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ABSTRACT
The hardware landscape is currently changing from homo-
geneous multi-core systems towards heterogeneous systems
with many di↵erent computing units, each with their own
characteristics. This trend is a great opportunity for data-
base systems to increase the overall performance if the het-
erogeneous resources can be utilized e�ciently. To achieve
this, the main challenge is to place the right work on the
right computing unit. Current approaches tackling this place-
ment for query processing assume that data cardinalities
of intermediate results can be correctly estimated. How-
ever, this assumption does not hold for complex queries. To
overcome this problem, we propose an adaptive placement
approach being independent of cardinality estimation of in-
termediate results. Our approach is incorporated in a novel
adaptive placement sequence. Additionally, we implement
our approach as an extensible virtualization layer, to demon-
strate the broad applicability with multiple database sys-
tems. In our evaluation, we clearly show that our approach
significantly improves OLAP query processing on heteroge-
neous hardware, while being adaptive enough to react to
changing cardinalities of intermediate query results.

1. INTRODUCTION
In the last years, hardware changes shaped the database

system architecture by moving from sequential processing
to parallel multi-core execution and from disk-centric sys-
tems to in-memory systems [1]. At the moment, hardware
is changing again from homogeneous CPU systems towards
heterogeneous systems with di↵erent computing units (CUs),
mainly to overcome physical limits of homogeneous
systems [10]. The computing resources in a heterogeneous
system usually have di↵erent architectures for di↵erent use-
cases. Obviously, database management systems (DBMS)
need to adapt to this hardware trend to e�ciently utilize
the given opportunities.

A huge variety of research work has been porting single
physical query operators to di↵erent processors or CUs like
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GPUs [12], the Xeon Phi [16], and FPGAs [23], showing
great results for isolated workloads. However, for arbitrary
queries, we can not expect to execute an operator always on
a predefined CU, because depending on data sizes, the data
transfers might be more dominant than execution savings.
Thus, the placement of physical operators to CUs has to
be performed dynamically based on query properties and in
particular on characteristics of intermediate results.

Current state-of-the-art approaches for this placement op-
timization use runtime estimation models based on online
learning [6, 18] together with global placement optimiza-
tion at query compile time [5, 11, 17]. For each physical
operator within a query and for each available CU, the op-
erator runtime and the data transfer costs are estimated and
compared, with the estimations being based on data cardi-
nalities. Up to now, the available approaches [5, 11] assume
perfect cardinality estimations even for intermediate results,
while this is simply not possible for complex workloads [20].
Even small deviations in the cardinality estimation may have
a major impact on the estimated runtime, potentially lead-
ing to sub-optimal decisions at the end (error propagation).
Moreover, we identified two additional limiting aspects of
state-of-the-art approaches. First, the execution runtime of
the same physical operator can behave di↵erently depending
on the query structure and the input data size, potentially
resulting in imprecise runtime estimation on operator level.
Second, a decision taken regarding the location of intermedi-
ate results in a heterogeneous computing environment limits
the flexibility for future placement decisions within a phys-
ical query plan, due to dominant data transfer costs.

To overcome these limitations, we propose a novel adap-
tive placement approach for query processing on heteroge-
neous computing resources, which is intentionally not part
of the query optimizer phase. Our approach takes a physi-
cal query execution plan as input and divides the plan into
disjoint execution islands at compile-time. The execution
islands are determined in a way that the cardinalities of
intermediate results within each island are known or can
be precisely calculated. The placement optimization and
execution is performed separately per island at query run-
time. The processing of the execution islands takes place
successively following data dependencies. To further en-
hance our approach, we propose two additional improve-
ments: (1) a fine-grained runtime estimation technique and
(2) a placement-friendly data transfer technique. Moreover,
our developed concepts are combined with traditional ap-
proaches to an adaptive placement sequence defining the
optimal application order of the di↵erent techniques. We
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also provide an implementation of our sequence as a virtu-
alization layer called HERO (HEterogeneous Resource Op-
timizer). We evaluate our approach using synthetic bench-
marks and use two di↵erent database systems to present the
real adaptive behavior and the performance of our approach.
In detail, our contributions are:

• Pointing out the problems and dependencies of state-
of-the-art operator placement approaches for hetero-
geneous computing resources. (Section 2)

• Proposing our adaptive placement approach, which is
independent of cardinality estimations implying im-
proved runtime estimations and better placement de-
cisions. (Section 3)

• Defining an adaptive placement sequence for heteroge-
neous hardware environments. (Section 4)

• Outlining the prototypical implementation of our ap-
proach as a virtualization layer, allowing the evalua-
tion on a range of existing database systems. (Sec-
tion 5)

• Presenting an exhaustive evaluation including speedups
of 50x by e�ciently using heterogeneous hardware,
while being adaptive to changing intermediate cardi-
nality. (Section 6)

Finally, we conclude the paper with related work and a sum-
mary including future work in Section 7 and Section 8.

2. PLACEMENT OPTIMIZATION
Heterogeneous hardware usually consists of many di↵er-

ent CUs, like CPUs and GPUs, each with individual proper-
ties making them useful for di↵erent tasks. DBMSs running
on such hardware commonly exploit a block-wise execution
model, like vector-at-a-time or column-at-a-time model for
query execution [5, 11, 14, 22, 28]. Thereby, the physical
query operators are either implemented in OpenCL [14, 28],
allowing them to be executed on di↵erent CUs, or provide
separate implementations for CPUs and GPUs using C++
and CUDA [5, 11, 22]. Most systems are optimized for sin-
gle query latency [11, 14, 28]. Therefore, our approach is
based on the same architecture.

To demonstrate the feasibility and wide applicability of
our adaptive placement approach, we work with two dif-
ferent DBMSs in this paper: gpuDB [28], a newly imple-
mented prototypical system, and Ocelot [14], an extension
of MonetDB [3]. Both DBMSs are based on OpenCL, using
OpenCL kernels to execute a query according to the column-
at-a-time model with full materialization of intermediate re-
sults. It is important to note, gpuDB mainly supports the
Star Schema Benchmark (SSB) [25], while Ocelot has been
evaluated using the TPC-H benchmark.

2.1 Placement Description
To compute query results, DBMSs traditionally compile

SQL queries into query execution plans (QEP), whereas the
query optimizer applies logical and physical optimizations to
determine the most e�cient QEP. For systems running on
heterogeneous computing resources, an additional placement
optimization is performed before execution [5, 11]. The main
objective of this placement optimization is to assign physi-
cal operators of the most e�cient QEP to the ideal CUs. To
achieve this, query properties need to be considered, includ-
ing QEP structure, data cardinalities and characteristics as

0% 20% 40% 60% 80% 100%
percentage of operators

sel1

sel2

sel3

CU1
CU2
CU3
CU4

Figure 1: One query with di↵erent (intermediate)
cardinalities. (SSB query 3 4, sel3 ⇡ 2⇤sel2 ⇡ 6⇤sel1)

well as the capabilities of each single CU, including execu-
tion time and data transfer costs.

