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ABSTRACT
Complex event processing (CEP) has proven to be a highly
relevant topic in practice. As it is sensitive to both errors
in the stream and uncertainty in the pattern, approximate
complex event processing (ACEP) is an important direc-
tion but has not been adequately studied before. ACEP is
costly, and is often performed under insufficient computing
resources. We propose an algorithm that learns from the
past behavior of ACEP runs, and makes decisions on what
to process first in an online manner, so as to maximize the
number of full matches found. In addition, we devise effec-
tive optimization techniques. Finally, we propose a mecha-
nism that uses reinforcement learning to dynamically update
the history structure without incurring much overhead. Put
together, these techniques drastically improve the fraction
of full matches found in resource constrained environments.

1. INTRODUCTION
Complex event processing has proven to be useful in prac-

tice. Complex event matching is sensitive to both errors
in data streams and errors or uncertainty in patterns. A
complex event pattern p is usually represented as a regular
expression extended with a window constraint, allowing in-
terleaving of irrelevant events [5, 9]. Thus, when there is one
critical basic event in the stream sequence that is supposed
to match a basic event in p but differs due to noise or missing
events, then the match will fail altogether. Furthermore, a
user who issues the complex event query may not always be
exactly sure about the pattern p. She roughly knows what
she is looking for, and tries to specify a pattern p. However,
if a piece of the stream matches p approximately, it might
be an interesting match. Let us look at an example.

Example 1. Twitter is one of the most popular social
networks. We can define basic events (i.e., letters), as well
as complex event patterns to find complex events of interest
in a timely fashion from the Twitter stream. For instance,
suppose we want to detect “buy” or “sell” points for the com-
pany Apple’s stock. The idea is that if there are discussions
of bullish stock chart patterns, followed by some good news
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of the company, we identify it as a buy point (as the stock
will likely go up). We can use the following pattern:

p = [Sa(b|d|w|r)E]2+[Sa(g|e|u)E]2+ (1)

where S is the start of a tweet (identified by @name in the
text), E is the end of a tweet (identified by a timestamp),
a is the appearance of stock symbol $AAPL (Apple, Inc.), b
is “bullish”, d is “double bottom”, w is “falling wedge”, r is
“rounding bottom”, g is “decent/solid guidance”, e is “good
earnings”, and u is “upgrade”. Note that d, w, and r are
typical bullish stock chart patterns (more can be included)
signifying a potential upward movement of the company’s
stock price in the future, while g, e, and u are typical good
news of a company that ensures the upward movement (these
terms are usually posted by experienced traders or trading
professionals). The notation “2+” means the pattern in the
brackets occurs two or more times. Thus, p finds two or
more tweets that indicate a potential upward trend followed
by two or more tweets that corroborate it with good news evi-
dence. The whole pattern indicates a “buy” point for Apple.

In Example 1, similarly we can define a complex event for
a “sell” point and do this for many companies. Here, the ba-
sic events/letters are derived from matching keywords, and
the timestamp of a letter is the timestamp of the correspond-
ing tweet. There is clearly uncertainty in the letter sequence
since a trader may not use a term that we expect. We are
not completely sure about the pattern p; a little deviation
from it is probably a good discovery too. We study approxi-
mate complex event processing (ACEP). Our semantics is a
relaxation of the commonly-used exact version by allowing
at most k event errors in the match instance. For instance,
in Example 1, we may have k = 1 which allows at most one
mismatch of the required letters.

Complex event processing can be very resource consum-
ing, as every intermediate matching state has to be kept in
the system until either it results in a full match or the match
window expires. This process is also nondeterministic, for
we want to get all match instances—the actions of moving
to the next state (due to a letter match) and staying in the
current state are both valid. ACEP makes it even more
nondeterministic, since we now also have the choice to skip
a letter and go to the next state, adding one to the error.
The performance issue is a showstopper when the processing
speed cannot keep up with the stream rate.

