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ABSTRACT
In this paper, we study the problem of the anchored k-core.
Given a graph G, an integer k and a budget b, we aim to
identify b vertices in G so that we can determine the largest
induced subgraph J in which every vertex, except the b ver-
tices, has at least k neighbors in J . This problem was intro-
duced by Bhawalkar and Kleinberg et al. in the context of
user engagement in social networks, where a user may leave
a community if he/she has less than k friends engaged. The
problem has been shown to be NP-hard and inapproximable.
A polynomial-time algorithm for graphs with bounded tree-
width has been proposed. However, this assumption usually
does not hold in real-life graphs, and their techniques cannot
be extended to handle general graphs.

Motivated by this, we propose an efficient algorithm,
namely onion-layer based anchored k-core (OLAK), for the
anchored k-core problem on large scale graphs. To facilitate
computation of the anchored k-core, we design an onion lay-
er structure, which is generated by a simple onion-peeling-
like algorithm against a small set of vertices in the graph.
We show that computation of the best anchor can simply
be conducted upon the vertices on the onion layers, which
significantly reduces the search space. Based on the well-
organized layer structure, we develop efficient candidates
exploration, early termination and pruning techniques to
further speed up computation. Comprehensive experiments
on 10 real-life graphs demonstrate the effectiveness and ef-
ficiency of our proposed methods.

1. INTRODUCTION
In social networks, where vertices represent individuals

and edges represent friendships, the behavior of an individ-
ual may be influenced by that of his/her friends. In recent
years, user engagement on social networks has been studied
in the literature (e.g., [7, 10, 11, 12, 13, 19, 27]) to model
the behavior of users where each user may choose to remain
engaged in, or leave, a group or a community. In a basic
model, a user will remain engaged if, and only if, at least
k of his/her friends are engaged. A user with less than k
friends engaged will leave. His/her departure may be con-
tagious and form a cascade of departures in the network.
This procedure is called network unraveling in which active
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Figure 1: Motivating Example

individuals may leave by the negative influence of his/her
friends. As shown in [7], the unraveling process stops when
the remaining engaged individuals correspond to the k-core
of the network, a well-known concept in graph theory, which
is the maximal induced subgraph in which every vertex has
at least k neighbors.

To prevent unraveling in social networks, Bhawalkar and
Kleinberg et al. [7] formally introduce the problem of an-
chored k-core. The aim is to retain (anchor) some users
with incentives to ensure they will not leave regardless of
the behavior of others, so that the largest number of users
will remain engaged when the unraveling stops. Formally
speaking, it is to anchor a set of b vertices such that the
induced k-core is the largest one. This problem has a wide
range of applications, and can help users identify critical ver-
tices (e.g., people) whose participation is critical to overall
engagement of the networks. Below is a motivating example.

Example 1. Suppose there is a computer science study
group, and the number of friends in the group represents
the willingness of a member to engage in the collaborative
learning. If one leaves, he/she will weaken the willingness
of his/her friends to remain engaged, which may incur the
unraveling of the study group. As illustrated in Figure 1,
we model 12 members in a study group and their relation-
ship as a network. According to the above engagement model
with k=3, i.e., a person will leave if there are less than three
friends, four members will remain engaged eventually; that
is, 3-core of the network includes u4, u5, u8 and u9. To
prevent unraveling, we may persuade the member u1 not to
leave through additional incentives, such as a regular per-
sonal tutoring or priority booking of the study room . As a
result, members u2, u3 and u6 will also remain engaged since
each of them now has three friends in the study group. This
motivates us to find the most cost effective way to “anchor”
a set of b members so that the size of the resulting k-core
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is maximized. It turns out that the optimal solution is {u1}
and {u1, u10} for b = 1 and b = 2, respectively.

Challenges. It is shown in [7] that the anchored k-core
problem is NP-hard and inapproximable when k ≥ 3. Two
following works show the problem is also NP-hard even on
a planar graph [10, 11]. A polynomial-time algorithm in
graphs with bounded tree-width was proposed in [7], but to
the best of our knowledge there is no practical algorithm for
general large-scale graphs.

To avoid enumerating all possible anchor sets with size b,
we resort to greedy heuristics, where the best anchor is cal-
culated in each iteration by computing the k-core for each
possible anchor vertex. As demonstrated in our empirical
study, a straightforward implementation of the greedy algo-
rithm is very time consuming. For instance, it would take
more than a month to find one best anchor on the medi-
um size network Yelp with 552, 339 vertices and 1, 781, 908
edges. The reasons are two-fold. (1) The large number of
candidate anchors. It is clear that we do not need to an-
chor the vertices in the k-core of the graph. However, the
number of remaining vertices is still large. (2) Although the
computing time of k-core is linear in the number of edges,
the cost is expensive given the large number of candidate
anchors.

Our Solution. To address the above issues, we design an
auxiliary structure L, called onion layers, to maintain a s-
mall set of vertices and develop corresponding efficient tech-
niques to significantly reduce the search space.

Due to the existence of anchor vertices, some new vertices
will join k-core, which are termed followers in this paper.
The number of followers is the gain of the anchoring activity.
As we also adopt the greedy heuristics, our research focuses
on finding the best anchor in the graph, i.e., the vertex with
the largest number of followers. We observe that when we
only consider one anchor, all followers must reside on the
(k-1)-shell, i.e., the vertices in (k-1)-core but not in k-core.
We put these vertices and their neighbors into onion layers
L and show that we only need to consider the vertices in L
as the candidate anchors to find the best anchor vertex. By
doing so, the number of candidate anchors is significantly
reduced. More importantly, all of the follower computations
for finding the best anchor are restricted to the vertices in
L, which significantly reduces the search space.

We enhance the computation of k-core for a given anchor
by imposing the layer structure on L and develop an effi-
cient algorithm to quickly find its followers. The key idea
is that, considering we will try a large number of candidate
anchors, it is worthwhile to partition L into several layers
in each iteration of the greedy algorithm so that the unrav-
eling procedure can be conducted following a layer-by-layer
paradigm. Thanks to the flexibility of the deletion order in
k-core computation, i.e., the leave order can be arbitrary
as long as each vertex has less than k neighbors when it
quits. we formally prove that our layer-by-layer computa-
tion can always produce the correct results. By using the
well-organized layer structure L, we can effectively identi-
fy the candidate followers, and develop early termination
and candidate anchor pruning techniques to eliminate non-
promising followers and anchors at an early stage.

Contributions. Our principal contributions are summa-
rized as follows.

• We develop the first efficient algorithm, OLAK, to solve
the anchored k-core problem on general large graphs.

Table 1: Summary of Notations

Notation Definition

G an unweighted and undirected graph
u, v, x vertex in the graph
n, m the number of vertices and edges in G
A a set of anchor vertices

NB(u,G) the set of adjacent vertices of u in G
deg(u,G) |NB(u,G)| if u /∈ A; +∞ if u ∈ A
GA (Gx) graph G anchored by A (x)
cn(u) core number of the vertex u
k the degree constraint
b the budget for the number of anchors

Ck(G), Sk(G) k-core and k-shell of G
L (i.e., Ls

0) onion layers of G (with s+ 1 layers)
Li vertices on i-th layer of L
Lj
i

⋃
i≤k≤j Lk

l(u) layer index of the vertex u in L
F(x) (F(A)) followers of an anchor x (a set A of anchors)

CF (x) the candidate followers of an anchor x
d+(u) degree upper bound of u in Ck(Gx)

• We introduce a novel onion layer structure L, which
contains a small set of vertices, so that we can efficient-
ly find the best anchor in each iteration of the greedy
algorithm. We show that only the vertices in L need to
be considered during computation, which significantly
reduces the search space.

