
MapReduce and Streaming Algorithms for Diversity
Maximization in Metric Spaces of Bounded Doubling

Dimension

Matteo Ceccarello
Department of Information

Engineering
University of Padova

Padova, Italy

ceccarel@dei.unipd.it

Andrea Pietracaprina
Department of Information

Engineering
University of Padova

Padova, Italy

capri@dei.unipd.it

Geppino Pucci
Department of Information

Engineering
University of Padova

Padova, Italy

geppo@dei.unipd.it
Eli Upfal

Department of Computer
Science

Brown University
Providence, RI USA

eli upfal@brown.edu

ABSTRACT
Given a dataset of points in a metric space and an integer
k, a diversity maximization problem requires determining a
subset of k points maximizing some diversity objective mea-
sure, e.g., the minimum or the average distance between
two points in the subset. Diversity maximization is com-
putationally hard, hence only approximate solutions can be
hoped for. Although its applications are mainly in massive
data analysis, most of the past research on diversity maxi-
mization focused on the sequential setting. In this work we
present space and pass/round-efficient diversity maximiza-
tion algorithms for the Streaming and MapReduce models
and analyze their approximation guarantees for the relevant
class of metric spaces of bounded doubling dimension. Like
other approaches in the literature, our algorithms rely on the
determination of high-quality core-sets, i.e., (much) smaller
subsets of the input which contain good approximations to
the optimal solution for the whole input. For a variety of di-
versity objective functions, our algorithms attain an (α+ε)-
approximation ratio, for any constant ε > 0, where α is
the best approximation ratio achieved by a polynomial-time,
linear-space sequential algorithm for the same diversity ob-
jective. This improves substantially over the approximation
ratios attainable in Streaming and MapReduce by state-of-
the-art algorithms for general metric spaces. We provide
extensive experimental evidence of the effectiveness of our
algorithms on both real world and synthetic datasets, scal-
ing up to over a billion points.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 5
Copyright 2017 VLDB Endowment 2150-8097/17/01.

1. INTRODUCTION
Diversity maximization is a fundamental primitive in mas-

sive data analysis, which provides a succinct summary of a
dataset while preserving the diversity of the data [1, 28, 34,
35]. This summary can be presented visually to the user or
can be used as a core for further processing of the dataset. In
this paper we present novel efficient algorithms for diversity
maximization in popular computation models for massive
data processing, namely Streaming and MapReduce.
Diversity Measures and their Applications: Given a
dataset of points in a metric space and a constant k, a so-
lution to the diversity maximization problem is a subset of
k points that maximizes some diversity objective measure
defined in terms of the distances between the points.

Combinations of relevance ranking and diversity maxi-
mization have been explored in a variety of applications,
including web search [5], e-commerce [7], recommendation
systems [36], aggregate websites [29] and query-result navi-
gation [15] (see [32, 1, 24] for further references on the ap-
plications of diversity maximization). The common problem
in all these applications is that even after filtering and rank-
ing for relevance, the output set is often too large to be
presented to the user. A practical solution is to present a
diverse subset of the results so the user can evaluate the
variety of options and possibly refine the search.

There are a number of ways to formulate the goal of find-
ing a set of k points which are as diverse, or as far as possible
from each other. Conceptually, a k-diversity maximization
problem can be formulated in terms of a specific graph-
theoretic measure defined on sets of k points, seen as the
nodes of a clique where each edge is weighted with the dis-
tance between its endpoints [13]. Several diversity measures
are defined in Table 1. While the most appropriate ones in
the context of web search, e-commerce, aggregator systems
and query results navigation are the remote-edge and the
remote-clique measures [18, 1], the results in this paper also
extend to the other measures in the table, which have impor-
tant applications in analyzing network performance, locat-

469

Table 1: Diversity measures considered in this pa-
per. w(MST(S)) (resp., w(TSP(S))) denotes the min-
imum weight of a spanning tree (resp., Hamiltonian
cycle) of the complete graph whose nodes are the
points of S and whose edge weights are the pair-
wise distances among the points. The last column
lists the best known approximation factor, the lower
bound under the hypothesis P 6= NP (in parenthe-
ses), and the related references.

Problem Diversity measure
Sequential

approx.

remote-edge minp,q∈S d(p, q) 2 (2) [33]

remote-clique
∑
p,q∈S d(p, q) 2 (2) [23, 8]

remote-star minc∈S
∑
q∈S\{c} d(c, q) 2 (−) [13]

remote-bipartition min
Q⊂S

|Q|=b|S|/2c

∑
q∈Q
z∈S\Q

d(q, z) 3 (−) [13]

remote-tree w(MST(S)) 4 (2) [22]

remote-cycle w(TSP(S)) 3 (2) [22]

ing strategic facilities or noncompeting franchises, or deter-
mining initial solutions for iterative clustering algorithms or
heuristics for hard optimization problems such as TSP [22,
13, 32]. We include all of these measures here to demonstrate
the versatility of our approach to a variety of diversity crite-
ria. We want to stress that different measures characterize
the diversity of a set in a different fashion: indeed, an opti-
mal solution with respect to one measure is not necessarily
optimal with respect to another measure.
Distance Metric: All the diversity criteria listed in Ta-
ble 1 are known to be NP-hard for general metric spaces.
Following a number of recent works [2, 16, 26, 20, 9, 11],
we parameterize our results in terms of the doubling dimen-
sion of the metric space. Recall that a metric space has
doubling dimension D if any ball of radius r can be cov-
ered by at most 2D balls of radius r/2. While our methods
yield provably tight bounds in spaces of bounded doubling
dimension (e.g., any bounded dimension Euclidean space)
they have the ability of providing good approximations in
more general spaces based on important practical distance
functions such as the cosine distance in web search [5] and
the dissimilarity (Jaccard) distance in database queries [27].
Massive Data Computation Models: Since the appli-
cations of diversity maximization are mostly in the realm
of massive data analysis, it is important to develop efficient
algorithms for computational settings that can handle very
large datasets. The Streaming and MapReduce models are
widely recognized as suitable computational frameworks for
big-data processing. The Streaming model [31] copes with
large data volumes through an on-the-fly computation on
the streamlined dataset, storing only very limited informa-
tion in the process, while the MapReduce model [25, 30]
enables the handling of large datasets through the massive
availability of resource-limited processing elements working
in parallel. The major challenge in both models is devising
strategies which work under the constraint that the number
of data items that a single processor can access simultane-
ously is substantially limited.
Related work. Diversity maximization has been studied
in the literature under different names (e.g., p-Dispersion,

Table 2: Approximation factors of the compos-
able core-sets computed by our algorithm, compared
with previous approaches.

Previous [24, 4] Our results
General

metric spaces
Bounded

doubling dimension

remote-edge 3 1 + ε
remote-clique 6 + ε 1 + ε
remote-star 12 1 + ε
remote-bipartition 18 1 + ε
remote-tree 4 1 + ε
remote-cycle 3 1 + ε

Max-Min Facility Dispersion, etc.). An extensive account of
the existing formulations is provided in [13]. All of these
problems are known to be NP-hard, and several sequen-
tial approximation algorithms have been proposed. Ta-
ble 1 summarizes the best known results for general metric
spaces. There are also some specialized results for spaces
with bounded doubling dimension: for the remote-clique
problem, a polynomial-time (

√
2 + ε)-approximation algo-

rithm on the Euclidean plane, and a polynomial-time (1+ε)-
approximation algorithm on d-dimensional spaces with rec-
tilinear distances, for any positive constants ε > 0 and d, are
presented in [17]. In [22] it is shown that a natural greedy
algorithm attains a 2.309 approximation factor on the Eu-
clidean plane for remote-tree. Recently, the remote-clique
problem has been considered under matroid constraints [1,
12], which generalize the cardinality constraints considered
in previous literature.

In recent years, the notion of (composable) core-set has
been introduced as a key tool for the efficient solution of
optimization problems on large datasets. A core-set [3],
with respect to a given computational objective, is a (small)
subset of the entire dataset which contains a good approx-
imation to the optimal solution for the entire dataset. A
composable core-set [24] is a collection of core-sets, one for
each subset in an arbitrary partition of the dataset, such
that the union of these core-sets contains a good core-set
for the entire dataset. The approximation factor attained
by a (composable) core-set is defined as the ratio between
the value of the global optimal solution and the value of
the optimal solution on the (composable) core-set. For the
problems listed in Table 1, composable core-sets with con-
stant approximation factors have been devised in [24, 4] (see
Table 2). As observed in [24], (composable) core-sets may
become key ingredients for developing efficient algorithms
for the MapReduce and Streaming frameworks, where the
memory available for a processor’s local operations is typi-
cally much smaller than the overall input size.