Generally, this placement optimization is based on math-
ematical runtime estimation models (for execution and data
transfer), where each possible mapping of physical opera-
tors to CUs is evaluated and the placement with the lowest
estimated overall runtime is chosen. As a matter of fact,
the decision largely depends on the processed and trans-
ferred data in terms of data cardinalities. To determine
the most-e�cient placement, this optimization has to find
a trade-o↵ between optimal execution (every operator on
its preferred CU) and reducing data transfer costs (ideally
single-CU execution). After this placement optimization, the
most e�cient QEP is executed according to the determined
placement.

2.2 Open Challenges
While evaluating the current state-of-the-art in this do-

main, we identified three open challenges C1 to C3.

C1 - Inaccurate Cardinality Information
Generally, data cardinality information is influencing the es-
timation models for the traditional query optimization as
well as for the placement optimization. This information is
usually provided via statistics, histograms, or estimations
using heuristics. However, especially when working with
many joins, groupings, or complex selections, the estimated
cardinalities for intermediate results can show significant er-
rors [15]. Selected attributes can be correlated and statistics
on data distribution can not be simply intersected for di↵er-
ent attributes or relations [8]. Leis et al. report cardinality
estimation errors by a factor of 1,0001 or more for all tested
DBMSs when the query has multiple joins [20].

To demonstrate the high influence of cardinality informa-
tion on the placement optimization, we execute a single SSB-
query with three di↵erent selectivities, resulting in three dif-
ferent intermediate cardinalities. More details about the ex-
periment can be found in Section 6.5. Figure 1 shows the
optimal placement distribution of the query operators to
four di↵erent CUs. As we can see, the ideal placements vary
greatly, which is mainly caused by di↵erent intermediate
cardinalities. This illustrates the importance of cardinality
information for the placement optimization. Unfortunately,
existing approaches only assume exact knowledge of data
cardinalities for intermediate results [11, 5], but they obtain
the information from the query optimizer. These approaches
ignore the well-known problem of inaccurate cardinality es-
timation, which might result in sub-optimal placements.

C2 - Inaccurate Runtime Estimation
To assign operators to CUs, the runtimes of operators have
to be estimated. Various approaches have been proposed

1
A factor of 1 is accurate, while 10 means ten times more or less.
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including estimation based on instruction basis [13], basing
the runtime estimation on small benchmarks [11], or mon-
itoring and learning of the execution behavior in an online
manner [6]. Especially, the learning approach is promising
for complex operators and di↵erent CU architectures. How-
ever, learning-based approaches su↵er from inaccuracy orig-
inating again from wrong cardinality information as well as
behavior changes in the operator. We observed the latter by
experimentally investigating our two foundational DBMSs
Ocelot [14] and gpuDB [28]. There, the same physical op-
erator behaves di↵erently depending on input data size or
the position within the QEP. The reason for these varia-
tions are pre-processing steps, like bitmap materializations
or hash table creations, as well as post-processing steps, like
bitmap concatenations or data conversions. The presence
or absence of these extra steps is usually not visible in a
purely operator-based query execution plan, however, these
additional steps do influence the runtime of the operator.

C3 - Influence of Intermediate Result Location
During query processing, operators should be executed on
di↵erent CUs, with input data being transferred to, and
stored in the CU’s memory together with the operator’s re-
sults. With intermediate results being stored on a specific
CU, the further processing is usually locked to this CU, even
if other CUs perform better. The reason for that are the
transfer costs, which might be dominating the query run-
time. As a consequence, current approaches for placement
optimization are substantially dominated by data transfer
costs rather than optimal operator execution limiting the us-
age of heterogeneous computing resources for a single query.

3. ADAPTIVE PLACEMENT OVERVIEW
As mentioned in the previous section, unknown or wrongly

estimated cardinalities are the most significant source for
errors during placement optimization (challenge C1). In
our novel adaptive placement approach, we do not strive
to improve the cardinality estimation in general, but focus
on becoming completely independent of these estimations.
To tackle the remaining two challenges, we additionally in-
troduce a fine-grained runtime estimation and a less data-
centric optimization to improve the placement quality of our
approach.

3.1 Adaptive Placement Approach
Our approach to tackle challenge C1 is two-fold: (1) creat-

ing execution islands at compile-time and (2) applying place-
ment optimization and execution per island at run-time.

At query compile-time, the query optimizer provides
the most-e�cient QEP as input for our placement optimiza-
tion, as done by all state-of-the-art approaches. Then, we
divide the QEP into disjoint execution islands, which com-
bine subsequent operators of the QEP in a way that within
a single execution island the cardinalities of intermediate re-
sults are known or can be precisely calculated at run-time.
The islands are delimited by so called estimation breakers
defining the QEP positions, where new cardinality informa-
tion will be available during processing. At query run-
time, the disjoint execution islands of the QEP are exe-
cuted successively. Before executing the operators within an
island, placement optimization for this island is conducted
at run-time. Since we know the exact cardinalities within
this execution island, we are able to precisely estimate the
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(a) Hash join imple-
mentation.

estimation
breaker

Island 2

Island 1

Island 3

(b) Execution islands created by
the unknown join result size.

Figure 2: Highly parallel hash join processing.

runtime behavior of each operator as well as data transfer
costs. Thus, our placement decisions are done on accurate
numbers. To make these decisions, we propose regional op-
timization, which is essentially global placement optimiza-
tion restricted to a specific execution island. Whenever the
execution of an island is finished, we reach an estimation
breaker and the intermediate cardinalities for the next is-
land can be calculated.

The most challenging issue for our approach is the di-
vision of the QEP by the identification of estimation break-
ers. To determine these estimation breakers, we analyzed the
execution behavior of physical operators in the underlying
DBMS. Since almost all CUs in a heterogeneous hardware
system o↵er high parallelism, this aspect also a↵ects the im-
plementation of operators. For example, when thousands of
threads work on the same data, traditional locks or atomic
operations hinder parallelism and concurrency significantly.
However, if the result cardinality is precisely known, each
thread can compute the designated position of its output
and execute its work without locking or synchronization.

