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ABSTRACT
Given a heterogeneous network, with nodes of di↵erent types
– e.g., products, users and sellers from an online recom-
mendation site like Amazon – and labels for a few nodes
(‘honest’, ‘suspicious’, etc), can we find a closed formula for
Belief Propagation (BP), exact or approximate? Can we say
whether it will converge?

BP, traditionally an inference algorithm for graphical mod-
els, exploits so-called “network e↵ects” to perform graph
classification tasks when labels for a subset of nodes are
provided; and it has been successful in numerous settings
like fraudulent entity detection in online retailers and clas-
sification in social networks. However, it does not have a
closed-form nor does it provide convergence guarantees in
general. We propose ZooBP, a method to perform fast BP
on undirected heterogeneous graphs with provable conver-
gence guarantees. ZooBP has the following advantages: (1)
Generality: It works on heterogeneous graphs with multiple
types of nodes and edges; (2) Closed-form solution: ZooBP

gives a closed-form solution as well as convergence guaran-
tees; (3) Scalability: ZooBP is linear on the graph size and
is up to 600⇥ faster than BP, running on graphs with 3.3
million edges in a few seconds. (4) E↵ectiveness: Applied on
real data (a Flipkart e-commerce network with users, prod-
ucts and sellers), ZooBP identifies fraudulent users with a
near-perfect precision of 92.3 % over the top 300 results.

1. INTRODUCTION
Suppose we are given users, software products, reviews

(‘likes’) and manufacturers; and that we know there are
two types of users (honest, dishonest), three types of prod-
ucts (high-quality-safe, low-quality-safe, malware), and two
types of sellers (malware, non-malware). Suppose that we
also know that user ‘Smith’ is ‘honest’, while seller ‘evil-dev’
sells malware. Given this information, the BP algorithm al-
lows us to infer the types of all other nodes – but will it
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Figure 1: ZooBP is very general and can handle any undi-
rected, weighted, heterogeneous multi graph

converge? Can we have a closed formula for the beliefs of
all nodes in the above setting?

The generic problem for BP is informally given by:

Informal Problem 1 (General BP). Given
• a large heterogeneous graph (as, e.g., in Figure 1),
• for each node type, a set of classes (labels) (e.g. hon-

est/dishonest for user nodes)
• the compatibility matrices for each edge-type, indicat-

ing the a�nity between the nodes’ classes (labels)
• initial beliefs about a node’s class (label) for a few

nodes in the graph
Find the most probable class (label) for each node.

This problem is found in many other scenarios besides the
above mentioned one: in a health-insurance fraud setting,
for example, we could have patients (honest or accomplices),
doctors (honest or corrupt) and insurance claims (low or ex-
pensive or bogus). The textbook solution to this problem
is loopy Belief Propagation (BP, in short) – an iterative
message-passing algorithm, which, in general, o↵ers no con-
vergence guarantees.

Informal Problem 2 (BP- Closed-form solution). Given
a setting like the general BP. Find an accurate, closed-form
solution for the final beliefs.

Here, we show how to derive a closed-form solution (The-
orem 1) that almost perfectly approximates the result of
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data with 3 node types and 5 edge types. Competitors such as CAMLP are not applicable to this scenario.

loopy BP, using well-understood highly optimized matrix
operations and with provable convergence properties. The
contributions of our work are:
• Generality: ZooBP works on any undirected weighted

heterogeneous graph with multiple edge types. More-
over, it trivially includes previous results – FaBP [15] and
LinBP [12] – as special cases.

• Closed-form solution: Thanks to our closed-form solu-
tion (Theorem 1), we know when our method will converge
(Theorem 2).

• Scalability: ZooBP is linear on the input size and it
matches or outperforms BP with up to 600⇥ speed-up
(Figure 2a), requiring a few seconds on a stock machine,
for million-scale graphs.

• E↵ectiveness: On real data (product and seller reviews
from Flipkart), ZooBP achieved precision of 92.3 % in
the top 300 most suspicious users (Figure 2c).
We want to emphasize that the dramatic 600⇥ savings are

largely thanks to our closed formula: Matlab is very ine�-
cient in handling loops, but there is no other choice with the
traditional BP equations (Eq. 3). With ZooBP, however,
we can replace the loops with a matrix equation (Theorem
1) and this allows the use of all the highly optimized matrix
algorithms resulting in dramatic speed-ups. Comparisons of
C++ implementations (Figure 2b) show that ZooBP never
loses to BP; and it usually wins by a factor of 2⇥ to 3⇥, de-
pending on the relative speed of additions, multiplications,
and function calls (logarithms) for the given machine.
Reproducibility: Our code is open-sourced at

http://www.cs.cmu.edu/ deswaran/code/zoobp.zip .

2. RELATED WORK
In this section, we review related works on belief propa-

gation and summarize prior attempts on linearization.
Propagation in Networks. Exploiting network e↵ects im-

proves accuracy in numerous classification tasks [14, 18].
Such methods include random walk with restarts [24], semi-
supervised learning [5], label propagation [27] and belief
propagation [20]. Unlike BP, most of the proposed tech-
niques operate on simple unipartite networks only (even
though more complex graphs are omnipresent [3]) or they
do not extend to scenarios of heterophily; hence we mainly
focus on BP in this work.

Belief Propagation. Belief Propagation [20] is an e�cient
inference algorithm in graphical models, which works by it-
eratively propagating network e↵ects. However, there is no
closed formula for its solution and it is not guaranteed to
converge unless the graph has no loops [21] or on a few
other special cases [16]. Nevertheless, loopy BP works well
in practice [17] and it has been successfully applied to nu-
merous settings such as error-correcting codes [10, 9], stereo
matching in computer vision [23, 8], fraud detection [19, 1]
and interactive graph exploration [6]. The success of BP
has increased the interest to approximate BP and to find
closed-form solutions in specialized settings.

Approximation Attempts. Koutra et. al. [15] provide a
linearized approximation of BP for unipartite graphs with
two classes. and Gatterbauer et. al. [12] extended it to
multiple classes. Gatterbauer [11] attempted to extend this
even further to |T |-partite networks. None of the above can
handle a general heterogeneous graph with multiple types of
nodes and edges. Even the most general formulation above
[11] is limited to single edge type between two node types
and hence cannot handle real world scenarios where edges
naturally have a polarity (e.g., product-rating networks). In
addition, edges between nodes of the same type cannot be
handled(e.g., friendship edges). Furthermore, [11] neither
provides a scalable implementation1 nor easy-to-compute
convergence conditions. Independently, Yamaguchi et al [25]
used the degree of a node as a measure the confidence of be-
lief to linearize BP in a completely new way. However, this
also assumes a case of unipartite graphs with a single edge
type.

Finally, we note that our notion of the term residual di↵ers
from that of Residual Belief Propagation (RBP) [7]. RBP
calculates residuals based on the di↵erence in messages in
the successive iterations while our residual beliefs and mes-
sages are deviations from their centered values (as we will
demonstrate shortly). Our goals are also di↵erent: RBP
uses residuals to derive an e�cient asynchronous BP sched-
ule whereas our interest is in linearizing BP in a heteroge-
neous setting and providing precise convergence guarantees.