In recent years, the characterization of data through the
doubling dimension of the space it belongs to has been in-
creasingly used for algorithm design and analysis in a num-
ber of contexts, including clustering [2], nearest neighbour
search [16], routing [26], machine learning [20], and graph
analytics [9, 11].
Our contribution. In this paper we develop efficient al-
gorithms for diversity maximization in the Streaming and
MapReduce models. At the heart of our algorithms are novel
constructions of (composable) core-sets. In contrast to [24,
4], where different constructions are devised for each diver-

470

sity objective, we provide a unique construction technique
for all of the six objective functions. While our approach is
applicable to general metric spaces, on spaces of bounded
doubling dimension, our (composable) core-sets feature a
1+ε approximation factor, for any fixed 0 < ε ≤ 1, for all of
the six diversity objectives, with the core-set size increasing
as a function of 1/ε. The approximation factor is signifi-
cantly better than the ones attained by the known compos-
able core-sets in general metric spaces, which are reported
in Table 2 for comparison.

Once a core-set (possibly obtained as the union of com-
posable core-sets) is extracted from the data, the best known
sequential approximation algorithm can be run on it to de-
rive the final solution. The resulting approximation ratio
attained in this fashion combines two sources of error: (1)
the approximation loss in replacing the entire dataset with
a core-set; and (2) the approximation factor of the sequen-
tial approximation algorithm executed on the core-set. On
metric spaces of bounded doubling dimension the combined
approximation ratio attained by our algorithms for any of
the six diversity objective functions considered in the paper
is bounded by (α + ε), for any constant 0 < ε ≤ 1, where
α the is best approximation ratio achieved by a polynomial-
time, linear-space sequential algorithm for the same maxi-
mum diversity criterion.

Our algorithms require only one pass over the data, in the
streaming setting, and only two rounds in MapReduce. To
the best of our knowledge, for all six diversity problems, our
streaming algorithms are the first ones that yield approxi-
mation ratios close to those of the best sequential algorithms
using space independent of input stream size. Also, we re-
mark that the parallel strategy at the base of the MapRe-
duce algorithms can be effectively ported to other models of
parallel computation.

Finally, we provide experimental evidence of the practical
relevance of our algorithms on both synthetic and real-world
datasets. In particular, we show that higher accuracy is
achievable by increasing the size of the core-sets, and that
the MapReduce algorithm is considerably faster (up to three
orders of magnitude) than its state-of-the-art competitors.
Also, we provide evidence that the proposed approach is
highly scalable. We want to remark that our work provides
the first substantial experimental study on the performance
of diversity maximization algorithms on large instances of
up to billions of data points.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce some fundamental concepts and useful
notations. In Section 3, we identify sufficient conditions
for a subset of points to be a core-set with provable ap-
proximation guarantees. These properties are then crucially
exploited by the streaming and MapReduce algorithms de-
scribed in Sections 4 and 5, respectively. Section 6 discusses
how the higher memory requirements of four of the six di-
versity problems can be reduced, while Section 7 reports on
the results of the experiments.

To meet space constraints, some proofs in the paper have
been shortened or omitted. We refer the reader to [10] where
all expanded proofs can be found.

2. PRELIMINARIES
Let (D, d) be a metric space. The distance between two

points u, v ∈ D is denoted by d(u, v). Moreover, we let

d(p, S) = minq∈S d(p, q) denote the minimum distance be-
tween a point p ∈ D and an element of a set S ⊆ D. Also,
for a point p ∈ D, the ball of radius r centered at p is the
set of all points in D at distance at most r from p. The
doubling dimension of a space is the smallest D such that
any ball of radius r is covered by at most 2D balls of radius
r/2 [21]. As an immediate consequence, for any 0 < ε ≤ 1,
any ball of radius r can be covered by at most (1/ε)D balls
of radius εr. For ease of presentation, in this paper we con-
centrate on metric spaces of constant doubling dimension D,
although the results can be immediately extended to non-
constant D by suitably adjusting the ranges of variability
of the parameters involved. Several relevant metric spaces
have constant doubling dimension, a notable case being Eu-
clidean space of constant dimension D, which has doubling
dimension O (D) [21].

Let div : 2D → R be a diversity function that maps a
set S ⊂ D to some nonnegative real number. In this paper,
we will consider the instantiations of function div listed in
Table 1, which were introduced and studied in [13, 24, 4].
For a specific diversity function div, a set S ⊂ D of size
n and a positive integer k ≤ n, the goal of the diversity
maximization problem is to find some subset S′ ⊆ S of size
k that maximizes the value div(S′). In the following, we
refer to the k-diversity of S as

divk(S) = max
S′⊆S,|S′|=k

div(S′)

The notion of core-set [3] captures the idea of a small set
of points that approximates some property of a larger set.

Definition 1. Let div(·) be a diversity function, k be a
positive integer, and β ≥ 1. A set T ⊆ S, with |T | ≥ k, is a
β-core-set for S if

divk(T) ≥ 1

β
divk(S)

In [24, 4], the concept of core-set is extended so that, given
an arbitrary partition of the input set, the union of the core-
sets of each subset in the partition is a core-set for the entire
input set.

Definition 2. Let div(·) be a diversity function, k be a
positive integer, and β ≥ 1. A function c(S) that maps S ⊂
D to one of its subsets computes a β-composable core-set
w.r.t. div if, for any collection of disjoint sets S1, . . . , S` ⊂
D with |Si| ≥ k, we have

divk

(⋃̀
i=1

c(Si)

)
≥ 1

β
divk

(⋃̀
i=1

Si

)
Consider a set S ⊆ D and a subset T ⊆ S. We define

the range of T as rT = maxp∈S\T d(p, T), and the farness of
T as ρT = minc∈T {d(c, T \ {c})}. Moreover, we define the
optimal range r∗k for S w.r.t. k to be the minimum range of
a subset of k points of S. Similarly, we define the optimal
farness ρ∗k for S w.r.t. k to be the maximum farness of a
subset of k points of S. Observe that ρ∗k is also the value of
the optimal solution to the remote-edge problem.

3. CORE-SET CHARACTERIZATION
In this section we identify some properties that, when ex-

hibited by a set of points, guarantee that the set is a (1+ε)-
core-set for the diversity problems listed in Table 1. In the

471

subsequent sections we will show how core-sets with these
properties can be obtained in the streaming and MapReduce
settings. In fact, when we discuss the MapReduce setting,
we will also show that these properties also yield compos-
able core-sets featuring tighter approximation factors than
existing ones, for spaces with bounded doubling dimension.

First, we need to establish a fundamental relation between
the optimal range r∗k and the optimal farness ρ∗k for a set S.
To this purpose, we observe that the classical greedy ap-
proximation algorithm proposed in [19] for finding a subset
of minimum range (k-center problem), gives in fact a good
approximation to both measures. We refer to this algorithm
as GMM. Consider a set of points S and a positive integer
k < |S|. Let T = GMM(S, k) be the subset of k points
returned by the algorithm for this instance. The algorithm
initializes T with an arbitrary point a ∈ S. Then, greedily,
it adds to T the point of S \T which maximizes the distance
from the already selected points, until T has size k. It is
known that the returned set T is such that rT ≤ 2r∗k [19]
and it is easily seen that rT ≤ ρT (referred to as anticover
property). This immediately implies the following funda-
mental relation.

Fact 1. Given a set S and k > 0, we have r∗k ≤ ρ∗k.

Let S be a set belonging to a metric space of doubling
dimension D. In what follows, div(·) denotes the diversity
function of the problem under consideration, and O denotes
an optimal solution to the problem with respect to instance
S. Consider a subset T ⊆ S. Intuitively, T is a good core-
set for some diversity measure on S, if for each point of
the optimal solution O it contains a point sufficiently close
to it. We formalize this intuition by suitably adapting the
notion of proxy function introduced in [24]. Given a core-
set T ⊆ S, we aim at defining a function p : O → T such
that the distance between o and p(o) is bounded, for any
o ∈ O. For some problems this function will be required to
be injective, whereas for, some others, injectivity will not
be needed. We begin by studying the remote-edge and the
remote-cycle problem.

Lemma 1. For any given ε > 0, let ε′ be such that (1 −
ε′) = 1/(1 + ε). A set T ⊆ S is a (1 + ε)-core-set for the
remote-edge and the remote-cycle problems if |T | ≥ k and
there is a function p : O → T such that, for any o ∈ O,
d(o, p(o)) ≤ (ε′/2)ρ∗k.

