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ABSTRACT
Modern enterprises generate huge amounts of streaming data, for
example, micro-blog feeds, financial data, network monitoring and
industrial application monitoring. While Data Stream Management
Systems have proven successful in providing support for real-time
alerting, many applications, such as network monitoring for in-
trusion detection and real-time bidding, require complex analyt-
ics over historical and real-time data over the data streams. We
present a new method to process one of the most fundamental an-
alytical primitives, quantile queries, on the union of historical and
streaming data. Our method combines an index on historical data
with a memory-efficient sketch on streaming data to answer quan-
tile queries with accuracy-resource tradeoffs that are significantly
better than current solutions that are based solely on disk-resident
indexes or solely on streaming algorithms.

1 Introduction
A quantile is a fundamental analytical primitive, defined as follows.
Let D denote a dataset of n elements chosen from a totally ordered
universe. For an element e ∈ D, the rank of the element, denoted
by rank(e,D), is defined as the number of elements in D that are
less than or equal to e.

DEFINITION 1. For 0 < φ ≤ 1, a φ-quantile of D is defined
as the smallest element e such that rank(e,D) ≥ φn.

Quantiles are widely used to describe and understand the distri-
bution of data. For instance, the median is the 0.5-quantile. The
median is widely used as a measure of the “average” of data, and
is less sensitive to outliers than the mean. The set consisting of the
0.25-quantile, the median, and the 0.75-quantile is known as the
quartiles of data.

Quantile computation on large dynamic data is important in many
applications, for instance, in monitoring of web server latency [10].
Latency, defined as the time elapsed between a request issued at
the client and the receipt of the response from the server, is an im-
portant measure of the performance of a web service. The me-
dian latency is a measure of the “typical” performance experienced
by users, and the 0.95-quantile and 0.99-quantile are used to get
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a detailed insight on the performance that most users experience.
Similarly, quantiles find application in network performance mea-
surement, e.g, .to determine the skewness in the TCP round trip
time (RTT) [7]. Such quantile computations are a key functional-
ity provided by many Data Stream Management Systems (DSMS),
such as GS Tool [7], that provide support for real-time alerting over
high-velocity streaming data generated by modern enterprises.

While DSMSes have proven immensely successful in supporting
real-time analytics over streaming data, they lack the ability to per-
form sophisticated analysis of streaming data in the context of his-
torical data, for example, comparing current trends in the stream-
ing data with those observed over different time periods in the last
few years. Such an integrated analysis of historical and stream-
ing data is required by many emerging applications including net-
work monitoring for intrusion detection [23, 4], financial trading,
real-time bidding [28], and traffic monitoring [25]. To address the
demands of such applications, data stream warehousing systems,
such as TidalRace [16], have recently emerged. In such systems
data streams, in addition to being analyzed in real-time, are also
archived in a data warehouse for further analysis. At the time the
streams are observed, it is also necessary to take an integrated view
of streaming and archived historical data, to enable comparisons
with historical trends, and to utilize past data to bring more con-
text to the current data [4, 12]. Such an integrated processing has
been considered significant in complex event processing (CEP) [9]
and is used for predictive analysis and correlation of streaming and
historical data.

While there has been quite a bit of work on query processing
methods for the union of historical and streaming data (see the re-
lated work section for more details), there has been no prior work
on methods for fundamental analytical primitives, such as quantiles
and heavy hitters, in this setting. The use of pure streaming meth-
ods for analytical primitives, while feasible, results in unacceptably
high error rates or memory usage for data stream warehouses. Our
work takes a first step in the direction of designing integrated query
processing methods for historical and streaming data for the estima-
tion of quantiles, resulting in significantly lower error and memory
usage than pure streaming methods for this problem.

1.1 Problem

We consider a setup where a data stream is captured and processed
in real time. The data stream is collected for the duration of a “time
step” into a “batch”, and then loaded into a data warehouse. For
example, a time step may be an hour or a day. Data that is not yet
loaded into the warehouse is referred as “streaming data” or “data
stream”. Data that has been archived in the warehouse is called
“historical data”. Historical data is typically larger than the data
stream by a factor of thousands. See Figure 1 for an illustration of
the setup for data processing. LetU denote the universe with a total
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Figure 1: Setup for Integrated Processing of Historical and
Streaming data

order among all elements. Let H denote the historical data and R
the streaming data. Let n denote the size of H and m denote the
size of R. Let H[1] ≤ H[2] ≤ . . . ,≤ H[n] be the elements of H
according to their total order inU andR[1] ≤ R[2] ≤ . . . ≤ R[m]
be the elements of R according to their total order in U . Note that
the elements ofH andR are not necessarily stored in a sorted order.
Let T = H ∪R, and let N = n+m denote the size of T .

The task is to answer queries on T , which is changing constantly
due to arrival of new data. In general, it is expensive to answer
quantile queries exactly on evolving data [20], in that it requires
either very large main memory, or a large number of disk accesses.
Hence, we focus on approximate computation of quantiles, where
there is uncertainty in the rank (within T ) of the element returned
versus the desired rank, and the approximation error is defined to
be the worst case difference between the rank of the element that is
returned and the derived rank.

Given an approximation parameter ε ∈ (0, 1], and a constant
φ ∈ (0, 1], our goal is to design a method that identifies an approx-
imate φ-quantile, e, from T such that |rank(e, T ) − φN | < εm.
Our desired approximation error is expressed as a fraction of the
size of streaming data. We can equivalently express the error as
a fraction of the total data size, N , but since the goal is to have
this error be significantly smaller than the size of streaming data,
it is convenient to express it as an appropriate fraction of m. The
amount of main memory available is much smaller than either R
orH, but secondary storage is abundant.

1.2 Contributions

We present a method for processing streaming and historical data
that enables fast and accurate quantile queries on the union of his-
torical and streaming data. Our method provides the following
guarantees.

• A query for a φ-quantile on T is answered with approxi-
mation error εm where m is the size of the streaming data.
While m is much smaller than the size of T , it could still be
much larger than the size of main memory. For instance, m
could be of the order of 1TB. The relative error in the answer,
when compared with the size of the entire dataset, becomes
increasingly smaller as the size of historical data increases.

• We provide an upper bound on the memory requirement of
the algorithm. We show (both theoretically as well as in prac-
tice) that the resulting accuracy-memory tradeoff is much
better than what can be achieved using state-of-the-art stream-
ing algorithms for quantile computation. We also provide

theoretical upper bounds on the number of disk accesses re-
quired to add a batch of streaming data to the warehouse, and
the number of disk accesses required to answer a query for a
quantile.

• We present detailed experimental results that show the per-
formance that can be expected in practice. A quantile query
on T is answered with accuracy about 100 times better than
the best streaming algorithms while using the same amount
of main memory, with the additional cost of a few hundred
disk accesses for datasets of size 50 to 100 Gigabytes, which
are of the order of a million disk pages. The number of disk
accesses required to load a batch of streaming data into the
warehouse is typically not much more than what is required
to simply write the batch to disk.

