the market prices are discrete and that the effective size
of the domain is P . For notational convenience (as we take actions
only for each time step), we define pt = p(tτopt); i.e., subscripts of
p refer to time steps while arguments of p refer to time.

We use a stochastic market price model [5] trained using histori-
cal price data from Amazon EC2. We assume the model is Marko-
vian, i.e., the probability of local upward or downward movement
is arbitrarily dependent on the current price and time. From this
model, we derive:4

• Price transition function: Let pu,vt,∆ denote the probability that
the price becomes v at the beginning of time step t + ∆ given
that it was u at the beginning of time step t; i.e.: p

u,v
t,∆ =

P [pt+∆ = v | pt = u].
• Expected charge function: Let cut = E [Charge(t) | pt = u] de-

note the expect cost charged for a machine during time step t
given that the price was u at the beginning of the time step. Re-
call the definition of Charge(t) in Definition 3 as a summation of
prices; cut can be easily derived by linearity of expectation.

Our market price model captures diurnal as well as weekly behav-
iors (see [5] for details). Section 6 will give an example where the
periodic price behavior influences the optimization outcome.

We can now formulate the optimization problem as an MDP. A
state in our MDP has the form (t, u,$, 〈mt−κ, . . . ,mt−1〉), rep-
resenting the following situation at the beginning of time step t:
the market price is u; we still have $ amount of work left in the
workflow to finish before deadline d; and 〈mt−κ, . . . ,mt−1〉 ma-
chines were charged during the previous κ time steps, respectively.
4A technicality: recall that we define time (and time steps) relative to the
starting time; therefore, pu,vt,∆ and cut are relative to and hence implicitly
dependent on the starting time.
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This representation of state is similar to that of the DP state in Sec-
tion 4, except the additional price component. In this state, we
need to choose the cluster size nt (equivalently, mt) for time step
t. Choosing mt, or equivalently, nt =

∑t
i=t−κ+1 mi, will in-

cur an expected cost of mtc
u
t for time step t, and we then tran-

sition to one of the states for time step t + 1 of the form (t +
1, v,$′, 〈mt−κ+1, . . . ,mt〉) with probability p

u,v
t,1 , where $′ is

the amount work left at the end of time step t.
Formally, we define policy L : (t, u,$, 〈mt−κ, . . . ,mt−1〉)→

mt, which maps any given state to an action mt. Given current
state s, let C(L, s) denote the additional cost to finish the remain-
ing work under L starting from s, and let C(L, s | m) denote the
additional cost to finish the remaining work if we choose to charge
m machines in the current time step and then follow L afterwards.
Clearly, C(L, s) = C(L, s | L(s)). These quantities are random
variables. Let C and C̃ denote their expectation and variance, re-
spectively, which can be derived as follows (see [6] for details):

Lemma 1. Let st = (t, u,$, 〈mt−κ, . . . ,mt−1〉) denote the cur-
rent state at time step t. We have:
C(L, st | mt) = mtc

u
t +

∑
v

p
u,v
t,1C(L, st+1), and

C̃(L, st | mt)
=

∑
v
p
u,v
t,1
C̃(L,st+1) +

∑
v
p
u,v
t,1

(C(L,st+1))2 − (
∑

v
p
u,v
t,1
C(L,st+1))2,

where nt−1 =
∑t−1
i=t−κmi, nt =

∑t
i=t−κ+1 mi, and st+1 =

(t+ 1, v, Progress($,nt−1, nt), 〈mt−κ+1, . . .mt−1,mt〉).

Since we are given a deadline d, this MDP has a finite time hori-
zon, with the constraint at time step d, we must be in a state with
$ = 0. Note that the state space covers all possible futures, and L
encodes the best action mt to take for any future state.

We now define policy Lγ , which in every time step minimizes a
linear combination of expected remaining cost and standard devia-
tion. The user-specifiable parameter γ ≥ 0 controls how much risk
the user is willing to take: γ = 0 means minimizing expected cost
along while ignoring risk; a larger γ penalizes policies that lead to
executions with highly variable costs. Then, the optimal action at
time step t is defined as:
Lγ(st) = arg min

mt≥0

(
C(Lγ , st | mt) + γ

√
C̃(Lγ , st | mt)

)
.

5.2 Solving the MDP
We solve the finite-horizon MDP with DP, starting from time step
d in states with $ = 0, and computing the remaining cost expec-
tation C, variance C̃, and Lγ backwards in time for every state.
Eventually, this backward induction process ends with states for
time step 0. These states cover all possible prices at time step 0,
allowing Cümülön-D to adapt to any potential price change be-
tween the time when optimization starts and the time when exe-
cution starts (time step 0).

The total number of states is O(dPW
(
N+κ
κ

)
) = O(dPWNκ).

For each of the O(PWNκ) states associated with time step t, we
need to consider up to N possible mt values. Costing out each
mt option requires evaluating the summations in Lemma 1, which
naively takes O(P ) time. Hence, the overall time complexity of a
naive DP implementation is O(dP 2WNκ+1).

Using some preprocessing, we can reduce the complexity by a
factor of PN

P+N
. In practice, this reduction is easily more than an

order of magnitude becauseN and P are on the order of a hundred.
Specifically, for each combination of (t, u, 〈mt−κ+1, . . . ,mt〉) and
each possible $′ value, we precompute the summations:∑

v p
u,v
t,1C(Lγ , (t+ 1, v,$′, 〈mt−κ+1, . . . ,mt〉)),∑

v p
u,v
t,1 C̃(Lγ , (t+ 1, v,$′, 〈mt−κ+1, . . . ,mt〉)), and∑

v p
u,v
t,1 (C(Lγ , (t+ 1, v,$′, 〈mt−κ+1, . . . ,mt〉)))2.