• By using the well-organized onion layer structure L,
we develop an efficient algorithm to compute the fol-
lowers for the candidate anchor in a layer-by-layer
paradigm. With the concept of support path, we on-
ly need to explore a very small portion of the ver-
tices in L. Together with early termination and prun-
ing techniques, we further reduce the number of an-
chor and follower candidates and hence significantly
enhance performance.

• Our comprehensive experiments on 10 real-life net-
works demonstrate the effectiveness and efficiency of
our proposed techniques. For instance, our algorithm
can prevent the unraveling of 630 vertices by anchor-
ing one single vertex in the Pokec network. Regarding
the running time, our OLAK algorithm outperforms the
straightforward implementation of the greedy algorith-
m by at least three orders of magnitude.

Road Map. Section 2 introduces k-core and the anchored
k-core problem. Section 3 presents our solution. Section 4
shows the experimental results. Section 5 reviews related
work and Section 6 concludes the paper.

2. PRELIMINARIES
In this section, we first give some necessary notations and

introduce the concept of k-core and its corresponding algo-
rithm. Then, we formally define the anchored k-core prob-
lem and show its hardness. Table 1 summarizes the mathe-
matical notations used throughout this paper.

2.1 Problem Definition
We consider an unweighted and undirected graph G =

(V,E), where V (resp. E) represents the set of vertices (resp.
edges) in G. We denote n = |V |, m = |E| and assume m >
n. NB(u,G) is the set of adjacent vertices of u in G, which
is also called the neighbor set of u in G. We use deg(u,G),
the degree of u in G, to represent the number of adjacent
vertices of u in G if u /∈ A. NB(u,G) (resp. deg(u,G)) is
also written as NB(u) (resp. deg(u)) when the context is
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clear. We also use G to represent the vertices in G. Given
a subgraph J ⊆ G, NB(J) denotes the neighbor set of the
vertices in J , i.e., NB(J) = {u | NB(u, J) �= ∅ & u ∈ G}.
The concept of k-core has been widely used to describe

cohesive subgraphs, which is formally defined as follows.

Definition 1. k-core. Given a graph G, a subgraph J is
the k-core of G, denoted by Ck(G), if (i) J satisfies degree
constraint, i.e., deg(u, J) ≥ k for every u ∈ J ; and (ii) J is
maximal, i.e., any subgraph J ′ ⊃ J is not a k-core.

Algorithm 1: ComputeCore(G, k)

Input : G : a social network, k : degree constraint
Output : Ck(G)
while exists u ∈ G with deg(u,G) < k do1

G:= G \ {u};2

return G3

Note that we have Ck+1(G) ⊆ Ck(G) [6]. As shown in
Algorithm 1, the k-core of a graph G can be obtained by
recursively removing the vertices whose degrees are less than
k, with a time complexity of O(m). The core number of a
vertex u ∈ G is the highest core where u appears, denoted
by cn(u). In this paper, we use k-shell to denote the vertices
with the core number k, which is defined as follows.

Definition 2. k-shell. Given a graph G, the k-shell of
G, denoted by Sk(G), is the set of vertices with core number
k; that is, Sk(G) = Ck(G) \ Ck+1(G).

Example 2. In Figure 1, we have 3-core C3(G) =
{u4, u5, u8, u9}, 2-core C2(G) = {u1, u2, ..., u11}, and 2-shell
S2(G) = {u1, u2, u3, u6, u7, u10, u11}.

In this paper, once a vertex u in G is anchored, it is
always retained in k-core regardless of the number of neigh-
bors, i.e., deg(u,G) = +∞ if u ∈ A.

Definition 3. anchored k-core. Given a graph G and a
vertex set A ⊆ G, the anchored k-core, denoted by Ck(GA),
is the corresponding k-core of G with vertices in A anchored.

According to the definition of vertex degree, the computa-
tion of k-core with anchors is exactly the same as the k-core
computation without anchors.

In addition to the anchored vertices in A and vertices in
Ck(G), more vertices might be retained in the Ck(GA) due
to the contagious nature of the k-core computation. These
vertices are called followers of the anchor vertices A, de-
noted by F(A,G), because they will not appear in k-core
without the underpinning of A. The size of the followers re-
flects the effectiveness of the anchor vertices, where F(A,G)
= Ck(GA) \ {Ck(G) ∪A}. In the following, we may use an-
chor to represent the anchor vertex, and we use F(A) to
denote F(A,G) when the context is clear.

Problem Statement. Given a graph G, a degree con-
straint k and a budget b, the anchored k-core problem
aims to find a set A of b vertices in G such that the size of
the resulting anchored k-core, Ck(GA), is maximized; that
is, F(A,G) is maximized.

Example 3. In Figure 1, we have 3-core C3(G) =
{u4, u5, u8, u9}. If we set A = {u1}, we have C3(GA) =
{u1, u2, ..., u9} and F(A) = {u2, u3, u6}. We can find that
u1 is the best anchor if b = 1, and {u1, u10} is the set of best
anchors if b = 2.

Problem Complexity. Given a set A of anchor ver-
tices, we can immediately use a linear algorithm to compute
Ck(GA) by not considering any vertex in A at Line 1 of Algo-
rithm 1. However, it is very challenging to find the optimal
A. As shown in [7], when k ≥ 3 the problem of anchored
k-core is NP-hard and W[2]-hard w.r.t the budget b. This
implies that there is no non-trivial polynomial-time approx-
imation algorithm even for k > 2, not mentioning the exact
solution. In this paper, we adopt the greedy heuristic. Not
surprisingly, the greedy algorithm may fail in some particu-
lar cases. For example, a graph G consists of two separate
subgraphs G1 and G2. Specifically, G1 is a chain of �n/2�+1
vertices with with V (G1) = {v1, v2, ..., v�n/2�+1} and E(G1)
= {(vi, vi+1) | vi, vi+1 ∈ V (G1) & 1 ≤ i ≤ �n/2�}. When
k = 2 and b = 2, the greedy algorithm will never choose
an anchor x from V (G1) because F(x,G) = 0. However,
anchoring v1 and v�n/2�+1 can immediately get �n/2� − 1
followers. We can infer that if there is a large subgraph in
which most vertices can only becomes followers by anchor-
ing a set U of vertices simultaneously, and anchoring a single
vertex in U can not get enough followers, then the greedy
algorithm will fail.

The inapproximability of the problem motivated the au-
thors in [7] to develop a polynomial-time algorithm in graphs
with bounded tree-width. However, this assumption does
not hold in many real-life graphs (e.g., social networks).
This motivated us to develop efficient heuristic algorithms
to tackle the problem of anchored k-core on general graphs,
and significantly improve performance by imposing an onion
layer structure.

3. OUR APPROACH
This section presents our onion-layer based anchored k-

core (OLAK) algorithm to effectively and efficiently find a set
of anchors for the anchored k-core problem. In Section 3.1,
we briefly introduce the motivation behind our onion layer
based techniques. Section 3.2 shows how to limit the num-
ber of candidate anchors, and Section 3.3 presents efficient
algorithms to compute the number of followers for a given
anchor. Section 3.4 further develops new pruning techniques
to reduce the number of candidate anchors, and present our
OLAK algorithm by integrating these new techniques. Sec-
tion 3.5 extends our approach to a general setting that each
vertex has a different cost to be anchored.