To achieve this desired processing behavior, the exact car-
dinalities are usually computed within a probing step first,
before producing the actual operator results. Figure 2a illus-
trates that approach for a hash join operator, as proposed
by He et al. [12]. A traditional hash join consists of two
steps: (1) hash table creation and (2) hash table probing.
A highly parallel version has two probing steps. The first
probe calculates the output size for each thread, where the
actual size of this probe’s output is exactly one value per
thread. Hence, the output size of the first probe is known
beforehand. Afterwards, the second probe uses the gathered
cardinality information, knowing precisely the real output
size, and produces the actual join result in parallel.

Our QEP division into execution islands is based exactly
on that execution observation. We analyze the QEP and
the corresponding operators at compile-time to determine
such cardinality probing steps within the operators. These
probing steps are our estimation breakers, because new car-
dinality information is becoming available. For example
in Figure 2a, Probe 1 computes the result cardinality of
Probe 2, therefore an estimation breaker would be added be-
tween both and the operator placement would be optimized
for two separate islands. A larger example is given in Fig-
ure 2b showing a query with two hash joins, where the two
probing steps of each join divide the query into execution is-
lands. For the first island, the intermediate cardinalities are
known, based on the cardinalities of the input tables. For all
parts within this island, the placement can be defined using
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runtime estimation and placement optimization, based on
exact cardinality knowledge. Afterwards, the island is exe-
cuted according to the chosen placements. Once the island
is fully executed, the intermediate cardinalities for the next
island can be calculated (e.g., after Probe 1 ) and we can
start the same process again until all islands are executed.

To summarize, through our adaptive approach, the es-
timation of operator runtimes and data transfers works on
precise cardinality information, significantly improving both
estimation results.

3.2 Improving the Placement Quality
With the previous approach, we are independent of car-

dinality estimations of intermediate results. In addition to
that, we propose two further techniques in order to improve
our placement quality according to challenges C2 and C3.

Fine-grained Runtime Estimation (C2)
To improve runtime estimation and better support our adap-
tive placement approach, we propose to work on sub-operator
granularity, where sub-operators can be reoccurring func-
tions that are executed subsequently within an operator.
Specific pre-processing and post-processing steps can be ex-
pressed with specific sub-operators, allowing the estimator
to consider their runtime individually. Working on this fine-
grained level has several advantages:

1. More accurate runtime estimations, since every pro-
cessing step is considered separately.

2. More training data, as same sub-operators can be used
in di↵erent operators (e.g., the same hash table cre-
ation for hash joins and hash-based groupings).

3. More fine-grained placement, as sub-operators can be
placed separately, instead of placing full operators.

4. Support for our adaptive work placement, as
sub-operators allow the positioning of estimation break-
ers (see example in Figure 2b).

While the first two points improve the runtime estimation
quality, the third point could potentially improve the run-
time of the whole query by fine-grained placement decisions.

Intermediate Results with multiple Locations (C3)
To provide the optimizer with more freedom in choosing the
best CU, we propose keeping temporary copies of used data
on the CUs. Data objects can be accessed and updated by
sub-operators, however, they have to be transferred to and
from the CUs depending on the access location. Instead of
moving a data object to the CU, where it is used next, we
copy the data, while also keeping the original version. This
enables two improvements to the placement optimization:

1. Future executions can choose a CU, where a copy of
needed data is stored and, therefore, avoid additional
transfers. Otherwise, they can choose di↵erent CUs,
transfer data, and provide another copy to future exe-
cutions.

2. Parallel accesses to di↵erent copies on di↵erent CUs is
made possible, while before accesses on the same data
object had to be sequential.

Allowing copied data objects introduces challenges with con-
sistency, when data is updated. To address this problem,
we define a small set of rules for data handling: (1) Is the
needed data object not on the assigned CU, copy it from a
di↵erent CU where it resides. If multiple CUs apply (e.g.,

Runtime Estimation
- On DB operators
- On vague cardinalities

Global Optimization
- With inaccurate estimations
- Limited by data transfers

Execution

at compile time

at run-time

(a) Traditional Approach

Drill-Down

Data Location Analysis

Island Creation

Runtime Estimation
- On sub-operators
- On precise cardinalities

Regional Optimization
- With accurate estimations
- With multiple copies

Execution

(b) Adaptive Approach

Figure 3: Novel Optimization Sequence: preprocess-
ing (yellow) extends traditional steps (green).

multiple copies as source), use the CU with the smallest
transfer costs. (2) If a sub-operator is updating data, delete
all copies except the one used by the sub-operator. (3) If
CU’s memory space is full, delete older copies.

When the majority of memory accesses is read-only, this
approach can lead to temporary copies being on nearly every
CU. There are no additional transfer costs for this approach,
as the system would transfer data objects with or without
copy support. However, when using copies, data is available
on the source and the target after the transfer, potentially
avoiding future transfers. All copies can be removed with
query termination.

4. ADAPTIVE PLACEMENT SEQUENCE
In this section, we provide more insights to our adap-

tive approach by defining an optimal execution sequence of
the proposed techniques as methodology for our placement
optimization. Figure 3 compares the traditional approach
with our adaptive approach. As illustrated, our adaptive
placement sequence has five optimization steps, where the
first three steps act as preprocessing at query compile-time.
Then, the following two steps and the actual query execu-
tion are applied multiple times, once per execution island,
at run-time. The steps are illustrated using the following
example query based on the TPC-H schema:

SELECT sum(l quantity) FROM lineitem
WHERE l discount < 20 and l quantity < 24

When executing this query for example with Ocelot [14], a
QEP with four operators is generated, as shown in Figure 4a.
The first two operators are the selections on l quantity and
l discount, both producing bitmaps. The third operator ma-
terializes the result of the selections before the fourth oper-
ator performs the aggregation. All four operators are im-
plemented in OpenCL, so they can be executed on di↵erent
CUs without any code adjustments.

4.1 Steps at Query Compile-Time
At query compile-time, we divide the most-e�cient QEP

determined by the traditional query optimizer into execution
islands with the following three steps.

4.1.1 Drill-Down
As motivated before, our overall approach works on sub-

operator level to be able to determine estimation breakers
within operators as well as to improve the placement quality.
Therefore, our first preprocessing step is a Drill-Down from
operators to sub-operators of the QEP.
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(a) Original operator view.

(b) Drill-Down:
The four original operators
(gray bounding boxes)
split into 13 sub-operators
(white boxes).

Figure 4: Operator and sub-operator view; num-
bers define the execution order; arrows symbolize
the data flow.

Example: In our Ocelot example, sub-operators corre-
spond to OpenCL kernels. Figure 4b shows the drill-down
result for our running example. Theta select flt performs a
selection on float values, while bm and intersects the two
bitmaps of the previous selections to one resulting bitmap.
The prefixsum * sub-operators count the number of set bits
within the resulting bitmap in parallel to calculate the result
cardinality. The fetchJoinBM sub-operator materializes the
bitmap result while fetching values of l quantity, as they are
needed for the next steps. Finally, the reduce sum * sub-
operators consume the materialized selection result to build
the aggregation sum in parallel.