The aforementioned problem is even more serious if we
consider a novel application where more computing is pushed
down to endpoint small devices such as smartphones, in
order to reduce the amount of communicated data to the
server. In particular, an application may want to perform
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such ACEP matching in situ—on smartphones or other de-
vices with limited computing power. Only matched instances
are communicated to the remote server. Hence, it is imper-
ative to study resource-constrained ACEP (RC-ACEP).

RC-ACEP is a best-effort attempt to discover as many oc-
currences of the searched patterns as possible, given that the
stream rate is higher than can be handled by available com-
puting resources. For RC-ACEP, we propose a novel learn-
ing method using a data structure H we build for the recent
match history. We look up H to determine which interme-
diate partial matching states are more likely to eventually
end up with a full match. We devise an online algorithm and
prove its competitive ratio. Furthermore, we propose an op-
timization technique called proxy match, and devise a novel
sketch technique to further reduce the memory consump-
tion. Finally, we use a reinforcement learning technique to
dynamically update H with little overhead. Our contribu-
tions are summarized below:

• We propose the ACEP problem and devise an algo-
rithm for it (Sections 2 and 3.1).

• We study the RC-ACEP problem, and propose a novel
algorithm that learns from history. (Section 3.2).

• We devise an optimization called proxy match, and a
history sketch with its analysis (Sections 3.3 and 4).

• We propose dynamic update of the history structure
based on reinforcement learning (Section 5).

• We perform a systematic experimental evaluation us-
ing two real world datasets (Section 6).

2. PROBLEM FORMULATION
We are given a sequence s = s[1], s[2], ... where each char-

acter s[i] is in Σ, the alphabet. We use the terms sequence
and stream interchangeably, and use character, letter, and
event interchangeably. Each s[i] has a tag t[i]. If t[i] is the
timestamp when s[i] is generated, we get time-window se-
mantics. If t[i] is a counter (i.e., t[i] = i), we get count-
window semantics. The sequence s has increasing tags.
Without loss of generality, we assume time windows. A
subsequence is a sequence that can be derived from another
sequence by deleting some letters without changing the order
of the remaining letters. For example, the sequence “bde”
is a subsequence of “abcdef”.

As common in computer science, a regular expression is
a pattern descriptive language whose recursive definition
has a one-to-one correspondence with the construction of
a Thompson’s automaton [6] in Figure 1. Similarly, we de-
fine a serialization of a regular expression p recursively as
follows: in the base case, the serialization of a letter a is
just the letter a itself, and the serialization of ε is an empty
string; the serialization of α · β is the serialization of α con-
catenated with the serialization of β; the serialization of α|β
is either the serialization of α or the serialization of β, and
exactly one of them; the serialization of α∗ is 0 or more seri-
alizations of α concatenated one after another. For example,
for pattern p = b(c|d)e∗, one serialization of p is bdee, and
another one is bc, among many others. We start with defin-
ing the notion of approximate complex event processing.

Definition 1. (ACEP) Given a sequence s, a complex
event pattern p (regular expression), a window size w, and a
threshold k, the approximate complex event processing (ACEP)
problem is to find each match of p as a subsequence σ (called

Figure 1: Thompson’s automaton. (a) A letter has a
start and a final state. (b) Concatenation: α’s final
state merges with β’s start state. (c) Or, α|β: create
new start/final states. (d) Kleene star, α∗: create new
start/final states; note the new forward and back edges.

a critical subsequence) in s within a time window of size w
with at most k errors, i.e., σ would be a serialization of p if
no more than k letters were added into σ.

Two remarks are in place. First, the basic syntax of a
regular expression only consists of the four components in
Figure 1. For brevity, in this paper, we also use commonly
used syntactic sugar such as x2+ in Equation (1) of Example
1, which is just the shorthand for xx(x)∗. Second, Definition
1 exactly corresponds to a skip till any match for the event
selection strategy as categorized in [5]. This model finds the
most (non-deterministic) matches. We discuss below (after
Example 2) the rationale and support of other models.