3.1 Motivation
A straightforward solution for the anchored k-core prob-

lem is to exhaustively enumerate all possible set A with size
b, and compute the resulting anchored k-core for each possi-
ble A. The time complexity of O(

(
n
b

)
m)) is cost-prohibitive.

Considering the hardness of the problem, we resort to a
greedy heuristic which iteratively finds the best anchor ver-
tex, i.e., the vertex with the largest number of followers.
A straightforward implementation of the greedy algorithm
is shown in Algorithm 2. The time complexity is O(bnm),
where n and m correspond to the number of candidate an-
chors in each iteration (Line 3) and the cost of follower
computation (Line 4). Note that we exclude the vertices
in Ck(G) at Line 3 because they are already in k-core.
Although the greedy algorithm does not have the sub-

modular property due to the inapproximability of the prob-
lem, our empirical study shows its resulting anchor vertices
have similar numbers of followers compared to that of the
exact solution.

However, a simple implementation of the greedy algorith-
m is still unscalable on large-scale networks. In this paper,
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Algorithm 2: GreedyAK(G, k, b)

Input : G : a social network, k : degree constraint,
b : number of anchor vertices

Output : A : the set of anchor vertices
A := ∅; i := 0;1
while i < b do2

for each u ∈ G \ {A ∪ Ck(G)} do3
Compute F(A ∪ u,G);4

u∗ ← the best anchor vertex in this iteration;5
A := A ∪ u∗; i := i+ 1;6

return A7

we aim to significantly improve the two components of the
greedy algorithm: (i) the number of candidate anchors in
each iteration (Line 3); and (ii) the computation cost of
finding followers (Line 4), which is determined by the num-
ber of candidate followers to explore.

Motivated by this, we propose an auxiliary structure L,
namely onion layers, to facilitate the computation such that
we can significantly reduce the number of candidate anchors
and candidate followers. At a high level, L consists of a
subset of vertices such that we only need to consider the
vertices within L as the candidate anchors. Moreover, the
vertices within L are organized by different layers. Another
nice property of the layer structure is that, by exploiting
the layer structure, we can effectively bound the region (i.e.,
candidate followers) influenced by an anchor. We also devel-
op early termination techniques based on the layer structure
to recursively eliminate non-promising candidate followers.

In this section, we will focus on the problem of anchored
k-core with b = 1, i.e., finding the best anchor which has the
largest number of followers. In Section 3.4.3 we show the
proposed algorithm can be immediately used in each itera-
tion of Algorithm 2 by considering the previously anchored
vertices. Note that the enhanced greedy algorithm produces
the same result as Algorithm 2 because they follow the same
greedy heuristic.

3.2 Reducing # Candidate Anchors
The onion layers of G, denoted by L, consists of the ver-

tices in (k-1)-shell and their neighbors that are not in k-core;
that is, L := Sk−1(G)∪{NB(Sk−1(G), G) \Ck(G)}. Below,
we show that only the vertices in L need to be considered,
and that F (u) is empty for every u �∈ L.
The following theorem indicates that only the vertices

from (k-1)-shell can be the followers for a given anchor.

Theorem 1. Given a graph G and its (k-1)-shell
Sk−1(G), if a vertex x is anchored, all of its followers come
from (k-1)-shell; that is, u ∈ F (x,G) implies u ∈ Sk−1(G).

Proof. We prove correctness by contradiction. The intu-
ition is that if a follower comes from a k′-shell with k′ < k−1,
we show that it belongs to (k-1)-shell instead.

Let M and N be the k-core and (k-1)-core of G respec-
tively before anchoring the vertex x. As a follower u cannot
come from Ck(G), u has a core number k′ with k′ < k− 1 if
u �∈ Sk−1(G). Let M ′ be the k-core after x is anchored, we
have u ∈ M ′, and deg(v,M ′) ≥ k for every vertex v ∈ M ′.
If we delete x and its corresponding edges from M , we have
deg(v,M ′ \ {x}) ≥ k − 1 for every vertex v ∈ NB(x,M ′)
because deg(v,M ′) ≥ k and only one edge is removed from
v. This means the deletion of x will not be cascaded s-
ince all of its neighbors in M ′ stay in the computation of
Ck−1(M

′ \{x}). Consequently, all vertices in M ′ \{x} satis-
fy the k−1 degree constraint and henceM ′\{x} ⊆ Ck−1(G).
As u ∈ M ′ and u �= x, we have u which belongs to Ck−1(G)

Figure 2: Bounded Anchors and Followers

and this contradicts with the fact that the core number of
u is smaller than k − 1.

Then the following theorem can significantly reduce the
size of the candidate anchor vertices.

Theorem 2. Given a graph G, if an anchored vertex x
has at least one follower, x is from L; that is, |F (x,G)| > 0
implies that x ∈ Sk−1(G) ∪ {NB(Sk−1(G), G) \ Ck(G)}.

Proof. F (x) is the follower set of x and suppose F (x) �=
∅. Additionally, NB(x) ∩ F (x) �= ∅, otherwise, for ev-
ery x’s neighbor u and u /∈ Ck(G), we have u /∈ Ck(Gx),
which leads to Ck(G) = Ck(Gx) and thus F (x) = ∅. S-
ince F (x) ⊆ Sk−1(G) by Theorem 1, x is in Sk−1(G) or at
least one of its neighbors in Sk−1(G), i.e., x ∈ Sk−1(G) ∪
{NB(Sk−1(G), G) \ Ck(G)}.

Example 4. In Figure 2 with k = 3, we have 3-core
C3(G) = {v5, v6, v9, v10}, 2-shell S2(G) = {v1, v2} and o-
nion layers L = {v1, v2, v3}. By Theorem 1, followers of
any vertex are inside S2(G). Promising anchors are inside
L by Theorem 2. Consequently, to find the best anchor, we
only consider the vertices in L as candidate anchors, which
are {v1, v2, v3} in this example. Once a vertex u is anchored,
only vertices {v1, v2} may become followers.

3.3 Efficiently Finding Followers
In this subsection, we develop efficient algorithms to com-

pute followers for a chosen anchor vertex. A straightfor-
ward implementation is to directly apply the k-core com-
putation algorithm (Algorithm 1) with the existence of the
anchor. As an alternative, one may extend the continuous k-
core maintenance algorithms [18, 22, 30] by setting the core
number of the anchor vertex as infinite and then update
core numbers for other vertices. A vertex with core num-
ber increased to k is a follower. This greatly improves the
computational cost. Nevertheless, we show the performance
can be significantly enhanced by using the well-organized
structure of onion layers.
In the experiments, we observe that the size of candidate

anchors in Theorem 2 is still considerably large and there
are many unavoidable attempts to find the best anchor ver-
tex. This implies that it is worthwhile to carefully build
an auxiliary data structure to facilitate the computation of
followers for all candidate vertices. Specifically, we revisit k-
core computation and design the onion layer structure of L
such that the computation of the followers in each attempt
can be greatly enhanced.

3.3.1 The Onion Layer Structure
We notice that the k-core computation (Algorithm 1) does

not explicitly consider the deletion (i.e., leave) order of the
non k-core vertices. We say the deletion order of an instance
of k-core computation is valid if (1) the vertex violates the
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degree constraint at the time it is deleted; and (2) all remain-
ing vertices satisfy the degree constraint when the deletion
stops. Theorem 3 below shows that any valid order will
come up with the k-core.

Theorem 3. Algorithm 1 always return Ck(G) w.r.t any
valid deletion order of non anchored k-core vertices.