Proof. Consider the remote-edge problem first, and ob-
serve that divk(T) ≤ div(O) = ρ∗k. By applying the triangle
inequality and the stated property of the proxy function p
we get

divk(T) ≥ min
o1,o2∈O

d(p(o1), p(o2))

≥ min
o1,o2∈O

d(o1, o2)− ε′ρ∗k

= div(O)(1− ε′) = div(O)/(1 + ε)

The proof for remote-cycle follows by adapting the argument
in [24, 4], and is omitted for brevity.

Note that the proof of the above lemma does not require
p(·) to be injective. Instead, injectivity is required for the
remote-clique, remote-star, remote-bipartition, and remote-
tree problems, which are considered next.

Lemma 2. For a given ε > 0, let ε′ be such that 1 −
ε′ = 1/(1 + ε). A set T ⊆ S is a (1 + ε)-core-set for the
remote-clique, remote-star, remote-bipartition, and remote-
tree problems if |T | ≥ k and there is an injective function
p : O → T such that, for any o ∈ O, d(o, p(o)) ≤ (ε′/2)ρ∗k.

Proof. Observe that for each of the four problems
it holds that divk(T) ≤ div(O). Let us consider the
remote-clique problem first, and define ρ̄ = div(O)/

(
k
2

)
=∑

o1,o2∈O d(o1, o2)/
(
k
2

)
Clearly, ρ∗k ≤ ρ̄. By combining this

observation with the triangle inequality we have

divk(T ′) ≥
∑

o1,o2∈O

d(p(o1), p(o2))

≥
∑
o1,o2

d(o1, o2)−

(
k

2

)
ε′ρ̄ = div(O)/(1 + ε)

The injectivity of p(·) is needed in this case for the first in-
equality above to be true, since k distinct proxies are needed
to get a feasible solution. The argument for the other prob-
lems is virtually identical, and we omit it for brevity.

4. APPLICATIONS TO DATA STREAMS
In the Streaming model [31] one processor with a limited-

size main memory is available for the computation. The
input is provided as a continuous stream of items which is
typically too large to fit in main memory, hence it must
be processed on the fly within the limited memory budget.
Streaming algorithms aim at performing as few passes as
possible (ideally just one) over the input.

In [24], the authors propose the following use of com-
posable core-sets to approximate diversity in the streaming
model. The stream of n input points is partitioned into√
n/k blocks of size

√
kn each, and a core-set of size k is

computed from each block and kept in memory. At the end
of the pass, the final solution is computed on the union of
the core-sets, whose total size is

√
kn. In this section, we

show that substantial savings (a space requirement indepen-
dent of n) can be obtained by computing a single core-set
from the entire stream through two suitable variants of the
8-approximation doubling algorithm for the k-center prob-
lem presented in [14], which are described below.

Let k, k′ be two positive integers, with k ≤ k′. The first
variant, dubbed SMM(S, k, k′), works in phases and main-
tains in memory a set T of at most k′ + 1 points. Each
Phase i is associated with a distance threshold di, and is
divided into a merge step and an update step. Phase 1
starts after an initialization in which the first k′ + 1 points
of the stream are added to T , and d1 is set equal to
minc∈T d(c, T \ {c}). At the beginning of Phase i, with
i ≥ 1, the following invariant holds. Let Si be the prefix
of the stream processed so far. Then:

1. ∀p ∈ Si, d(p, T) ≤ 2di

2. ∀t1, t2 ∈ T , with t1 6= t2, we have d(t1, t2) ≥ di

Observe that the invariant holds at the beginning of
Phase 1. The merge step operates on a graph G = (T,E)
where there is an edge (t1, t2) between two points t1 6= t2 ∈
T if d(t1, t2) ≤ 2di. In this step, the algorithm seeks a maxi-
mal independent set I ⊆ T ofG, and sets T = I. The update
step accepts new points from the stream. Let p be one such

472

new point. If d(p, T) ≤ 4di, the algorithm discards p, other-
wise it adds p to T . The update step terminates when either
the stream ends or the (k′+1)-st point is added to T . At the
end of the step, di+1 is set equal to 2di. As shown in [14],
at the end of the update step, the set T and the threshold
di+1 satisfy the above invariants for Phase i+ 1.

To be able to use SMM for computing a core-set for our
diversity problems, we have to make sure that the set T re-
turned by the algorithm contains at least k points. However,
in the algorithm described above the last phase could end
with |T | < k. To fix this situation, we modify the algorithm
so to retain in memory, for the duration of each phase, the
set M of points that have been removed from T during the
merge step performed at the beginning of the phase. Con-
sider the last phase. If at the end of the stream we have
|T | < k, we can pick k − |T | arbitrary nodes from M and
add them to T . Note that we can always do so because
M ∪ I = k′ + 1 ≥ k, where I is the independent set found
during the last merge step.

Suppose that the input set S belongs to a metric space
with doubling dimension D. We have:

Lemma 3. For any 0 < ε′ ≤ 1, let k′ = (32/ε′)D · k,
and let T be the set of points returned by SMM(S, k, k′).
Then, given an arbitrary set X ⊆ S with |X| = k, there
exist a function p : X → T such that, for any x ∈ X,
d(x, p(x)) ≤ (ε′/2)ρ∗k.

Proof. Let r∗k′ to be the optimal range for S w.r.t. k′.
Also, let rT = maxp∈S d(p, T) be the range of T and let
ρ∗k be the optimal farness for S w.r.t. k. Suppose that
SMM(S, k, k′) performs ` phases. It is immediate to see that
rT ≤ 4d`. As was proved in [14], 4d` ≤ 8r∗k′ , thus rT ≤ 8r∗k′ .
Consider now an optimal clustering of S with k centers and
range r∗k and, for notational convenience, define ε′′ = ε′/32.
From the doubling dimension property, we know that there
exist at most k′ balls in the space (centered at nodes not
necessarily in S) of radius at most ε′′r∗k which contain all of
the points in S. By choosing one arbitrary center in S for
each such ball, we obtain a feasible solution to the k′-center
problem for S with range at most 2ε′′r∗k. Consequently,
r∗k′ ≤ 2ε′′r∗k. Hence, we have that rT ≤ 8r∗k′ ≤ 16ε′′r∗k. By
Fact 1, we know that r∗k ≤ ρ∗k. Therefore, we have rT ≤
16ε′′ρ∗k = (ε′/2)ρ∗k. Given a set X ⊆ S of size k, the desired
proxy function p(·) is the one that maps each point x ∈ X
to the closest point in T . By the discussion above, we have
that d(x, p(x)) ≤ (ε′/2)ρ∗k.

For the diversity problems mentioned in Lemma 2, we
need that for each point of an optimal solution the final
core-set extracted from the data stream contains a distinct
point very close to it. In what follows, we describe a variant
of SMM, dubbed SMM-EXT, which ensures this property.
Algorithm SMM-EXT proceeds as SMM but maintains for
each t ∈ T a set Et of at most k delegate points close to
t, including t itself. More precisely, at the beginning of the
algorithm, T is initialized with the first k′ + 1 points of the
stream, as before, and Et is set equal to {t}, for each t ∈ T .
In the merge step of Phase i, with i ≥ 1, iteratively for each
point t1 not included in the independent set I, we determine
an arbitrary point t2 ∈ I such that d(t1, t2) ≤ 2di and let
Et2 inherit max{|Et1 |, k − |Et2 |} points of Et1 . Note that
one such point t2 must exist, otherwise I would not be a
maximal independent set. Also, note that a point t2 ∈ I
may inherit points from sets associated with different points

not in I. Consider the update step of Phase i and let p be a
new point from the stream. Let t ∈ T be the point currently
in T which is closest to p. If d(p, t) > 4di we add it to T .
If instead d(p, t) ≤ 4di and |Et| < k, then we add p to Et,
otherwise we discard it. Finally, we define T ′ =

⋃
t∈T Et to

be the output of the algorithm, and observe that T ⊆ T ′.

Lemma 4. For any 0 < ε′ ≤ 1, let k′ = (64/ε′)D · k, and
let T ′ be the set of points returned by SMM-EXT(S, k, k′).
Then, given an arbitrary set X ⊆ S with |X| = k, there exist
an injective function p : X → T ′ such that, for any x ∈ X,
d(x, p(x)) ≤ (ε′/2)ρ∗k.