From a high-level point of view, both selections are as-
sumed to have equal runtime, because both consume a col-
umn of the same table and work with the same data cardi-
nalities for input and output. However, as we see in Figure 4,
the two operators di↵er in execution on the fine-grained
level. Both selections execute a theta select flt sub-operator
but the second selection has an additional sub-operator to
combine the two bitmaps, increasing the runtime of the sec-
ond operator. When working directly on sub-operators, the
estimator learns the runtimes for theta select flt and bm and
separately, leading to more precise runtime estimations and
also potentially di↵erent placement decisions for these sub-
operators. Additionally, we can not assume that a single
placement decision is optimal for all eight sub-operators of
the leftfetchjoin. When placing only operators, we loose
speedup opportunities if sub-operators are diverse and run
better on di↵erent CUs.

4.1.2 Data Location Analysis
After our Drill-Down, we analyze the resulting data flow

of the query plan and in particular the memory accesses of
the sub-operators (read and write). This analysis is done
to determine where intermediate results can be kept in dif-
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Figure 5: Reordering data accesses by inspecting
data objects (ovals) and dependencies. The data
accesses are either read (r) or write (w) on a specific
data object. Dashed lines illustrate that there is a
choice of data source.

ferent locations according to our temporary copy concept
for challenge C3. Please note, we only find opportunities
for copies in this second step, while the real occurrence of
copies is placement dependent. For example, if two sub-
operators only read the same data, our analysis confirms
that copies may be kept. However, if both sub-operators
are placed on the same CU, there is no data transfer and,
hence, no additional copy.

Example: The benefits are illustrated in Figure 5. There,
we add the memory operations alloc, read, and the memory
access types for each sub-operator (r for read-only, w for
read-write). Alloc allocates the data object, while read eval-
uates a result. The first read on data object 4 evaluates the
result size of the bitmap materialization, which determines
the size of data object 5 (hence, the estimation breaker).
The last read is done to output the aggregation result. One
advantage of our analysis can be seen for sub-operator 3.8. It
reads data object 2, which was used before by sub-operators
2.2, 3.1, and 3.2. If their placements were on three di↵er-
ent CUs, sub-operator 3.8 can now choose one of the three
CUs, where a copy resides, while having no transfer costs
for this data. An additional advantage can be seen for the
first read operation. There, it was scheduled to be executed
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after sub-operator 3.7. However, since both operations only
read the data, they can be executed in parallel using copies.

4.1.3 Island Construction
Our third pre-processing step is the island construction

by traversing the data flow, collecting all sub-operators with
predefined input and result cardinalities into a single execu-
tion island, and creating a new island after an estimation
breaker. For example, selections producing bitmaps, sort
operations, foreign key joins, calculations, and aggregations
produce fixed size results, and may be executed within the
same island. However, for bitmap materializations, group-
ings, and joins not based on foreign keys, the cardinalities
are not fixed, leading to a staged execution: (Phase 1) cal-
culating the result size and (Phase 2) actually producing
the result. Between these two phases, we place our estima-
tion breakers dividing the query plan into execution islands.
Thus, the number of execution islands depends on the used
sub-operators within a query.

Example: In Figure 5, the intermediate results are fixed
for both selections, as they consume a column of lineitem
and produce a bitmap with one bit per row. However, when
the bitmaps need to be materialized, the exact result car-
dinality is unknown. This results in an estimation breaker
between sub-operator 3.7 and 3.8, building two separate ex-
ecution islands. The first island combines the selections and
calculates the materialized result size, while the second is-
land combines the last step of materialization and the ag-
gregation.

4.2 Steps at Query Run-Time
With the presented steps at query compile-time, the most-

e�cient QEP is divided into execution islands. The following
two steps of runtime estimation and placement optimization
are directly applied before an island is executed in order to
determine the optimal placement for the specific island.

4.2.1 Runtime Estimation per Island
The first step at query run-time is to estimate the run-

times of sub-operators for the available CUs. Here, we uti-
lize an automated black-box online-learning approach [18].
We continuously monitor the execution times together with
the input data cardinalities. This has to be collected for all
combinations of sub-operators and CUs. The actual run-
time estimation for sub-operators uses the given input data
cardinality and linear approximation between the two clos-
est collected measurements. Using this black-box approach,
we do not require complex behavior modeling, we are not
bound to any specific operator implementation, and we can
support future hardware without prior knowledge.

Additionally, we also have to estimate the transfer costs.
Since transfers are not dependent on queries, operators, or
data distributions, we do not need to monitor transfer times
at run-time. Instead, we collect the underlying information
using a simple benchmark during a ramp-up phase of a sys-
tem for calibration. Again, we estimate the transfer costs
using a linear approximation based on data cardinalities.

Example: A possible output of this step for our run-
ning example is depicted in Table 1. Here, we assume to
have four di↵erent CUs and we assume that the estimation
model gives the hypothetical runtimes for each combination
of sub-operator and CU. The runtimes are in abstract units
and chosen in a way that they can demonstrate a specific

Table 1: Hypothetical runtime estimations (in
units) for the given sub-operators and 4 CUs.

Sub-operator
1.1 2.1 2.2 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.1 4.2

CU 1 2 2 4 3 4 3 3 4 1 2 5 3 4
CU 2 4 4 5 5 3 3 1 3 1 4 2 3 1
CU 3 2 2 2 1 5 5 1 1 5 1 1 4 5
CU 4 2 2 4 4 1 1 2 1 3 3 2 3 2

optimization aspect later. Furthermore, we assume any data
transfer between two CUs takes one unit.

4.2.2 Placement Optimization per Island
To define the actual placement, we apply our regional op-

timization approach. Unlike global optimization, regional
optimization is limited to the sub-operators within one ex-
ecution island to ensure that only exact cardinalities and
runtime estimations are used in the decision process. Since
the search space is too large to evaluate every possible place-
ment, we apply a light-weight greedy algorithm [17]. The
greedy algorithm tries to improve each sub-operator’s place-
ment by considering its runtime estimations and the regional
context, where data transfers from preceding and to succeed-
ing sub-operators are considered. The algorithm works like
the following:

placement = starting placement

repeat –
for all sub-operators in execution island:

cost = execution est(CU)
+ input transfers est(CU)
+ output transfers est(CU)

update placement to best CU(cost)
– until ( has not changed(placement) )

for all sub-operators in execution island:

execute(placement)

Since the result depends on the starting placement of
the greedy algorithm, we first run the algorithm starting
with each single-CU placement. If the estimated runtime of
the best-plan found is larger than a threshold (in our case
100ms), we allow more time for optimization by evaluating
multiple random starting placements. The placement with
the best estimated runtime is chosen for execution.