Proof. Suppose there are two different valid deletion or-
ders, O1 and O2, leading to two different k-cores C1 and C2,
respectively. Let M = C1 \ C2 and M �= ∅. This implies
that all vertices in M are discarded in the access order O1.
Suppose u1 is the first removed vertex in M , this implies
that deg(u1, C1∪C2) ≥ k because none of the vertices in C1

or M are removed when u1 is accessed. This implies O1 is
not a valid order. Consequently, the Theorem holds.

Theorem 3 motivates us to impose an onion layer struc-
ture on L to facilitate computation of the followers. L con-
sists of s+1 layers, {L0, L1, . . ., Ls} (Ls

0 = L), produced by
an onion-peeling-like algorithm. The pseudo-code is shown
in Algorithm 3. We first compute Ck−1(G) at Line 1, then s-
tart to peel the (k-1)-shell by removing all vertices not satis-
fying the degree constraint at the same time (Lines 2 and 6),
which are kept in the same layer (Line 4). When the peel-
ing process terminates, we have i = s, L = Ls

0 = Sk−1(G)
and N = Ck(G). Then we put the neighbors of Sk−1(G)
(excluding the ones in Ck(G) and Ls

1) to L0 as the highest

layer (Line 7). In this paper, we use Lj
i (i < j) to denote

the vertices between layer i and layer j (inclusive), and l(u)
to denote the layer index of a vertex u in L.

Algorithm 3: OnionPeeling(G, k)

Input : G : a social network, k : degree constraint
Output : onion layers L (i.e., Ls

0)
N := Ck−1(G); i := 0;1

P := {u | deg(u,N) < k & u ∈ N};2

while P �= ∅ do3
i := i+ 1; Li := P ;4

N := N \ P ;5

P := {u | deg(u,N) < k & u ∈ N};6

L0 := {u | u ∈ NB(Li
1, G) \ {N ∪ Li

1}};7

return Li
08

Algorithm Correctness. We show that Si−1(G), ob-
tained in Algorithm 3, is correct; that is, N is Ck(G) when
the peeling process (Lines 3-6) terminates. We can choose
an arbitrary deletion order for the vertices in the same layer
since they do not satisfy the degree constraint. On the oth-
er hand, when the peeling process terminates (i.e., V = ∅
at Line 6), we have deg(u,N) ≥ k for every vertex u ∈ N .
Therefore, we can get a valid deletion order and hence N is
Ck(G) when the peeling process terminates.

The time complexity of Algorithm 3 is O(m) in the worst
case. Although we need to update the onion layer struc-
ture in each iteration of the greedy algorithm, this cost is
greatly amortized by a considerably large number of follower
computations.

Example 5. In Figure 3 with k=3, we have 3-core C3 =
{v5, v6, v8, v9} and 2-core C2 = {v1, v2, v3, v4, v5, v6, v8, v9}.
By checking degree constraint against the vertices in C2, we
have deg(v1, C2) < 3 and deg(v4, C2) < 3. So the layer
L1 = {v1, v4}. After deleting v1 and v4 from C2, we have
deg(v2, C2) < 3 and L2 = {v2}. Iteratively, after deleting
v2 from C2, we have deg(v3, C2) < 3 and L3 = {v3}. After
deleting v3 from C2, 3-core computation is finalised. Note
that for original 2-core C2 we have v7 ∈ NB(C2)\C2. Thus,
L0 = {v7} and all layers are generated.

Figure 3: Onion Layer Structure ( L3
0 )

3.3.2 Onion Layer based Follower Computation
Now, we present an algorithm to efficiently compute the

followers for a given anchor x based on the onion layer struc-
ture. The algorithm has two key techniques: (1) finding can-
didate followers, which explores the candidate followers for
the anchor x; and (2) early termination, which recursively
discards the non-promising candidates during the computa-
tion.

(1) Finding candidate followers. We first introduce the
concept of a support path, and show how to find the candi-
date followers of an anchor x, denoted by CF (x).

Definition 4. Support Path. We say there is a support
path for a vertex u ∈ Ls

1 w.r.t a given anchor vertex x if there
is a path x � u such that all vertices are from Ls

1 and we
have l(y) < l(z) for every two consecutive vertices y and
z along this path. Note that l(u) is the layer index of the
vertex u ∈ L.

The following theorem indicates that we do not need to
consider the vertices without any support path as the can-
didate followers.

Theorem 4. A vertex u ∈ Sk−1(G) is a follower of the
anchor x (i.e., u ∈ CF (x)) implies that there is a support
path x � u.

Proof. According to the definition of vertex degree (note
that deg(u,G) = +∞ if u ∈ A), we can immediately employ
the onion-peeling algorithm (Lines 1-6 in Algorithm 3) to
compute Ck(Gx) in which the vertex x is anchored. In the
computation of Ck(G) (without any anchors), all vertices
in Ls

1 are removed in Algorithm 3, while some of them (i.e.,
followers) may survive the computation of Ck(Gx) (with an-
choring x). Let i denote the layer index of x (i = l(x)). In
the computation of Ck(Gx), for a vertex u ∈ Li−1

1 , when u
is accessed, the degree of u is less than k because the de-
gree at current time is exactly the same as u is accessed in
the computation of Ck(G). So all vertices in Li−1

1 are delet-
ed. Then, when vertices in Li−1

1 have been deleted and no
vertex in Li has been deleted, for every vertex v ∈ Li, the
degree of v is less than k because the degree at current time
is the same as in the computation of Ck(G). Consequently,
all vertices in Li

1 \ {x} cannot follow x and are deleted. At
this point, only neighbors of x in Ls

i+1 become candidate fol-
lowers and clearly they have support paths. For a candidate
follower y, only its neighbors in Ls

j+1 (j = l(y)) become can-
didate followers because y cannot save other vertices in the
computation of Ck(Gx), i.e., the degrees of other vertices
are still less than k with the existence of y. Consequently,
the candidate spread from x is strictly a top-down search
through x’s edges and candidates’ edges, which constitute
support paths. For a vertex z without any support paths,
when non-candidate vertices in Lp−1

1 (p = l(z)) have been
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deleted and no vertex in Lp has been deleted, the degree of
z is less than k because it is same as z is accessed in the
computation of Ck(G). Consequently, every candidate fol-
lower of x has at least one support path which implies there
is always a support path for a follower of x.

According to the above theorem, we may generate can-
didate followers by iteratively activating the neighbors at
lower level of L. In this paper, we use CF (x) to denote all
candidate followers of an anchor x obtained based on Theo-
rem 4.

Example 6. In Figure 3 with k=3, we have 3-core C3 =
{v5, v6, v8, v9} and L3

0 shown on the right side. If v1 is an-
chored, only v2 will be activated as a candidate follower, be-
cause v2 is a neighbor of v1 and is on a lower layer. Although
v4 is also a neighbor of v1, v4 will not be a candidate fol-
lower because they are on the same layer, i.e., l(v1) = l(v4).
Similarly, after v2 becomes a candidate follower, v3 will be
a candidate follower as well, while v4 will not. Thus, we
only need to consider the vertices on {v1, v2, v3} for follower
computation.

(2) Early termination. We remark that existing a support
path is a necessary condition for a follower, and hence we
need to conduct k-core computation on CF (x)∪Ck(G)∪{x}
to identify the true followers. To avoid this, we introduce an
early termination technique to prune the search space. In
this technique, we find the candidate followers of an anchor
x in a layer-by-layer fashion, i.e., for all the vertices which
have been found to be inside of CF (x) and are waiting to
be explored, we explore the vertex with the smallest layer
number first (ties are broken by the vertices’ IDs).