Precomputation takes O(dP 2WNκ) time over all time steps. For
each state (t, u,$, 〈mt−κ, . . . ,mt−1〉), costing out each mt op-
tion takes only constant time using the precomputed summations.
Hence, backward induction takesO(dPWNκ+1) time overall, bring-
ing the total (including precomputation) to O(dPWNκ(P +N)).

5.3 Actuation Delays and Skyline Bidding
We now turn to the issue of how to set bid prices, which we have
ignored thus far. One main reason for setting a bid price is to protect
against the unfortunate case when the market price surges and our
machines are charged too high (we shall define what we mean by
“too high” shortly). If adaptation actions are instantaneous, then
there will be no penalty for bidding at ∞, because at run time,
Cümülön-D can simply check each machine at the beginning of
each of its usage periods of length τcharge, and release it if the market
price is too high. In reality, however, adaptation actions may have
delays. Let (δ�, δ2) denote the actuation delays for acquiring and
releasing machines, respectively: if we issue a bid request at time τ ,
machines we get will be charged from time τ + δ�; if we release a
machine at time τ , it will be considered still in use until τ + δ2 and
charged accordingly. On Amazon EC2, δ� is around five minutes
while δ2 is around several seconds. As discussed in Section 1,
with actuation delays, we can no longer eliminate the possibility of
being charged too high under∞-bidding. Hence, we need the extra
protection offered by bidding at a maximum price.

With or without actuation delays, we need to establish what price
is “too high.” It turns out that an answer already lies in our pol-
icy Lγ obtained by solving the MDP. Let ρ(t,$) denote the upper
bound on the price we are willing to pay for a machine when there
is $ amount of work left at the beginning of time step t. Consider
a “worst-case” state of the form su = (t, u,$, 〈0, . . . , 0〉); i.e., the
current price is u and there are no machines with remaining usage
time that have been paid for. If Lγ(su) = 0, i.e., Lγ tells us not
to get any machine, then the price of u is too high. Therefore, we
define ρ(t,$) = min{u | Lγ(su) = 0}.

Generally speaking, ρ(t,$) is higher when t is closer to dead-
line d and when $ is far from 0. In practice, “penny-pinching” by
setting the bid price exactly at ρ(t,$) may lead to acquiring ma-
chines at low bid prices early during execution, only to lose and
reacquire them at higher bid prices later, incurring more overhead.
Hence, we must weigh the benefit of capping the price against a
higher chance of losing machines and incurring extra overhead.
To this end, Cümülön-D “looks ahead” in time in Lγ for a poten-
tially higher bid price. Specifically, at the beginning of time step
t, with $ amount of work left, Cümülön-D sets the bid price at
max{ρ(i,$) | t ≤ i ≤ t+∆ahead}, where the parameter ∆ahead spec-
ifies the number of time steps to “look ahead.” We call our strat-
egy skyline bidding because its bid price, usually a non-decreasing
function of time, resembles a rising staircase or skyline.

Finally, we slightly modify the MDP formulation in Section 5.1
in order to account for actuation delays. In practice, to actuate a
cluster change by time τ , Cümülön-D must decide to act at time τ−
δ, where δ = max{δ�, δ2}. Cümülön-D only knows the market
price at that time. Therefore, we interpret the price component u in
the MDP state generally as the market price at the time of decision,
which is δ before the beginning of each time step; we also incor-
porate this time offset into the price transition and expected charge
functions: p

u,v
t,∆ = P [p((t+ ∆)τopt − δ) = v | p(tτopt − δ) = u]

and c
u
t = E [Charge(t) | p(tτopt − δ) = u]. Lastly, the remaining

work component $, instead of representing the amount of work
currently left, is replaced by an estimate of what will be left later δ
amount of time (i.e., at the beginning of time step t).
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5.4 Applying Cookbook to Execution
The policy Lγ obtained by solving the MDP becomes the adapta-
tion “cookbook” used by Cümülön-D at run time, as discussed in
Section 2. We now detail how to apply this cookbook in practice.

Roughly speaking, given a state (time, market price, execution
progress, and cluster configuration), Cümülön-D simply looks up
the action returned by Lγ and applies it. One technicality is that
we have discretized the dimensions of an otherwise continuous
state space, so Lγ only suggests actions for a set of discrete states.
Cümülön-D obtains actions for other states by interpolating sug-
gested actions for nearby discrete states.
Strict Mode The most straightforward way of applying Lγ is to
follow it strictly. In this strict mode of application, Cümülön-D
consults Lγ once every τopt amount of time—always δ ahead of the
beginning of each time step.
Dynamic Mode and Delayed Release The strict mode may be
too restrictive in practice—for example, when we observe a dras-
tic change in the market price, it may be better to act immediately
instead of waiting until the next prescribed adaptation time. There-
fore, Cümülön-D by default applies Lγ in what we call dynamic
mode. In this mode, Cümülön-D monitors the market continuously
and consults Lγ whenever one of the following conditions becomes
true: 1) the market price changes (including when any machine is
terminated by the provider); 2) at least one machine is about to
be charged for another τcharge amount of time; and 3) time since the
last consultation of Lγ has exceeded a threshold τcheck (typically a
constant fraction of τopt; we use τcheck = 1

2
τopt by default).