1.3 Related Work
Quantile computation on large data is a well-studied problem [20,
3, 18, 6, 15, 11, 24], both in the context of stored data [20] and
streaming data [3, 18, 6, 15, 11, 24]. To compute quantiles from
data stored in a data warehouse or a database, data is processed
using multiple passes through the disk, and hence it is possible to
compute exact quantiles in a deterministic manner. In contrast, in
the case of a data stream, only a single pass over the data is pos-
sible and the quantile is computed using in-memory structures that
are not able to store the entire data seen so far. Hence, quantile es-
timation in a data stream is generally approximate, with a provable
guarantee on the quality of approximation.

Munro and Paterson [20] proposed a p-pass algorithm to com-
pute exact quantiles and showed a lower bound that the memory re-
quired to exactly compute quantiles in p passes is at least Ω(N1/p),
where N is the number of elements in the dataset. Manku et al.
in [18] proposed a single pass deterministic algorithm to estimate
ε-approximate φ-quantiles using space O( 1

ε
log2(εN)). They also

proposed randomized algorithms, MRL98 and MRL99 [18, 19] that
identify ε-approximate φ-quantiles with probability at least (1−δ),
0 < δ < 1, using O

(
1
ε

log2( 1
ε

log2 ( 1
δ
))
)

memory.
Greenwald and Khanna [15] present a deterministic single pass

streaming algorithm for ε-approximate quantiles with worst case
space requirementO

(
1
ε

log(εN)
)
. Shrivastava et al. [24] present a

streaming algorithm for ε-approximate quantiles called the “QDi-
gest” that has a space complexity of O( 1

ε
logU), where U is the

size of the input domain. Wang et al. [26] performed an experi-
mental evaluation of different streaming algorithms [15, 24, 19].
They concluded that MRL99 [19] and Greenwald-Khanna [15] are
two very competitive algorithms with MRL99 performing slightly
better than Greenwald-Khanna in terms of space requirement and
time for a given accuracy. Since Greenwald-Khanna is a determin-
istic algorithm and its performance is close to MRL99, Wang et al.
suggest that Greenwald-Khanna be used when it is desired to have
a worst-case guarantee on the error. They also propose a simplified
version of [19] called RANDOM, which performs slightly better
than [19] in terms of the processing time.

Current literature on integrated processing of historical and stream-
ing data has focused on developing efficient query processing mod-
els for data integration [22, 8, 9, 25, 4, 1, 5, 27]. Frameworks [13,
4, 22, 8] have been proposed to address complex event processing
(CEP) over the integration of historical and streaming data from
systems perspective. In the direction of query processing, Moirae [4],
DataDepot [13], HYPE [22] and Dejavu [8, 9], and also [23] pro-
pose query processing models and techniques for enabling and opti-
mizing CEP over the union of historical and streaming data. These
works focus on declarative pattern matching, semantic level query
specification and complex event processing. [23] proposes the use
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of bitmap indices to store and query historical data, for enabling
fast and real time query processing of streaming and historical data.
Our work is different and complementary to these in that we inves-
tigate query processing strategies for a specific analytical primitive
in detail and we provide guarantees on the quality of the answer as
well as the performance. Our approach to indexing historical data
through merging partitions is similar to that of the LSM-Tree [21].
However, the goals of the two data structures are very different –
the LSM-Tree is designed for search in the presence of a high in-
sert rate, while our structure is designed for quantile queries, with
occasional batched inserts.

2 Approach
A memory-efficient approach to computing quantiles from the union
of historical and streaming data is to apply a streaming algorithm,
say the Greenwald-Khanna algorithm [15] or the QDigest algo-
rithm [24] to T . The streaming algorithm runs continuously and
processes data within a single time step. At the end of the time step,
the entire batch is loaded into the warehouse. The streaming algo-
rithm maintains an in-memory summary that can be used at any
time to answer quantile queries on the entire dataset seen so far.
We call this the “pure-streaming” approach. The pure-streaming
approach can estimate quantiles with an approximation error of
εN using main memory of O

(
log (εN)

ε

)
words (if the Greenwald-

Khanna algorithm is used). Note that the approximation error is
proportional to the size of the entire dataset, which keeps increas-
ing as more data is loaded into the warehouse.

Another strawman approach is to process H and R separately,
by different methods. H is kept on disk, sorted at all times, and an
existing streaming algorithm is used to process R and maintain an
in-memory summary of the streaming data at all times. A quantile
query is answered by combining the stream summary withH. The
approximation error in the result is only due to the streaming algo-
rithm. Hence, it is possible to achieve error proportional to m, the
size of the streaming data only. Since m� N , the accuracy given
by this approach is significantly better than the pure-streaming ap-
proach. However, this approach is expensive in terms of number of
disk operations, because at each time step, a new dataset has to be
merged into the existing sorted structure. This can lead to a large
number of disk I/O operations for each time step.

Our goal is to improve upon the accuracy of the pure streaming
approach and the performance of the strawman approach. We aim
for accuracy comparable to the strawman approach (whose error
is significantly smaller than εN ) using a similar amount of main
memory as the pure streaming algorithm and limited number of
disk I/Os.

Intuition. Keeping the data fully sorted on disk at all times is not
feasible, due to the large number of disk accesses needed for doing
so. The other extreme, of not sorting data at all, is not feasible
either, since computing quantiles will require multiple scans of the
disk (at query time). We try to find a good middle ground. First,
we note that sorting all data that arrives within a time step is easy to
do. We repeatedly merge older partitions to create larger partitions,
where each partition has data within it sorted. We perform this
recursively in such a manner that (1) the number of partitions on
disk is small, logarithmic in the number of time steps and (2) each
data element is involved in only a few merges, so that the total
amortized cost of merging partitions remains small. As a result,
we maintain the historical dataH on the disk in a structure HD that
allows for fast updates, but still has only a small number of sorted
partitions.

Symbol Meaning
U Universe from which elements are chosen
H,R Historical data and streaming data, respectively
T H ∪R

n,m,N Sizes ofH,R, and T respectively
T Total number of time steps
ε Error parameter
HD On-disk data structure forH
HS In-memory summary forH
κ A small integer parameter, the “merge threshold”
Pi` A partition within level ` of HD

SS, TS An in-memory summary ofR and T , respectively.

Table 1: Summary of Notation Used

In addition to the on-disk structure HD, we maintain an in-memory
summary HS that provides us quick access to elements at different
ranks within each sorted partition. This summary ofH is updated at
each time step with the addition of a new dataset to the warehouse
and also when partitions are merged together. We also maintain an
in-memory summary SS for the streaming dataR. This summary is
updated with every new incoming element. At the end of each time
step, when the data stream is loaded into the warehouse, SS is reset.
Quantile queries are answered using a combination of HS and SS
to generate a quick estimate, followed by making few queries to the
disk resident data, to get a more accurate estimate. We show that
our approach is more accurate than the pure-streaming approach
and makes significantly fewer disk I/Os compared to the strawman
approach.

Table 1 has a summary of the notation used in this section. We
present the method for processing historical data and maintaining
HD and HS in Section 2.1, the method for processing streaming data
and maintaining SS in Section 2.2, and the method for answering
queries in Section 2.3. The data structures are initialized as in Al-
gorithm 1.