In the layer-by-layer seach, each vertex in L has three
statuses. We say a vertex u is unexplored if it has not
been checked with the degree constraint in our layer-by-layer
traversal. A vertex is survived if it has survived the degree
check, otherwise it becomes discarded. For a given anchor,
a discarded vertex will never be involved in the following
computation, and a survived vertex may become discarded
later due to the deletion cascade. Note that some vertices
are implicitly marked as discarded since they are never ac-
cessed due to the candidate followers pruning technique.

We use d+(u) to denote the degree upper bound of a ver-
tex u in Ck(Gx). Specifically, d

+(u) = d+s (u)+d+u (u)+dc(u)
where d+s (u) (resp. d+u (u)) is the number of survived (resp.
unexplored) neighbors in L and dc(u) is the number of neigh-
bors in Ck(G). The following theorem indicates that we can
safely exclude a candidate follower u if d+(u) < k. The
removal of a vertex may invoke the deletion of other ver-
tices, where details are described in Algorithm 4. When the
shrink function terminates, all of the vertices affected by the
removal of u will be correctly updated.

Theorem 5. A vertex u ∈ Ls
1 cannot be a follower if

d+(u) < k.

Proof. Neighbors of a vertex u can be classified into four
disjoint sets N0, N1, N2 and N3. N0 denotes the set of
neighbors not in Ck−1(G). N1 (resp. N2) denotes the ex-
plored (resp. unexplored) neighbors in L, and N3 denotes
the neighbors from Ck(G). Clearly, none of the neighbors in
N0 contributes degree support to u because they have been
discarded during the computation of Ck−1(G). Once a ver-
tex in L is explored, it will be marked as either survived or
discarded , and a discarded vertex cannot provide degree sup-
port to u w.r.t Ck(Gx). Therefore, d+s (u) is correct. More-
over, we have d+u (u) = |N2| and dc(u) = |N3|. Consequently,
the degree of u in Ck(Gx) is bounded by d+(u).

Figure 4: Early Termination

Example 7. In Figure 4 with k=3, we have 3-core C3 =
{v4, v5, v9, v10} and L3

1 shown on the right side. If v1 is
anchored, the candidate follower set without early termina-
tion technique is {v2, v3, v7, v8}. The candidates starts from
v1 which puts v7 and v2 in the waiting list for future ex-
ploration. Then v7 is explored and we have d+s (v7) = 1,
d+u (v7) = 1 and dc(v7) = 0. Since d+(v7) < 3, v7 is dis-
carded. Then v2 is explored and we have d+(v2) = 3 which
means v8 and v3 can be put in the waiting list. Similarly,
v8 is explored and discarded which leads to the deletion of v2
and v3. Thus, v1 does not have any followers.

Algorithm 4: Shrink(u)

Input : u : the vertex for degree check
for each survived neighbor v with v �= x do1

d+(v) := d+(v)− 1;2

T ← v If d+(v) < k;3

for each v ∈ T do4
u is set discarded;5

Shrink(v);6

(3) Finding Followers. Algorithm 5 lists the pseudo-code
of the follower computation for a chosen anchor x. A min
heap H is used to keep the candidate followers, and the key
of a vertex u is l(u) with ties broken by the vertices’ IDs.
In this way, we explore the candidates in a layer-by-layer
fashion and it is easy to check whether a vertex u has been
explored based on its ID and layer index l(u). For each
popped vertex u, Line 4 computes its degree upper bound
d+(u). If u survives the degree check or u is the anchor x,
u will be set to survived (Line 6) and its neighbors in lower
layers (i.e., unexplored candidate followers) will be pushed
into H if they are not already in H (Lines 7-9). Otherwise,
u is set to discarded and the early termination process is
invoked (Lines 11-12). The deletion may be cascaded and
some survived vertices may be set to discarded during the
process. When the algorithm terminates, all survived ver-
tices in L \ {x} are the followers of x. The time complexity
of the algorithm is O(m) in the worst case because each
edge is at most accessed three times: to push neighbors into
H, compute upper bound and compute the cascade of the
deletion.

Algorithm Correctness. We show the deletion of the
vertices in Algorithm 5 has a valid order O for the compu-
tation of Ck(Gx). A vertex u may be implicitly deleted if
(1) u �∈ CF (x); or (2) u ∈ CF (x), but u is not pushed into
H because some of vertices on its support path has been
set to discarded . We assume all these vertices on the layer
i are deleted in O right before the first vertex on this layer
is popped from H. The correctness of case (1) is immedi-
ate since u �∈ CF (x). In case (2), we conclude that there
does not exist a support path for u in which all vertices are
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Algorithm 5: FindFollowers(x, L)
Input : x : the anchor; L : onion layers
Output : F : the followers of x
H := ∅; H.push(x);1

while H �= ∅ do2
u ← H.pop();3

Compute d+(u);4

if d+(u) ≥ k then5
u is set survived ;6

for each v ∈ NB(u) ∪ L and l(v) > l(u)7

and v /∈ H do8
H.push(v);9

else10
u is set discarded ;11

Shrink(u);12

return survived vertices in L \ {x}13

followers. Using similar rationale to Theorem 4, u cannot
be supported by x and hence can be safely discarded. A
vertex u may also be explicitly deleted in O if (3) u is set
discarded at Line 11 because it fails the degree check when
it is popped; or (4) d+(u) deceases below k due to the dele-
tions of the other vertices (Line 5 of Algorithm 4). Because
d+(u) is correctly computed (Line 4) and maintained (Al-
gorithm 4), u does not satisfy the degree constraint when
u is deleted in cases (3) and (4). Let M denote Ck(G) and
L′ denote the remaining survived vertices when Algorithm 5
terminates. Now, we show that none of the vertices in L′ can
be discarded. As all of the vertices in L have been explored
explicitly or implicitly, we have d+(u) = deg(u, L′ ∪M) for
every vertex u ∈ L′ since d+s (u) = 0, d+u (u) = deg(u, L′) and
dc(u) = deg(u,M). As d+(u) ≥ k for every vertex u ∈ L′,
we have deg(u, L′∪M) ≥ k and none of the vertices in L′∪M
can be discarded. As such, O is a valid order and L′ ∪ M
= Ck(Gx).

Remark 1. Note that we can also apply the onion layer
structure to facilitate continuous core maintenance [30]. In
this problem, when a new edge is inserted, we can set the
corresponding vertex, whose core number increases to k, as
an anchor. With the similar rationale, the layer structure
can be used to reduce the search region of the candidate fol-
lowers, whose core values may be updated. However, it is
not cost effective because the onion layer structure must be
updated after every insertion of an edge, and the new edges
may arrive in a streaming fashion.

3.4 The OLAK Algorithm
In this section, we introduce two pruning techniques to

further reduce the number of candidate anchors. Then we
present our OLAK algorithm to find the best anchor in graph
G and show how to handle the case with multiple anchors.

3.4.1 Follower based Pruning
The following theorem indicates that, to find the best an-

chor, we do not need to consider an anchor if it is a follower
of another anchor; that is, an anchor u is shadowed by x if
u ∈ F(x).

Theorem 6. Given two vertices x and u in L, we have
|F(x)| > |F(u)| if u ∈ F(x).

Proof. u ∈ F(x) implies that there is a support path
x � u, and hence we have CF (u) ⊂ CF (x) where CF (u)
and CF (x) are candidate followers of u and x obtained by
Theorem 4, respectively. u ∈ F(x) also implies that u has

enough degree support when u is not anchored and x is an-
chored, i.e., deg(u,F(x) ∪ {x} ∪Ck(G)) ≥ k. Consequently,
every vertex v in F(u) will not be discarded in the compu-
tation of F(x) since deg(v,F(u) ∪ {u} ∪ Ck(G)) ≥ k. So
F(u) ⊂ F(x) and then |F(x)| > |F(u)|.