In the dynamic mode, since machines can start in between time
step boundaries, their charging periods may not be aligned. There-
fore, to derive the input mi’s when consulting Lγ , Cümülön-D
needs to “snap” each machine’s charging period to those whose
boundaries are multiples of τopt away from the planned time of ac-
tion. More precisely, we let mt−i be the number of machines who
was last charged no later than τ − iτopt and before τ − (i − 1)τopt,
where τ is the planned time of action (δ after the time of planning).

Cümülön-D then follows the suggestion of Lγ and changes the
cluster size if needed, but with an important exception which we
call the rule of delayed release. This rule says that we never release
a machine if it still has remaining usage time that we have already
paid for (recall that machines are charged in time increments of
τcharge). This rule is clearly harmless because we do not incur any
immediate charges for the extra machines. Later, before the paid
period expires, Condition 2 above would automatically trigger a
reassessment of the situation, and at that time we may still decide
to release the machine.5

6 Experiments
Platform and Implementation Our experiments are conducted
in the context of Amazon EC2, although Cümülön-D do not limit
its support of charging schemes to Amazon’s. In fact, to make their
results easier to interpret, our experiments by default use a market
with τcharge = 1sec and zero actuation delay (δ� = δ2 = 0sec). In
addition, we experiment with Amazon’s charging scheme as well
as varying actuation delays.

We have built Cümülön-D’s execution engine on top of Hadoop,
although for efficient parallelization of matrix operations, we do
not follow the MapReduce model; see [4] for details. Besides its
spot-only compute cluster, Cümülön-D’s master runs on a separate
c1.medium non-spot machine. The distributed cache is currently
5It is worth noting that, when operating in the strict mode, we do not need
an explicit rule for delayed release, because it is implied (and hence auto-
matically enforced) by the MDP solution; see [5] for a detailed explanation.

implemented using an HDFS over the compute cluster. We set the
HDFS replication factor to one, because it is okay to lose cached
tiles when machines are released or terminated. For stable storage,
we use another HDFS running on a separate storage cluster consist-
ing of 10 c1.medium non-spot machines, with replication factor of
one. This configuration was adequate for all workloads we exper-
imented with. Amazon EFS would have been a natural choice for
stable storage, but at the time of writing this paper, EFS was not yet
available publicly. Finally, we note that Cümülön-D does not rely
on any special features of Hadoop and HDFS; they can be replaced
with alternatives that offer different price-performance points.

Modeling and Optimization Setup For experiments, we choose
to focus on the machine type c1.medium on Amazon EC2. We
build cost models by benchmarking as discussed in Section 2. We
use the stochastic market price model from [5], which was trained
with historical spot price data in the first six months of 2014 for
c1.medium in zone us-east-1a, one of the more challenging
markets with plenty of spikes and high-price regions.

Unless otherwise noted, we set γ = 0.1 in the objective func-
tion of Cümülön-D’s optimizer, and use τopt = 1hr (see [6] for
experiments that vary τopt to study its influence on the trade-off be-
tween optimization time and quality). We set the maximum cluster
size N = 100: in our experiments, even for highly parallelizable
jobs like matrix multiply, the monetary cost of a super-sized clus-
ter quickly outweighs its benefit. We discretize the market price
with the granularity of one cent, and the amount of work with the
granularity of one machine-hour.

Under the default setting of δ� = δ2 = 0, we always set bid
price to∞, which is safe as discussed in Section 5.3. In other ex-
periments with non-default settings, Cümülön-D uses skyline bid-
ding with look-ahead ∆ahead = 4 in Section 5.3.

Workloads We use two workloads inspired by real-world appli-
cations, also used in [5]. The first one concerns singular value de-
composition (SVD), key to many data analysis methods. We con-
sider the first and most expensive step of a randomized SVD algo-
rithm [11]: G×(A×Aᵀ)k×A, where A is a 102,400×102,400
matrix, G is 2048 × 102,400, and k = 5. We call this work-
load RSVD-1. The second one is Gaussian non-negative matrix
factorization (GNMF) [10], with applications such as document
clustering and recommendation systems. Our workload involves a
7,510,016×640,137 word-document matrix derived from a 2.5GB
wiki text corpus; the number of topics sought is 100. We call this
workload GNMF. Besides RSVD-1 and GNMF, we also use syn-
thetic workloads whose results allow more intuitive interpretation.

Evaluation Methods Evaluation with an uncertain spot market
is challenging. For a given spot market and machine type, there is
only one price trace in reality. Each execution gives one data point,
insufficient for quantifying uncertainty. We will also likely miss
price traces in the “tail” where the user’s risk tolerance is tested
and the actions of Cümülön-D are more interesting and important.
Hence, for experiments, we simulate future prices and “play” a sim-
ulated price trace for each execution. We let Cümülön-D adapt
the execution, and charge and terminate machines according to the
trace. The collection of resulting costs, one for each execution,
approximates the distribution of execution cost under Cümülön-D.

In more detail, given starting time and price, we simulate our
stochastic market price model multiple times to obtain a training set
and a test set of price traces. Using the training set, we estimate the
price transition and expected charge function (Section 5.1). Using
the test set of 100,000 traces, we obtain 100,000 resulting costs by
following a Cümülön-D policy, from which we then obtain mean
and standard deviation. By default we do not include the costs of
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the master and storage cluster because they depend on the setup and
are the same across policies. A closer examination of storage cost
and how it affects comparison with Cümülön is presented in [6].

Our experiments focus on two market scenarios, S$0.02 and S$0.2.
The starting time for both is 0am on Monday. The starting prices
are $0.02 (the most common price observed) and $0.20 (higher
than the fixed, non-spot price of $0.145), respectively.