Algorithm 1: Initialize Data Structures

1 Input parameters: error parameter ε
2 ε1 ← ε/2, ε2 ← ε/4

3 β1 ← d 1
ε1

+ 1e, and β2 = d 1
ε2

+ 1e
4 Call HistInit(ε1, β1) and StreamInit(ε2, β2)

2.1 Processing Historical Data
When a new dataset D is added to HD at the end of a time step, D
is sorted and stored as a separate data partition. Doing this has two
advantages – (1) if we tried to merge in D into the existing sorted
partition, the cost of merging the partitions will be very high; by
keeping it as a separate partition, this cost is avoided, and (2) it also
enables us to maintain data from different time steps separately,
hence allowing for queries restricted to a specific time window of a
certain number of time steps. However, keeping a separate partition
for each time step can lead to a very high query cost, hence some
merging of existing partitions is necessary. Our approach to this
problem is to let a few unmerged partitions accumulate, and when
the number of such partitions crosses a threshold, merge them into
a larger partition. This process is recursively repeated by allowing a
few larger partitions accumulate, followed by merging them into an
even larger partition, and so on. Doing this systematically allows
for the merging cost to be controlled, and also leads to a low cost
during query processing, since much of the data is spread around a
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P2 

State after 2 timesteps 
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P10,12 

P13 

State after 13 timesteps 

Figure 2: An example of how the data partitions within HD
evolve, over 13 time steps. Pi,j denotes a partition formed by
the union of all data that came in time steps i till j (both end-
points inclusive). We assume κ = 2. The empty nodes in the
picture represent partitions that are no longer stored separately
i.e. have been merged into larger partitions.

small number of partitions. Figure 2 shows an example of how the
data partitions evolve over 13 time steps.

More precisely, let κ > 1 be a small integer parameter chosen
before the algorithm begins execution. Each data partition of HD is
associated with a “level”, a small positive integer. We maintain the
following invariant: each level can have a maximum of κ data par-
titions at any point of time. Let the partitions at level ` be denoted
P0
` , P1

` , . . . , Pj−1
` , j ≤ κ.

Suppose a newly arrived dataset D, of size η needs to be added
to HD. Then, D is first sorted and stored at level 0 of HD; the sort-
ing can be performed in-memory, or using an external sort [14],
depending on the size of D. κ is also called the “merge threshold”.
The maximum number of levels in HD is logκ T , where T is the to-
tal number of time steps. If there are more than κ partitions in level
0, then all partitions within level 0 are merged to form a single par-
tition in level 1, so that our invariant is maintained. For instance, in
Figure 2, at the end of two time steps, there are two separate par-
titions at level 0. At the end of the next time step, when there are
three partitions at level 0, they are merged into a single partition
at level 1 (denoted P1,3 in the figure), to maintain the invariant.
Similarly, if there are more than κ partitions in level 1, they are
recursively merged to form larger partitions at level 2, and so on,
until we reach a level that has κ or fewer partitions. For instance, in
Figure 2, at the end of 9 time steps, there will be 3 partitions at level
1, which will be merged together into a single partition at level 2
(denoted P1,9 in the figure). Partitions at higher levels contain data
aggregated from a number of time steps, while partitions at lower
levels are smaller and contain data from fewer time steps.

When a quantile query is executed over HD, a common operation
is to determine the number of elements in HD that are lesser than
a given value. To answer this query, our structure needs to consult
a small (logarithmic in the number of time steps) number of data
partitions. At the same time, to add a new dataset to the warehouse,
our structure will not need to manipulate many partitions; the larger
data partitions are rarely touched.

Along with the batch data structure HD, an in-memory summary
HS is also maintained for historical data. We next describe how
this summary HS is constructed. Algorithm 3 describes the steps
required to maintain the data structures for the historical data, in-
cluding the on-disk data structure HD, and its in-memory summary
HS.

Summary of Historical Data HS HS is an in-memory data struc-
ture that summarizes historical data stored in different data parti-

Algorithm 2: PartitionSummary(P, β1)

Input: Partition P on disk, sorted in increasing order
Output: Return a summary of P of size β1

1 S ← ∅
2 Let η denote the size of the partition
3 Set S[0] to be the smallest element in the partition
4 for i from 1 to β1 − 1 do
5 Set S[i] to the element at rank (iε1η) in P
6 return S

Algorithm 3: Maintenance of the on-disk data structure HD,
and its in-memory summary HS for historical data.

1 def HistInit(ε1, β1)
/* Initialize data structures for historical data */

2 Remember ε1, β1
3 HD← ∅
4 HS← ∅
5 def HistUpdate(D)

/* Update HD and HS with a new dataset D. */
6 Sort D and add as a new partition to level 0 of HD
7 Add PartitionSummary(D, β1) to level 0 of HS
8 `← 0
9 while (more than κ partitions at level `) do

10 Multi-way merge the sorted partitions at level `,
P1
` ,P2

` , . . . ,Pκ` into a single sorted partition P ′ using
a single pass through the partitions

11 Add P ′ to level (`+ 1) in HD and
PartitionSummary(P ′, β1) to HS`+1

12 HS` ← ∅
13 `← (`+ 1)

14 def HistSummary()
15 return HS

tions of HD. Naturally following a parallel structure to the on-disk
organization, HS consists of data structures at λ = dlogκ T e differ-
ent levels, one corresponding to each level of HD, HS0, HS1, HS2,
. . . , HSλ−1. Figure 3 shows an example computation of the sum-
maries for historical data. In this example, there are three partitions
in HD, P1, P2, and P3, with 100, 100, and 200 elements respec-
tively. Each partition is stored on disk, and has a corresponding
in-memory summary, also shown in the figure.

Let ε1 = ε
2

and β1 = d 1
ε1

+ 1e. For 0 ≤ ` ≤ λ − 1, each data
structure HS`, is a set of no more than κ summaries, HS0

` , HS1
` , . . . ,

HSj−1
` , j ≤ κ. The data partition in HD corresponding to HSi` is

denoted Pi` . Each summary HSi` is an array of length β1.
When a new data partition D is created, either due to adding a

new dataset to HD at level 0, or due to merging smaller partitions, a
new summary is generated for this partition as described in Algo-
rithm 2. AfterD is sorted, it is divided into β1 equal subsequences,
and the first element of each subsequence is chosen into the sum-
mary. In the example shown in Figure 3, there is a summary for
each of P1, P2, and P3, each with five elements, since ε1 = 1/4.
Each item of the summary, in addition to having the value of the el-
ement, also has a pointer to the on-disk address, for fast lookup in
the data warehouse. Note that the generation of a new data partition
and the corresponding summary occur simultaneously so no addi-
tional disk access is required for computing the summary, beyond
those taken for generating the new data partition.
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Partition P1 (on disk) 1  2 3 ….. 100 

Partition P2 (on disk) 101 102 103 ….. 200 

Partition P3 (on disk) 2 3 4 ….. 201 

Stream S 
(not stored) 