Proof. Let rT ′ = maxp∈S d(p, T ′) be the range of T ′,
and suppose that SMM(S, k, k′) performs ` phases. By
defining ε′′ = ε′/64, and by reasoning as in the proof of
Lemma 3 we can show that rT ′ ≤ 4d` ≤ 16ε′′ρ∗k. Consider
a point x ∈ X. If x ∈ T ′ then we define p(x) = x. Other-
wise, suppose that x is discarded during Phase j, for some
j, because either in the merging or in the update step the
set Et that was supposed to host it had already k points.
Let Ti denote the set T at the end of Phase i, for any i ≥ 1.
A simple inductive argument shows that at the end of each
Phase i, with j ≤ i ≤ ` there is a point t ∈ Ti such that
|Et| = k and d(x, t) ≤ 4di. In particular, there exists a point
t ∈ T` such that |Et| = k and d(x, t) ≤ 4d` ≤ 16ε′′ρ∗k. Since
Et ⊂ T ′, any point in Et is at distance at most 4d` ≤ 16ε′′ρ∗k
from t, and |X| = k, we can select a proxy p(x) for x from
the k points in Et such that d(x, p(x)) ≤ 32ε′′ρ∗k = (ε′/2)ρ∗k
and p(x) is not a proxy for any other point of X.

It is easy to see that the set T characterized in Lemma 3
satisfies the hypotheses of Lemma 1. Similarly, the set T ′ of
Lemma 4 satisfies the hypotheses of Lemma 2. Therefore,
as a consequence of these lemmas, for metric spaces with
bounded doubling dimension D, we have that SMM and
SMM-EXT compute (1+ε)-core-sets for the problems listed
in Table 1, as stated by the following two theorems.

Theorem 1. For any 0 < ε ≤ 1, let ε′ be such that
(1 − ε′) = 1/(1 + ε), and let k′ = (32/ε′)D · k. Algorithm
SMM(S, k, k′) computes a (1 + ε)-core-set for the remote-
edge and remote-cycle problems using O

(
(1/ε)Dk

)
memory.

Theorem 2. For any 0 < ε ≤ 1, let ε′ be such that
(1 − ε′) = 1/(1 + ε), and let k′ = (64/ε′)D · k. Al-
gorithm SMM-EXT(S, k, k′) computes a (1 + ε)-core-set
for the remote-clique, remote-star, remote-bipartition, and
remote-tree problems using O

(
(1/ε)Dk2

)
memory.

Streaming Algorithm. The core-sets discussed above can
be immediately applied to yield the following streaming al-
gorithm for diversity maximization. Let S be the input
stream of n points. One pass on the data is performed using
SMM, or SMM-EXT, depending on the problem, to com-
pute a core-set in main memory. At the end of the pass, a
sequential approximation algorithm is run on the core-set to
compute the final solution. The following theorem is imme-
diate.

Theorem 3. Let S be a stream of n points of a met-
ric space of doubling dimension D, and let A be a linear-
space sequential approximation algorithm for any one of the
problems of Table 1, returning a solution S′ ⊆ S, with
divk(S) ≤ α div(S′), for some constant α ≥ 1. Then, for

473

any 0 < ε ≤ 1, there is a 1-pass streaming algorithm for
the same problem yielding an approximation factor of α+ ε,
with memory

• Θ
(
(α/ε)Dk

)
for the remote-edge and the remote-cycle

problems;

• Θ
(
(α/ε)Dk2

)
for the remote-clique, the remote-star,

the remote-bipartition, and the remote-tree problems.

5. APPLICATIONS TO MAPREDUCE
Recall that a MapReduce (MR) algorithm [25, 30] exe-

cutes as a sequence of rounds where, in a round, a multiset
X of key-value pairs is transformed into a new multiset Y
of pairs by applying a given reducer function (simply called
reducer) independently to each subset of pairs of X having
the same key. The model features two parameters MT and
ML, where MT is the total memory available to the compu-
tation, and ML is the maximum amount of memory locally
available to each reducer. Typically, we seek MR algorithms
that, on an input of size n, work in as few rounds as possi-
ble while keeping MT = O (n) and ML = O

(
nδ
)
, for some

0 ≤ δ < 1.
Consider a set S belonging to a metric space of dou-

bling dimension D, and a partition of S into ` disjoints sets
S1, S2, . . . , S` . In what follows, div(·) denotes the diversity
function of the problem under consideration, and O denotes
an optimal solution to the problem with respect to instance
S = ∪`i=1Si. Also, we let ρ∗k,i be the optimal farness for Si
w.r.t. k, with 1 ≤ i ≤ `, and let ρ∗k be the optimal farness
for S w.r.t. k. Clearly, ρ∗k,i ≤ ρ∗k, for every 1 ≤ i ≤ `.

The basic idea of our MR algorithms is the following.
First, each set Si is mapped to a reducer, which computes a
core-set Ti ⊆ Si. Then, the core-sets are aggregated into one
single core-set T =

⋃`
i=1 Ti in one reducer, and a sequen-

tial approximation algorithm is run on T , yielding the final
output. We are thus employing the composable core-sets
framework introduced in [24].

The following Lemma shows that if we run Algorithm
GMM from Section 3 on each Si, with 1 ≤ i ≤ `, and then
take the union of the outputs, the resulting set satisfies the
hypotheses of Lemma 1.

Lemma 5. For any 0 < ε′ ≤ 1, let k′ = (8/ε′)D · k, and
let T =

⋃`
i=1 GMM(Si, k

′). Then, given an arbitrary set
X ⊆ S with |X| = k, there exist a function p : X → T such
that for any x ∈ X, d(x, p(x)) ≤ (ε′/2)ρ∗k.

Proof. Fix an arbitrary index i, with 1 ≤ i ≤ `,
and let Ti = {c1, c2, . . . , ck′}, where cj denotes the point
added to Ti at the j-th iteration of GMM(Si, k

′). Let also
Ti(k) = {c1, c2, . . . , ck} and dk = d(ck, Ti(k) \ {ck}). From
the anticover property exhibited by GMM, which holds for
any prefix of points selected by the algorithm, we have
rTi(k) ≤ dk ≤ ρTi(k) ≤ ρ∗k. Define ε′′ = ε′/8. Since Si
can be covered with k balls of radius at most dk, and the
space has doubling dimension D, then there exist k′ balls in
the space (centered at nodes not necessarily in Si) of radius
at most ε′′dk that contain all the points in Si. By choos-
ing one arbitrary center in Si in each such ball, we obtain a
feasible solution to the k′-center problem for Si with range
at most 2ε′′dk, which implies that the cost of the optimal
solution to k′-center is at most 2ε′dk. As a consequence,
GMM(Si, k

′) will return a 2-approximate solution Ti to k′-
center with rTi ≤ 4ε′′dk, and we have rTi ≤ 4ε′′dk ≤ 4ε′′ρ∗k.

Algorithm 1: GMM-EXT(S, k, k′)

T ′ ← GMM(S, k′)
Let T ′ = {c1, c2, . . . , ck′}
T ← ∅
for j ← 1 to k′ do

Cj ← {p ∈ S : cj = arg minc∈T ′ d(c, p) ∧ p 6∈
Ch with h < j}
Ej ← {cj} ∪ { arbitrary min{|Cj | − 1, k − 1} points
in Cj}
T ← T ∪ Ej

end
return T

Let now T =
⋃`
i=1 Ti and rT = max1≤i≤` rTi . We have that

rT ≤ 4ε′′ρ∗k, hence, for any set X ⊆ S, the desired proxy
function p(·) is obtained by mapping each x ∈ X to the clos-
est point in T . By the observations on the range of T , we
have d(x, p(x)) ≤ 4ε′′ρ∗k = (ε′/2)ρ∗k.

For the diversity problems considered in Lemma 2
(remote-cycle, remote-star, remote-bipartition, and remote-
tree) the proxy function is required to be injective. There-
fore, we develop an extension of the GMM algorithm,
dubbed GMM-EXT (see Algorithm 1 above) which first de-
termines a kernel T ′ of k′ ≥ k points by running GMM(S, k′)
and then augments T ′ by first determining the clustering of
S whose centers are the points of T ′ and then picking from
each cluster its center and up to k − 1 delegate points. In
this fashion, we ensure that each point of an optimal solu-
tion to the diversity problem under consideration will have
a distinct close “proxy” in the returned set T .