Figure 5: Followers Pruning and Upper Bound Pruning

Example 8. In Figure 5 with k=3, we have 3-core C3 =
{v5, v6, v8, v9} and L3

0 shown on the right side. In the pro-
cedure of finding a best anchor, if v1 has been tried as an
anchor, we have F(v1) = {v2, v3}. So neither v2 nor v3 can
be a best anchor.

3.4.2 Upper Bound based Pruning
Let W (x) denote the neighbors of a vertex x in lower

layers, i.e., W (x) = {u | u ∈ NB(x) ∩ L and l(u) > l(x)}.
We use UB(x) to denote the upper bound of |F(x)|, where

UB(x) =

{ ∑
u∈W (x)(UB(u) + 1) if |W (x)| > 0;

0 otherwise.
(1)

The following theorem shows that we can accumulatively
compute the upper bound of the number of followers for
vertices in Ls

1. The correctness is evident since |CF (x)| ≤
UB(x) and |F(x)| ≤ |CF (x)| for every vertex x.

Theorem 7. Let λ denote the number of followers of the
best anchor seen so far. We can exclude any candidate an-
chor x if UB(x) < λ.

Example 9. In Figure 5 with k=3, we have the 3-core
C3 = {v5, v6, v8, v9} and L3

0 shown on the right side. By E-
quation (1), we have UB(v3) = 0, UB(v2) = 1, UB(v1) = 2,
UB(v4) = 2 and UB(v7) = 3. In the procedure to find a best
anchor, if v1 is tried for anchoring and it becomes current
best anchor with |F(v1)| = 2, we don’t need to consider an-
choring any vertices except for v7 because their upper bounds
do not exceed 2.

Based on Equation (1), our implementation computes the
upper bound of the follower size for each vertex in L in a
bottom-up fashion with a time complexity of O(m). To get
tighter upper bounds, we can replace the UB(u) in Equa-
tion (1) with CF (u) for each u whose CF (u) has been com-
puted. This does not pay off because the time complexity
becomes O(nm) which reaches the complexity of the greedy
algorithm for the anchored k-core problem with b = 1. It is
also confirmed by initial experiments.

3.4.3 Combining the Elements
Algorithm 6 illustrates the details of OLAK which finds the

best anchor vertex for a given graph G (i.e., b = 1). Par-
ticularly, we first apply Algorithm 3 to compute the onion
layers of G (Line 1) and the upper bound of each vertex
in L (Line 2). Initially, the candidate anchor set T is set
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Algorithm 6: OLAK(G, k)

Input : G : a social network, k : degree constraint
Output : the best anchor vertex
Compute onion layers L (Algorithm 3);1

Compute UB(x) for each vertex x ∈ L;2

T ← L (Theorem 2); λ = 0;3

for each x ∈ T with decreasing order of UB(x) do4
if UB(x) < λ then5

Break (Theorem 7);6

F(x) ← FindFollowers(x, L) (Algorithm 5);7

if F(x) �= ∅ then8
T := T \ F(x) (Theorem 6);9

if |F(x)| > λ then10
λ := |F(x)|;11

return the best anchor12

to Ls
1 according to Theorem 2. Then we sequentially access

vertices in T based on their upper bounds of the number
of followers in decreasing order, and compute their followers
by Algorithm 5. According to the follower-based pruning,
Line 9 excludes the followers of current accessed vertex from
T . We continuously maintain the largest number of followers
seen so far for one vertex, denoted by λ, which may elimi-
nate some non-promising candidate anchors in T by upper
bound based pruning (Line 6). We have the best anchor
when the algorithm terminates.

To handle general cases where b > 1, our OLAK algorithm
can easily fit within the greedy algorithm (Replacing Lines 3-
4 of Algorithm 2) to find the best vertex in each iteration.
The only difference is that we need to enforce that the an-
chored vertices in previous iterations remain in the k-core.
Note that in order to avoid computing Ck−1(GA) (Line 1
of Algorithm 3) from scratch in each iteration, we adopt
an existing core maintenance technique [30] to continuous-
ly maintain the (k-1)-core and the k-core after inserting a
best anchor. Moreover, if the (k-1)-core consists of a set of
disconnected subgraphs, we can avoid the re-computation of
the followers of a subgraph in the next iteration unless there
is a new anchor in this subgraph. The time complexity of
the algorithm remains O(bnm) in the worst case. Neverthe-
less, our empirical study shows we can significantly improve
performance of the straightforward implementation (Algo-
rithm 2) by at least 3 orders of magnitude, due to a much
smaller number of candidate anchors and a more efficient
follower computation algorithm.

Algorithm Correctness. (1) For the anchored k-core
problem with b = 1 on graph G, we get the correct re-
sult immediately based on the correctness of proposed tech-
niques. (2) Assume the algorithm is correct when b = i,
i ∈ N+ and returns the anchor set A. (3) Consider the
problem with b = i + 1, now the k-core of G is Ck(GA) s-
ince we have deg(u,G) ≥ k for any u ∈ Ck(GA) (note that
deg(v,G) = +∞ for any v ∈ A) and Ck(GA) is maximal
(according to Definition 3). Then the (k-1)-core is updated
correctly by the core maintenance algorithm. Thus, we get
the updated onion layers L correctly by Algorithm 3. Since
all the techniques are based on L, after running OLAK on G
with b = 1 again, we get the correct result A ∪ {x} for the
case of b = i+ 1 on G. Note that in the (k-1)-core N of G,
for every disconnected subgraph S with S ∈ N and x /∈ S,
S keeps same after anchoring x, thus, the previous result of
anchoring any vertex in S can be reused.

3.5 The Setting for Different Vertex Costs
A more practical and general setting is that each vertex

has a different cost to be anchored. Towards this setting,

we show that all proposed techniques also work well.
Given a degree constraint k, a budget b and a graph G =

(V,E,w) where w(u) is the cost of anchoring u for every
u ∈ V (G). The anchored k-core problem becomes finding a
set A of vertices in V (G) such that the size of the resulting
anchored k-core is maximized and Σv∈Aw(v) ≤ b.

Since the computation of the k-core, onion-layers and fol-
lowers are not relevant to the anchor cost of the vertex, our
updates mainly focus on the suitability evaluation of the an-
chor vertex. Instead of using the number of followers (i.e.,
|F(u)|), we use a utility function f(u) to evaluate the suit-

ability of a candidate anchor u with f(u) = |F(u)|
w(u)

where

w(u) is the the cost of the vertex u to be anchored. We
need to do the following updates:

• The consumption of budget is the summation of the
anchoring costs of the anchored vertices. We cannot
exceed the budget when introducing a new anchor ver-
tex (Line 5 of Algorithm 2, Line 4 of Algorithm 6).

• Replace the |F(u)| with f(u) at Lines 10-11 of Algo-
rithm 6. The score threshold λ in Algorithm 6 is the
best f(u) value seen so far.

• At Line 9 of Algorithm 6, we only remove a vertex
u ∈ F(x) when w(u) ≥ w(x).

Note that we do not need to re-consider the candidate vertex
(i.e., onion-layers) under the new settings because we have
|F(u)| = 0 (i.e., f(u) = 0) for every vertex u not on the
onion-layers.

4. EXPERIMENTAL EVALUATION
This section evaluates the effectiveness and efficiency of

all techniques through comprehensive experiments.