401 402 403 ….. 600 

1  25 50 75 100 Summary for P1 

101 125 150 175 200 Summary for P2 

2 51 101 151 201 Summary for P3 

401 438 452 480 520 530 565 595 600 

Stream Summary (SS) 

Below is TS = The Summary of the Entire Data = Union of the Historical and Batch Summaries, followed by sorting them 

1 2 25 50 51 75 100 101 101 125 150 151 175 200 201 401 438 452 480 520 530 565 595 600 

Below is shown for each element in TS, its actual rank in the union of historical and streaming data 

1 3 49 99 101 149 199 201 201 249 299 301 349 399 400 401 438 452 480 520 530 565 595 600 

Below is shown for each element in TS, the lower bound L on its rank 

0 0 25 50 100 125 150 200 200 225 250 300 325 350 400 400 425 450 475 500 525 550 575 600 

Below is shown for each element in TS, the upper bound U on its rank 

25 75 100 125 175 200 225 
30
0 

300 325 350 400 425 450 500 525 550 575 600 625 650 675 700 725 

Figure 3: An example of how the summaries and Li and Ui are computed. We assume ε = 1/2, so that ε1 = 1/4 and ε2 = 1/8.
There are three partitions on disk, P1, P2, and P3. The length of the summary for each partition is 5 and the length of the stream
summary is 9.

2.2 Processing Streaming Data
Streaming data is processed using an ε2-approximate streaming
quantiles algorithm where ε2 = ε/4. Given a desired rank r, this
algorithm returns an element whose rank r̂ in a streamR of size m
lies between [r−ε2m, r+ε2m]. For our work, we seek worst-case
(not randomized) guarantees on the error, and hence we use the
Greenwald-Khanna algorithm [15], though other algorithms such
as the Q-digest [24] can also be used.

Let β2 = d 1
ε2

+ 1e. When a query is received, the streaming
algorithm is used to generate a summary SS, an array of length
β2, using steps shown in Algorithm 4. StreamSummary uses
the streaming algorithm to find elements of approximate rank iε2m
fromR, for i ranging from 0 to 1/ε2, and add these elements to SS.
In the example shown in Figure 3, there is a single summary of size
9 for the stream, since ε2 = 1/8. Note that unlike the summary for
historical data, the β2 elements in the streaming summary are not
spaced uniformly among the elements ofR, but are spaced approx-
imately uniformly. Due to the guarantee provided by the streaming
algorithm, each of these β2 elements are identified with a maxi-
mum error of ε2m in their ranks. We use the following guarantees
from the Greenwald-Khanna [15] algorithm. We call the summary
used by the Greenwald-Khanna as the “GK summary”.

THEOREM 1 (GREENWALD-KHANNA [15]). There is an al-
gorithm that processes a stream R of numbers and maintains a
summary of size ( 1

ε
log(εm)) where m is the size of the stream so

far and ε is an error parameter. For a given rank r, 0 ≤ r ≤ m,
the summary returns a value whose rank r′ is guaranteed to be in
the interval [r, r + εm].

The guarantee provided by the stream summary follows directly
from Theorem 1 and is described in the following observation. Let
m denote the size of the stream.

LEMMA 1. For 1 ≤ i ≤ β2 − 1, SS[i] is at rank ri inR where
iε2m ≤ ri ≤ (i+ 1)ε2m.

2.3 Answering a Quantile Query over the Union of Historical
and Streaming data

Our algorithm gives two kinds of responses to a quantile query (1) a
quick response with a rough estimate, using only the in-memory
structures, as described in Algorithm 5 and (2) a slower, but more
accurate response using the in-memory summaries as well as disk
accesses, as described in Algorithm 6.

Algorithm 4: Maintenance of the data structure for the stream
R

1 def StreamInit(ε2, β2)
2 Remember ε2, β2
3 GK is an empty GK summary with error parameter ε2
4 def StreamUpdate(e)

/* When an element e arrives in R */
5 Insert e into GK

6 def StreamSummary()
/* Return a stream summary, to be used in answering

a query */
7 SS is a vector of length β2
8 Set SS[0] to be the smallest element in the stream so far
9 for i from 1 to β2 − 1 do

10 Set SS[i] to the element in GK at approximate rank
iε2m

11 return SS
12 def StreamReset()

/* Called at the end of each time step. The stream
summary is reset to empty. */

13 GK is an empty GK summary with error parameter ε2

2.3.1 Quick Response

On receiving a quantile query, Algorithm 5 provides a quick an-
swer that has an absolute error in rank proportional to the size of
T . When a query is received, the stream summary SS is computed
as described in Section 2.2. The query algorithm then sorts the
union of SS and HS yielding TS, a summary of the entire data T
observed so far. Let the size of TS be δ. Let TS[i] denote the ith el-
ement in the sorted order of TS, 0 ≤ i < δ. In the example shown
in Figure 3, TS consists of 3 ·β1 +β2 elements, for a total of 24 el-
ements, arranged in sorted order. There are a total of 600 elements
within the data, and it can be seen that the actual rank of elements in
TS among the 600 elements are approximately uniformly spaced.

For 0 ≤ i ≤ δ − 1, let Li denote a lower bound on the rank of
TS[i] in T , and Ui denote an upper bound on the rank of TS[i] in
T . Li and Ui are defined as follows. Consider an element TS[i],
for 0 ≤ i ≤ (δ − 1). Let αS denote the number of elements from
SS that are less than or equal to TS[i]. For each partition P ∈ HS,
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let αP denote the number of elements from partition P that are in
HS and are less than or equal to TS[i]. And, let mP denote the
size of partition P in HD. Further, suppose that TS[i] belonged to
partition I . Li and Ui are defined as follows. Let b be defined to be
1 if αS > 0 and 0 otherwise.

Li = mε2b(αS − 1) +
∑

P∈HS,αP>0

mP ε1(αP − 1)

Ui = mε2b(αS + 1) +
∑

P∈HS,αP>0

mP ε1(αP )

See Figure 3 for an example of the computation of Li and Ui for
each 0 ≤ i ≤ δ − 1.

Algorithm 5: QuantilesQuickResponse(r)

/* Quickly return an element of approximate rank r from
T with error O(εN) */

1 Let SS← StreamSummary(), from Algorithm 4
2 Let HS← HistSummary(), from Algorithm 3
3 TS← (∪s∈HSs) ∪ SS, sorted in an increasing order
4 Compute Li for each 0 ≤ i ≤ (δ − 1)
5 Let j be the smallest integer 0 ≤ j ≤ (δ − 1) such that
Lj ≥ r. If no such j exists, then j = (δ − 1).

6 return TS[j]

LEMMA 2. The following guarantees hold for Li and Ui, for
0 ≤ i < δ. Let ri = rank(TS[i], T ). Then,

1. Li ≤ ri ≤ Ui.

2. Ui − Li ≤ εN .

PROOF. Let βS denote the number of elements fromR that are
less than or equal to TS[i]. For each partition P ∈ HD, let βP
denote the number of elements from P that are less than or equal
to TS[i]. It follows that rank(TS[i], T ) = βS +

∑
P∈HD βP .