Example 2. Suppose p = a(b|c)db with a window w = 5
and an error threshold k = 2. Let the sequence be s =
a1e2e3b4c5e6a7e8e9c10d11a12e13b14d15, where a subscript de-
notes the timestamp of the letter. Then s contains a match
with the critical subsequence a1b4 (as adding two letters “db”
to it will make it a serialization of p). Similarly, s con-
tains another match with error 1 with the critical subse-
quence c10d11b14, as prepending letter “a” would make it a
serialization of p.

ACEP Language Support and Connections with
Previous Systems. Note that, in this work, it is not our
goal to design a specific CEP language interface; we assume
a higher level language similar to SASE [18]. But rather,
Definition 1 only succinctly extracts the key language fea-
tures relevant to the algorithmic framework. That is, the
ACEP problem in Definition 1 is phrased at an intermediate-
representation level below a front-end language like SASE.
In a complete CEP system [18, 9], there are concepts of
event types and event attributes. However, most of these
systems are automaton-based (except ZStream [14], which
is query-tree based); thus, an algorithm designed for Def-
inition 1 can be readily integrated into a specific system.
Our implementation easily adds the support of predicates:
e.g., equivalence tests and parameterized predicates [18], as
discussed in Section 3.1. As a result, we currently support
CEP language features as in SASE [18] plus union (whose
implementation is not discussed in [18]) but minus negation.

For event selection strategy, Definition 1 falls into “skip till
any match” as categorized in [5]. However, other strategies
described in [5] are easier to implement on top of skip till
any match. For example, skip till next match is similar, but
it is a deterministic approach following one fixed match tra-
jectory, while partition contiguity requires partitioning the
stream into sub-streams and a match node must match the
next event in the sub-stream (but must not skip it). Hence,
as pointed out earlier, Definition 1 serves as a central al-
gorithmic framework for automaton-based matching, where
many other language features can be added on top.
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We note that there are richer CEP language features such
as negation (which can be added on top of ours), those in
SASE+ [5] regarding more complex predicates and HAVING
clauses, and the hierarchical structures in XSeq [15]. How-
ever, as pointed out earlier, the algorithmic frameworks in
the previous work are almost all automaton-based (except
ZStream [14] which is query-tree based). Even XSeq is based
on the Visibly Pushdown Automata, a generalization of fi-
nite state automata [15]. Thus, the main contributions of
our paper, including using a history structure over the match
nodes at automaton states to perform resource-constrained
matching, can be easily adopted for a particular instance of
CEP system and language. ZSream supports conjunction
[14], which can be added on top of an automaton-based al-
gorithmic framework too, as done in [13]. An interesting
point raised in ZStream [14] is that it is beneficial to have
a flexible (rather than fixed) evaluation order. This indeed
can be accomplished in an automaton-based framework too,
as done in the automaton sketch optimization in [13]. Poten-
tially, our history-based resource-constrained matching can
be adopted for a tree-based framework like ZStream as well,
where the history would contain tree nodes; we leave this as
future work. An extensive survey of CEP language features
is beyond the scope of this paper, and we refer the reader
to an excellent survey paper [9].

Finally, regarding error metric, edit distance [16] is often
used as the distance metric between two sequences, in which
a unit cost is inflicted for each insertion, deletion, or update
of a letter. However, in our case (a match between a pattern
and a stream window), for the skip till any/next match, the
above three operations can be merged to one: an insertion
to the stream. This is because update of a letter to the
stream is the same as insertion, and deletion is free (due to
the skips). For other models that require contiguity (i.e.,
substring rather than subsequence match), edit distance can
be used. A potential generalization of our error model is to
give weights to each inserted letter that would form a serial-
ization of the pattern, as missing events may have different
levels of importance. This is particularly the case if we add
negations to the patterns, because the presence of a negative
event in the stream may get far more penalty than missing
a positive event. We now define RC-ACEP.

Definition 2. (RC-ACEP) The resource constrained ap-
proximate complex event processing (RC-ACEP) problem is
the ACEP problem under actual computing resources, with
the requirement of giving answers online. Specifically, there
is a time constraint determined by the dynamic data stream
rate. The online processing must keep up with the stream
rate, and return as many matches as possible.