1

This is non-trivial – naively solving for beliefs directly from

Theorem 1 leads to an algorithm quadratic in graph size as

(I�P+Q)

�1

is a dense matrix.
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In summary, as shown in Table 1, none of competitors
satisfy all properties that ZooBP satisfies.

Table 1: Contrasting ZooBP against previous methods

Property B
P

[2
6]
,
R
B
P

[7
]

F
a
B
P

[1
5]

L
i
n
B
P

[1
2]

C
A
M
L
P

[2
5]

[1
1]

Z
o
o
B
P

> 2 classes 3 3 3 3 3
Node heterogeneity 3 3 3
Unrestricted edge types 3 3
Closed-form solution 3 3 3 3 3
Convergence guarantees 3 3 3 3 3
Scalable implementation 3 3 3 3 3

3. PRELIMINARIES
We will first provide mathematical definitions and results

that we will use in our derivation and then introduce the
basic framework of Belief Propagation. We will follow the
notation given in Table 2.

Definition 1 (Constant-margin matrix). A p⇥ q matrix is
said to be constant-margin of scale ↵ if each row sums to q↵
and each column sums to p↵.

Definition 2 (Matrix Vectorization [13]). Vectorization of
an m⇥ n matrix converts it into a mn⇥ 1 vector given by:

vec(X) = [xT
1

. . .xT
n ]

T

where xi denotes the ith column vector of matrix X.

Definition 3 (Kronecker product [13]). The Kronecker prod-
uct of two matrices Xm⇥n and Yp⇥q is the mp⇥ nq matrix
given by:

X⌦Y =

2

6664

X(1, 1)Y X(1, 2)Y . . . X(1, n)Y
X(2, 1)Y X(2, 2)Y . . . X(2, n)Y

...
...

. . .
...

X(m, 1)Y X(m, 2)Y . . . X(m,n)Y

3

7775

Definition 4 (Centered Matrix/Vector). A matrix or a vec-
tor is said to be c-centered if the average of all its elements
is c and the maximal deviation from c is small in magnitude
when compared to c.

Definition 5 (Residual vector/matrix). A 0-centered vec-
tor/matrix is termed as residual. The residual of a c-centered
vector or matrix is obtained by subtracting c from each of its
elements.

Table 2: Notation
Entity/Operator Notation
Scalar small or capital, italics; e.g., S, ks
Vector bold, small; e.g., bu,muv

Matrix bold, capital; e.g., Bs,Q
Vectorization vec(.)
Set/Multiset calligraphic, capital; e.g., S
Kronecker product ⌦
Direct sum of matrices

L

Vector/matrix entry Not bold; e.g., bu(i), H(i, j)
Spectral radius ⇢(.)

Example 1. X =


2.8 3 3.2
3.2 3 2.8

�
is a constant-margin ma-

trix of scale 3. It is also a 3-centered matrix, as the maximal
deviation 0.2 is small compared to the overall matrix average

3. Its residual is

�0.2 0 0.2
0.2 0 �0.2

�
.

Lemma 1 (Roth’s column lemma [13]). For any three ma-
trices X,Y and Z,

vec(XYZ) = (ZT ⌦X)vec(Y) (1)

Definition 6 (Matrix Direct Sum [2]). The matrix direct
sum of n square matrices A

1

, . . . ,An is the block diagonal
matrix given by

Ln
i=1

Ai = diag(A
1

, . . . ,An).

3.1 Belief Propagation
Belief propagation, also known as sum-product message

passing, is a technique to perform approximate inference in
graphical models. The algorithm starts with prior beliefs for
a certain subset of nodes in a graph (e.g.,

�
eu; prior knowl-

edge about u’s class) and then sequentially propagates from
one node (say, u) to another (v) a message (

�
muv) which

represents u’s belief about v’s class. This process is carried
out until a steady state is reached (assuming convergence).
After the sequential update process, the final beliefs about

a node’s class (e.g.,
�
bu; the inferred information about the

class of u) are recovered from the messages that a node re-
ceives.

Eq. (2) and Eq. (3) give the precise updates of the BP
algorithm as given by Yedidia [26].

�
bu(i)  1

Zu

�
eu(i)

Y

v2N (u)

�
mvu(i) (2)

�
mvu(i)  1

Zvu

X

j

�(i, j)
�
ev(j)

Y

w2N (v)\u

�
mwv(j) (3)

In every step of BP, the message that a node sends to an-
other (Eq. (3)) is computed as the product of the messages
it has received from all its neighbors except the recipient it-
self (echo-cancellation2), modulated by the discrete potential
function �(i, j). We let �(i, j) be the conditional probability
P(i|j) of class i on node u given class j on node v to facil-
itate probabilistic interpretation. This value is computed
using an edge compatibility matrix or edge-potential matrix
�
H as: P(i|j) =

�
H(i, j)/

P
g

�
H(g, j). The edge compatibil-

ity matrix captures the a�nity of classes, i.e., the higher

or more positive the value of
�
H(i, j) relative to other en-

tries, the more probable that a node with class i influences
its neighbor to have class j, and vice versa. A numerical
example to understand compatibility matrix follows.

Example 2. We have a graph on readers and news articles
with edges indicating “who reads what”. The edge compati-
bility matrix is given by Table 3. Due to the higher value of
�
H(Republican, Conservative), a Republican reader is likely
to pass the message that the news articles he reads are con-
servative. Observe that our compatibility matrix is neither
square nor doubly stochastic but is constant-margin. This is

2

This term prevents sending the same message that was received

in the previous iteration along the same edge. It helps prevent

two (or more) nodes mutually reinforcing each others’ beliefs.

627



Table 3: Edge compatibility matrix
�
H for Example 2.

# People/ Articles ! Conservative Progressive Neutral

Republican 0.367 0.300 0.333
Democrat 0.300 0.367 0.333

intentional – we would only be dealing with constant-margin
compatibility matrices in our work.

Finally, the normalization constants Zvu and Zu in Eq.
(2) and (3) respectively ensure that the beliefs and messages
sum up to a constant (typically 1) at any iteration.

4. PROPOSED METHOD: ZOOBP
The goal of our work is to provide a closed-form solution

to BP in arbitrary heterogeneous graphs using an intuitive
principle for approximating the beliefs of nodes. The core
idea is to derive a system of linear equations for beliefs which
can be solved using matrix algebra to finally calculate all
node beliefs in a single step of matrix operations. To do
this, ZooBP borrows the basic framework of using residual
compatibility matrix, beliefs and messages (H,bu,mvu) in-

stead of their non-residual counterparts (
�
H,

�
bu,

�
mvu) as in

Eq. (2) and Eq. (3) from [15, 12].
We now describe our problem setting more formally before

stating our main (and most generic) results.

4.1 Notation and Problem Description
Let G = (V, E) be an undirected heterogeneous graph on

a collection of node types S and edge types T such that

V =
[

s2S

Vs ; E =
[

t2T

Et

where Vs denotes the set of nodes of type s and Et the mul-
tiset of edges of type t (i.e., parallel/multiple edges are al-
lowed). Each node (edge) has a single node (edge) type. A
node’s type determines the set of classes it can belong to.
Let us use ks to denote the number of classes a type-s node
can belong to.