The second challenge is the cost of evaluation. Because of dy-
namic adaptation, different price traces lead to different execution
traces. For a large test set, multiple real executions—with each
typically costing several dollars—become prohibitively expensive.
Therefore, we have built an execution simulator for Cümülön-D.
The simulation is performed at the level of tasks and slots (Sec-
tion 2). Once a task is scheduled, the simulator randomly draws its
execution time from a normal distribution derived from cost models
discussed in Section 2. When a machine is released or terminated,
the failure and rescheduling of its ongoing tasks are simulated. For
simplicity and speed, the simulator does not track the contents of
the distributed cache; its impact is limited because, thanks to the
stable storage, data written by completed tasks never need to be
recomputed. Finally, the simulator also accounts for adaptation
overheads and actuation delays. Section 6.2 presents some results
comparing simulated and real execution costs.
Alternatives Compared We experimentally compare Cümülön-
D with Fixed, which always bids for a fixed number of machines
at a fixed price (when the workflow starts or when the machines
are terminated); and DBA [18], which dynamically adjusts the bid
price (but not the bid size) as the deadline approaches, and is proven
to be optimal under Amazon’s charging scheme assuming perfect
speedup. We also compare with a practically infeasible approach
Oracle, which has perfect knowledge of future prices, and uses
the DP algorithm in Section 4 to obtain the optimal plan for each
trace in the test set. While clearly impractical, Oracle offers lower
bounds on costs, which we use to gauge the “price of uncertainty.”

We also have extended Cümülön-D to Cümülön-D+, which con-
siders the possibility of using non-spot machines in addition to spot
machines (see [6] for details). Besides comparing with Cümülön-D
(spot-only), we also compare Cümülön-D+ with Fixed+, which can
be seen as an application of the approach by Dyna [21] to our set-
ting. Finally, in [6], we compare Cümülön-D+ with Cümülön [5],
accounting for the costs of storage options.
A Note on Optimization Time Because of space limit, we refer
interested readers to [6] for optimization time measurements. In all
our experiments, Cümülön-D spends no more than a few minutes to
compute its cookbook on a standard desktop computer. This com-
putation occurs only at compile time, and is negligible compared
with the workflow execution times (on the order of hours).

6.1 A Closer Look at a Cookbook
We begin by developing some intuitive understanding of what a
Cümülön-D cookbook does. Recall that the cookbook is based on
the MDP policy Lγ , which maps a state to an action. To make Lγ
easier to understand, we consider a synthetic workflow of three ma-
trix multiply jobs, with w(1) = 100, w(2) = 10, and w(3) = 200
machine-hours worth of work respectively. The deadline is in 40
hours. Even under the default setting of κ = 1, the simplified
MDP state (t, u,$, 〈mt−1 = nt−1〉) is four-dimensional. Hence,
we choose three two-dimensional slices of the state space to visu-
alize in Figure 1. For all three slices, we fix nt−1 = 0; i.e., we
have an empty cluster at hand—either we have not yet acquired
any machines, or they have all been released (by Cümülön-D) or
terminated (by the provider) earlier. Then, in each slice, we fix the
value for one dimension and let the other two vary.

Figure 1a shows the slice with t = 10, which is 30 hours before
the deadline. As we vary the values of the two free dimensions
(current price u and work left$), the density plot on the left shows
the action (new cluster size) suggested by the cookbook, while the
one on the right shows the expected remaining cost by following
the cookbook (as estimated by the optimizer). On the left, we see
an upper-left triangular region with nt > 0, where nt tends to
decrease with higher u and increase with higher $. Intuitively, if
the current price u is high, Cümülön-D bids for fewer machines
because there is still plenty of time left for price to drop, allowing
it to finish the work for cheaper. On the other hand, if the amount
$ of work left is high, Cümülön-D tends to bid for more machines
to ensure progress and avoid the situation where, as the deadline
looms, so much work is left that we have to resort to a large, less
cost-effective cluster. One exception to this trend happens around
$ ∈ (200, 250). The reason is that the second job with w2 = 10
benefits much less from parallelism than the other two larger jobs;
a smaller cluster would be more cost-effective for this job. Another
interesting point can be seen in the plot on the right—the expected
remaining cost depends mostly on the work left, and less on the
current market price. This feature is nice, meaning that Cümülön-D
is effective in limiting the impact of transient market fluctuations.

Figure 1b shows the slice with current price u = $0.25. This
price is high, so Cümülön-D does not bid unless it is close to the
deadline or too much work is left, as illustrated in the left plot by
a lower-left region with nt = 0. The blank upper-right region
contains “infeasible” states where we will miss the deadline even if
we use the maximum N = 100 machines. For the same reason as
in Figure 1a, Cümülön bids for fewer machines when $ is around
200 to 210. Above this region there are several other “ripples” due
to our setting of τopt = 1hr (because of space limit, see [6] for a
detailed explanation). Note that this rippling effect also exists in
Figure 1a, albeit in a less noticeable way.

Figure 1c shows the slice with $ = 310, which means that we
have not yet made any progress. The left plot shows that, intu-
itively, Cumulon tends to bid for more machines when the current
price is lower and when the deadline is closer. The blank vertical
region on the right (t > 32) shows infeasible states, where we can
no longer meet the deadline. Another interesting point can be seen
from the spike around t = 20 along the boundary between where
Cümülön-D decides to acquire some machines (nt > 0) and where
it decides to “wait and see” (nt = 0). This spike can be explained
by the market: t = 20 corresponds to Monday 8pm (t = 0 is mid-
night), the beginning of off-peak hours when the price tends to be
low. Even if the actual price at that time is high, it is likely tempo-
rary. Hence, we may not want to miss the chance to acquire some
machines for the hour (recall τopt = 1hr), because their expected
cost over the hour may still be low (recall that we pay the price at
the beginning of each τcharge = 1sec period). Cümülön-D is able
to consider this nuance, because our market price model accounts
for periodicity and we condition the price transition and expected
charge functions on starting time and price.