We focus on the time constraints (i.e., insufficient com-
puting time), although in one variation of our solution we
also significantly reduce memory consumption by building a
sketch of our data structure. We first present an algorithm
for ACEP ignoring resource limits (i.e., the online require-
ment). Then we concentrate on the RC-ACEP problem.

3. ACEP AND RC-ACEP ALGORITHMS
3.1 ACEP Algorithm

We first devise ACEPMatch that does the matching with-
out considering the online requirement. We use a Thomp-
son’s automaton [6], whose recursive construction is illus-
trated in Figure 1. A state can either be an L-state (with

only one incoming letter edge) or an ε-state (with one or
more incoming ε edges). There is a correspondence between
any regular expression p and such an automaton; thus ACEP
uses such an automaton as the input pattern. A central con-
cept of ACEP is match trajectory, which consists of a number
of match nodes, and indicates a specific critical subsequence
in s that causes the match of p. A match node is a tuple:

(state, loc, err, start win, prev state, prev loc, prev err)

where state is the current automaton state, loc is the loca-
tion (index) of the letter in the stream s that matches this
L-state (if any), err is the error (number of mismatches),
start win is the start time of this window, prev state is the
previous L-state that is matched to the letter at prev loc
in the stream with an error prev err. The prev ∗ fields are
used to chain the match nodes into a match trajectory. The
matching algorithm basically keeps tracks of linked match
nodes located at each state of the automaton. When one
of them is at a final state, the whole match trajectory can
be retrieved by following the links backwards. Match nodes
expire when they are out of the current window.

Algorithm 1: ACEPMatch(s,A, k)

Input: s: incoming stream, A: automaton for pattern p, k:
error threshold

Output: match trajectories
1 seed← (start{A}, null, 0, null, null, null, 0)
2 propagate(seed,A, k) //Pre-compute this only once
3 for each incoming letter s[i] in s do
4 for each L-state σ of A that matches s[i] do
5 for each match node µ at a state in pre(σ) do
6 if µ.start win = null then
7 start win← t[i]
8 else
9 start win← µ.start win

10 if µ.loc = null then
11 prev ∗ ← µ.prev ∗
12 else
13 prev ∗ ← µ.∗
14 err ← µ.err
15 create λ← (σ, i, err, start win, prev ∗) at σ
16 propagate(λ,A, k)
17 if any match node at final state then
18 report it

1 Procedure propagate(µ,A, k)
2 for each state σ ∈ post(µ.state) in A do
3 if σ is L-state then
4 err ← µ.err + 1
5 else
6 err ← µ.err

7 if err > k then
8 continue;

9 if µ.loc = null then
10 prev ∗ ← µ.prev ∗
11 else
12 prev ∗ ← µ.∗
13 create λ← (σ, null, err, µ.start win, prev ∗) at σ
14 propagate(λ,A, k)

In line 1 of ACEPMatch, we create a single “seed” match
node at the start state of the automaton, start{A}, with er-
ror 0 and other fields null (the format of a match node is
shown earlier). All other match nodes later created during
the algorithm are descendants of this single seed. Note that
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the start state is an ε-state, which is why it does not con-
sume any input letter for the seed to be on. For an L-state
with incoming letter l, a match node can be on it only after
consuming a letter l from the stream, or after skipping the
letter l (with an additional error 1 incurred).

Line 2 calls the propagate procedure to propagate and
derive new match nodes from the seed. This is to skip up to
k L-states (each incurring error 1) and generate new match
nodes. Line 2 of the propagate iterates through each post
state (i.e., a state that immediately follows the current state)
and tries to generate a new match node based on the original
one. An error 1 is incurred if the new state is an L-state. In
lines 9-12 of propagate, it first checks if µ’s stream location
is null. If so, it is not an L-state match there, and hence
the prev ∗ fields (i.e., prev state, prev loc, and prev err)
of the new match node (created in line 13) should be taken
from µ’s prev ∗ fields (line 10). Otherwise there is an L-
state match at µ, and we set the new prev ∗ fields to µ’s
corresponding fields (state, loc, err) (line 12). Finally, in
line 14 of propagate, the procedure is recursively called over
the new match node until it cannot be propagated further
(either when error is over k or at a final state).