As before, let S1, S2, . . . , S` be disjoint subsets of a metric
space of doubling dimension D. We have:

Lemma 6. For any 0 < ε′ ≤ 1, let k′ = (16/ε′)d · k,
and let T =

⋃`
i=1 GMM-EXT(Si, k, k

′). Then, given an
arbitrary set X ⊆ S, with |X| = k, there exist an in-
jective function p : X → T such that for any x ∈ X,
d(x, p(x)) ≤ (ε′/2)ρ∗k.

The proof of Lemma 6 follows the same lines as the proof of
Lemma 5 and is omitted for brevity.

The two lemmas above guarantee that the set of points ob-
tained by invoking GMM or GMM-EXT on the partitioned
input complies with the hypotheses of Lemmas 1 and 2 of
Section 3. Therefore, for metric spaces with bounded dou-
bling dimension D, we have that GMM and GMM-EXT
compute (1+ε)-composable core-sets for the problems listed
in Table 1, as stated by the following two theorems.

Theorem 4. For any 0 < ε ≤ 1, let ε′ be such that (1−
ε′) = 1/(1 + ε), and let k′ = (8/ε′)D · k. The algorithm
GMM(S, k′) computes a (1 + ε)-composable core-set for the
remote-edge and remote-cycle problems.

Theorem 5. For any 0 < ε ≤ 1, let ε′ be such that (1−
ε′) = 1/(1 + ε), and let k′ = (16/ε′)D · k. The algorithm
GMM-EXT(S, k, k′) computes a (1+ε)-composable core-set
for the remote-clique, remote-star, remote-bipartition, and
remote-tree problems.

MapReduce Algorithm. The composable core-sets dis-
cussed above can be immediately applied to yield the fol-
lowing MR algorithm for diversity maximization. Let S be

474

the input set of n points and consider an arbitrary partition
of S into ` subsets S1, S2, . . . , S`, each of size n/`. In the
first round, each Si is assigned to a distinct reducer, which
computes the corresponding core-set Ti, according to algo-
rithms GMM, or GMM-EXT, depending on the problem.
In the second round, the union of the ` core-sets T =

⋃`
i=1 Ti

is concentrated within the same reducer, which runs a se-
quential approximation algorithm on T to compute the final
solution. We have:

Theorem 6. Let S be a set of n points of a metric
space of doubling dimension D, and let A be a linear-
space sequential approximation algorithm for any one of the
problems of Table 1, returning a solution S′ ⊆ S, with
divk(S) ≤ α div(S′), for some constant α ≥ 1. Then, for
any 0 < ε ≤ 1, there is a 2-round MR algorithm for the
same problem yielding an approximation factor of α + ε,
with MT = n and

• ML = Θ
(√

(α/ε)Dkn
)

for the remote-edge and the

remote-cycle problems;

• ML = Θ
(
k
√

(α/ε)Dn
)

for the remote-tree, the

remote-clique, the remote-star, and the remote-
bipartition problems.

Proof. Set ε′ such that 1/(1 − ε′) = 1 + ε/α, and re-
call that the remote-edge and the remote-cycle problems
admit composable core-sets of size k′ = (8/ε′)Dk, while
the problems remote-tree, remote-clique, remote-star, and
remote-bipartition have core-sets of size kk′, with k′ =
(16/ε′)Dk. Suppose that the above MR algorithm is run

with ` =
√
n/k′ for the former group of two problems, and

` =
√
n/(kk′) for the latter group of four problems. Observe

that by the choice of ` we have that both the size of each Si
and the size of the aggregate set |T | areO(ML), therefore the
stipulated bounds on the local memory of the reducers are
met. The bound on the approximation factor of the resulting
algorithm follows from the fact that the Theorems 4 and 5
imply that, for all problems, divk(S) ≤ (1+ε/α) divk(T) and
the properties of algorithm A yield divk(T) ≤ α div(S).

Theorem 6 implies that on spaces of constant doubling
dimension, we can get approximations to remote-edge and
remote-cycle in 2 rounds of MR which are almost as good
as the best sequential approximations, with polynomially

sublinear local memory ML = O
(√

kn
)

, for values of k

up to n1−δ, while for the remaining four problems, with
polynomially sublinear local memory ML = O (k

√
n) for

values of k = O
(
n1/2−δ

)
, for 0 ≤ δ < 1. In fact, for

these four latter problems and the same range of values for
k, we can obtain substantial memory savings at the cost of
an extra round, either by using randomization, as shown
in the following theorem, or deterministically, as shown in
Section 6.2. We have:

Theorem 7. For the problems of remote-clique, remote-
star, remote-bipartition, and remote-tree, we can obtain a
randomized 3-round MR algorithm with the same approx-
imation guarantees stated in Theorem 6 holding with high

probability, and with

ML =

Θ
(√

(α/ε)Dkn logn
)

for k = O
(

(εDn logn)1/3
)

Θ
(

(α/ε)Dk2
)

for k =

Ω
(

(εDn logn)1/3
)

O
(
n1/2−δ

)
∀δ ∈ [0, 1/6)

where α is the approximation guarantee given by the current
best sequential algorithms referenced in Table 1.

Proof. We fix ε′ and k′ as in the proof of Theorem 6,
and, at the beginning of the first round, we use random keys
to partition the n points of S among

` = Θ
(

min{
√
n/(k′ logn), n/(kk′)}

)
reducers. Fix any of the four problems under considera-
tion and let O be a given optimal solution. A simple balls-
into-bins argument suffices to show that, with high prob-
ability, none of the ` partitions may contain more than
Θ (max{logn, k/`}) out of the k points of O. Therefore, it
is sufficient that, within each subset of the partition, GMM-
EXT selects up to those many delegate points per cluster
(rather than k− 1). This suffices to establish the new space
bounds.

The deterministic strategy underlying the 2-round MR al-
gorithm can be employed recursively to yield an algorithm
with a larger (yet constant) number of rounds for the case of

smaller local memory budgets. Specifically, let T =
⋃`
i=1 Ti

be as in the proof of Lemma 5. If |T | > ML, we may re-
apply the core-set-based strategy using T as the new input.
The following theorem, whose proof is omitted for brevity,
shows that this recursive strategy can still guarantee an ap-
proximation comparable to the sequential one as long as the
local memory ML is not too small.

Theorem 8. Let S be a set of n points of a metric space
of doubling dimension D, let and A be a linear-space se-
quential approximation algorithm for any one of the prob-
lems of Table 1, returning a solution S′ ⊆ S, with divk(S) ≤
α div(S′), for some constant α ≥ 1. Then, for any 0 < ε ≤ 1
and 0 < γ ≤ 1/3 there is an O ((1− γ)/γ)-round MR algo-
rithm for the same problem yielding an approximation factor
of α+ ε, with MT = n and

• ML = Θ
(

(α2(1−γ)/γ/ε)Dknγ
)

for the remote-edge

and the remote-cycle problems;

• ML = Θ
(

(α2(1−γ)/γε)Dk2nγ
)
, for some γ > 0 for the

remote-clique, the remote-star, the remote-bipartition,
and the remote-tree problems.

6. SAVING MEMORY: GENERALIZED
CORE-SETS

Consider the problems remote-clique, remote-star,
remote-bipartition, and remote-tree. Our core-sets for these
problems are obtained by exploiting the sufficient conditions
stated in Lemma 2, which require the existence of an in-
jective proxy function that maps the points of an optimal
solution into close points of the core-set. To ensure this
property, our strategy so far has been to add more points
to the core-sets. More precisely, the core-set is composed

475

by a kernel of k′ points, augmented by selecting, for each
kernel point, a number of up to k− 1 delegate points laying
within a small range. This augmentation ensures that for
each point o of an optimal solution O, there exists a distinct
close proxy among the delegates of the kernel point closest
to o, as required by Lemma 2.

In order to reduce the core-set size, the augmentation can
be done implicitly by keeping track only of the number of
delegates that must be added for each kernel point. A set of
pairs (p,mp) is then returned, where p is a kernel point and
mp is the number of delegates for p (including p itself). The
intuition behind this approach is the following. The set of
pairs described above can be viewed as a compact represen-
tation of a multiset, where each point p of the kernel appears
with multiplicity mp. If, for a given diversity measure, we
solve the natural generalization of the maximization prob-
lem on the multiset, then we can transform the obtained
multiset solution into a feasible solution for S by selecting,
for each multiple occurrence of a kernel point, a distinct
close enough point in S. In what follows we illustrate this
idea in more detail.