6.2 Evaluating a Cookbook
We now turn to workflow RSVD-1 and evaluate Cümülön-D using
simulation over the large test set of price traces for S$0.20. The
deadline is 15 hours, and we choose γ = 0 (i.e., minimizing ex-
pected cost alone) in order to compare with Oracle (for which cost
variance does not apply). The default settings of τcharge = 1sec and
τopt = 1hr are used. We apply Cümülön-D’s policy L0 both in dy-
namic and strict modes (recall Section 5.4). Figure 2 shows the
scatter plots of the completion cost vs. time over the 100,000 test
traces for the three approaches.
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Figure 1: Visualization of Cümülön-D’s cookbook, for a synthetic workflow with three matrix multiplies, over three 2-d slices of the 4-d state space. In all
three slices, nt−1 = 0. Each slice is visualized as two density plots, one for the optimal action (new cluster size), and one for the expected remaining cost.
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(b) Cümülön-D in strict mode
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Figure 2: Completion time and cost distributions for simulated executions of RSVD-1 under S$0.20, with d = 15hrs. The densities are counts in the test set
in log10-scale. The numbers in the legends are formatted as “average ± standard deviation.”
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Figure 3: Timeline for Trace 2, Table 1, showing simulations of Cümülön-D, Oracle, and two real runs of Cümülön-D. Cümülön-D runs in dynamic mode.

Table 1: Comparison of simulated vs. actual completion times and costs
of RSVD-1, using Cümülön-D’s dynamic mode, for the five price traces
marked in Figure 2a. Settings are same as Figure 2a.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
Time Cost Time Cost Time Cost Time Cost Time Cost

Simulation 14.87 75.77 14.93 39.49 14.89 3.44 7.84 2.89 3.14 0.77
Real run 1 14.83 66.56 14.74 29.83 14.40 2.67 7.23 2.03 2.52 0.86
Real run 2 15.09 79.32 14.74 38.56 14.50 3.31 8.11 3.48 2.25 0.84

For Cümülön-D under dynamic mode (Figure 2a), most den-
sity concentrates in a low-cost region with completion time ranging
from 3 to 15 hours. These correspond to the “typical” price traces
where there are enough times with low market prices before the
deadline for Cümülön-D to finish with cheap machines. However,
there is also a high-cost “tail” with completion time near the dead-
line. These are the “unlucky” cases where Cümülön-D chose to
wait for a later price drop, but the market price stayed high, leaving
Cümülön-D no choice but to go for a larger cluster of expensive
machines in order to finish on time. While the worst case is very
costly (around $100), we note that such cases are rare, as evidenced
by the reasonable standard deviation numbers reported in the leg-
end. We also note that for many of such cases, there is little we can
do under a deadline—the worst cost under Oracle is also more than
$75, even though it has perfect knowledge of the future.

To validate our execution simulator, we select five representative
regions shown in Figure 2a, and randomly pick a test price trace for
each region. Next, we run the Cümülön-D on Amazon EC2 against
the test trace. Table 1 summarizes the result. Although there are
some variations in the detailed timings during the course of execu-
tion (more on these in Section 6.3), the overall completion times
and costs are quite consistent between simulated and real runs.

Figure 2b shows the simulated results when Cümülön-D applies
its cookbook in strict mode, where it adjusts the cluster size only
at hourly boundaries. This hourly behavior creates the artifact of
completion times clustering around hourly boundaries. Compared

with Figure 2a, density around the deadline is lower, because un-
der strict mode, whenever Cümülön-D gets some machines, they
will be kept for an hour (τopt) in this case, which tends to leave less
work and hence lower risk in the last hour. However, since strict
mode misses many fine-grained adaptation opportunities, the over-
all mean completion cost rises from $6.70 to $7.28.

Finally, Figure 2c shows the performance of Oracle. It achieves
an overall mean completion cost of $3.47, about a factor of two bet-
ter than Cümülön-D. This difference represents a price we pay for
uncertainty, as Oracle gives a practically unattainable lower bound
by assuming perfect knowledge of the future. We make two more
observations. First, the mean completion time for Oracle is longer
than Cümülön-D, which is not a disadvantage because finishing
early has no reward as long as the deadline is met. However, it does
reflect the more aggressive behavior by Oracle—it often waits for
the lowest price to act, without guessing or balancing the risk of
uncertainty like Cümülön-D does. Second, as mentioned earlier,
there are “unlucky” price traces for which even Oracle incurs very
high costs. These cases tend to be more spread over different com-
pletion times, because, unlike Cümülön-D, Oracle never waits in
hope for the situation to improve.