Example: In our running example, we want to show
the e↵ectiveness of our optimizations and a comparison to
state-of-the-art approaches. To illustrate the e↵ectiveness,
we consider the placement of operators, of sub-operators,
and sub-operators with data copies in Table 2. We also
compare our optimization approach to local and global op-
timization [17]. Local optimization decides the placement
of each (sub-)operator locally, by evaluating the runtimes
of input transfers and execution, while subsequent opera-
tors and their data usage is not considered due to the local
view. Since the (sub-)operators are directly executed af-
ter the placement decision, the data cardinalities are always
precisely known. The interplay between local placement and
execution works like this:

for all sub-operators:
cost = execution est(CU) + input transfer est(CU)

execute sub-operator on best CU(cost)

Global optimization is similar to our regional approach,
but the placement optimization is done for the full query
plan at once. Therefore, data cardinalities for intermediate
results are not known at that time and have to be esti-
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Table 2: Results of optimization (in units) for the
given query and runtime estimations. The gray val-
ues are visualized in Figure 6.

Optimization Operator Sub-Operator + copies

Local 30 34 33
Global 29 27 26
Regional 29 28 27

mated for the placement decisions leading to the described
drawbacks. For comparability, we use perfect cardinality
information for the global optimization in the example.

As we can see in Table 2, local placement always yields
the worst runtimes, while global under the assumption of
perfect cardinality information shows the best results. Our
regional island-based optimization represents a middle path,
with a performance close to the global strategy.

Generally, placement on operators is usually worse than
placement on sub-operators, except for the local strategy,
where sub-operator optimization produces additional data
transfers. For all other cases, a drill-down to sub-operators is
beneficial. Additionally, allowing copies can achieve an im-
provement through avoided transfers for all optimizations.
In this example, the improvement is limited to a maximum
of two avoided transfers as there are only two sub-operators
able to exploit copied data objects (sub-operator 3.2 and 3.8 ).

Figure 6 depicts the placement decisions for local, global,
and our regional optimization when using sub-operators and
copies. It shows that local optimization is swapping CUs of-
ten to achieve better results in execution, while introducing
many additional transfers (e.g., sub-operator 3.3 to 3.5). Re-
gional and global optimization only di↵er for operator 3.7,
where global optimization chooses an additional data trans-
fer to avoid transfers for the following operator. Since this is
exactly at the border of two islands, the regional approach
can not optimize this far ahead and chooses a locally better
placement.
To summarize, our regional placement is close to the global

result. Nevertheless, it is easy to imagine, if perfect cardi-
nality estimations are not available—which is the normal
case—, then the global placement becomes worse. However,
since our regional approach always works with precise car-
dinality information at run-time, we are not a↵ected by it.
In this case, our regional approach outperforms the global
placement optimization as presented in our evaluation.

4.3 Feasibility of our Approach
Our adaptive optimization approach is best applied to

columnar in-memory DBMS with a column-at-a-time pro-
cessing model, where intermediate results are materialized,
mainly triggered by related work like Ocelot [14] and gpuDB
[28]. However, other execution models may also benefit from
heterogeneous execution and our adaptive placement.
Block-wise processing, e.g., as vectors [4] or morsels [19],

can be o✏oaded and placed on di↵erent CUs, where di↵erent
blocks executing the same operator can even run in parallel
on di↵erent CUs at the same time. If intermediate results are
not materialized after every operator (like pipelined execu-
tion [4] or generated query code [24]), complete pipelines can
be o✏oaded until a pipeline breaker forces materialization.
Although this results in a more coarse-grained placement,
multiple pipelines can be grouped to execution islands un-
til an intermediate cardinality needs to be calculated. The
main challenge within the pipelined execution is runtime es-
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Figure 6: Placements for sub-operators with copies.
The colors and numbers represent the placement.

timation, because pipelines or generated code could always
di↵er in their execution. However, an estimation based on
operations within the pipelines is possible.

The only processing model that would most likely not ben-
efit from our approach is tuple-at-a-time, which is already
not cache-friendly and has a high function-call overhead.
These problems would increase in heterogeneous environ-
ments, where the communication and data transfer between
CUs is costly. Therefore, this processing model is not well-
suited for heterogeneous systems in general.

5. IMPLEMENTATION
To broaden the scope of our evaluation as well as to show

the wide applicability of our approach, we want to support
many heterogeneous DMBSs like Ocelot [14] or gpuDB [28].
Due to implementation e↵orts, we restrict ourselves to
OpenCL-based system o↵ering the opportunity to run on
di↵erent CUs with a single code basis.

5.1 General Architecture
Each hardware vendor supplies an OpenCL driver to their

CUs, which is loaded when the CU is first accessed. The
driver manages the communication of the application to the
CU using the standardized OpenCL interface. For our ob-
jective to support many heterogeneous DBMSs, we proto-
typically implement our own OpenCL driver called HERO
(HEterogeneous Resource Optimizer). Figure 7 shows its ar-
chitecture. Our OpenCL driver transparently manages the
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Figure 7: Architecture overview of HERO.

heterogeneous environment and includes our adaptive place-
ment approach. Using this driver, an OpenCL-based DBMS
itself needs no or only a few adjustments to utilize our place-
ment strategy. The DBMS then communicates with HERO
as with a single CU, while HERO manages all available CUs
underneath. HERO does that by intercepting the communi-
cation between DBMS and CU, while applying our adaptive
placement sequence and executing the work heterogeneously.

For incoming work, the OpenCL interface itself provides
the Drill-Down, since only sub-operators (in this case
OpenCL kernels) and memory operations can be submit-
ted. Sub-operators are collected in a work queue (W), while
all memory accesses are stored in a memory manager (M)
to provide the data location analysis in a later step. Re-
questing an intermediate result acts as estimation breaker,
triggering island construction and all further steps. Run-
time estimation (R. Est.) is done for all sub-operators of an
island including the estimation of possible transfer costs (T.
Est.). Afterwards the placement optimizer (Place. Opt.)
determines the heterogeneous placement by using runtime
estimations, transfer estimations, the data access analysis,
and the island view on the query. The placed sub-operators
are then executed using the OpenCL interface and all avail-
able CUs.

5.2 Advantages and Limitations
The main advantage of this virtualization is its re-usability

for di↵erent OpenCL-based database systems. Most of these
systems can instantly be transformed from a single-CU ex-
ecution model to adaptively optimized heterogeneous exe-
cution, by simply loading our HERO driver instead of the
standard OpenCL drivers. Besides the performance im-
provement, this allows simpler decoupled development and
maintainability, without the additional e↵ort of handling the
heterogeneous hardware, transfers between di↵erent CUs,
runtime estimation, and heterogeneity-aware optimization
within the DBMS.