4.1 Experimental Setting
Algorithms. To the best of our knowledge, no existing
work investigates efficient algorithms for the anchored k-
core problem on general graphs. Towards the effectiveness,
we tested five algorithms (Rand, Rand1, Rand2, Degree and
Exact) to choose different anchors to see the number of fol-
lowers, compared with our greedy result (OLAK). Case stud-
ies were made on the greedy result. We also implement-
ed and evaluated the algorithms to assess our techniques
incrementally, from a naive algorithm (Naive) through to
the final advanced algorithm (OLAK). One baseline algorith-
m (Baseline2) based on core maintenance is also evaluated.
Table 2 shows the summary for algorithms.

Datasets. Ten real-life networks were deployed in our ex-
periments and we assume all vertices in each network are
initially engaged. The original data of Yelp was downloaded
from https://www.yelp.com.au/dataset_challenge, DBLP
came from http://dblp.uni-trier.de/ and the others
were from http://snap.stanford.edu/. Table 3 shows the
statistics of the 10 datasets, listed in increasing order of their
edge numbers.

Parameters. We conducted experiments under different
settings by varying the degree constraint k and the budget
for the anchors b. The default values of k and b were both
20. In the experiments, the range of k varied from 5 to 50
and the range of b varied from 1 to 100.
All programs were implemented in standard C++ and

compiled with G++ in Linux. All experiments were per-
formed on a machine with Intel Xeon 2.3GHz CPU and
Redhat Linux System. We evaluate the effectiveness of the
algorithms by reporting the number of the followers for the
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Table 2: Summary of Algorithms

Algorithm Description

Rand randomly chooses b anchors from G \ Ck(G)
Rand1 randomly chooses b anchors from N1 where

N1 = L ∩NB(Ck(G))
Rand2 randomly chooses b anchors from N2 where

N2 = L ∩NB(N1)
Degree chooses the b anchors from N2 with highest de-

grees in L \ L0

Exact identifies the optimal solution by exhaustively
searching all possible combinations of b anchors
by Algorithm 5

Naive computes a k-core on G for each candidate an-
chor u ∈ G \ Ck(G) to find the best anchor in
each iteration of Algorithm 2

Baseline1 computes a k-core on G for each candidate an-
chor u ∈ L (Theorem 2) to find the best anchor
in each iteration of Algorithm 2

Baseline2 applies the state-of-art core maintenance algo-
rithm [30] to compute followers for each candi-
date anchor in Baseline1

BL1+C computes a k-core on {x} ∪ Ck−1(G) (Theo-
rem 1) for each candidate anchor x in Baseline1

BL1+CF computes a k-core on CF (x) ∪ {x} ∪ Ck(G)
(Theorem 4) for each candidate anchor x in
Baseline1

BL1+CFE finds followers from CF (x) by early termina-
tion technique (Theorem 5) for each candidate
anchor x in Baseline1, i.e., applies Algorithm 5

BL1+CFEP equips the follower based pruning (Theorem 6)
in BL1+CFE

OLAK equips the upper bound based pruning (Theo-
rem 7) in BL1+CFEP and arrives at Algorithm 6

Table 3: Statistics of Datasets
Dataset Nodes Edges davg dmax

Facebook 4,039 88,234 43.7 1045
Brightkite 58,228 194,090 6.7 1098
Gowalla 196,591 456,830 4.7 9967
Yelp 552,339 1,781,908 6.5 3812
Flickr 105,938 2,316,948 43.7 5465
YouTube 1,134,890 2,987,624 5.3 28754
DBLP 1,566,919 6,461,300 8.3 2023
Pokec 1,632,803 8,320,605 10.2 7266
LiveJournal 3,997,962 34,681,189 17.4 14815
Orkut 3,072,441 117,185,083 76.3 33313

resulting anchors. The efficiency of the algorithms is mea-
sured by its running time and the number of the candidate
anchors and followers accessed.

4.2 Effectiveness
We used the result of OLAK to evaluate the effectiveness

for all greedy algorithms, since they follow the same heuris-
tic and produce the same results. We also conducted case
studies to show real-world examples for the anchored k-core.

4.2.1 Effectiveness of the Greedy Algorithm
Figure 6 compares the number of followers w.r.t b anchors

identified by OLAK with three random approach (Rand, Rand1
and Rand2) and one degree based approaches (Degree).We
report the average number of followers for 500 independent
tests in three random methods. The resulting numbers for
other two methods are always unique because we choose the
highest degree anchors in Degree and find the best anchors
in OLAK. Note that L \ L0 is the set which contains all fol-
lowers for any anchor, and L contains all promising anchors.
Degree basically improve performance by choosing high de-
gree anchors, but is still significantly outperformed by OLAK.
In Figure 6(a), Degree fails to get any follower in Flickr
because a high degree vertex u in N2 does not necessarily
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Figure 6: Number of Followers

have a follower. It is common to find no followers after 20
random anchors are chosen. This is because we observe that,
the majority of the vertices do not have any followers in al-
l 10 real-life networks. For OLAK, we notice that there are
630 followers in Pokec dataset with a single anchored vertex.
Figures 6(a) shows that OLAK underpins more than 1000 fol-
lowers with 20 anchors on the Livejournal and Pokec. Fig-
ures 6(b)-(e) show the margin between OLAK and the other
algorithms does not change much when k and b vary.

 0

 5

 10

 15

 20

1 2 3 4

#F
ol

lo
w

er
s

b

0.01s,0.01s

0.02s,8.48s
0.03s,6725s

0.03s,5423000sGreedy
Exact

(a) Facebook, k=30

 0

 10

 20

 30

 40

 50

5 10 15 20 25 30

#F
ol

lo
w

er
s

k

0.22s,
1150s

0.24s,
1622s

0.23s,
1483s 0.3s,

3331s

0.1s,
295s

0.09s,
236s

Greedy
Exact

(b) Brightkite, b=2
Figure 7: Greedy vs Exact

To further justify the effectiveness of OLAK, we also com-
pare its performance with Exact, which identifies the opti-
mal solution by exhaustively searching two relatively small
networks, where b varies from 1 to 4 on Facebook and k
varies from 5 to 30 on Brightkite. Figure 7 shows that
OLAK finds the optimal solution in all but one setting. Note
that we only test Exact on small datasets with small b values
because we cannot afford its running time for other settings.

Figure 8 reports the impact of b and k on the size of
the followers for OLAK. The number of the followers clearly
grows with the increase of the budget b. The size becomes
relatively small when k is small or large.

4.2.2 Case Studies
We show the anchors identified by OLAK and their cor-

responding followers in Figure 9(a)-(b). Figure 9(a) shows
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Figure 8: Effect of k and b
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Figure 9: Case Studies

that when the user “Caley” alone is anchored, there are 31
followers in Yelp with k = 30. It is interesting that on-
ly 10 of them are neighbors of “Caley”, and the others are
supported indirectly.

In Figure 9(b), DBLP is deployed and k is set to 20. In the
case study, there is an edge between two authors if they co-
author at least three papers. When b = 2, two authors are
identified by OLAK and there are 26 followers. We find that
although the two anchored authors have not co-authored
any papers, they belong to the same community and 8 out of
their 9 papers in DBLP have been published in Nucleic Acids
Research. Not surprisingly, all their followers are also from
the same community, and there are already considerably
large number of co-authored papers among them.

We also investigated the characteristics of the anchors i-
dentified by OLAK in different settings and datasets. It is
non-trivial to understand the potential of a vertex based
on its local structure information (e.g., degree or neighbor’s
degrees), due to the complicated cascade behavior of unrav-
eling in the networks.