Without loss of generality, we assume that an edge type
can only connect a particular pair of node types (possibly
a self pair, e.g., friendship edge). For example, in Figure 1,
we have separate types of edges, one for “user likes product”
and another for “user likes seller”, instead of having a sin-
gle edge type called “like” which connects users with both
products and sellers. Observe that this is not a restrictive
assumption, as we could always partition a complex edge
type (“like”) into simpler edge types obeying this condition.

Also, note the subtle generality in our notation – we have
used a separate identifier Et for edges of type t, instead of
referring to it through the pair of node types it connects,
Tss0 . This allows us to have multiple types of edges con-
necting the same pair of node types – in Figure 1, we have
both “user likes product” and “user dislikes product” edges
connecting users and products; and possibly we can have
multiple types of edges connecting the same pair of nodes
as well (for example, a user initially likes a product but later
dislikes it).

Let
�
Ht and At denote the compatibility matrix and adja-

cency matrix for an edge type t 2 T . If t connects nodes of
type s to type s0, then At is a ns ⇥ ns0 matrix where each

row corresponds to a node of type s and each column corre-

sponds to a node of type s0. Similarly,
�
Ht is a ks⇥ks0 matrix

with rows denoting classes of type-s nodes and columns de-
noting classes of type-s0 nodes.

Further, let Tss0 denote the set of edge types connecting
node types s and s0 and Tuv denote the multiset of edge
types (to account for parallel/multiple edges of the same
type) connecting nodes u and v. (see Table 5).

The problem then is to conduct transductive inference [4]
on this graph, i.e., given initial beliefs for a subset of the
nodes, to infer the most probably class for every node in the
graph.

4.2 Key Insights
4.2.1 Residual compatibility matrices

In the case of undirected unipartite graphs, the compati-

bility matrix
�
Ht turns out to be square and symmetrical; by

further assuming that it was doubly stochastic, BP was suc-
cessfully linearized [12]. However, in the general case, the
compatibility matrices may not be square, let alone doubly
stochastic. One core question is: What kind of compatibility
matrices allow a linearization of BP in this general setting?

We first note that due to the normalization constants in
Eq. (2) and Eq. (3), the overall scale of the compatibility
matrices has no e↵ect on the belief updates. Thus, w.l.o.g.,
we can fix the scale to be 1 – or using the notion from
above, we can focus on 1-centered matrices. Thus, each
compatibility matrix can be expressed as

�
Ht = 1+ ✏tHt (4)

where 1 is a matrix having the same dimension as
�
Ht with

all of its entries as 1 and Ht is the residual compatibility
matrix. Here, ✏t can be viewed as the absolute strength of
interaction through an edge of type t whereas Ht indicates
the relative a�nities of a pair of labels on either side of a
type-t edge. Operating with the residual matrix allows us
later on to derive an approximation of the BP equations.

The key insight for our result is to focus on compatibility

matrices
�
Ht that are constant-margin. Using this property,

it follows that the residual Ht fulfills:
X

i

Ht(i, j) =
X

j

Ht(i, j) = 0 8 t, i, j (5)

Although the constant-margin constraint decreases the
number of free parameters for a p ⇥ q compatibility ma-
trix from pq � 1 (excluding scale) to pq � p � q + 1 (con-
straining row and column sums to be equal), we note that
the set of constant-margin compatibility matrices is su�-
ciently expressive to model numerous real-world scenarios
e.g., fraud detection in e-commerce networks [1], blog/cita-
tion networks and social networks [25].

To illustrate this, we derive the residual H for
�
H (after

re-scaling) given in Table 3.

�
H =


1.1 0.9 1
0.9 1.1 1

�
= 1+

✏z}|{
0.2

Hz }| {
0.5 �0.5 0
�0.5 0.5 0

�

In the above example (and in the rest of our work), we fix
the scale of the residual H by holding its largest singular
value at 1. This allows us to determine a unique (✏t,Ht)
pair for a given constant-margin compatibility matrix.
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4.2.2 Residual beliefs and messages

Similar to the original (non-residual) compatibility matrix
�
Ht and its residual counterpartHt, we also introduce the no-

tions for residuals of beliefs and messages. Let
�
eu,

�
bu,

�
mvu

denote the original (non-residual) prior beliefs, final beliefs,
and messages; we denote with eu,bu,mvu their residual
counterparts (see Table 5).

Note that the prior and final beliefs of a node sum to 1,
i.e. each belief vector bu is centered around 1/ks where s
denotes the type of node u. Similarly, w.l.o.g., messages can
be assumed to be centered around 1 (by selecting an appro-
priate Zuv). Therefore, the residual beliefs and messages are
obtained by subtracting their respective center value (1/ks
or 1) from their respective initial values. For a node u of
type s, these would be:

eu(i) =
�
eu(i)� 1

ks
; bu(i) =

�
bu(i)� 1

ks
; mvu(i) =

�
mvu(i)�1

The normalization constraints on the original values
�
eu,

�
bu

and
�
mvu thus translate to
X

i

eu(i) =
X

i

bu(i) =
X

i

mvu(i) = 0 8 u, v

for the residual values.
The overall motivation behind this procedure is to rewrite

BP updates in terms of the residuals. Approximating these
residuals finally enables us to derive the linearized BP up-
date equations.

4.3 Proposed ZooBP
Before we proceed to give our main theorem , we introduce

some notation that would enable us to solve for the combined
beliefs of all nodes via a single equation system. Following
this, we provide an example illustrating the definitions.

Definition 7 (Persona). We use the term “persona” to de-
note a particular class label of a particular node. For exam-
ple, if Smith is a node who can be a “democrat” or a “re-
publican”, we have the following personas: Smith-democrat,
Smith-republican. In general, if there are ns nodes of type
s and each can belong to any of the ks classes, we have
ps = nsks personas in total, for all type-s nodes.

Let us denote the prior residual beliefs of all nodes of type
s via the matrix Es (see Table 5). Here, each row represents
the prior residual information about each node, i.e. eu. If no
prior information is given, the row is zero. Similarly, denote
with Bs the final residual beliefs of all nodes of type s after
the convergence of belief propagation.
Further, instead of representing the beliefs for each node

type individually, we use a joint representation based on the
following definition:

Definition 8 (Vectorized residual beliefs e,b). Based on
the type-s residual prior and final belief matrices Es and Bs

(s 2 S) the vectorized residual prior and final beliefs are
constructed as:

e =
⇥
vec(E

1

)T . . . vec(ES)
T
⇤T

(6)

b =
⇥
vec(B

1

)T . . . vec(BS)
T
⇤T

(7)

We now ask: How can we describe the net influence that
personas of type s exert on personas of type s0? We de-
fine a matrix Pss0 which captures exactly this (Eq. (8)).

By concatenating these matrices suitably, we also define the
persona-influence matrix P, which consolidates information
about how each of the P personas in our graph a↵ects an-
other. Here, we provide equations to derive P from the
graph structure At and the network e↵ects Ht, ✏t for each
t 2 T ; and later in Section 4.4, we will see how this term
naturally emerges from our derivation.