However, there are also limitations to our virtualization.
Most importantly, crucial information from the DBMS is
missing, like memory access types of operators and sub-
operators. As a solution, we partially compile OpenCL sub-
operator code at startup time to the LLVM intermediate
representation using the Clang compiler. In this compila-
tion process, Clang evaluates the memory access types of
given OpenCL kernels to the input data, which we can ex-
tract for our data location analysis.

To achieve good performance, OpenCL kernels sometimes
need to be optimized for a specific CU. The most common
example are memory access patterns, which (in many cases)
should be di↵erent for CPUs and GPUs [14]. To support
such optimizations, we allow di↵erent OpenCL kernel vari-
ants. The DBMS specifies the default kernel to use, while
HERO might exchange that kernel with an architecture-
optimized variant, depending on the placement decision.

32 GB

Main
Memory

(2132 MHz)

AMD CPU

AMD iGPU

—

10.3 GB/s

Nvidia K20

Nvidia GT640

1.3 GB/s

12.4 GB/s

PCIe2 x4

PCIe3 x16

Name Model Memory #Cores Frequency GFLOPS4

CPU AMD A10-7870K 30 GB 4 3900 MHz 44.17
iGPU AMD Radeon R7 2 GB 512 866 MHz 877.18
K20 Nvidia Tesla K20 5 GB 2496 706 MHz 2900.63
GT640 Nvidia GT 640 2 GB 384 901 MHz 601.97

Figure 8: Heterogeneous evaluation setup consisting
of one CPU and three di↵erent GPUs.

Another limitation is the use of OpenCL itself, since there
are DBMSs, where operators are implemented in di↵erent
programming languages, not using OpenCL [5, 11]. These
operator implementations are not as extensible as OpenCL
in respect to di↵erent hardware setups, however, they might
yield more performance through more specialization. Our
adaptive placement sequence is general enough to work for
these systems as well. Nevertheless, our current implemen-
tation is limited to OpenCL. As a conclusion, we use our
implementation as a way to evaluate our adaptive place-
ment approach, while the final integration into a productive
database system remains future work.

6. EVALUATION
Our evaluation is based on our OpenCL driver implemen-

tation with the OpenCL database systems gpuDB2 [28] and
Ocelot3 [14]. We use gpuDB for a large part, while the
portability is shown for Ocelot at the end. Therefore, we
describe gpuDB now and Ocelot in Section 6.6.

Generally, gpuDB [28] is a prototypical OpenCL-based
query execution engine to process OLAP queries, whereas it
mainly supports SSB queries. During an o✏ine compilation
step, each query is compiled into a binary. In the original
gpuDB version, a query can only run on a single CU, which
has to be chosen beforehand. With HERO, we make the
query execution truly heterogeneous. We execute gpuDB
with the supported 13 SSB queries and a scale factor of 10.
Since gpuDB has one binary per query, it is easy to monitor
where time is spent, therefore, we choose gpuDB for detailed
evaluation.

For all tests, we run each query more than 10 times. We
disregard best and worst runtimes to remove outliers and
average the remaining query runtimes as the final result.

6.1 Hardware Setup
We use a highly heterogeneous hardware setup consisting

of a CPU and three di↵erent GPUs, because of their general
availability and their support for OpenCL. Future systems
could also include other accelerators like Xeon Phi. Figure 8
illustrates our system, its connections to the main memory,
and an overview of each CU. In the following, we use the
names stated in this figure for each CU.

Connections: The CPU and the AMD integrated GPU
(iGPU) can access the main memory directly, but the iGPU
has a higher memory access bandwidth during execution

2
gpuDB (commit 609): code.google.com/archive/p/gpudb/

3
Ocelot (version 1cda9db): bitbucket.org/msaecker/monetdb-opencl

4
Single precision performance measured with the benchmarking tool

clPeak (version 898a155): github.com/krrishnarraj/clpeak
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Figure 9: Optimizations and statistics on SSB queries (#(O)perator, #(S)ub-operators, #execution (I)slands)

if data was copied to a dedicated part of the main mem-
ory before. Therefore, the iGPU has to transfer data first
with max 10.3 GB/s, while the CPU can work on data in
main memory without any transfers. The presented band-
widths are data transfer bandwidths and not memory ac-
cess bandwidths. Each CU has a di↵erent memory access
bandwidth once the data is transferred to its own memory.
Both Nvidia GPUs use PCIe, while the GT640 uses the 3rd
generation with 16 lanes; the K20 uses the 2nd generation
with 4 lanes (our K20 does not support PCIe3). The pre-
sented connection bandwidths are max values observed by
HERO. Transfers between two CUs have lower bandwidths,
since data has to be transferred to main memory first, be-
fore being transferred to the next CU. For example, trans-
ferring 1GB of data from the K20 to the GT640 can be
with 1.18 GB/s.

Performance: We use an OpenCL-based benchmark to
exemplarily compare the performance of the CUs (GFLOPS
in Figure 8). The performance di↵ers greatly, however, given
the connection bandwidths, di↵erences in architecture, and
di↵erent memory hierarchies on the CU, it is not trivial to
find the best CU for a given workload. The shown results
for single-precision performance are only indicators of the
CUs’ performance, while the real performance for a database
workload depends on many factors.

6.2 Micro Benchmarks
To show the impact of our adaptive approach, we firstly

collect single-CU runtimes of all sub-operators together with
information about operators, execution islands, and transfer
costs. The information is then used o✏ine by evaluating
di↵erent estimation and optimization methods based on our
HW setup running gpuDB using SSB queries.

Fine-grained optimization: We claim that sub-oper-
ator based estimation improves the estimation quality and
that placing sub-operators instead of operators can lead to
performance improvements. For the evaluation, we insert all
collected execution data over all queries into our runtime es-
timator. Then, we estimate the (single-CU) runtime based
on operators and sub-operators and compare the estima-
tion to the real execution time. Operator-based estimation
shows a 4.73ms mean absolute error (MAE) over all oper-
ators in all queries, while sub-operator estimation has only
0.7ms MAE. Additionally, the maximum errors di↵er largely
from 58ms for operators and 1.3ms for sub-operators. The
error di↵erence is mainly caused by same operators contain-
ing di↵erent amounts of sub-operators as, for example, the
group-by operator contains 4 to 9 sup-operators depend-
ing on the use-case. To evaluate di↵erent placements, we
look at single operators and compare the best single-CU
execution to the best heterogeneous placement of the cor-
responding sub-operators. To determine the heterogeneous

placements, we do a full search of all possible placements
for these sub-operators. We found, that in most cases the
runtime is equal, i.e., sub-operators also choose a single-CU
placement, while in a few cases we achieved speedups of up
to 1.47x with the heterogeneous placement.