Lines 3-4 of ACEPMatch iterate through each letter s[i]
and each L-state σ that matches the letter. This match
will trigger the creation of a new match node at σ (line 15).
Such a new match node is based on an existing match node
µ at a previous state in line 5, where pre(σ) denotes the set
of states that immediately precede state σ. Note that if a
match node µ in line 5 has expired, it is simply removed.
Lines 10-13 are to set the prev ∗ fields of this new match
node (same as lines 9-12 of propagate).

Example 3. As in Example 2, let p = a(b|c)db, w = 5,
k = 2, and the automaton is shown in the top plot of Fig-
ure 2, where S1 is the start state and S6 is the final state.
The bottom plot illustrates ACEPMatch, where a match
node is simplified as a two-value tuple only (state and er-
ror). Stream events with timestamps as subscript are shown
vertically (c1d2a3e4b5). (S1, 0) is the seed node before any
events arrive, with error 0. Line 2 of ACEPMatch propa-
gates the seed to the three match nodes to the right of it in the
same row. When c arrives at time 1, the matching L-state
S4 is examined (line 4) whose pre set only has S2. Thus, a
new match node (S4, 1) is created based on (S2, 1). A solid
arrow indicates such a “match and advance” action, corre-
sponding to (the reverse of) the prev ∗ chain pointers, while
a dashed arrow indicates skipping a letter during propagate.
The red arrows together form a match trajectory with error
1 at time 5. The blue arrows form another match trajectory
with error 2. This example shows that there can be many
very similar match trajectories. Our subsequent techniques
(Sections 3.2 and 3.3) will address this issue.

Note that we easily support predicates for the higher level
language SASE [18], which is not shown in ACEPMatch
for clarity. For a predicate that involves a number of event
variables X1, ..., Xc, whenever an event variable is matched,
we record the attribute value in the match node. When
the last event among the c events is matched, we check the
predicate and do not form a new match node if the pred-
icate is false. For instance, suppose we have a predicate
D.att1 > A.att2 in the pattern of Figure 2, where D and A
are the event types/variables of d and a, respectively. Then
we record A.att2 in a match node and evaluate the predicate

Figure 2: An automaton and the ACEP matching al-
gorithm. We show two of the match trajectories, one in
red and the other in blue. A solid edge indicates a letter
match, and a dashed edge is a propagation with error.

when a match is triggered in state S5. This is analogous to
the “predicate pushdown” optimization in [18].

Connection with SASE [18]. Both ACEPMatch and
SASE matching use an NFA. We next show that there is
an interesting connection between the two: When the error
threshold k is 0, ACEPMatch is the same algorithm as the
SASE along with all the optimizations presented in [18], plus
the union support, and minus the negation support. We ob-
serve that there is a one-to-one correspondence between the
supported features/algorithm components of SASE (with
the optimizations in [18]) and ACEPMatch when k = 0.
The Sequence Scan and Construction (SSC) using Active
Instance Stack (AIS) (presented in Section 4.1 and Figure 3
of [18]) is algorithmically equivalent to our match nodes and
match trajectories. Specifically, an element in the AIS asso-
ciated with an automaton stack corresponds to our match
node, while an arrow/pointer in Figure 3 of [18] corresponds
to our prev ∗ pointers used to trace back the match trajecto-
ries. When k = 0, the propagate procedure in ACEPMatch
will never propagate a match node to a following L-state as
there is no error budget and propagate does not consume
any event—thus SASE and ACEPMatch progress among
the states in the same manner and complexity.

Earlier we have discussed how our algorithm handles pred-
icates. Our framework does the same “pushing an equiva-
lence test down” optimization (Partitioned Active Instance
Stacks in Section 4.2.1 of [18]) by running an instance of
ACEPMatch for each partitioned sub-stream. The cross-
attribute transition filtering in Section 4.2.2 [18] corresponds
to our discussion above where a predicate is evaluated when
the last event type in the pattern is matched. Moreover,
ACEPMatch does the “pushing windows down” optimiza-
tion in Section 4.3 of [18], as it keeps track of the start of
a window in each match node, which is removed when the
window expires. In all, we have the algorithmic equivalence
as stated earlier. Of course, the design of ACEPMatch is
for the main goal of approximate match when k 6= 0.