Definition 9 (Persona-influence matrix P). From the type-
t interaction strength, adjacency and residual compatibility
matrices ✏t, At and Ht, the persona-influence matrix, which
summarizes the net e↵ect a class (label) on a node (i.e., a
persona) has on another, is constructed as:

P =

2

64
P

11

. . . P
1S

...
. . .

...
PS1

. . . PSS

3

75 ; Pss0 =
X

t2Tss0

✏t
ks

(Ht ⌦At) (8)

where Tss0 is the set of edge types that connect node types s
and s0.

Let us use the term type-t degree to denote the count of
type-t edges incident on a node. If t 2 Tss0 and u /2 Vs[Vs0 ,
then its type-t degree is defined as zero. Stacking type-t
degrees of all s-type nodes diagonally in a ns ⇥ ns matrix,
we obtain the type-t degree matrix of s-type nodes, Dst.

Analogous to the question we asked before we constructed
P, we now ask: what is the net influence that a persona
exerts on itself through its neighbors? It is important to ac-
count for this echo-influence and deduct it from the persona-
influence matrix before solving for node beliefs. We calcu-
late this quantity, called echo-cancellation matrix from the
degree matrices Dst and the network e↵ects At and ✏t for
t 2 T . Again, we provide the equations here and postpone
the derivation until Section 4.4.

Definition 10 (Echo-cancellation matrix Q). From the di-
agonal degree matrices Dst and residual compatibility ma-
trices Ht and interaction strengths ✏t for t 2 T , the echo-
cancellation matrix may be constructed as:

Q =
SM

i=1

Qs where, Qs =
X

s02S

X

t2Tss0

✏2t
ksks0

(HtH
T
t ⌦Dst)

(9)
for the usual meaning of Tss0 . Here,

L
denotes the direct

sum (Definition 6).

Observe that our persona-influence and echo-cancellation
matrices are extremely sparse due to the Kronecker prod-
uct with the adjacency and diagonal degree matrices, re-
spectively; and hence can be e�ciently stored in 4GB main
memory for even million scale graphs!

The following example illustrates the above definitions.

Example 3. Continuing our previous example of a bipartite
graph on readers and news articles with “who reads what”
edges, let our graph now have 2 readers - R1,R2 and 2 news
articles - A, B with adjacency matrix and hence, diagonal
degree matrices given by:

A =


1 0
0 1

�
; DR = DN =


1 0
0 1

�

Suppose also, the nodes’ residual prior belief matrices are
initialized as

ER =

�0.03 0.03
0 0

�
EN =


0 0 0

�0.03 0.02 0.01

�
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stating that R1 is likely to be a Republican and article B is
likely to be about democracy. Then, the vectorized residual
prior belief vector would be:

e =
⇥�3 3 0 0 0 0 0 �3 2 1

⇤T ⇥ 10�2

Thus, using ✏ and H calculated earlier, the persona-influence
and the echo-cancellation matrices can be derived as:

P =


0 ✏

2

H⌦A
✏
3

HT ⌦AT 0

�
; Q =

"
✏2

6

HHT ⌦DR 0

0 ✏2

6

HTH⌦DN

#

Now, we are ready to state our main theorem.

Theorem 1 (ZooBP). If b, e,P,Q are constructed
as described above, the linear equation system approxi-
mating the final node beliefs given by BP is:

b = e+ (P�Q)b (ZooBP) (10)

Proof. See Appendix. ⌅

Lemma 2 (ZooBP *). Further, if echo cancellation can be
ignored, the linear equation system simplifies to:

b = e+Pb (ZooBP *) (11)

Note that our method can also easily handle weighted
edges, by appropriately modifying the adjacency matrices
to reflect the weights on the edges. Furthermore, ZooBP

contains two existing works as special cases:

Lemma 3 (LinBP and FaBP are special cases of ZooBP).
For a single node-type connected by a single edge type, our
formulation reduces to that of LinBP. In addition, if we
constrain the nodes to belong to only two classes, our for-
mulation reduces to that of FaBP.

Proof. Assuming a single node-type and a single edge-type,
the persona-influence and echo-cancellation matrices reduce
to:

P =
✏

k
H⌦A and, Q =

✏2

k2

H2 ⌦D

Using this together with the relationship between the resid-
ual compatibility matrix in both methods ( Ĥ = ✏

kH ), our
theorem becomes

b = e+ (I+ Ĥ⌦A+ Ĥ2 ⌦D)b

which is exactly LinBP. Thus, LinBP is a special case of
ZooBP. As FaBP is a special case of LinBP, it follows that
ZooBP subsumes FaBP as well. ⌅

4.4 Derivation of ZooBP (proofs in appendix)
Lemma 4 (Residual BP). For a pair of nodes u 2 Vs and
v 2 Vs0 , BP update assignments can be approximated in
terms of residual messages and beliefs as:

bu(i)  eu(i) +
1
ks

X

v2Nu

X

t2Tuv

m(t)
vu(i)

m(t)
vu(i)  ✏t

ks0

X

j

Ht(i, j)

✓
ks0bv(j)�m(t)

uv(j)

◆

where m
(t)
vu indicates the message vector that v passes to u

through an edge of type t, Nu is the set of neighbors of u and
Tuv is the multiset of edge types corresponding to the edges
connecting u and v.

The proof makes use of the following two approximations
for small residuals:

ln(1 + bu(i)) ⇡ bu(i)
1

ks0
+ bv(j)

1 +m
(t)
uv(j)

⇡ 1
ks0

+ bv(j)� m
(t)
uv(j)
ks0

The assumption of “small residuals” is reasonable because
the magnitude of residual beliefs has a linear dependence
on ✏ and for a given nature of network e↵ects (homophi-
ly/heterophily/mixed), decreasing the interaction strength
does not a↵ect the accuracy of ZooBP compared to BP as
we demonstrate empirically.

Lemma 5 (Steady State Messages). For small residuals and
after convergence of belief propagation, message propagation
from a node v 2 Vs0 to node u 2 Vs through an edge of type
t 2 T can be expressed in terms of the residual compatibility
matrices and steady beliefs approximately as:

m(t)
vu = ✏tHtbv � ✏2t

ks0
HtH

T
t bu (12)

Lemma 6 (Type-s ZooBP). Using type-s prior and final
residual beliefs, Es and Bs, type-t adjacency and residual
compatibility matrices At and Ht and diagonal degree ma-
trices Dst, the final belief assignment of type-s nodes from
belief propagation can be approximated by the equation sys-
tem:

Bs = Es +
X

s02S

X

t2Tss0

✏t
ks

AtBs0H
T
t � ✏2t

ksks0
DstBsHtH

T
t

4.5 Iterative Updates and Convergence
Using Theorem 1, the closed form solution for node beliefs

is:

b = (I+Q�P)�1 e (13)

However, in practice, computation of the inverse of a large
matrix such as (I + Q � P) is very expensive and is done
iteratively. Hence, we propose to do iterative updates of the
form:

b  e+ (P�Q)b (14)

Theorem 2 gives precise theoretical guarantees for the con-
vergence of these iterative updates.