Regional optimization using execution islands: To
evaluate the regional optimization, we use the runtime in-
formation of sub-operators to calculate the placement for
the local, global, and regional approaches. As the global
approach is not realistic considering varying cardinality es-
timations, we evaluate global optimization with certain er-
rors in the cardinality. We multiply the real intermediate
cardinalities either with 0.1x or with 10x to test the robust-
ness of the optimization and estimation. Figure 9 shows
the results including statistics on operators, sub-operators,
and execution islands. We can see that global optimization
is always better than local optimization, while global opti-
mization with cardinality errors is slower than the original
global optimization, caused by wrong runtime and trans-
fer estimations. While global 0.1x still finds good place-
ments, global 10x shows mostly bad performance. There,
data is thought to be 10x larger leading to CPU heavy com-
putation, because data does not need to be transfered for
CPU execution. Local and regional optimizations are not
a↵ected by cardinality estimation errors, since cardinalities
are known precisely, whereas regional optimization shows a
performance similar to global optimization without errors.

Intermediate results with multiple locations: To
evaluate the impact of allowing data copies, we use the SSB
queries and test 1M random placements per query with and
without allowing data copies. In the worst case, we see no
speedup because of single-CU queries or placements, where
by chance none of the copies could be exploited. In the best
case, we achieve a speedup of 1.67x for highly heterogeneous
queries. The performance gain of keeping copies depends
on a query’s transfer costs, as transfers are the only part
that could be reduced. Single-CU execution has only trans-
fers from the host, which can not benefit from data copies.
Queries where the execution is significantly larger than the
transfer costs do also not benefit much from data copies.
As performance is not reduced in any case, we should allow
copies in case a query is heavily dominated by transfers that
could be avoided.

6.3 HERO Overheads
To evaluate the overhead of HERO, we compare the SSB

runtimes of gpuDB with a HERO and a non-HERO exe-
cution. Since the original version of gpuDB supports only
single-CU execution, we examine this case. Figure 10 shows
the overhead in percentage for all combinations of SSB
queries and CUs. Surprisingly, for some combinations the
overhead is negative, meaning that the single-CU execution
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totalNoHERO ). For better illustration,
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queries (SSB groups 1-4). The overall average over-
head is 0.5%.

is faster when using HERO, while others experience an over-
head of up to 15% of the query runtime without HERO.
There are two reasons for these variations:

(1) Queuing: HERO queues submitted sub-operators
together, while, without HERO, OpenCL would start work-
ing on the sub-operators immediately when being submit-
ted. The advantage of queuing and executing together is an
aligned heterogeneous placement that is usually worth more
than the small delay. However, for single-CU execution, the
placement is fixed to a single CU and can not be improved
by optimizing sub-operators together, making the delay vis-
ible as overhead. This delay depends on the query topology
and on how eager the CUs start to work after submitting.
For example in Figure 10, small queries show this overhead
particularly (1 1, 1 2, 1 3 ), while iGPU and GT640 seem
to su↵er most from the queuing, showing that they usually
execute work more eagerly than, e.g., the K20.

(2) Controlled Execution: When HERO is executing
sub-operators, it is tightly controlling the execution on the
CU. When a sub-operator is given to a CU, HERO is forcing
the CU to execute it immediately without delay to ensure
the correct time measurements for our runtime estimation.
This can have two e↵ects. An already eagerly executing
CU might experience additional overheads through the ac-
tive waiting for the result, leading to slower performance as
without HERO (e.g., iGPU). On the other side, other CUs
might experience a speedup through our approach if they
are more lazy in execution (e.g., K20).

6.4 Performance and Placement Quality
For performance evaluation, we execute all SSB queries

using HERO first on the CPU, before adding the K20, the
GT640, and finally the iGPU. This way, we add more het-
erogeneity and allow HERO to distribute sub-operators to
more CUs to improve the runtime. Figure 11 shows the
performance results and the resulting placement distribu-
tion. As expected from the performance benchmark in Fig-
ure 8, the CPU is slow in execution. Adding the K20 im-
proves the result of all 13 queries significantly, by plac-
ing most sub-operators on the GPU (speedup: avg 16.4x,
max 24.9x). Adding the GT640 further improves the results
for 11 queries, since the GT640 has a 10x faster connec-
tion to the main memory compared to the K20 (speedup
to previous setting: avg 1.7x, max 2.3x). Finally, adding
the iGPU can accelerate 10 queries additionally (speedup
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Figure 11: Performance of gpuDB with HERO when
adding CUs for heterogeneous query execution.

to previous setting: avg 1.5x, max 2.9x). With the place-
ment distribution, we see that some queries choose mainly
single-CU placements, only di↵ering in the chosen CU (1 1,
1 2, 1 3, 4 2, 4 3 ), while other queries choose more hetero-
geneous placements (e.g., 2 1 and 2 2 ). Even for single-CU
execution, an accurate placement optimization is needed to
determine the best CU, as pure benchmark numbers are
not descriptive enough. For example, the K20 is the most
powerful CU in our system. However, if another GPU is
available, the K20 is nearly never used because of the low
transfer bandwidth to the system. All in all, adding place-
ment optimization to the database system can achieve high
speedups for the execution, for example, 50x for Query 1 2.

Limitation: In four out of the 13 queries, we see a
small performance reduction when adding computing units
(Queries 1 1, 1 2, 1 3, and 2 1 ). There, we found that the
overall placements are not ideal, while the regional place-
ments for the sub-operators of each island are good. The re-
duction is caused by the adaptive placement approach using
separate execution islands. The decisions for later islands
depend on the decisions made for earlier islands, because
they define the location of intermediate data. This is the
same e↵ect as presented in Section 4.2.2. For Query 1 1, the
iGPU is mostly used throughout the query. However, most
sub-operators of the first island run better on the GT640, so
they are placed on this GPU. This introduces either being
bound to the GT640 if transfers are too expensive or trans-
ferring the data to the iGPU, which would not be necessary
if the first iteration would be executed on the iGPU in the
first place. A global optimization could most likely avoid
these problems, but would come with other drawbacks as
stated earlier.