Let S be a set of points. A generalized core-set T for S is
a set of pairs (p,mp) with p ∈ S and mp a positive integer,
referred to as the multiplicity of p, where the first compo-
nents of the pairs are all distinct. We define its size s(T)
to be the number of pairs it contains, and its expanded size
as m(T) =

∑
(p,mp)∈T mp. Moreover, we define the expan-

sion of a generalized core-set T as the multiset T formed by
including, for each pair (p,mp) ∈ T , mp replicas of p in T .

Given two generalized core-sets T1 and T2, we say that T1

is a coherent subset of T2, and write T1 v T2, if for every pair
(p,mp) ∈ T1 there exists a pair (p,m′p) ∈ T2 with m′p ≥ mp.
For a given diversity function div and a generalized core-set
T for S, we define the generalized diversity of T , denoted
by gen-div(T), to be the value of div when applied to its
expansion T , where mp replicas of the same point p are
viewed as mp distinct points at distance 0 from one another.
We also define the generalized k-diversity of T as

gen-divk(T) = max
T ′vT :m(T ′)=k

gen-div(T ′).

Let T be a generalized core-set for a set of points S. A
set I(T) ⊆ S with |I(T)| = m(T) is referred to as a δ-
instantiation of T if for each pair (p,mp) ∈ T it contains
mp distinct delegate points (including p), each at distance
at most δ from p, with the requirement that the sets of del-
egates associated with any two pairs in T are disjoint. The
following lemma, whose proof is omitted for brevity, ensures
that the difference between the generalized diversity of T
and the diversity of any of its δ-instantiations is bounded.

Lemma 7. Let T be a generalized core-set for S with
m(T) = k, and consider the remote-clique, remote-star,
remote-bipartition, and remote-tree problems. For any δ-
instantiation I(T) of T we have that

div(I(T)) ≥ gen-div(T)− f(k)2δ.

where f(k) =
(
k
2

)
for remote-clique, f(k) = k−1 for remote-

star and remote tree, and f(k) = bk/2c · dk/2e for remote-
bipartition.

It is important to observe that the best sequential ap-
proximation algorithms for the remote-clique, remote-star,
remote-bipartition, and remote-tree problems (see Table 1),

which are essentially based on either finding a maximal
matching or running GMM on the input set [23, 13, 22],
can be easily adapted to work on inputs with multiplicities.
We have:

Fact 2. The best existing sequential approximation al-
gorithms for the remote-clique, remote-star, remote-
bipartition, and remote-tree, can be adapted to obtain from
a given generalized core-set T a coherent subset T̂ with ex-
panded size m(T̂) = k and gen-div(T̂) ≥ (1/α) gen-divk(T),
where α is the same approximation ratio achieved on the
original problems. The adaptation works in space O (s(T)).

6.1 Streaming
Using generalized core-sets we can lower the memory re-

quirements for the remote-tree, remote-clique, remote-star,
and remote-bipartition problems to match the one of the
other two problems, at the expense of an extra pass on the
data. We have:

Theorem 9. For the problems of remote-clique, remote
star, remote-bipartition, and remote-tree, we can obtain a 2-
pass streaming algorithm with approximation factor α+ε and
memory Θ

(
(α2/ε)Dk

)
, for any 0 < ε < 1, where α is the

approximation guarantee given by the current best sequential
algorithms referenced in Table 1.

Proof. Let ε̄ be such that α + ε = α/(1 − ε̄), and ob-
serve that ε̄ = Θ (ε/α). In the first pass we determine a
generalized core-set T of size k′ = (64α/ε̄)D · k by suit-
ably adapting the SMM-EXT algorithm to maintain counts
rather than delegates for each kernel point. Let rT denote
the maximum distance of a point of S from the closest point
x such that (x,mx) is in T . Using the argument in the
proof of Lemma 3, setting ε′ = ε̄/(2α), it is easily shown
that rT ≤ (ε′/2)ρ∗k = (ε̄/(4α))ρ∗k. Therefore, we can estab-
lish an injective map p(·) from O to the expansion T of T .
Let us focus on the remote-clique problem (the argument for
the other three problems is virtually identical), and define
ρ̄ = div(O)/

(
k
2

)
. By reasoning as in the proof of Lemma 2,

we can show that gen-divk(T) ≥ div(O)(1− ε̄/(2α)).
At the end of the pass, the best sequential algorithm for

the problem, adapted as stated in Fact 2, is used to compute
in memory a coherent subset T̂ v T with m(T̂) = k and such

that gen-div(T̂) ≥ div(O)(1 − ε̄/(2α))/α. The second pass

starts with T̂ in memory and computes an rT -instantiation
I(T̂) by selecting, for each pair (p,mp) ∈ T̂ , mp distinct
delegates at distance at most rT ≤ (ε̄/(4α))ρ̄ from p. Note
that a point from the data stream could be a feasible del-
egate for multiple pairs. Such a point must be retained as
long as the appropriate delegate count for each such pair has
not been met. By applying Lemma 7 with δ = (ε̄/(4α))ρ̄,

we get div(I(T̂)) ≥ div(O)/(α + ε). Since ε̄ = Θ (ε/α), the
space required is Θ

(
(α/ε̄)Dk

)
= Θ

(
(α2/ε)Dk

)
.

6.2 MapReduce
Let div be a diversity function, k be a positive integer,

and β ≥ 1. A function c(S) that maps a set of points S
to a generalized core-set T for S computes a β-composable
generalized core-set for div if, for any collection of disjoint
sets S1, . . . , S`, we have that

gen-divk

(⋃̀
i=1

c(Si)

)
≥ 1

β
divk

(⋃̀
i=1

Si

)
.

476

Table 3: Memory requirements of our streaming and MapReduce approximation algorithms. (For MapReduce
we report only the size of ML since MT is always linear in n.) The approximation factor of each algorithm is
α+ ε, where α is the constant approximation factor of the sequential algorithms listed in Table 1.

Problem Streaming MapReduce
1 pass 2 passes 2 rounds det. 3 rounds randomized 3 rounds det.

r-edge
Θ
(
(1/ε)Dk

)
− Θ

(√
(1/ε)Dkn

)
− −

r-cycle

r-clique

Θ
(
(1/ε)Dk2

)
Θ
(
(1/ε)Dk

)
Θ
(
k
√

(1/ε)Dn
) max

{
Θ
(

(1/ε)Dk2
)
,

Θ
(√

(1/ε)Dkn logn
)} Θ

(√
(1/ε)Dkn

)
r-star
r-bipartition
r-tree

Consider a simple variant of GMM-EXT, which we refer
to as GMM-GEN, which on input S, k and k′ returns a
generalized core-set T of S of size s(T) = k′ and extended
size m(T) ≤ kk′ as follows: for each point ci of the kernel
set T ′ = GMM(S, k′), algorithm GMM-GEN returns a pair
(ci,mci) where mci is equal to the size of the set Ei com-
puted in the i-th iteration of the for loop of GMM-EXT.

By reasoning as in the proof of Theorem 9, we are
able to show that GMM-GEN computes a high-quality β-
composable generalized core-set, which can then be em-
ployed in a 3-round MR algorithm to approximate the so-
lution to the four problems under consideration with lower
memory requirements. This result is summarized in the fol-
lowing theorem whose proof is omitted for brevity.

Theorem 10. For the problems of remote-clique, remote-
star, remote-bipartition, and remote-tree, we can obtain a
3-round MR algorithm with approximation factor α+ ε and

ML = Θ
(√

(α2/ε)Dkn
)
, for any 0 < ε < 1, where α is the

approximation guarantee given by the current best sequential
algorithms referenced in Table 1.

A synopsis of the main theoretical results presented in the
paper is given in Table 3.