There are αS elements from SS that are less than or equal to
TS[i]. If αS > 0, then the largest of these is SS[αS − 1], and is
at rank between (αS − 1)ε2m and αSε2m in R, from Lemma 1.
Hence, βS ≥ (αS − 1)ε2m. Similarly, for each partition P ∈ HD
such that αP > 0, βP ≥ mP ε1(αP − 1). Note that if αP = 0,
then no element from the partition P is less than TS[i], since the
smallest element from P is also a part of the summary. In this case,
βP = 0. Adding these up, we get that ri ≥ (αS − 1)ε2mb +∑
P∈HS,αP>0mP ε1(αP − 1), showing that Li ≤ ri.
For the upper bound Ui, consider the smallest element from SS

that is larger than TS[i]. This must be the αS th element in SS.
Using Lemma 1, the rank of this element in R is no more than
(αS + 1)ε2m. Hence, we have βS ≤ (αS + 1)ε2m. For each
partition P , we can similarly show βP ≤ (αP )ε2mP , leading to
the proof that Ui ≥ ri.

By the definition of Ui and Li, we have Ui − Li ≤ (2ε2m +∑
P∈HSmP ε1) = (2ε2m+ ε1n) ≤ εN .

LEMMA 3. In response to a query for a r-quantile,
QuantilesQuickResponse (Algorithm 5) returns an element
of rank r̂ such that |r̂ − r| ≤ 1.5εN .

PROOF. Case I: Suppose there exists an i, 0 ≤ i ≤ (δ−1) such
that Li ≥ r. Then the algorithm returns TS[j] for the smallest j
such that Lj ≥ r. In this case, it must be true that Lj−1 < r.
Also note that Lj ≤ Lj−1 + ε1N . Hence we have r ≤ Lj ≤

(r+ε1N). The rank of the element returned, r̂, is rank(TS[j], T ).
From Lemma 2, we have Lj ≤ r̂ ≤ Lj + εN . Overall, we get
r ≤ r̂ ≤ r + (ε+ ε1)N , proving this case.

Case II: Suppose that Lδ−1 < r. In this case, r̂ = rank(TS[δ−
1], T ). From Lemma 2, we have that r̂ < r + εN . We can also
show that r̂ ≥ N − εN , since this is the last element in TS. Since
r ≤ N , we have r̂ ≥ r−εN . Thus, we have r−εN ≤ r̂ ≤ r+εN ,
proving this case.

Algorithm 6: QuantilesAccurateResponse(r)

/* Return an element of approximate rank r from T with
error O(εm) */

1 Let SS← StreamSummary(), from Algorithm 4
2 Let HS← HistSummary(), from Algorithm 3
3 TS← (∪s∈HSs) ∪ SS, sorted in an increasing order
4 (u, v)← GenerateFilters(TS, r)
5 return Query(SS,HS, u, v))

2.3.2 Accurate Response
We now present Algorithm 6 which returns a response to a quantile
query that is more accurate than Algorithm 5. As a first step, the
algorithm finds a pair of elements u and v from TS such that the el-
ement of desired rank r is guaranteed to lie between these elements,
i.e rank(u, T ) ≤ r ≤ rank(v, T ). We refer to this pair as Filters.
Filters are generated by calling GenerateFilters(X, r), de-
scribed in Algorithm 7.

Algorithm 7: GenerateFilters(TS, r)

/* Find elements u, v from TS such that the element of
rank r in T is guaranteed to lie between u and v */

1 Let x be the largest i, 0 ≤ i < δ such that Ui ≤ r
2 Let y be the smallest i, 0 ≤ i < δ such that Li ≥ r
3 return (TS[x],TS[y])

LEMMA 4. Given rank r and summary TS, Algorithm 7 returns
elements u, v ∈ TS such that rank(u, T ) ≤ r ≤ rank(v, T ) and
(rank(v, T )− rank(u, T )) < 4εN , where N = |T |.

PROOF. u = TS[x] where Ux ≤ r. From Lemma 2,
rank(u, T ) ≤ Ux, and hence we have rank(u, T ) ≤ r. Similarly,
we have rank(v, T ) ≥ r.

It must be true thatUx+1 > r. Let α denote the rank of TS[x+1]
in T . Using Lemma 2, we have α > r − εN . Since successive
elements in TS cannot differ by more than εN in rank, we have
rank(u, T ) > r − 2εN .

Similarly, we note that Ly−1 < r. Let β denote the rank of
TS[y − 1] in T . From Lemma 2, we have β < r + εN . Since
successive elements in TS cannot differ by more than εN in rank,
we have rank(v, T ) < r + 2εN .

After computing u and v, the algorithm for an accurate response
makes a series of recursive calls to the function Query (described
in Algorithm 8) to narrow down the range of elements between u
and v. This algorithm uses a binary search on the range of possible
values to find a new pair of filters with smaller interval size. The
idea is to narrow down the range of elements between the pair of
filters to a point where all elements between the filters in HD can be
loaded into memory. These consecutive elements from HD are used
in combination with SS to accurately answer the quantile query.
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Algorithm 8: Query(SS,HS, u, v, r)

/* Return an element at approximate rank r within T . SS
is a summary of the stream, and HS is a summary of
HD. The desired element is guaranteed to lie between
u and v */

1 z ← (u+ v)/2
/* Lines 2-7 compute ρ1, the rank of z in HD */

2 ρ1 ← 0
3 foreach summary ψ in HS do

/* It is necessary to iterate through different partitions
(corresponding to the summaries) since the rank of
z within T has contributions from many different
partitions within HD. */

4 Let P be the data partition corresponding to ψ
/* l and v help in narrowing the range of elements we

need to search in P to compute the rank of z in P
*/

5 Let l be the rank in P of the largest element x ∈ ψ such
that x ≤ u and p the rank in P of the smallest element
y ∈ ψ such that y ≥ v

6 Compute ρ′, the rank of z in P using a binary search on
P , starting with left endpoint l and right endpoint p

7 ρ1 ← ρ1 + ρ′

/* Compute ρ2, the approximate rank of z in R */
8 for i from 0 to |SS− 1| do
9 if z ≥ SS[i] then

10 ρ2 ← ρ2 + ε2m

11 ρ← ρ1 + ρ2 // The approximate rank of z in T
12 if (r < (ρ− εm)) then
13 return Query(SS,HS, u, z, r)

14 else if (r > (ρ+ εm)) then
15 return Query(SS,HS, z, v, r)

16 else
17 return z

LEMMA 5. Given a query for an element of rank r from T ,
Algorithm 6 returns an element whose rank in T is r̂ such that
|r − r̂| = O(εm), where 0 < ε < 1 is an error parameter .

PROOF. Algorithm 6 starts off computing a pair of filters u and
v from TS such that rank(u, T ) ≤ r ≤ rank(v, T ) and rank(v, T )−
rank(u, T ) ≤ 4εN . Algorithm 8, uses these filters, and visits the
disk to find a new pair of filters u′ and v′ such that rank(u, T ) ≤
r ≤ rank(v, T ) still holds true, while u′ and v′ are closer in rank
when compared to the previous pair of filters. This recursion con-
tinues till the number of elements between v′ and u′ is no more than
1
ε

. At this point, the algorithm retrieves elements from HD between
u and v into the query data structure Q. Had there not been the
streaming data, Q would have returned the element of rank r with
error 0. However, there is an error of ε2m because the ranks of el-
ements of SS inR are only approximate with an error of O(ε2m).
Hence the error of our algorithm is O(εm).