3.2 History and RC-ACEP
As discussed earlier, ACEP can easily exceed resource lim-

its. We now present the RC-ACEP algorithm that does the
best-effort most-profitable online processing. The basic idea
is that we can somehow compactly represent a history of
past run into a data structure H. At runtime, based on H,
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we discard some match nodes that are unlikely to result in
a final full match. However, this is not a straightforward
problem where we can apply an off-the-shelf machine learn-
ing technique. We illustrate this point below.

At any moment, there are many active match nodes that
are ready to be expanded. A match node may wait at an
automaton state, or it can skip to a subsequent state but
incur an error, or it can simply be discarded. When there
is a letter match, there may also be a choice whether to ad-
vance into a union branch or not. Hence, there are many
choices/decisions to make. Letting each match node inde-
pendently decide what choice to make would not work well
as a whole. This is because they are heavily correlated—a
sequence of future events in the stream may make multiple
match nodes to complete a full match together (in the same
time window) or mutually exclusively.

One example is the match nodes at the same or nearby au-
tomaton states. There are slight variations of essentially the
same matches. For instance, two matches may differ only
by one letter or by one error. The correlation between two
match trajectories is caused by the same set of close events
that occur in the stream. The key insight is that, if two
match trajectories are within the same window (or close by),
we only need to keep one match node and discover one of the
trajectories. It is more important to detect which time win-
dow has the match; this is often sufficient already, especially
given the minor differences among the trajectories. Once
we locate the window, if we really needed to enumerate all
trajectories, we could simply do so for that stream window
only—which incurs significantly less cost than maintaining
all match trajectories throughout their lifetimes. Thus, from
H, we learn if two match nodes tend to produce match tra-
jectories that are in the same window or close together, so
that we only keep one of them.

Definition 3. (Match Point, Match Bundle) The time
(tag) of the last event in the stream s that matches an L-
state in p and completes a match trajectory τ (i.e., reported
in line 18 of ACEPMatch) is called a match point of τ ,
denoted as m(τ). A match bundle is a set T of match tra-
jectories such that: (1) (Proximity) if |T | > 1, then ∀τ ∈
T,∃τ ′ ∈ T, τ ′ 6= τ, |m(τ)−m(τ ′)| ≤ w; (2) (Maximality) T is
maximal in that ∀τ ∈ T,∀τ ′, |m(τ)−m(τ ′)| ≤ w ⇒ τ ′ ∈ T .

The above definition indicates that a match bundle con-
tains a contiguous region of match points that spans an
arbitrary time interval. The proximity property says that
each match point has at least another one that is close (un-
less the whole bundle has only one match point), while the
maximality property says that the bundle cannot be further
expanded on either side in time. Thus, any two match bun-
dles in a stream are non-overlapping; otherwise they would
be merged into one.

Example 4. In Figure 2 (Example 3), the upper match
trajectory (red) has a match point of 5, which is the times-
tamp of the last event b5 that triggers its last L-state match.
Similarly, the lower match trajectory (blue) also has a match
point of 5. These two match trajectories are in the same
match bundle, as the distance between their match points
are clearly within w.

All match trajectories in a stream are partitioned into dis-
tinct match bundles. Intuitively, a match bundle indicates
an area in the stream that contains matches. Once we locate
a match point t anywhere in a match bundle, if all match

Figure 3: Illustrating the history data structure H.
Each green box is a match vector type of vertex, and
each red ball is a match bundle type of vertex, occurring
during some time interval in the stream.

trajectories were to be retrieved, we could extend t on both
sides of the stream (forward and backward) by w at a time,
and do a match in the local area of t until an extension re-
sulted in no more matches. By the definition of a match
bundle, it is easy to see that two closely correlated match
nodes (that tend to either both succeed or both fail to lead
to a full match—due to the chance in event sequence) will
also tend to lead to the same match bundles in the history
H. Hence, match bundles are a crucial part of a history.