6.3 Zooming in on a Trace
To better understand how Cümülön-D adapts dynamically, we zoom
in on one of the five test traces in Table 1. Figure 3 shows the price
trace as well as changes to the cluster size and execution progress
over time. This trace represents an unlucky case that highlights
the price of uncertainty. With the high starting price of $0.20,
Cümülön-D (in simulation) starts with no machines and waits for
the price to drop. When the price does drop to $0.068 around 0.9hr,
Cümülön-D decides to bid for eight machines and starts to make
progress. However, around 2.8hr, the price rises to $0.190. Hav-
ing finished almost half of the work, Cümülön-D decides to give
up all machines and wait again. Unfortunately, the price unchar-
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acteristically stays high for six hours, and at time 8.7hr, it climbs
even higher to $2.010. Around 9.7hr, considering that the deadline
of 15hr is approaching and there is still a fair amount of work left,
Cümülön-D decides to resume execution with one machine under
the high price. As the time goes by, the pressure of deadline, or
the risk of having to use a expensive, suboptimally large cluster to
finish on time, continues to increase. Therefore, Cümülön-D grad-
ually increases the cluster size to offset this pressure. In the end,
Cümülön-D completes at 14.9hr, incurring a total cost of $39.49.

Oracle, however, acts differently. Knowing that the price only
stays low from 0.9hr to 2.8hr, it pushes all work into this dura-
tion, even though the required cluster is so large that it is not cost-
effective. Using 29 machines for the first hour and 18 for the sec-
ond, Oracle finishes execution at 2.8hr, incurring a total cost of
only $3.23. Perfect knowledge of the future gives Oracle a huge
advantage in this specific case.

Figure 3 also compares the simulated execution of Cümülön-D
with two real ones. The same cookbook is applied in the same
way; differences only come from natural variations in real execu-
tion times and errors in Cümülön-D’s cost models. As we can see
in Figures 3b and 3c, there are slight deviations in both adaptation
actions and execution progress throughout the timelines. However,
the final results (Table 1) and the timelines are close. This exam-
ple illustrates the self-correcting nature of Cümülön-D’s cookbook.
When execution turns out slower (faster) than expected, it leads to a
state where a bigger (smaller, respectively) cluster may be favored
next, which helps to bring execution back in line with the cook-
book’s expectation. This feature of Cümülön-D hence offers some
protection against performance variations and model inaccuracies.

6.4 Effect of Deadline and Risk Tolerance
Next, we study how the user-specified deadline (d) and risk toler-
ance (γ in Lγ) impact Cümülön-D. We use workflow GNMF with
two iterations. In Figure 4, we use the default of γ = 0.1 and vary
the deadline from 1 to 30 hours. The market scenario is S$0.02. For
each deadline, we obtain Cümülön-D’s cookbook and plot the mean
and standard deviation of costs under this cookbook over 100,000
simulations. As we relax the deadline, both mean and standard de-
viation drop; intuitively, we can afford to wait for more low-price
opportunities and complete the work with cheaper machines.

In Figure 5, we fix the deadline at 15hr, and vary γ from 0 (i.e.,
minimizing expected cost alone) to 1 (minimizing the sum of ex-
pectation and standard deviation). The market scenario is S$0.2

(different from the above). As γ increases, we put more weight on
reducing variance, leading to a more conservative cookbook that
produces lower cost variance but potentially higher mean, as shown
in the cost plot on left. A conservative cookbook generally prefers
doing more work in the current time step rather than leaving it to
the less certain future. Hence, cookbooks with higher γ tend to
complete execution earlier, as shown in the time plot on right.

Comparing the data points at d = 15hr in Figure 4 (with S$0.02)
and those at γ = 0.1 in Figure 5 (with S$0.2), we see that when
the starting market price is higher ($0.20 vs. $0.02), both the mean
and standard deviation of costs are higher, which is intuitive.

6.5 Hourly Charging and Actuation Delays
We now turn to experiments with setups closer to the current prac-
tice of Amazon EC2. We change τcharge from our earlier setting of
1sec to 1hr; if a machine is terminated by the provider, its last
partial hour is free. The workload is RSVD-1, with a 15hr dead-
line. The market scenario is S$0.02. For Figure 6, we further vary
the actuation delays δ� = δ2 from 0 to 1000sec. As discussed
in Section 5.3, with non-zero actuation delays, Cümülön-D uses

skyline bidding instead of ∞-bidding to guard against possible
price spikes. We compare the simulated costs of Cümülön-D under
these two bidding strategies (note that∞-bidding is also employed
in [9]). Figure 6 also shows the performance of Oracle as a the-
oretical lower bound; it is a flat line because Oracle, with perfect
knowledge of the future, is unaffected by actuation delays. As we
can see, longer market delays make Cümülön-D perform worse. In-
tuitively, they translate to higher uncertainty between the time of a
decision and the time it is carried out, and hence more to pay.

The trade-off between skyline bidding and ∞-bidding is more
intricate. As Figure 6 shows, when the delays are short (under
4 minutes), ∞-bidding has slightly lower mean costs, but as de-
lays become longer, skyline bidding becomes progressively better.
There are two factors in play here. First, as discussed in Section 5.3,
skyline bidding guards against sudden price changes during actu-
ation delays, and hence can lower cost. Second, and on the other
hand, a temporary spike hike occurring after the start of a charging
period may cause termination of machines under skyline bidding;
even though we do not pay for this period, we cannot retain these
machines, potentially costing us more later. In contrast,∞-bidding
allows these machines to be retained until the end of the charging
period at no extra cost. In this case, due to the long charging period
(τcharge = 1hr), the effect of the second factor becomes more pro-
nounced, thereby helping∞-bidding. In general, however, skyline
bidding is safer and less sensitive to actuation delays, which is why
we make it the default for Cümülön-D.

6.6 Skyline vs. Fixed-Price Bidding
Continuing with the evaluation of skyline bidding started by the last
experiment, we now study how it compares with other strategies for
setting the bid price (besides∞). Specifically, we consider fixed-
price bidding: here, we follow the same actions suggested by the
cookbook, but when bidding, instead of using the skyline strategy,
we set the bid price to some fixed value. The only exception is
when bidding within the last τopt period before the deadline, we
always bid∞ to secure machines needed to complete the work.