Theorem 2 (Exact convergence of ZooBP). The nec-
essary and su�cient condition for convergence of it-
erative updates in Eq. (14) in terms of the persona-
influence matrix P and echo-cancellation matrix Q is:

ZooBP converges () ⇢(P�Q) < 1 (15)

Proof. From the Jacobi method for solving linear equations
[22], we know that the update in Eq. (14) converges for any
arbitrary initialization of b if and only if the spectral radius
of P�Q is strictly less than 1. ⌅

The implicit convergence criterion poses di�culties in choos-
ing appropriate ✏t to a practitioner. Thus, for practitioners’
benefit, we tie all interaction strengths as ✏t = ✏ 8t, use the
fact that the spectral norm of a matrix is bounded above by
any matrix norm ||·|| to provide an easier-to-use su�cient
condition for convergence. This is stated in Theorem 3.
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Theorem 3 (Su�cient convergence of ZooBP). Let
P0 and Q0 be the persona-influence and echo-cancellation
matrices obtained from Eq. (8) and Eq. (9) by tem-
porarily setting ✏t = 1 8t. If the overall interaction
strength ✏ is chosen such that,

✏ 
� ||P0||+

q
||P0||2 + 4 ||Q0||2

2 ||Q0||
then, ZooBP is guaranteed to converge. Here, ||P0||
and ||Q0|| can be chosen as any (possibly di↵erent) ma-
trix norms.

Proof. By tying interaction strengths across all edges, the
exact convergence criterion can be restated in terms of P0

and Q0 as:

⇢(✏P0 � ✏2Q0) < 1

Using triangle inequality, ⇢(✏P0� ✏2Q0)  ✏⇢(P0)+ ✏2⇢(Q0).
Also, as any matrix norm is larger than the spectral norm,
this quantity is further bounded above by ✏ ||P0||+ ✏2 ||Q0||.
Thus, to ensure convergence, it is su�cient to solve for ✏
using:

✏
����P0����+ ✏2

����Q0����� 1 < 0

This completes the proof. We are free to choose the matrix
norms (possibly di↵erent norms for P0 and Q0) that would
give the tightest bound on the spectral radii of these matri-
ces. ⌅

4.6 ZooBP: Time and Space Complexity
Lemma 7 (Time and Space Complexity). The space and
per-iteration time complexity of ZooBP is linear in the total
number of nodes and edges, i.e., O(|V|+ |E|) and is given by

O
0

@
X

s2S

ksns +
X

s02S

X

t2Tss0

ks(ks + ks0)NNZ(At)

1

A (16)

where ns = |Vs| is the number of s-type nodes, ks is the
corresponding number of classes and NNZ(At) = |Et| is the
number of non-zero elements in At (i.e., edges of type-t).

Proof. We begin by computing an upper limit on the number
of non-zeros of P and Q:

NNZ(P) =
X

s2S

X

s02S

NNZ(Pss0)


X

s2S

X

s02S

X

t2Tss0

ksks0NNZ(At)

NNZ(Q) =
X

s2S

NNZ(Qs)


X

s2S

X

s02S

X

t2Tss0

k2

sNNZ(At)

where we have used NNZ(X ⌦ Y) = NNZ(X) · NNZ(Y).
Using the above, we can bound the non-zeros of P�Q as:

NNZ(P�Q) 
X

s2S

X

s02S

X

t2Tss0

ks(ks + ks0)NNZ(At) (17)

Space Complexity can be computed as the space required
to store the sparse matrix P�Q and the dense

P
s2S ksns-

dimensional prior and belief vectors. Per-iteration Time

Table 4: Sample H
+

,H� for product rating networks
H

+

Good Bad
Honest 0.5 -0.5
Fraud -0.5 0.5

H� Good Bad
Honest -0.5 0.5
Fraud 0.5 -0.5

Complexity (Eq. (16)) is estimated from the number of
unit operations (addition/multiplication) involved in com-
puting the LHS of the iterative update (Eq. (14)). The
breakdown for each operation is given below.

Computation Unit ops.

Subtraction of Q from P O (NNZ(P�Q))
Multiplication of (P�Q) and b O (NNZ(P�Q))
Addition of e and (P�Q)b O �Ps2S ksns

�

⌅

4.7 Case Study - Product-Rating Network
In the following section, we introduce a case study of our

ZooBP for product-rating networks (which are signed bi-
partite networks) – other complex scenarios can also be rep-
resented easily. The goal is to classify users and products as
fraudulent or not.

Let G = (Vu [ Vp, E+

[ E�) be a product rating network
where Vu is the set of users and Vp is the set of products.
Let np = |Vp| be the number of products and nu = |Vu| the
number of users. The edge sets E

+

and E� represent the
positive and negative ratings respectively.

Given the edge sets, we denote the corresponding nu⇥np

adjacency matrices as A
+

and A�. Here, the rows corre-
spond to users and columns correspond to products. Fur-
thermore, let us use the term positive degree to denote the
number of positive ratings given to a product or by a user
(depending on the node type). Let Du+,Dp+ be the nu⇥nu

and np ⇥ np diagonal matrices of positive degree for users
and products respectively. Similarly, we define diagonal de-
gree matrices of negative degree for users and products -
Du�,Dp�.

Further, let the residual compatibility matrices for pos-
itive and negative edges be H

+

and H� and the corre-
sponding edge interaction strengths be ✏

+

and ✏�. Here, the
rows correspond to user-classes and columns correspond to
product-classes. In general, one would expect honest users
to give positive ratings to good products, while positive rat-
ings for fraudulent products are less likely; fraudsters in
contrast might give positive ratings to fraudulent products.
Thus, the matrices H

+

and H� might be instantiated as in
Table 4 – of course, in our model, any other constant-margin
instantiation can be picked as well.

In general, considering the setting of product rating net-
works, the persona-influence and echo-cancellation matrices
are given by:

P =


0

✏+
2

H
+

⌦A
+

+
✏�
2

H� ⌦A�
(
✏+
2

H
+

⌦A
+

+
✏�
2

H� ⌦A�)
T 0

�

Q =

"
✏2+
4

H
+

HT
+

⌦Du+ +
✏2�
4

H�H
T
� ⌦Du� 0

0
✏2+
4

HT
+

H
+

⌦Dp+ +
✏2�
4

HT
�H� ⌦Dp�

#

These matrices can now be used to compute the final be-
liefs using Theorem 1 (ZooBP).

Besides this general solution, let us focus on the case
where we set compatibility matrices as in Table 4 and tie
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Figure 3: DBLP 4-area (Databases, Data Mining, Machine
Learning, Information Retrieval, resp.) dataset with class
hierarchy (k = [2, . . . , 7])

the interaction strengths across both types of edges ✏
+

=
✏� =: ✏.

Let us now define the total adjacency matrix (A) and
total diagonal degree matrix (D) as follows:

A =


0 A

+

�A�
(A

+

�A�)
T 0

�
; D =


Du+ +Du� 0

0 Dp+ +Dp�

�

Using these, Theorem 4 provides a compact closed-form
solution for ZooBP (proof omitted for brevity).