2.4 Performance

We first consider the number of disk accesses made by the algo-
rithm, for update, and for answering a query. We note that the disk
accesses required for updating HD in Algorithm 3 are sequential
I/Os, while the disk accesses required for answering queries are
mostly random I/Os. While random I/Os are more expensive than

sequential, the number of random I/Os made during a query is rel-
atively small.

LEMMA 6. The amortized number of disk accesses required per
time step to update HD and HS when a new dataset D is added is
O( n

BT
logκ T ), where n is the size ofH, B is the block size and T

is the number of time steps.

PROOF. When a new dataset D arrives, disk I/Os are made for
two reasons: (1) sort and add D into a new partition in HD, and
(2) if needed, merge data partitions.

When a dataset of size η is added to HD, it needs to be sorted, us-
ing external sorting [14]. Prior work [2] has shown that in practice,
external sorting can be done using a constant number of passes over
data, each pass involving a multi-way merge of data, even for very
large datasets. Thus, the total number of disk accesses for sorting
is linear in the number of blocks in the partition, O(η/B). To find
the amortized number of accesses per time step, we sum O(η/B)
over all datasets inserted into HD, and divide by the number of time
steps, leading to O( n

BT
).

The second kind of disk access is due to the merging of older
partitions into a single partition. Consider an element e that was
inserted into the warehouse. It will first belong to one sorted par-
tition, which will further get merged into another partition, and so
on. The number of levels of merging is logκ T , since each level of
merging reduces the number of partitions by a factor of κ. In each
level of merge, the total amount of data that is merged is n items.
Since merging takes sequential I/Os of the order of the number of
disk blocks being merged, the total I/Os for merging at a single
level is O(n/B). Summing this across all the levels, we get a total
disk accesses ofO( n

B
logκ T ). The total number of disk I/Os is the

sum of the above two terms, averaged across T time steps, which
is O( n

BT
logκ T ).

LEMMA 7. The number of disk accesses required by Algorithm 6
to identify an element of rank r from T , is
O(logκ T log εn

B
log |U |)

PROOF. The query has to execute multiple recursive calls. Within
each recursive call, the algorithm, for each partition P in HD, com-
putes l and p. This computation does not require any disk ac-
cesses, since for each element in ψ, its rank with the correspond-
ing partition is explicitly computed and stored, while the summary
was being computed. Computing the rank ρ′ of z however takes
disk accesses. Since the difference in rank of l and p within P
starts off at no more than εn, and the binary search can stop when
we have reached the state where all relevant data fits within one
disk block of size B, the binary search takes O(log εn

B
) disk ac-

cesses. Summed over all partitions, the total is O(logκ T log εn
B

)
disk accesses per recursive call. Since the depth of recursion is
O(log |U |), the total number of disk accesses follows.

LEMMA 8. Total main memory required by the summary for
historical data, HS is O

(
κ logκ (T )

ε

)
.

PROOF. The number of levels in HS is logκ T . There are no
more than κ partitions in each level, and the size of the summary
for each partition is β1 = O(1/ε). Therefore, the total size of HS

is O
(
κ logκ (T )

ε

)
.

LEMMA 9. Total main memory required by the summary of stream-
ing data SS is O

(
log(εm)

ε

)
.

PROOF. Given a rank r, an ε2-approximate streaming algorithm
requires a total memory of O

(
log(εm)

ε

)
(Theorem 1) to return an
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element with an approximate rank r from R. The structure SS
requires d 1

ε2
+1e = O

(
1
ε

)
words of memory. Hence total memory

required to construct and maintain SS is O
(

log(εm)
ε

)
.

The total main memory required by our algorithm follows from
Lemmas 9 and 8 and is given by the following observation.

OBSERVATION 1. The total main memory required by our al-
gorithm to maintain the summaries is
O
(
1
ε
(log(εm) + κ logκ (T ))

)
.

We present the overall guarantees in Theorem 2.

THEOREM 2. Our algorithm, when given an integer r ∈ [0, N),
returns an element e ∈ T such that (r − εm) ≤ rank(e, T ) ≤
(r + εm). The total main memory requirement of our algorithm
is O

(
1
ε
(log(εm) + κ logκ (T ))

)
. The amortized number of disk

accesses required to update HD at each time step is O( n
BT

logκ T )
and the number of disk accesses to answer a query is
O(logκ T log εn

B
log |U |) where B is the block size, T is the num-

ber of time steps, m the size of the streaming data, n the size of
historical data, and N = (n+m).

Let us consider an example for illustration. Suppose that a time
step is a day. Also, suppose that 10TB of data is loaded into the
data warehouse at each time step, for 3 years, and that the block
size is 100KB. The average number of disk operations required
each day to add data to the warehouse is about 108

3×365
× log (108),

which is of the order of 106. This includes the disk accesses needed
to add new data as well as merge older partitions. Assuming that
a fast hard disk can access 1 block per millisecond, this will take
approximately 1000 seconds. The processing time can be reduced
further by parallelizing the merge operations [17]. Assuming that
approximation parameter ε is 10−6, total number of disk accesses
required to answer a query is in the order of 350, using order of
300000 words of memory.

Optimization. When compared with Algorithm 6, we made an op-
timization to reduce the number of disk accesses for query process-
ing. As described, when a quantile query is received Algorithm 7
finds a pair of elements within which the quantile is guaranteed
to lie. Following this, Algorithm 8 is recursively called to nar-
row down the range [u, v], always making sure that the quantile
lies within the range. The optimization is that the recursive search
needs to proceed only as long as the pair of elements u and v are in
different disk blocks. Once u and v are within the same disk block,
we do not use any further disk operations, and store the block in
memory for further iterations. This yielded a reduction in the num-
ber of disk accesses.

Queries Over Windows. It may be necessary to answer queries
over “time windows”, a subset of data that has arrived during re-
cent time steps. The algorithms that we presented can be directly
used to answer windowed queries if the window sizes are aligned
with the partition boundaries in the warehouse. For such queries,
we can restrict our attention to data structures corresponding to the
partitions that fall within the window.

3 Experiments
We report the results of our simulation-based experiments, where
we evaluate the accuracy, memory usage, and runtime of the algo-
rithm.

3.1 Experimental Setup
We used a 64-bit Intel Core i5 (4 cores) Macbook - OS X Yosemite,
with a processor speed of 2.6GHz and 8GB RAM. We implemented
all algorithms using Java 7. We assumed a block sizeB of 100 KB.