7. EXPERIMENTAL EVALUATION
We ran extensive experiments on a cluster of 16 machines,

each equipped with 18GB of RAM and an Intel I7 proces-
sor. To the best of our knowledge, ours is the first work
on diversity maximization in the MapReduce and Stream-
ing settings, which complements theoretical findings with
an experimental evaluation. The MapReduce algorithm has
been implemented within the Spark framework, whereas the
streaming algorithm has been implemented in Scala, simu-
lating a Streaming setting1. Since optimal solutions are out
of reach for the input sizes that we considered, for each
dataset we computed approximation ratios with respect to
the best solution found by many runs of our MapReduce al-
gorithm with maximum parallelism and large local memory.
We run our experiments on both synthetic and real-world
datasets. Synthetic datasets are generated randomly from
the three-dimensional Euclidean space in the following way.
For a given k, k points are randomly picked on the surface
of the unit radius sphere centered at the origin of the space,
so to ensure the existence of a set of far-away points, and

1The code is available as free software at
https://github.com/Cecca/diversity-maximization

8 32 128
k

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

ap
p

ro
xi

m
at

io
n

ra
ti

o

k’
k

2k

4k

8k

Figure 1: Approximation ratio for the streaming al-
gorithm for different values of k and k′ on the musiX-
match dataset.

the other points are chosen uniformly at random in the con-
centric sphere of radius 0.8. Among all the distributions
used to test our algorithms, on which we do not report for
lack of space, we found that this is the most challenging,
hence the more interesting to demonstrate. To test our al-
gorithm on real-world workloads we used the musiXmatch
dataset [6]. This dataset contains the lyrics of 237,662 songs,
each represented by the vector of word counts of the most
frequent 5,000 words across the entire dataset. The dimen-
sionality of the space of these vectors is therefore 5,000.
We filter out songs represented by less than 10 frequent
words, obtaining a dataset of 234,363 songs. The reason
of this filtering is that one can build an optimal solution
using songs with short, non overlapping word lists. Thus,
removing these songs makes the dataset more challenging
for our algorithm. On this dataset, as a distance between
two vectors ~u and ~v, we use the cosine distance, defined as
dist(~u,~v) = 2

π
arccos

(
~u·~v
‖~u‖‖~v‖

)
. This distance is closely re-

lated to the cosine similarity commonly used in Information
Retrieval [27]. For brevity, we will report the results only
for the remote-edge problem. We observed similar behaviors
for the other diversity measures, which are all implemented
in our software. All results reported in this section are ob-
tained as averages over at least 10 runs.

7.1 Streaming algorithm
The first set of experiments investigates the behavior of

the streaming algorithm for various values of k, as well as
the impact of the core-set size, as controlled by the param-
eter k′, on the approximation quality. The results of these

477

8 32 128
k

5

10

15

20

25

30

35

40

45
ap

p
ro

xi
m

at
io

n
ra

ti
o

k’
k

k+4

k+16

k+64

Figure 2: Approximation ratios for the streaming
algorithm for different values of k and k′ on a syn-
thetic dataset of 100 million points.

experiments are reported in Figure 1, for the musiXmatch
dataset, and Figure 2. for a synthetic dataset of 100 million
points, generated as explained above.

First, we observe that as k increases the remote-edge mea-
sure becomes harder to approximate: finding a higher num-
ber of diverse elements is more difficult. On the real-world
dataset, because of the high dimensionality of its space, we
test the influence of k′ on the approximation with a geomet-
ric progression of k′ (Figure 1). On the synthetic datasets in-
stead (Figure 2), since R3 has a smaller doubling dimension,
the effect of k′ is evident already with small values, there-
fore we use a linear progression. As expected, by increasing
k′ the accuracy of the algorithm increases in both datasets.
Observe that although the theory suggests that good ap-
proximations require rather large values of k′ = Ω(k/εD),
in practice our experiments show that relatively small val-
ues of k′, not much larger than k, already yield very good
approximations, even for the real-world dataset whose dou-
bling dimension is unknown.

In Figure 3, we consider the performance of the ker-
nel of streaming algorithm, that is, we concentrate on the
time taken by the algorithm to process each point, ignoring
the cost of streaming data from memory. The rationale is
that data may be streamed from sources with very different
throughput: our goal is to show the maximum rate that can
be sustained by our algorithm independently of the source
of the stream. We report results for the same combination
of parameters shown in Figure 1. As expected, the through-
put is inversely proportional to both k and k′, with values
ranging from 3,078 to 544,920 points/s. The throughput
supported by our algorithm makes it amenable to be used
in streaming pipelines: for instance, in 2013 Twitter2 aver-
aged at 5,700 tweets/s and peaked at 143,199 tweets/s. In
this scenario, it is likely that the bottleneck of the pipeline
would be the data acquisition rather than our core-set con-
struction.

As for the synthetic dataset, the throughput of the algo-
rithm exhibits a behavior with respect to k and k′ similar to
the one reported in Figure 3, but with higher values ranging
from 78,260 to 850,615 points/s since the distance function
is cheaper to compute.

2https://blog.twitter.com/2013/new-tweets-per-second-
record-and-how

k 2k 4k 8k
k’

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

th
ro

u
gh

p
u

t
(p

oi
nt

s/
s)

k
8

32

128

Figure 3: Throughput of the kernel of the streaming
algorithm on the musiXmatch dataset.

7.2 MapReduce algorithm
We demonstrate our MapReduce algorithm on the same

datasets used in the previous section. For this set of experi-
ments we fixed k = 128 and we varied two parameters: size
of the core-sets, as controlled by k′, and parallelism (i.e.,
the number of reducers). Because the solution returned by
the MapReduce algorithm for k′ = k turns out to be al-
ready very good, we use a geometric progression for k′ to
highlight the dependency of the approximation factor on k′.
The results are reported in Figure 4. For a fixed level of par-
allelism, we observe that the approximation ratio decreases
as k′ increases, in accordance to the theory. Moreover, we
observe that the approximation ratios are in general better
than the ones attained by the streaming algorithm, plausibly
because in MapReduce we use a 2-approximation k′-center
algorithm to build the core-sets, while in Streaming only a
weaker 8-approximation k′-center algorithm is available.

Figure 4 also reveals that if we fix k′ and increase the
level of parallelism, the approximation ratio tends to de-
crease. Indeed, the final core-set obtained by aggregating
the ones produced by the individual reducers grows larger
as the parallelism increases, thus containing more informa-
tion on the input set. Instead, if we fix the product of k′

and the level of parallelism, hence the size of the aggregate
core-set, we observe that increasing the parallelism is mildly
detrimental to the approximation quality. This is to be ex-
pected, since with a fixed space budget in the second round,
in the first round each reducer is forced to build a smaller
and less accurate core-set as the parallelism increases.

The experiments for the real-world musiXmatch dataset
(figures omitted for brevity) highlight that the GMM k′-
center algorithm returns very good core-sets on this high di-
mensional dataset, yielding approximation ratios very close
to 1 even for low values of k′. As remarked above, the more
pronounced dependence on k′ in the streaming case may
be the result of the weaker approximation guarantees of its
core-set construction.

Since in real scenarios the input might not be distributed
randomly among the reducers, we also experimented with
an “adversarial” partitioning of the input: each reducer was
given points coming from a region of small volume, so to ob-
fuscate a global view of the pointset. With such adversarial
partitioning, the approximation ratios worsen by up to 10%.
On the other hand, as k′ increases, the time required by a
random shuffle of the points among the reducers becomes

478

2 4 8 16
parallelism

1.00

1.02

1.04

1.06

1.08

1.10
ap

p
ro

xi
m

at
io

n
ra

ti
o

k’
k

2k

4k

8k

Figure 4: Approximation ratios for the MR algo-
rithm for different values of k and k′ on a synthetic
dataset of 100 million points.

Table 4: Approximation ratios and running times of
our MR algorithm (CPPU) and AFZ.

approximation time (s)
k AFZ CPPU AFZ CPPU

4 1.023 1.012 807.79 1.19
6 1.052 1.018 1,052.39 1.29
8 1.029 1.028 4,625.46 1.12

negligible with respect to the overall running time. Thus,
randomly shuffling the points at the beginning may prove
cost-effective if larger values of k′ are affordable.

7.3 Comparison with state of the art
In Table 4, we compare our MapReduce algorithm

(dubbed CPPU) against its state of the art competitor pre-
sented in [4] (dubbed AFZ). Since no code was available for
AFZ, we implemented it in MapReduce with the same opti-
mizations used for CPPU. We remark that AFZ employs dif-
ferent core-set constructions for the various diversity mea-
sures, whereas our algorithm uses the same construction for
all diversity measures. In particular, for remote-edge, AFZ
is equivalent to CPPU with k′ = k, hence the comparison
is less interesting and can be derived from the behavior of
CPPU itself. Instead, for remote-clique, the core-set construc-
tion used by AFZ is based on local search and may exhibit
highly superlinear complexity. For remote-clique, we per-
formed the comparison with various values of k, on datasets
of 4 million points on the 2-dimensional Euclidean space,
using 16 reducers (AFZ was prohibitively slow for higher di-
mensions and bigger datasets). The datasets were generated
as described in the introduction to the experimental section.
Also, we ran CPPU with k′ = 128 in all cases, so to ensure a
good approximation ratio at the expense of a slight increase
of the running time. As Table 4 shows, CPPU is in all cases
at least three orders of magnitude faster than AFZ, while
achieving a better quality at the same time.