We use the same experiment setup as in Figure 6, but fix the
actuation delays at 10 minutes. We test fixed-price bidding with
different bid prices from $0.10 to $1.50, and plot the mean of sim-
ulated completion costs for each bid price in Figure 7. The results
of skyline bidding and ∞-bidding are shown as horizontal lines,
because they are independent of the setting for fixed-price bidding.

As we can see, executions are costly when we use a low fixed bid
price, because we have trouble getting or holding on to machines.
This problem is alleviated when we increase the fixed bid price.
However, beyond a certain point, the cost starts to rise, and even-
tually converges to that of∞-bidding. The reason is that with high
bid prices, we are more susceptible to sudden price hikes.

More importantly, skyline bidding outperforms fixed-price bid-
ding regardless of its setting. This observation illustrates the power
of adaptation. Not only does the optimal bid price depend on the
workflow and market condition, it is also a “moving target” as ex-
ecution progresses toward the deadline. Skyline bidding captures
this dynamic behavior while fixed-price bidding cannot.

6.7 Cümülön-D vs. Fixed and DBA
We now turn to comparison between Cümülön-D and previous work.
Optimal bidding strategies have been studied in the past, but most
of them are not dynamic (see Section 7 for discussion). A straight-
forward way of applying these strategies in a dynamic setting is the
following, which we call Fixed: once we have determined a bid
price and a cluster size upfront, we will always bid for the given
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Table 2: Mean completion costs of
RSVD-1 for Cümülön-D, Cümülön-
D+, and Fixed+, under two market
scenarios. Other settings remain the
same as in Figure 8. As a reference,
the optimal cost of using only non-
spot machines is $5.22.

S$0.2 S$0.02

Cümülön-D $6.80 $1.30
(spot-only)

Cümülön-D+ $2.53 $1.19
(hybrid)
Fixed+ $3.38 $1.96
(hybrid)

number of machines with the given bid price, when the workflow
starts and whenever the machines are terminated by the provider.

Besides Fixed, we also compare with DBA [18], which dynam-
ically adjusts the bidding price. Taking advantage of Amazon’s
hourly charging scheme, DBA always goes for a cluster that allows
the work to be completed within an hour. DBA starts with a low
bid price; if that price is too low currently or if the cluster is termi-
nated (in which case no charge is incurred because an hour has not
passed), DBA tries again later with an increased bid price. DBA was
shown to be optimal, assuming perfect (linear) speedup functions.

Again, we use the RSVD-1 workflow with a 15hr deadline. The
market scenario is S$0.2, with τcharge = 1hr and 10min actuation
delays. For Fixed, to cover all possibilities for the optimal strategy,
we experiment with all combinations of reasonable bid prices (from
$0.05 to $1.00) and bid sizes (from 5 to 80 machines). For DBA,
we used a fixed bid size of 60 machines because this number of
machines can finish RSVD-1 within an hour with high probability.
For both Fixed and DBA, we make an exception in order to improve
the probability of completion: if we need to bid within one hour
before the deadline, we use a bid price of∞ to secure the cluster.

Figure 8 shows the results as a scatter plot of the mean cost
achieved and the percentage of the 100,000 test traces for which
the workflow failed to complete by the deadline. As we can see,
Cümülön-D clearly outperforms the other two approaches. The
points for Fixed present a trade-off between the mean cost and abil-

ity to meet the deadline—lower bid prices and bid sizes tend to lead
to lower costs (because of lower average price over time and higher
cost-effectiveness, respectively), but they also less likely to meet
the deadline. A relatively good trade-off is achieved by always bid-
ding for 20 machines at $0.50, which results in a mean cost of
$9.87 and a near-zero chance of missing the deadline. Fixed is
soundly beaten by Cümülön-D’s mean cost of $6.62, because by
adapting to the evolving market and execution state, Cümülön-D
does a better job at lowering cost and staying on schedule.

In comparison, DBA achieves a mean cost of $10.59, even worse
than Fixed under certain settings. The key issue is DBA’s unreal-
istic assumption of perfect speedup. Even though in this case τcharge
is long (one hour) and the workflow (RSVD-1) is highly paralleliz-
able, cramming all work into one hour with a large cluster is subop-
timal. In situations where τcharge is short (e.g., Google) or the work
is less parallelizable, DBA cannot be applied at all.

6.8 Spot-Only vs. Hybrid Cluster
Cümülön-D uses a spot-only cluster. In [6], we show how to extend
Cümülön-D to Cümülön-D+, which can use a hybrid cluster con-
sisting of both spot and non-spot machines. We now experimen-
tally study how this additional flexibility helps, and how Cümülön-
D+ compares with recent work on Dyna [21], which also uses both
spot and non-spot machines. A direct comparison with Dyna is dif-
ficult, because it was designed to exploit multiple markets where
machines with better configurations could be potentially used at
lower costs. For our setting where all spot and non-spot machines
are of the same type, we have designed a surrogate strategy called
Fixed+: whenever the market price is below the fixed, non-spot
price, Fixed+ bids for spot machines at the non-spot price; when-
ever the market price rises above the non-spot price, Fixed+ simply
falls back to using non-spot machines. We also enforce delayed
release (Section 5.4) so that Fixed+ never releases a machine with-
out fully using its paid hour (except for spot termination caused by
market price increase). In the spirit of Dyna, Fixed+ does not con-
sider bidding for more machines than the optimal non-spot cluster.
(Please refer to [6] for more detailed discussion on why we think
Fixed+ is a reasonable approximation to Dyna in our setting.)