Definition 4. (History) A history H for a time inter-
val [t1, t2] is a directed graph with vertex labels. H has two
types of vertices: (1) a match vector (state, remaining w, err,
time since last), where state is the current state in the au-
tomaton, remaining w is the remaining window size, err is
the currently incurred match error, and time since last is
the time since the last event match within a match trajectory,
and (2) a match bundle. In addition, a match vector vertex
is also labeled with an integer count of visits, while a match
bundle vertex is labeled with its ID (unique in the stream).
An edge between two match vectors indicates a visit sequence
from one to the other, while an edge from a match vector to
a match bundle indicates that the match vector directly leads
to the match bundle.

Example 5. Figure 3 illustrates the history data struc-
ture H learned from a period of run of the pattern in Ex-
ample 2. The green rectangles are type (1) vertices in Def-
inition 4—match vectors, while the red balls at the bottom
level are type (2) vertices—match bundles in time order of
the stream. A match vector is essentially a state of a par-
ticular match node (remaining w and time since last are
discretized into integers for various interval sizes in a win-
dow), and the count is the number of times reaching that
vector state during the period of run. Many vertices are
omitted from the figure. Note that some match vectors may
not have outgoing edges, corresponding to the expiration of
the match node without full matches. Moreover, one match
bundle may have incoming edges from multiple match vec-
tors, indicating that those match vectors are correlated and
had match instances in the same match bundle in the stream.

A common operation we will perform on H is to look
up the list of match bundles reachable from a given match
vector. Thus, for fast lookup, we associate with each match
vector vertex a bitmap called a match map. A match map
is a bitmap with one bit for each match bundle in H. A bit
is set to 1 if the corresponding match bundle is reachable
from that match vector. For example, in Figure 3, every
match vector node has a bitmap (match map) of 6 bits. The
match map at the match vector (S5, 3, 2, 1) has a match map
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011010, as it has b2, b3, and b5 as descendants. The H here
is small for clarity. In a real structure, typically each match
map has hundreds or thousands of bits.

H can be easily built while we run the ACEP matching
algorithm on the data stream. As each match vector state is
encountered, we increment its count in H . Whenever there
is a full match, we trace back the match trajectory and set
bit 1 for the corresponding match bundle in each match map
of the match vector node on the trajectory.

Given a history H, we solve the RC-ACEP problem. The
basic idea is as follows. We must pick more “promising”
match nodes and process them first. This is done in an
online manner such that, when the next stream event arrives
(before we finish processing all match nodes), we stop and
process this new stream event. Thus, the question becomes:
given a set of currently active match vectors, which ones
should we pick in an online manner so that the number of
full matches can be maximized? H shows the set of match
bundles each active match vector led to in the past, through
the match map at that match vector.

Intuitively, this problem can be reduced to a variant of the
maximum coverage problem [11]. Recall that the maximum
coverage problem is: One is given several sets and a number
θ; the sets may have some elements in common. One must
select at most θ of these sets such that the maximum number
of elements are covered. In RC-ACEP, upon each stream
event, each active match vector maps to a set, where each
element in a set is a match bundle in H. Since we cannot
handle all the active match vectors, we want to pick a limited
number of them so that they cover as many match bundles
in H as possible.

However, there are two major differences: (1) In the max-
imum coverage problem, we get to pick a fixed number (θ)
of sets to maximize the number of elements covered. In RC-
ACEP, due to the highly dynamic nature of stream rates and
system resource environment, we do not know in advance
how many match vectors we can finish. We must process
them in an online manner. (2) The match map statistics at
each match vector in H is biased by its visit count. That
is, if vector v1 is visited less often in history than vector v2,
it tends to have fewer “1” bits (i.e., match bundles) in its
match map. But given the fact that they are both active
at the current moment, we should remove this bias and use
the statistics conditioning on the fact that are both active.