Datasets We used two synthetic datasets “Normal” and “Uniform
Random”, and two real world datasets, one derived from Wikipedia
page view statistics and the other a network traffic trace.
(1) The Normal dataset was generated using normal distribution
with a mean of 100 million and a standard deviation of 10 million.
The size of the streaming data (total data collected at each time
step, not yet loaded into the warehouse) is 1GB. The total data vol-
ume at each time step is 1GB, and there are 100 time steps. Thus,
the total size of historical data is 100GB.
(2) The Uniform dataset was generated by choosing elements uni-
formly at random from a universe of integers ranging from 108 to
109. The maximum size of the streaming data is 1GB. With 100
time steps, the total size of historical data is 100GB, with 1GB per
time step.
(3) The Wikipedia dataset was generated using page view stats
from a Wikipedia dump 1. Each tuple of this dataset is the size of
the page returned by a request to Wikipedia. The maximum size of
the streaming part of the dataset is 500MB. There were 116 time
steps, and the total size of the historical data is 58 GB.
(4) The Network Trace was generated from anonymized traffic
traces taken at a west coast OC48 peering link for an ISP. This data
was generated over a period of about 15 hours. Each tuple is a
source-destination pair. The maximum size of the streaming part
of the dataset is 600MB. There were 100 time steps, and the total
size of the historical data is 60GB.

Performance Metrics: The three main performance measures
are accuracy, memory usage, and runtime of the algorithm. The
runtime of the algorithm is measured in terms of the processing and
query time, as well as the number of disk accesses. The accuracy is
measured using relative error, defined as |r−r̂|

φN
where r is the rank

desired by the quantile query, and r̂ is the actual rank of the element
returned by the algorithm. The different components of runtime
are: (1) update/processing time per time step, (2) the number of
disk accesses required per time step to add a new dataset to the
historical data, (3) time taken to answer a query for the φ-quantile
using the data structures and the historical data, and (4) the number
of disk accesses required to answer a query for the φ-quantile.

Implementation Details: We used the Greenwald-Khanna (GK)
algorithm to process streaming data, in conjunction with on-disk
and in-memory historical data structures. For comparison, we im-
plemented a “pure-streaming” approach using two prominent deter-
ministic streaming quantile algorithms - GK [15] and QDigest [24].
Given a memory budget, we allocate 50 percent of the memory to
the stream summary and 50 percent of the memory to the histori-
cal summary. Note that giving half the memory to the streaming
summary and half to the historical summary leads to an error no
worse than twice of what can be obtained using the optimal split,
since each summary receives at least half of the maximum possi-
ble memory that it could have received. A detailed investigation
of the optimal memory split between the historical and streaming
summary is an interesting question for future investigation.

3.2 Results

Accuracy: We measured the relative error of different approaches
as a function of the memory, by varying the memory from 100 MB
to 500 MB, for κ = 10. We report the median of 7 different runs
in Figures 4a, 4b, 4c and 4d. Our algorithm with the accurate re-
sponse is labeled as “Our Algorithm”, and quick response is la-
beled as “Quick Response”. We observe that the accuracy of “quick
response” is close to the QDigest algorithm, and the accuracy of
the accurate response algorithm is significantly better than the rest.

1http://dumps.wikimedia.org/other/pagecounts-raw/
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Figure 4: Accuracy (Relative Error) vs Memory

Overall, we found that the accuracy of our algorithm is substan-
tially better (usually by a factor of more than 100) than that of a
pure streaming algorithm, given the same amount of main memory.

In Figures 5a, 5b, 5c and 5d, we show the dependence of the
accuracy on κ, labeled as “Relative Error in Practice”. Keeping
memory fixed at 250 MB, we vary κ from 2 to 30. We observe
that the accuracy of the algorithm does not depend on the merge
threshold κ, which is consistent with Theorem 2 which says that
the accuracy depends only on ε and the size of the stream. We
also compare with an upper bound on relative error derived from
theory, labeled as “Relative Error in Theory”, and observe that the
observed error is significantly smaller than the theoretical bound.
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Figure 5: Accuracy (relative error) vs merge threshold κ, mem-
ory fixed at 250MB
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Figure 6: Update time vs memory, κ = 10

Update Time per Time Step. Figures 6a, 6b, 6c, and 6d show the
update time (for a single time step) as a function of the memory
when memory is varied from 100MB to 500MB, while κ is fixed at
10. To understand where the time is being spent, we have broken
down the update time into four components - (1) time to load new
data to the data warehouse (2) time to sort data, (3) (amortized) time
to merge historical data partitions according to Algorithm 3, and
(4) time to update the in-memory summary. We observe that the
time taken to sort and merge the datasets are the two most expensive
components.

We also compare the update time of our algorithm with that
of pure streaming algorithms GK and Q-Digest, shown in Fig-
ures 6a, 6b, 6c, and 6d. In the pure streaming approach, we use
the same loading paradigm, i.e. loading new data to the data ware-
house at every time step, and same partitioning scheme as used in
our algorithm. This partitioning scheme ensures that the new data
is loaded using minimal resource that is proportional to the size of
the new data. It also ensures that older data are merged together so
that they are handled in a similar fashion without having to access
large number of partitions. However a pure streaming algorithm
does not require the data set to be sorted and hence do not have to
pay for sorting. We observe that the update time of our algorithm
is about 1.5 times as much as the pure streaming algorithms. Time
taken for loading and merging the data sets are similar for all algo-
rithms. However, the time taken to generate the summary is slighly
smaller in the case of our algorithm. This is so because the time
taken for generating summary of our algorithm is mostly due to the
stream summary. Summary for historical data is generated during
loading and index generation.

Figures 7a, 7b, 7c, and 7d show the dependence of the update
time as a function of κ, keeping memory fixed at 250MB. In each
figure, the y-axis on the left side shows the update time in sec-
onds, while the y-axis on the right side shows the number of disk
accesses to update the historical data. Since these two numbers
are closely correlated, we show them in the same figure. Indeed,
we observe that the update time and the number of disk accesses
show similar trends. We observe that in general, the update time
decreases slightly as κ increases. The reason is that as κ decreases,
merges of data partitions are more frequent. For instance, if κ = 2
and T = 100, the maximum number of levels is dlogκ (T )e =
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Figure 7: Update time and Number of disk accesses (per time
step) vs merge threshold κ, memory fixed at 250MB

dlog2 100e = 7 and the maximum number of merge operations
that a single data item is involved in is 7. If κ = 10 and T = 100,
the corresponding number is log10 100 = 2.

In the plots for update time as a function of κ, we see an anomaly
at κ = 9, 10, where the number of disk accesses increases from
κ = 9 to 10, and then decreases thereafter as κ increases further.
To understand this, see Figure 8 which shows the cumulative fre-
quency distribution of the number of disk accesses.