Again, we use the RSVD-1 workflow with a 15hr deadline. We
consider market scenarios S$0.02 and S$0.2, with τcharge = 1hr and
10min actuation delays, and the fixed, non-spot price is $0.145.
The optimal non-spot cluster size turns out to be 3, so Fixed+ will
bid for 3 spot machines as well. We compare the mean comple-
tion costs for Cümülön-D (spot-only), Cümülön-D+, and Fixed+
in Table 2. As we can see, Cümülön-D+ consistently outperforms
Cümülön-D because of the additional option of using non-spot ma-
chines; it also consistently outperforms Fixed+ thanks to its more
dynamic bidding strategy. Specifically, in S$0.2 where spot price
starts very high, rather than starting to execute on non-spot ma-
chines as Fixed+ does, Cümülön-D+ decides to wait, either until
spot price drops, or deadline approaches (in which case it still has
the option of acquiring more than the optimal number of non-spot
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machines to ensure completion). In contrast, in S$0.02 where spot
price starts low (which is the more common scenario), Cümülön-
D+ is smart to go for more spot machines than Fixed+ to reduce
cost. Interestingly, even spot-only Cümülön-D is able to beat Fixed+
in this case despite Cümülön-D’s lack of the non-spot option.

7 Related Work
One approach for handling the unreliability of spot machines is to
use a combination of spot and non-spot machines. Examples of
this approach from previous work include Cap3 [7], Dyna [21],
Qubole, Amazon’s Elastic MapReduce, and Cümülön [5] (which
we have discussed extensively in Section 2). A second approach,
which this paper also adopts, relies on separate stable storage. For
example, [13, 15, 17] proposed various checkpointing and migra-
tion techniques for execution on spot machines, but they relied on
heuristic bidding strategies with no optimality guarantees. Going
a step further, [2, 12, 14, 20] built models that suggest optimal bid
prices, but they are fixed for the entire workload. On the other
hand, [2, 18, 7, 20] considered workloads parallelizable on a vary-
ing number of machines, but they only picked a fixed cluster size
during execution. As we have shown in Section 6.7, Cümülön-D,
with its dynamic adaptation, works better than these Fixed strate-
gies. DBA [18] introduced the method of dynamic bidding during
execution, but only did so for setting bid prices. As discussed in
Section 6.7, their strategy was Amazon-specific and relied on the
unrealistic assumption of perfect speedup. Not only is Cümülön-
D more general, but it also outperforms DBA with more informed
and flexible adaptation, and better modeling of factors influenc-
ing cost. Dyna [21] had a different focus on exploiting multiple
markets, but was otherwise not as adaptive as Cümülön-D; it did
not consider dynamically adjusting the unit of parallel execution
or acting proactively based on the current market condition. As
shown in Section 6.8, Cümülön-D, when extended to consider the
use of non-spot machines, consistently outperforms Fixed+, which
approximates Dyna’s strategy in our setting.

On the note of generality, it is worth noting that most previous
work was specific to Amazon (e.g., assuming τcharge = 1hr); some
further assumed market price only changing at hour boundaries,
or ignored actuation delays (e.g., [14, 9] used this assumption to
justify∞-bidding). It is unclear how to generalize these previous
approaches. Cümülön-D offers a more general solution framework
that can handle alternative and more realistic market settings.

While Cümülön-D and its precursors [4, 5] aim at helping indi-
vidual uses of spot markets in a public cloud, others have consid-
ered the problem from different angles. [1, 8] focused on modeling
of Amazon’s spot market prices. Such models can be readily in-
corporated into Cümülön-D (Section 5.1). [16, 19] studied how to
maximize a provider’s profit by supplying and pricing spot markets
optimally. Our work is complementary; a provider can benefit from
understanding how users bid intelligently and dynamically.

8 Conclusion and Future Work
In this paper, we have presented Cümülön-D, a system to help
users run matrix-based data analytics using spot markets in a public
cloud. Cümülön-D lets its user specify the input program declara-
tively, set a deadline, and provide the desired balance between min-
imizing expected cost and variance. Cümülön-D uses a simple yet
flexible system architecture to support continuous, proactive adap-
tation of execution to a dynamic market. We model the dynamic
optimization problem in a principled, general way as an MDP, ac-
counting for various practical details that have often been ignored
in previous work. We make careful choices on the level of details

in modeling and optimization, and devise methods to speed up op-
timization and run-time application of its result. Experiments on
Amazon EC2 illustrate the “price of uncertainty” and demonstrate
Cümülön-D’s advantages over previous approaches.

Although developed in the context of supporting matrix-based
workflows, many of our models and techniques are generally ap-
plicable to other parallelizable workloads. For example, database
queries are declaratively specified using a set of standard operators,
and are amenable to data-parallel processing. Since our workloads
have relatively predictable performance, Cümülön-D currently fo-
cuses its optimization on the variability of market price (which is
the dominant source of uncertainty), and relies on applying the
cookbook dynamically to cope with the variability of performance
at run time. To extend Cümülön-D to less predictable or even black-
box workloads, we will have to further consider performance un-
certainty in optimization. For example, performance of database
workloads can be highly sensitive to data characteristics. If work-
loads run long or repeatedly, it may be a good idea to dynamically
adapt the performance models as well during executions. We leave
these generalizations to future work. Another promising direction
is to extend Cümülön-D to consider using a heterogeneous cluster
consisting of machines of different types from different markets.
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