Theorem 4 (ZooBP-2F). For fraud detection in pro-
duct-rating networks, if ✏ denotes the desired interac-
tion strength and A and D are the total adjacency and
diagonal degree matrices of users and products as de-
fined above, the ZooBP-2F closed-form solution is:

b = e+

✓
0.5 �0.5
�0.5 0.5

�
⌦
✓
✏

2
A� ✏2

4
D

◆◆
b

The exact and su�cient conditions for convergence of our
ZooBP-2F can be derived as before:

Result 1 (Exact convergence of ZooBP-2F). For fraud de-
tection in product rating network, the su�cient and neces-
sary condition for convergence, in terms of total adjacency
matrix A, the total diagonal degree matrix D and interaction

strength ✏ is given by: ⇢
⇣

✏
2

A� ✏2

4

D
⌘
< 1

Result 2 (Su�cient convergence of ZooBP-2F). For fraud
detection in product rating network, with A and D denoting
the total adjacency and diagonal degree matrices respectively,
if the interaction strength (✏) is chosen to satisfy

✏ <
� ||A||+

q
||A||2 + 4d

max

d
max

then, ZooBP� 2F is guaranteed to converge.

5. EXPERIMENTS
To evaluate our proposed method, we are interested in

finding answers to the following questions:
Q1. Accuracy: How well can ZooBP reconstruct the

final beliefs given by BP? How accurate are its predic-
tions on real-world data?

Q2. (In-)Sensitivity to interaction strength: How
does the performance of ZooBP vary with interaction

strength ✏? What happens at the critical ✏⇤ from The-
orem 2? How sensitive is ZooBP to ✏ when ✏ < ✏⇤?

Q3. Speed & Scalability: How well does ZooBP scale
with the network size? How fast is ZooBP compared
to BP? Why? Does the speed-up generalize to net-
works with arbitrary number of node-/edge-types and
classes?

We now describe the data we use for our experiments.

5.1 Data Description and Experimental Setup
We have used two real-world heterogeneous datasets in

our experiments. These are explained below.

5.1.1 DBLP

The DBLP 4-area dataset consists of authors and the pa-
pers published by them to 12 conferences. In the original
dataset, these conferences were split into four areas (DB,
DM, ML, IR). To perform a deeper analysis, we varied the
number of classes, k, from 2 to 7 by merging or partitioning
the above areas based on the conferences (Figure 3). The
network is bipartite (node types S = {author, paper}) with
a single type of edges (T = {authorship}). The goal is to
assign a class to each author and paper.

The ground truth areas for papers and authors were ob-
tained as follows. The area of a paper is the area of the
conference it is published in. The area of an author is the
area which most of her papers belong to, with ties bro-
ken randomly. As homophily captures the nature of net-
work e↵ects in this dataset, a k ⇥ k compatibility matrix
with interaction strength ✏ and residual compatibility ma-
trix Hk⇥k = Ik⇥k � 1

k1k⇥k was used.
In our experiments, we seeded randomly chosen 30% of

the authors and papers to their ground truth areas. The
prior for the correct class was set to +k⇥ 0.001 and for the
wrong classes was set to �0.001. [0, . . . , 0] was used as the
prior for unseeded nodes.

5.1.2 Flipkart

Flipkart is an e-commerce website that provides a plat-
form for sellers to market their products to customers. The
dataset consists of about 1M users, their ⇠3.3M ratings to
⇠512K products and ⇠1.7M ratings to ⇠4K sellers. In
addition, we also have the connections between sellers and
products. All ratings are on a scale of 1 to 5 – for simplicity,
we treated 4 and 5 star ratings as positive edges, 1 and 2
star as negative edges and ignored the 3 star ratings.

We consider two versions of the data: (1) Flipkart-(2,2)
(or Flipkart in short) containing only user-product rat-
ing information (node types S = {user, product} and edge
types T = {positive rating for product, negative rating for
product}); and (2) Flipkart-(3,5) containing all 3 node
types (user, product, seller) and 5 edge types (positive rat-
ing for product, negative rating for product, positive rating
for seller, negative rating for seller, seller sells product).

In both the Flipkart datasets, our goal is to classify users
and products (and sellers) as fraudulent or not. H

+

and H�
for both user-product and user-seller edges were chosen as in
Table 4 and ✏ values were tied and set to 10�4, unless men-
tioned otherwise. We used 50 manually labeled fraudsters
as seed labels and initialized their prior to [�0.05,+0.05] re-
spectively for the honest and fraudulent classes. The prior
for other users and all products (and all sellers) were set to
[0, 0].
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Figure 4: Experimental results on Flipkart (a-d) and DBLP (e-h) data: ZooBP is accurate, robust, fast and scalable

We provide the full analysis on the DBLP and Flipkart

datasets; for brevity, we only present the fraud detection
precision results on Flipkart-(3,5). To compare running
times on DBLP and Flipkart data with BP, we used an
o↵-the-shelf Matlab implementation of BP for signed bi-
partite networks [1]. To enable a fair comparison, we imple-
mented ZooBP also in Matlab.

Q1. Accuracy
A plot of the final beliefs returned by BP and ZooBP on
Flipkart for ✏ = 10�4 is shown in Figure 4a. Here, we have
subtracted 0.5 from the BP score (see y-axis) to match the
scale of beliefs from both methods. We see that all points
lie on the line of slope 1 passing through the origin, showing
that ZooBP beliefs are highly correlated with BP beliefs.
Such a trend was observed for all the ✏ values we tried (while
ensuring that ✏ < ✏⇤, the limit given by Theorem 2).

Upon applying ZooBP to our data, we provided the list
of 500 most fraudulent users (after sorting beliefs) to the do-
main experts at Flipkart, who verified our labels by study-
ing various aspects of user behavior such as frequency and
distribution of ratings and review text given by them. Fig-
ure 4b and Figure 2c depict how the precision at k changes
with k over the top 500 results on Flipkart and Flipkart-
(3,5) datasets. The high precision (1̃00% for top 250; 7̃0%
for top 500 users) confirms the e↵ectiveness of ZooBP. Ow-
ing to di�culty in obtaining ground truth for all 1M users,
studying recall was not possible.
Using the DBLP data, we study the performance for a

graph from a di↵erent domain (citation network), with more
than two classes. Figure 4e plots accuracy vs number of
classes, k. The uniformly high accuracy across k suggest our

performance can be expected to generalize well to networks
from di↵erent domains with arbitrary classes.

In sum, our accuracy results show that (1) our assump-
tion of constant-margin compatibility matrix is applicable
in several realistic scenarios (2) our linear approximations
do not lower the quality of prediction, thus making ZooBP

extremely useful in practice, for solving several real world
problems.

Q2. (In-)Sensitivity to interaction strength
Next, we study how the compatibility matrix (through inter-
action strength ✏) influences the performance and speed of
ZooBP. Figures 4c, 4d summarize the results on Flipkart.