The x-axis of the figure shows the number of disk accesses per
time step and the y-axis shows a percentage. Point (x, y) in this
graph says that y percent of disk accesses took less than or equal to
x steps. For the case κ = 9, the figure shows that in 89 percent of
the time steps, disk accesses are made only to add the new batch to
level 0 without any merging of partitions, and this takes 10K disk
accesses. In 10 percent of time steps, level 0 partitions are addition-
ally merged to a level 1 partition – this takes 190K disk accesses.
In another 1 percent of the time steps, there is an additional merge
from level 1 to level 2, requiring 1810K disk accesses. The peak at
κ = 9 shown in Figure 7a, is explained by this one time step requir-
ing 1810K disk accesses. Note that similar to the case for κ = 9,
there is one time step out of 100 time steps for the case of κ = 7
(Figure 8), where level 0 partitions are merged to level 1 and level
1 partitions are merged to level 2, requiring 1130K disk accesses.
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Figure 9: Query Runtime and Disk Accesses vs memory, κ =
10

But this value is small compared to the number of disk accesses
required by κ = 9. The single merge from level 1 to level 2 for
κ = 9 will payoff for future time steps, but our experiments used
only 100 time steps, which is why the cost for κ = 9 is anoma-
lously high. On the other hand, for κ = 10, in 91 percent of time
steps, a new dataset is added to the warehouse without any merging
of data partitions, and in 9 percent of time steps level 0 partitions
merge to level 1. The data partitions from level 1 do not merge
to higher level and hence, the number of update disk accesses for
κ = 10 is noticeably low compared to κ = 9. If we ran the ex-
periments for a large number of time steps, then we expect to see
a smooth decrease in the number of disk accesses with increasing κ.

Query Time. Figures 9a, 9b, 9c and 9d show the time taken by
the algorithms to answer a query as a function of the amount of
memory allocated, while keeping κ fixed at 10. The y-axis on the
left side shows query time in seconds, and the right side shows the
number of disk accesses for a query. We observe that the query
time increases in general with the increase in the amount of mem-
ory allocated to the algorithms. We also observe that the query time
of our algorithm is only slightly more than the query time of pure
streaming algorithms. We observe that the total number of disk ac-
cesses decreases slightly with an increase in memory, but however,
the overall query time still increases due to an increase in the time
taken to process the stream summary during a query.

Figures 10a, 10b, 10c and 10d show the query time as a function
of κ, while keeping the memory fixed at 250 MB. The y-axis on the
left and right side show the time (in seconds) and the disk accesses,
respectively. The increase in the number of disk accesses for in-
creasing value of κ shows a similar trend as the query time. The
explanation of the result is as follows. For a fixed amount of mem-
ory, the query time due to the stream summary does not change
with κ. As κ increases, the number of partitions per level increases.
Since the total memory is fixed, the size of the summary per data
partition decreases, which leads to a larger number of disk accesses
(for each partition) to answer a query accurately, and hence a larger
runtime. We report the median of the disk accesses over 7 different
runs of the algorithm.
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Figure 10: Query Runtime and Disk Accesses vs κ, memory
fixed at 250MB

Queries over a Window. Figure 11 shows the possible window
sizes, in terms of time steps, over which a query can be answered,
for Normal dataset with 100 time steps. We show the graphs for
κ = 3 and κ = 10. We observe that for κ = 3, a query can be
made over windows of sizes 1, 4, 7, 10, 19, 45, 72, 100 time steps,
whereas for κ = 5, the window sizes for querying are 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 time steps.
We observe that for larger values of κ, we have more window size
selections because the number of merges are fewer. The number
of disk accesses for answering queries increases with the window
size, due to an increase in the size of the data within the window.

Scalability Test. In this set of experiments, we measured the
variation of the accuracy and running time with the size of historical
data and the size of data stream.

In the first experiment, we varied the size of the historical data
while keeping the size of streaming data fixed. Figure 12a shows
the relative error as the size of historical data is varied from 10GB
to 100GB for the normal dataset, by keeping the number of time
steps fixed at 100, and varying the size of the stream data added
at each time step. For this experiment, we fix the stream size at
1GB, the main memory at 250MB, and set κ = 10. We observe
that the relative error decreases with an increase in the size of the
historical data. This is consistent with the theoretical guarantees
given by Lemma 5, which shows that the absolute error in the rank
of the algorithm does not vary with the size of the historical data,
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Figure 11: Runtime and number of disk accesses for a query vs
the window size, Normal data, memory fixed at 250MB

and thus the relative error decreases as the size of the historical data
increases. We observe from Figure 12b that the time taken as well
as the number of disk accesses per time step for an update increases
with the size of the historical data. This is also consistent with the
theoretical guarantee in Lemma 6. We observe from Figure 12c
that the time taken and the number of disk accesses for answering
a query increases as we increase the size of the historical data set,
which is consistent with the theoretical guarantee in Lemma 7.

In the final experiment, we varied the size of the data stream
while keeping the size of the historical data fixed. Figures 13a, 13b
and 13c show the relative error, update time, and the query time,
respectively, as a function of the size of the stream, keeping the size
of the historical data set fixed at 100 GB, main memory size fixed
at 250 MB and κ = 10. We observe in figure 13a that the relative
error of our algorithm increases linearly with the stream size. This
is consistent with our theory in Lemma 5. We also observe that the
time taken for an update and to answer a query do not vary with
stream size. We also observe that the number of disk accesses,
both for update and query (Figures 13b and 13c respectively), do
not depend on the size of the stream. This is again consistent with
Lemmas 6 and 7.

4 Conclusion
Many “real-time big data” scenarios require an integrated analy-
sis of live streaming data and historical data. While there have
been multiple attempts at designing data processing architectures
and query processing strategies for such an analysis, query process-
ing strategies for fundamental analytical primitives are lacking. We
present a new method to process one of the most fundamental an-
alytical primitives, quantile queries, on the union of historical and
streaming data. Our method combines an index on historical data
with a memory-efficient sketch on streaming data to answer quan-
tile queries with accuracy-resource tradeoffs that are significantly
better and more flexible than current solutions that are based solely
on disk-resident indexes or solely on streaming algorithms. Our
theory and experiments indicate that ours is a practical algorithm,
potentially scalable to very large historical data.

Our work explores a natural three-way tradeoff between accu-
racy, memory, and the number of disk accesses. It is possible to
improve accuracy by increasing memory usage while keeping the
number of disk accesses fixed, through giving more memory to
the stream summary. It is possible to reduce the number of disk
accesses by increasing memory while keeping the accuracy fixed,
through giving more memory to the index for enabling disk lookups
and thus decreasing the range of disk-resident data to be processed
at query time. It maybe possible (within limits) to reduce the num-
ber of disk accesses by reducing the accuracy while keeping the
memory usage fixed, through stopping the search of the on-disk
structure early, thus increasing the error in rank incurred due to
disk-resident data. In this work, we have explored a portion of this
space of tradeoffs. An interesting direction for future work is to
explore this space of tradeoffs further, and also consider how to im-
prove these tradeoffs through the use of improved data structures.

Another direction for future research is on parallel methods for
processing data, maintaining the index, and answering queries. Dur-
ing query processing on historical data, different disk partitions can
be processed in parallel, leading to a lower latency by overlapping
different disk reads (assuming that the storage itself can support
parallel reads). The on-disk index HD is updated using a set of sort
and merge operations, which can potentially be parallelized using
parallel sorting. Yet another direction for future work is to consider
other classes of aggregates in this model of integrated processing
of historical and streaming data.
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Figure 12: Accuracy and cost vs. historical data size, stream size fixed at 1GB, memory fixed at 250MB, κ = 10, Normal data
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