7.4 Scalability
We report on the scalability of our MR algorithm on

datasets drawn from R3, ranging from 100 million points
(the same dataset used in subsections 7.1 and 7.2) up to 1.6
billion points. We fixed the size s of the memory required
by the final reducer and varied the number of processors

1 2 4 8 16
processors

24

25

26

27

28

29

210

211

212

213

ti
m

e
(s

)

Number of points
1.0 · 108

2.0 · 108

4.0 · 108

8.0 · 108

1.6 · 109

Figure 5: Scalability of our algorithms for different
number of points and processors. The running time
for one processor is obtained with the streaming al-
gorithm.

used. On a single machine, instead of running MapReduce,
which makes little sense, we run the streaming algorithm
with k′ = 2048, so to have a final core-set of the same
size as the ones found in MapReduce runs. For a given
number of processors p and number of points n, we run
the corresponding experiment only if n/p points fit into the
main memory of a single processor. As shown in Figure 5,
for a fixed dataset size, our MapReduce algorithm exhibits
super-linear scalability: doubling the number of processors
results in a 4-fold gain in running time (at the expense of a
mild worsening of the approximation ratio, as pointed out
in Subsection 7.2). The reason is that each reducer per-
forms O

(
ns/(kp2)

)
work to build its core-set, where p is

the number of reducers, since the core-set construction in-
volves s/(kp) iterations, with each iteration requiring the
scan of n/p points.

For the dataset with 100 million points, the MR algo-
rithm outperforms the streaming algorithm in every proces-
sor configuration. It must be remarked that the running
time reported in Figure 5 for the streaming algorithm takes
into account also the time needed to stream data from main
memory (unlike the throughput reported in Figure 3). This
is to ensure a fair comparison with MapReduce, where we
also take into account the time needed to shuffle data be-
tween the first and the second round, and the setup time
of the rounds. Also, we note that the streaming algorithm
appears to be faster than what the MR algorithm would be
if executed on a single processor, and this is probably due
to the fact that the former is more cache friendly.

If we fix the number of processors, we observe that our al-
gorithm exhibits linear scalability in the number of points.
Finally, in a set of experiments, omitted for brevity, we veri-
fied that for a fixed number of processors the time increases
linearly with k′. Both these behaviors are in accordance
with the theory.

8. ACKNOWLEDGMENTS
Part of this work was done while the first three authors

were visiting the Department of Computer Science at Brown
University. Their work was supported, in part, by MIUR
of Italy under project AMANDA, and by the University of
Padova under project CPDA152255/15. The work of Eli

479

Upfal was supported in part by NSF grant IIS-1247581 and
NIH grant R01-CA180776.

9. REFERENCES
[1] Z. Abbassi, V. S. Mirrokni, and M. Thakur. Diversity

maximization under matroid constraints. In Proc.
ACM KDD, pages 32–40, 2013.

[2] M. Ackermann, J. Blömer, and C. Sohler. Clustering
for metric and nonmetric distance measures. ACM
Trans. on Algorithms, 6(4):59, 2010.

[3] P. Agarwal, S. Har-Peled, and K. Varadarajan.
Geometric approximation via coresets. Combinatorial
and computational geometry, 52:1–30, 2005.

[4] S. Aghamolaei, M. Farhadi, and H. Zarrabi-Zadeh.
Diversity maximization via composable coresets. In
Proc. CCCG, pages 38–48, 2015.

[5] A. Angel and N. Koudas. Efficient diversity-aware
search. In Proc. SIGMOD, pages 781–792, 2011.

[6] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere. The million song dataset. In Proc. ISMIR,
2011.

[7] S. Bhattacharya, S. Gollapudi, and K. Munagala.
Consideration set generation in commerce search. In
Proc. WWW, pages 317–326, 2011.

[8] B. Birnbaum and K. Goldman. An improved analysis
for a greedy remote-clique algorithm using
factor-revealing lps. Algorithmica, 55(1):42–59, 2009.

[9] M. Ceccarello, A. Pietracaprina, G. Pucci, and
E. Upfal. Space and time efficient parallel graph
decomposition, clustering, and diameter
approximation. In Proc. ACM SPAA, pages 182–191,
2015.

[10] M. Ceccarello, A. Pietracaprina, G. Pucci, and
E. Upfal. MapReduce and streaming algorithms for
diversity maximization in metric spaces of bounded
doubling dimension. CoRR abs/1605.05590, 2016.

[11] M. Ceccarello, A. Pietracaprina, G. Pucci, and
E. Upfal. A practical parallel algorithm for diameter
approximation of massive weighted graphs. In Proc.
IEEE IPDPS, 2016.

[12] A. Cevallos, F. Eisenbrand, and R. Zenklusen.
Max-sum diversity via convex programming. In Proc.
SoCG, volume 51, page 26, 2016.

[13] B. Chandra and M. Halldórsson. Approximation
algorithms for dispersion problems. J. of Algorithms,
38(2):438–465, 2001.

[14] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental clustering and dynamic information
retrieval. SIAM J. on Computing, 33(6):1417–1440,
2004.

[15] Z. Chen and T. Li. Addressing diverse user preferences
in SQL-query-result navigation. In Proc. SIGMOD,
pages 641–652, 2007.

[16] R. Cole and L. Gottlieb. Searching dynamic point sets
in spaces with bounded doubling dimension. In Proc.
ACM STOC, pages 574–583, 2006.

[17] S. Fekete and H. Meijer. Maximum dispersion and
geometric maximum weight cliques. Algorithmica,
38(3):501–511, 2004.

[18] S. Gollapudi and A. Sharma. An axiomatic approach
for result diversification. In Proc. WWW, pages
381–390, 2009.

[19] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38:293 – 306, 1985.

[20] L. Gottlieb, A. Kontorovich, and R. Krauthgamer.
Efficient classification for metric data. IEEE Trans. on
Information Theory, 60(9):5750–5759, 2014.

[21] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings.
In Proc. IEEE FOCS, pages 534–543, 2003.

[22] M. Halldórsson, K. Iwano, N. Katoh, and
T. Tokuyama. Finding subsets maximizing minimum
structures. SIAM Journal on Discrete Mathematics,
12(3):342–359, 1999.

[23] R. Hassin, S. Rubinstein, and A. Tamir.
Approximation algorithms for maximum dispersion.
Operations Research Letters, 21(3):133 – 137, 1997.

[24] P. Indyk, S. Mahabadi, M. Mahdian, and V. Mirrokni.
Composable core-sets for diversity and coverage
maximization. In Proc. ACM PODS, pages 100–108,
2014.

[25] H. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for MapReduce. In Proc. ACM-SIAM
SODA, pages 938–948, 2010.

[26] G. Konjevod, A. Richa, and D. Xia. Dynamic routing
and location services in metrics of low doubling
dimension. In Distributed Computing, pages 379–393.
Springer, 2008.

[27] J. Leskovec, A. Rajaraman, and J. Ullman. Mining of
Massive Datasets, 2nd Ed. Cambridge University
Press, 2014.

[28] M. Masin and Y. Bukchin. Diversity maximization
approach for multiobjective optimization. Operations
Research, 56(2):411–424, 2008.

[29] S. Munson, D. Zhou, and P. Resnick. Sidelines: An
algorithm for increasing diversity in news and opinion
aggregators. In Proc. ICWSM, 2009.

[30] A. Pietracaprina, G. Pucci, M. Riondato, F. Silvestri,
and E. Upfal. Space-round tradeoffs for MapReduce
computations. In Proc. ACM ICS, pages 235–244,
2012.

[31] P. Raghavan and M. Henzinger. Computing on data
streams. In Proc. DIMACS Workshop External
Memory and Visualization, volume 50, page 107, 1999.

[32] D. Rosenkrantz, S. Ravi, and G. Tayi. Approximation
algorithms for facility dispersion. In Handbook of
Approximation Algorithms and Metaheuristics. 2007.

[33] A. Tamir. Obnoxious facility location on graphs.
SIAM J. on Discrete Mathematics, 4(4):550–567, 1991.

[34] Y. Wu. Active learning based on diversity
maximization. Applied Mechanics and Materials,
347(10):2548–2552, 2013.

[35] Y. Yang, Z. Ma, F. Nie, X. Chang, and
A. Hauptmann. Multi-class active learning by
uncertainty sampling with diversity maximization. Int.
J. of Computer Vision, 113(2):113–127, 2015.

[36] C. Yu, L. Lakshmanan, and S. Amer-Yahia.
Recommendation diversification using explanations. In
Proc. ICDE, pages 1299–1302, 2009.

480