The correlation (of BP and ZooBP beliefs) and the run-
ning time were found to be fairly constant with ✏ as long as
✏ < ✏⇤ (the limit from Theorem 2). As the spectral radius
of P � Q approaches 1, a slight increase in running time
near ✏⇤ is observed; but the correlation is still high. When
✏ > ✏⇤, the algorithm does not converge – ZooBP runs to a
manually set maximum iteration count of 200. Hence, the
running time suddenly increases past the dotted line, while
the correlation drops to 0.0001. The resulting beliefs for high
interaction strength (✏ > 0.1) were found to be unbounded
(reaching ±1) for some nodes – making the correlation co-
e�cient indeterminate (these are omitted in Figure 4c).

On the DBLP data, we are not restricted to study corre-
lation but are able to analyze the actual accuracy of BP and
ZooBP with varying ✏. Figure 4f depicts the classification
accuracy vs ✏ for the DBLP dataset with k = 4. We see that
both BP and ZooBP achieve a robust high accuracy on a
range of ✏ values within the convergence limit. Not surpris-
ingly, when ✏ was increased beyond ✏⇤ = 1, the performance
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of both methods deteriorated. This suggests our algorithm
is practically useful, with robust approximation quality in
BP’s optimal range of interaction strength.

These results show that our method is fairly robust (ex-
cept around and beyond ✏⇤) and not sensitive to the selection
of interaction strength in general. Moreover, this value of
✏⇤ is exactly as predicted by Theorem 2 (specifically, Result
1), thus validating its correctness.

Note to practitioner: Owing to the finite precision of
machines, we recommend setting ✏ 2 [0.01✏†, 0.1✏†], where
✏† is calculated from Theorem 3.

Q3. Speed & Scalability
To examine the scalability of our method, we uniformly sam-
pled 1K-3.3M edges from the Flipkart data and timed BP
and ZooBP (with ✏ = 10�4) on the resulting subgraphs. We
focus on the time taken for computations alone and ignore
the time to load data and initialize matrices. The results
are shown in Figure 2a (Matlab) and 2b (C++).
We see that ZooBP scales linearly with the number of

edges in the graph (i.e., graph size), which is same as the
scalability of BP. In addition, on Matlab, ZooBP also of-
fers a 600⇥ speed-up compared to BP, which is one of its
most important practical advantages. On Flipkart dataset
with 3.3M edges, ZooBP requires only 1 second to run!
What can this speed-up be attributed to? There are

two primary contributing factors: (F1) ZooBP replaces the
expensive logarithms and exponentiation operations in BP
by multiplication and addition; (F2) ZooBP (via Theorem
1) converts the iterative BP algorithm into a matrix prob-
lem – it foregoes the redundant message computation and
exploits optimized sparse-matrix operations.
To investigate the relative importance of the above fac-

tors, we implemented Lemma 4 in Matlab. Lemma 4is
similar to BP except in operating on residuals directly in
the linear space through lighter-weight operations and hence
serves as a clean break point between BP and ZooBP to
compare the speed-ups due to F1 and F2 individually. Our
experimental observations are summarized below:

• Savings A (⇠ 2⇥) BP ! Lemma 4 (lighter opera-
tions)
This speed-up is not tied to Matlab as we demon-
strate through identical experiments in C++ (Figure 2b).
Savings A is platform-independent with the precise
speed-up factor depending on the architecture-specific
relative speed of elementary floating point operations
(add, multiply) and function calls (exp, log).

• Savings B (⇠ 300⇥): Lemma 4 ! ZooBP (opti-
mized sparse matrix operations of Matlab).
We note that although the 300⇥ savings from Matlab

implementation is largely due to its ine�cient handling
of loops, it may prove to be a critical factor of consid-
eration for a number of data mining practitioners.

Can we explain the speed-up in terms of the ar-
chitecture specifications? Our experiments used Intel
i5 (Haswell) processor3. In this architecture, multiplica-
tion instructions (FMUL, FIMUL) issued up to two times
more macro instructions (OPs) than addition or subtraction
(FADD, FSUB, FIADD, FISUB). Further, function calls
(i.e., control transfer instructions such as CALL) needed 2-3
times more clock cycles compared to arithmetic operations.
3

http://www.agner.org/optimize/instruction_tables.

pdf pages 189-191

This is exactly the speed-up (2-3⇥) that ZooBP achieves
over BP in C++, as shown in Figure 2b.

Do the speed gains persist as the number of classes
grows? The answer is ‘yes’. Figure 4g and Figure 4h show
the results on the DBLP data. ZooBP scales quadratically
with number of class labels, as expected from Lemma 7;
but the speed-up gains were consistently ⇡ 600⇥ even as k
varied (Figure 4h.)

Comparison with the state-of-the-art: Table 1 gives
the qualitative comparison of ZooBP with top competi-
tors. Only BP (and its asynchronous equivalent, RBP) can
solve the general problem, but neither of them provides a
closed-form solution or convergence guarantees. Still, we
have provided comparison results against BP. None of the
other methods (LinBP [12], FaBP [15], [11]) can handle
arbitrary heterogeneous graphs (e.g., Flipkart-(3,5)) and
are dropped from comparison. We use CAMLP as a base-
line on the DBLP data, although it cannot handle multiple
node-types. In our experiments on DBLP data with k = 4,
ZooBP practically tied CAMLP (86% vs. 87% accuracy).

In summary, our experiments show that ZooBP obtains
a very high prediction accuracy on real-world data, while
at the same time, being highly scalable at handling million-
scale graphs.

6. CONCLUSIONS
We presented ZooBP, a novel framework which approx-

imates BP with constant-margin compatibility matrices, in
any undirected weighted heterogeneous graph. Our method
has the following advantages:
• Generality: ZooBP approximates BP in any kind of

undirected weighted heterogeneous graph, with arbitrarily
many node and edge types. Moreover, it includes existing
techniques like FaBP and LinBP as special cases.

• Closed-form solution: ZooBP leads to a closed form
solution (Theorem 1, Eq. 10), which results in exact con-
vergence guarantees (Theorem 2).

• Scalability: ZooBP scales linearly with the number of
edges in the graph; moreover, it nevers loses, and it usually
wins over traditional BP, with up to 600⇥ speed-up for
Matlab implementation.

• E↵ectiveness: Applied on real data (Flipkart), ZooBP

matches the accuracy of BP, achieving 92.3 % precision
for the top 300 nodes.