6.5 Adaptivity of Heterogeneous Placement
Besides the pure performance, we want to show the real

benefits of our adaptive placement approach for heteroge-
neous execution using HERO. We exemplarily take SSB
Query 3 4 [25], which accesses four tables and includes three
selections, three joins, a group by, and an order by. The se-
lections are highly selective and the joins produce only small
results, before the grouping reduces the result to two tu-
ples. We now update the base data to produce more tuples
in the selections, resulting in larger join results, which, at
the end, are reduced by the grouping again to two tuples.
Through this method, only the intermediate cardinalities
change while the base table size and the final result size
are constant. We compare the execution performance of a
fixed placement, as a global optimizer would choose, and our
adaptive approach, adjusting the placement according to the
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intermediately collected cardinalities. Figure 12 shows the
actual runtime results and the placement distributions. The
constant placement uses the cardinality information of the
1x scale. While the performance of the constant and adap-
tive placement is similar for small changes in intermediate
cardinalities, larger changes show a significant di↵erence.
The pie charts show the placement distribution for each
testing point. As expected, first the placements are simi-
lar to the constant placement, i.e., the majority of the sub-
operators is on the iGPU, the placement changes towards
more sub-operators on the K20 and the GT640 when the
intermediate cardinalities grow. This adaption is not possi-
ble with global optimization and clearly shows the benefit
of the adaptive approach.

6.6 Portability
Our implementation as virtualizing OpenCL driver en-

ables a broad evaluation. Thus, we evaluated our approach
with Ocelot as second DBMS as well. Ocelot [14] is an
OpenCL extension to MonetDB [3] and is able to process
nearly arbitrary queries on di↵erent CUs. It does that by al-
tering the MonetDB query plan with MAL extensions, which
makes MonetDB to hand o↵ certain operators to Ocelot for
external computation. Ocelot then uses OpenCL to execute
the operator on a given CU. Like gpuDB, a query can only
run on a single CU and Ocelot is currently also limited to
one query at a time. For our performance evaluation, we
use 9 di↵erent TPC-H queries with scale factor of 5.

Figure 13 shows the results. Compared to gpuDB, the
CPU performs better, which is caused by mostly having
two kernel variants with di↵erent memory-access patterns
for CPUs and GPUs. Therefore, the kernels are more op-
timized for the used CU, as HERO switches these variants
depending on the placement. For all queries, adding the
K20 improves the result significantly (speedup avg: 4.0x,
max: 14.8x), except for Query 5, where the CPU has al-
ready a comparable performance to the heterogeneous exe-
cution. Adding the GT640 improves the Queries 3, 10, and
15, while the others show that the combination of CPU and
K20 is already ideal for the given workload and data sizes.
Adding the iGPU improves only the result of Query 3. We
can see in these results that HERO either improves the run-
time with more heterogeneity or holds the performance, even
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Figure 13: Performance of Ocelot with HERO when
adding CUs for heterogeneous query execution.

if additional CUs can not be used beneficially for the given
query. Only Query 18 su↵ers from the explained limitation
and the missing global view.

6.7 Summary
We have shown the e�ciency of our adaptive placement

using micro-benchmarks and full query execution. We pre-
sented that the HERO implementation can have a small
overhead for single-CU execution depending on query topol-
ogy and used CUs. However, for heterogeneous execution,
the overhead is not visible since the query execution bene-
fits from the heterogeneity, making the query faster. The
performance tests with gpuDB and Ocelot have shown the
benefits of our approach with speedups of up to 50x. Addi-
tionally, we have demonstrated the benefits of adjusting the
placement according to changing intermediate cardinalities,
resulting in reliably good performance.

7. RELATED WORK
Data Placement: Data placement approaches have been

widely studied in the context of NUMA systems and dis-
tributed database systems. In NUMA systems, data and
threads are placed together to avoid memory accesses be-
yond nodes and to spread the workload evenly between the
nodes [2]. The main questions for placement decisions are
”where is the data?” and ”how busy are the nodes?”, while
the nodes are homogeneous in their computation but pos-
sibly heterogeneous in their interconnections [21]. For dis-
tributed systems, nodes and connections can be heteroge-
neous, while optimizations are mostly focusing on data place-
ment according to the workload. Afterwards, the actual ex-
ecution is done on the nodes holding the data [7].

Heterogeneous Placement: CoGaDB [5] and gpuQP
[11] are prototypical database systems, optimizing the exe-
cution for hardware heterogeneity. CoGaDB uses a learning-
based estimation model on operator level. gpuQP works
with a small set of primitives, which are used to build larger
operators, but uses benchmarking before execution to al-
low the estimation of individual runtimes. Both systems,
CoGaDB and gpuQP optimize the heterogeneous execution
globally in the query optimizer being dependent on esti-
mated cardinality information.

Adaptive Query Processing: Our adaptive island-
based approach has similarities with adaptive query pro-
cessing [9], where the logical and physical plan can be re-
optimized during run-time, if cardinality estimations di↵er
too much from values experienced during execution. For our
approach the QEP is fixed except the placement, which is
reoptimized at run-time.

Implementation Approach: VirtCL [27] also imple-
ments an OpenCL driver to optimize the hardware under-
neath, however, it decides the placement locally by schedul-
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ing the next kernel on an available CU, where it might finish
first. For database applications, where results of operators
are reused by other operators, pure scheduling without fur-
ther optimization is not beneficial. Wang et al. [26] pro-
pose a CUDA driver to schedule and load-balance multiple
database operators of multiple queries. However, the CUDA
approach is limited to NVIDIA GPUs, ignoring other CUs
and the challenges of heterogeneous environments.

8. CONCLUSION
In this paper, we proposed adaptive work placement based

on an execution island approach and two additional en-
hancements, improving runtime estimation through
fine-grained learning and improving placement optimization
through keeping temporary data copies. We combine our ap-
proaches in an adaptive placement sequence and show the
e↵ectiveness with an extended example. We implemented
our techniques as a virtualization layer called HERO, which
can be used by any OpenCL-based database system. In the
evaluation, we have shown that our approach improves the
performance by choosing good heterogeneous placements,
while being adaptive to di↵erent intermediate cardinalities.

For future work, we strive to improve placement de-
cisions near island borders and overcome the limitations
shown in the evaluation, by allowing our adaptive optimizer
to look beyond its island and potentially choose a more op-
timal placement. This could be possible by defining an ini-
tial placement using inaccurate cardinality estimations of
the database optimizer and propose placements for all sub-
operators, while afterwards applying our island approach to
improve these placement decisions. However, errors in the
cardinality information will have a significant influence on
the initial placement decisions. Depending on the magni-
tude of the error, the initial placement can also negatively
influence our adaptive placement decisions. Besides improv-
ing the placement quality, our approach can be implemented
into the database optimizer, where it is possible to cou-
ple adaptive placement optimization with physical operator
adjustments and query restructuring known from adaptive
query processing [9]. Additionally, all collected information
like correct cardinalities can be fed back into the database
optimizer to improve later cardinality estimation.
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