4.3 Efficiency
We first investigate the efficiency of the techniques

proposed in this paper, then compare our OLAK algorithm
with Baseline1 and Baseline2 under different settings.

4.3.1 Evaluation of Individual Techniques
The essence of our proposed techniques is to use the onion

layer structure to speed up the anchored k-core computation
by significantly reducing the number of candidate anchors
and candidate followers. Below, we evaluate the proposed
techniques against these two criteria.
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Figure 10: Reducing Candidate Anchors

Reducing Candidate Anchors. Figure 10 reports the
sizes of G\Ck(G), onion layers L and (k-1)-shell (i.e.,L\L0)
on two networks Brightkite and DBLP with b = 1 and
k varied from 5 to 30. Recall that Naive checks all ver-
tices in G \Ck, and the other three algorithms (Baseline1,
Baseline2 and OLAK) only consider the vertices from L as
candidate anchors (Theorem 2). We also report the size of
(k-1)-shell (L \ L0), which bounds the size of the candidate
followers by Theorem 1. As expected, the size of G \Ck(G)
grows with k because the size of k-core decreases with k.
Conversely, the size of (k-1)-shell is much smaller, and drops
with the growth of k. The size of onion layers L also de-
creases quickly with k. It also shows that the majority of the
vertices in L are neighbors of (k-1)-shell vertices, especially
for small k, which is not considered in the computation of
the followers.
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Figure 11: Pruning Candidate Followers

Pruning Candidate Followers. Figure 11 demonstrates
the effectiveness of the pruning techniques which help us
to eliminate non-promising candidate followers. Three al-
gorithms were evaluated using the number of visited follow-
ers and the running time on two networks Brightkite and
Gowalla by varying b and k, respectively. In Baseline1, all
vertices in G are regarded as candidate followers during the
k-core computation. BL1+C represents Baseline1 equipped
with onion layers, where candidate followers are obtained
from the (k-1)-shell. (Theorem 1), and BL1+CF is Baseline1
equipped with the candidate exploration technique, which
only explores the vertices in CF (x) for each candidate an-
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chor x (Theorem 4). We report that both pruning tech-
niques significantly reduce the number of the candidate fol-
lowers explored, especially the support path based candidate
follower exploration (Theorem 4).
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Figure 12: Effectiveness of Early Termination

Early Termination. Figure 12 shows that our early ter-
mination technique (Theorem 5) , applied in BL1+CFE, can
further significantly reduce the number of explored vertices
during computation, and hence improves performance by at
least one order of magnitude.
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Figure 13: Further Pruning Candidate Anchors

Pruning Candidate Anchors. Figure 13 evaluates the ef-
fectiveness of the follower based and upper-bound based can-
didate anchor pruning techniques on the Orkut dataset with
k ranging from 5 to 30. In particular, BL1+CFE is the OLAK
algorithm without these two pruning techniques. BL1+CFEP
includes the follower-based pruning (Theorem 6), and OLAK
further equips the algorithm with upper-bound based prun-
ing (Theorem 7). We report that both pruning techniques
contribute to the performance of OLAK. One interesting ob-
servation is that although upper-bound based pruning e-
liminates many more candidate anchors than follower-based
pruning, but their contributions in terms of running time do
not have a big difference. This is because the majority of
the candidate anchors pruned by their upper-bound are im-
mediately excluded by our follower computation algorithm
(Algorithm 5).

We observe that the most powerful optimization is prun-
ing candidate followers by onion layers, followed by early
termination, reducing candidate anchors and two pruning
rules for candidate anchors.

4.3.2 Performance Evaluation
We evaluate the performance of Baseline1, Baseline2

and OLAK in different settings.
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Figure 14: Running time on Different Datasets

Different Datasets (Networks). Figure 14 reports the
performance of the three algorithms on 10 networks with
k = 20 and b = 20. The datasets are ordered by their
network sizes (i.e., the number of edges). Not surprising-
ly, the performance of Baseline1 is very poor and cannot
finish computation on 8 networks within one week. Its per-
formance is significantly enhanced by applying the state-of-
the-art core maintenance algorithm for the follower compu-
tation on onion layers. OLAK outperforms Baseline2 by a
large margin with up to 3 orders of magnitude.

We observed that the size of the onion layers has great
impact on the running time of OLAK, which is closely related
to the network size. This is because the main computation is
conducted on the vertices in the onion layers. Other factors
such as avg. degree, max. degree and the number of onion
layers in datasets do not make noticeable differences.
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Figure 15: Effect of k and b

Effect of k and b. Figure 15 studies the impact of k and
b on the three algorithms against two datasets Brightkite
and Orkut, with b varied from 1 to 100 and k ranged from
5 to 50. OLAK significantly outperforms the two baseline
algorithms under all settings. We omit Baseline1 for Orkut
as it cannot finish the computation within one month.

5. RELATED WORK
k-core computation, first introduced by Seidman [23], is

a fundamental graph problem with a wide spectrum of ap-
plications such as social contagion [24], event detection [20],
network analysis [3], network visualization [29, 31], inter-
net topology [4, 8], dense subgraph problems [5], influence
study [17, 25], graph clustering [15], graph model valida-
tion [16], structure analysis of software system [28], and
protein function prediction [2]. Batagelj and Zaversnik [6]
present a linear-time in-memory algorithm to compute the
core numbers of all vertices in a graph. Wen et al. [26] and
Cheng et al. [9] propose I/O efficient algorithms for core
number computation on graphs that cannot fit in the main
memory of a machine. Locally computing and estimating
core numbers are studied in [14] and [21] respectively. Algo-
rithms for core number maintenance on dynamic graphs are
proposed by [1, 18, 22, 30]. As we do not need to decom-
pose or estimate core numbers and we aim to propose an
in-memory solution, the only applicable existing technique
is core maintenance, which can be used by setting the core
number of a candidate anchor as infinite and inserting its
edges (Baseline2 in the experiments).
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There has been significant focus on the engagement dy-
namic in social networks (e.g., [7, 10, 11, 12, 13, 19, 27]).
In this research direction, preventing network unraveling,
recently studied by Bhawalkar and Kleinberg et al., is mod-
elled as the anchored k-core problem [7]. This is because
the degeneration property of k-core can be used to quantify
engagement dynamics in real social networks [19]. As shown
in [7], the unraveling process stops when the remaining en-
gaged individuals correspond to the k-core of the network.
Nevertheless, the anchored k-core problem has been proven
to be an NP-hard problem even on a planar graph [7, 10].
In [7], an algorithm was proposed to solve the anchored k-
core problem on graphs with bounded tree-width, which is
inapplicable to real-life social networks. To the best of our
knowledge, the algorithm proposed in this paper is the first
practical algorithm to solve the anchored k-core problem on
general large networks.

6. CONCLUSION
In this paper, we study the problem of anchored k-core,

which aims to anchor a set of vertices in a network such that
the size of the resulting k-core is maximized. The hardness
of this problem motivate us to develop greedy algorithms.
We design the onion layer structure to maintain a small
set of vertices in the graph, such that (1) we only need to
consider the vertices in the onion layers to find the best
anchor; and (2) the layer structure enables us to develop an
efficient follower computation algorithm using a layer-by-
layer paradigm. The layer structure also helps us to develop
early termination and pruning techniques to further prune
follower and anchor candidates. Then we present our OLAK
algorithm by combining all proposed techniques. Empirical
study shows that we can find critical vertices in the network
whose participation may lead to a large number of followers.
Extensive experiments on 10 real-life networks show that
OLAK improves the performance of the naive solution by at
least 3 orders of magnitude.
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