Reproducibility: Our code is open-sourced at
http://www.cs.cmu.edu/ deswaran/code/zoobp.zip and
is available for public use.
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APPENDIX
A. NOMENCLATURE

Table 5: Nomenclature
Symbol Meaning
S set of node types
S |S|, the number of node types
s, s0 a type of node; an element in S
Vs set of nodes belonging to type s
ns |Vs|, the number of type-s nodes
ks the number of classes (labels) for a type-s node
ps nsks, the number of personas for all type-s nodes
Es,Bs ns ⇥ ks prior and final beliefs (resp.) for all type-s nodes
P

P
s2S ps, the total number of personas for all nodes

T set of edge types
T |T |, the number of edge types
Tss0 set of edge types connecting node typess and s0

Tuv multiset of edge types connecting nodes u and v
t, t0 a type of edge; an element in T
At if t 2 Tss0 , this is the ks ⇥ ks0 adjacency matrix for edge-type t
✏t interaction strength for edge-type t
�
Ht,Ht compatibility matrix for edge-type t - given and residual (resp.)
�
eu, eu prior belief vector of u - given and residual (resp.)
�
bu,bu final belief vector of u - given and residual (resp.)
�
mvu,mvu message vector from v to u - given and residual (resp.)
Dst ns ⇥ ns diagonal matrix of type-t degrees of type-s nodes
P P ⇥ P persona-influence matrix
Q P ⇥ P echo-cancellation matrix
u, v, w nodes
i, j, g node classes (labels)

B. PROOFS

Proof of Lemma 4. We start by rewriting Yedidia’s belief
update assignment (Eq. (2)) for a node u belonging to type
s 2 S, in terms of residual beliefs and messages.

1
ks

+ bu(i) 1
Zu

✓
1
ks

+ eu(i)

◆ Y

v2N (u)
t2Tuv

⇣
1 +m(t)

vu(i)
⌘

Now, we take logarithms and assume the residual beliefs are
small compared to 1 to use the approximation ln(1+x) ⇡ x.
We obtain:

bu(i)  � 1
ks

lnZu + eu(i) +
1
ks

X

v2N (u)
t2Tuv

m(t)
vu(i) (18)

ks
X

i

bu(i)

| {z }
=0

 �
X

i

lnZu + ks
X

i

eu(i)

| {z }
=0

+
X

v2N (u)
t2Tuv

X

i

m(t)
vu(i)

| {z }
=0

In the last step above, we sum both sides over to estimate
Zu = 1, which turns out to be constant for all nodes. Sub-
stituting this back into Eq. (18) proves the first part of
lemma.

To prove the second part of the lemma, we first write
Yedidia’s update assignment for the message that a node v
of type s0 passes to a node u of type s through an edge of
type t, i.e.,

�
m

(t)
vu:

�
m(t)

vu(i)  Zv

Z
(t)
vu

X

j

�
Ht(i, j)

P
i0

�
Ht(i0, j)

�
bv(j)
�
m

(t)
uv(j)

1 +m(t)
vu(i)  Zv

Z
(t)
vu

X

j

1 + ✏tHt(i, j)P
i0 1 + ✏tHt(i0, j)

1

ks0
+ bv(j)

1 +m
(t)
uv(j)
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We now use the following approximation (for small residu-
als):

1

ks0
+ bv(j)

1 +m
(t)
uv(j)

⇡ 1
ks0

+ bv(j)� m
(t)
uv(j)
ks0

along with Zv = 1 and normalization constraints on residu-
als simplify the LHS of the above assignment update:

1

Z
(t)
vu

X

j

1 + ✏tHt(i, j)
ks

 
1
ks0

+ bv(j)� m
(t)
uv(j)
ks0

!

=
1

Z
(t)
vuks

✓
1 +

X

j

bv(j)

| {z }
=0

� 1
ks0

X

j

m(t)
uv(j)

| {z }
=0

+
✏t
ks0

X

j

Ht(i, j)

| {z }
=0

+✏t
X

j

Ht(i, j)bv(j)� ✏t
ks0

X

j

Ht(i, j)m
(t)
uv(j)

◆

Thus, we obtain:

1 +m(t)
vu(i) 

1 +
P
j
✏tHt(i, j)

✓
bv(j)� m

(t)
uv (j)
ks0

◆

Z
(t)
vuks

(19)

To calculate Z(t)
vu , we sum Eq. (19) over i and use

P
i Ht(i, j) =P

i
m

(t)
vu(i) = 0. This leads to Z

(t)
vu = 1

ks
. Substituting this

in Eq. (19) proves the second part of the lemma. ⌅

Proof of Lemma 5. Rewriting the message update assign-
ment from Lemma 4 after expanding the message sent in
the opposite direction (i.e., m(t)

uv(j)) we have:

m(t)
vu(i)  

X

j

✏tHt(i, j)
ks0

✓
ks0bv(j)�

X

g

✏tHt(g, j)
ks

⇣
ksbu(g)�m(t)

vu(g)
⌘◆

At convergence, m
(t)
vu on both sides need to be identical.

So, we replace the update sign with an equality and group
similar terms together as follows:

m(t)
vu(i)� ✏2t

ksks0

X

j

Ht(i, j)
X

g

Ht(g, j)m
(t)
vu(g) =

✏t
X

j

Ht(i, j)bv(j)� ✏2t
ks0

X

j

Ht(i, j)
X

g

Ht(g, j)bu(g)

This equation can then be written in matrix-vector notation
as:

�
Iks �

✏2t
ksks0

HtH
T
t

| {z }
X

�
m(t)

vu = ✏tHtbv � ✏2t
ks0

HtH
T
t bu

The entries of X << 1

ks
, and thus inverse of (Iks�X) always

exists and is, further, approximately Iks as X is composed
of second order terms of the (low) interaction strength. This
leads to Lemma 5. ⌅

Proof of Lemma 6. Using Lemma 4, the residual belief of a
node u 2 Vs can be written in vector notation as:

bu  eu +
1
ks

X

v2N (u)

X

t2Tuv

m(t)
vu

Substituting the steady state value of m(t)
vu from Lemma 5,

the final belief of u at convergence is:

bu = eu +
1
ks

X

v2N (u)

X

t2Tuv

✓
✏tHtbv � ✏2t

ks0
HtH

T
t bu

◆

= eu +
X

v2N (u)

X

t2Tuv

✏t
ks

Htbv � ✏2td
(t)
u

ksks0
HtH

T
t bu

where d(t)u is the type-t degree of u, i.e., the number of type-t
edges incident on u. Rewriting the above equation in matrix
form using type-t adjacency matrices At for t 2 T , prior
and final residual type-s belief matrices Bs for s 2 S and
diagonal degree matrices Dst summarizing type-t degree of
type-s nodes, yields Lemma 6:

Bs = Es +
X

s02S

X

t2Tss0

✏t
ks

AtBs0H
T
t � ✏2t

ksks0
DstBsHtH

T
t

⌅

Proof of Theorem 1. In order to bring Bs and Bs0 out of
the matrix product in Eq. (13), we vectorize Eq. (13) and
then use Roth’s column lemma (Eq. (1)).

vec(Bs) = vec(Es) +
X

s02S

X

t2Tss0

✏t
ks

(Ht ⌦At)vec(Bs0)

� ✏2t
ksks0

(HtH
T
t ⌦Dst)vec(Bs)

Rewriting the above equation using Pss0 and Qs defined in
Eq. (8) and Eq. (9) leads to:

(I+Qs)vec(Bs) = vec(Es) +
X

t2Tss0

Pss0vec(Bs0)(20)

Eq. (20) gives the update equation for beliefs of nodes of
type s. Here I is an identity matrix of appropriate dimen-
sions. Stacking S such matrix equations together and rewrit-
ing using e,b,P and Q (defined in Section 4.3) gives the
equation in Theorem 1.

⌅
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