For instance, in Figure 3, suppose at present two match
vectors v1(Cnt = 29) and v2(Cnt = 42) are active. Then
we normalize v1’s match bundle counts by multiplying them
with 42/29 = 1.45. That is, choosing v1 covers b1 and b3
1.45 times, while choosing v2 covers b2, b3, and b5 1 time.
Choosing both still covers b3 1.45 times (multiset union).
Thus, our solution generalizes sets to multisets in the max-
imum coverage problem.

The algorithm is shown in Algorithm 2. We say that a
letter is a matching letter if it matches at least one L-state
in the automaton. Lines 1-2 are the same as ACEPMatch,
setting up the seed match nodes. In line 3, we use the key-
word “immediately”, meaning that whenever a new match-
ing letter arrives, we must stop the block of code below line
3 (even if it is not finished), and process this new letter.
Line 4 initializes an array max[.] to all 0’s. The size of this
array is the same as the number of bits in a match vector.
It is used to keep track of the maximum number of times a
match bundle has been covered so far.

Lines 5-11 iterate through each match node at the “pre”
state of each L-state that matches the incoming letter. These
match nodes are candidates. We will later pick and process
them one by one until time is out and the next letter arrives.
In line 7, we look up H and get the match node’s match vec-
tor’s information: number of visits and match map. Line 8
is to get the multiplicity of each bundle covered by µ as dis-
cussed above. z is a scale constant that can be set to any
value (e.g., maximum count, for numerical accuracy). In
line 9, 1(b) denotes the number of 1’s in bitmap b; with mul-
tiplicity, score is the initial total count of bundle coverage.

Algorithm 2: RC-ACEP(s,A, k,H)

Input: s: incoming stream, A: automaton for pattern p, k:
error threshold, H: history

Output: match trajectories
1 seed← (start{A}, null, 0, null, null, null, 0)
2 propagate(seed,A, k)//Pre-compute this only once
3 for each arriving matching letter s[i] immediately do
4 reset max[.]
5 for each L-state σ of A that matches s[i] do
6 for each match node µ at state pre(σ) do
7 get µ’s count c and match map b from H
8 m← z

c
//z is a constant; m is multiplicity

9 score← 1(b)×m
10 global version← 1
11 put (µ,m, b, global version, score) into priority

queue Q with priority score

12 while Q is not empty do
13 (µ,m, b, version, score)← pop maximum from Q
14 updates← look up version table using version
15 if updates & b 6= 0 then
16 score←

∑
i∈bmax(m−max[i], 0)

17 put (µ,m, b, global version, score) back to Q

18 else
19 process µ as in ACEPMatch lines 6-18
20 update max[.], global version, version table

The algorithm uses a simple version table, which is just
an array associating a version number (starting from 1) with
a bitmap of updates in max[] since that version. This is to
efficiently keep track of whether scores are up to date during
the greedy selection of match nodes. Lines 10-11 put the
initial version of match nodes into a heap (priority queue).
Lines 13-15 get the maximum score match node µ from the
heap, and look up the positions of updates in max[.] since
its version. If they overlap µ’s match map b, in line 16, we
update µ’s score to a smaller one, removing the counts of
match bundles already covered since the previous version.
Otherwise, in line 20, we update max[.] for newly covered
bundle counts, increment the global version, and update
the update-maps of the version table.

Overall, lines 4-20 are a novel integration of the online
greedy maximum coverage algorithm and an A*-style search
[12]. The goal is to pick which match vectors to process in an
online manner to maximize the total (normalized) count of
match bundles covered by the selected match vectors. The
A* search in particular is to efficiently search for a match
vector that gives the maximum coverage increment of match
bundles. Thus, the negative value of the score of each active
match node is regarded as the f cost function in the stan-
dard A* model [12], where score is the coverage increment
since any version (as recorded in Q). It is the sum of two
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cost functions (g and h in the A* model), where g corre-
sponds to the coverage increment since global version, and
h corresponds to the coverage between the version recorded
in Q and global version. Thus, score is always an upper
bound of the true increment, and the algorithm is correct.

Example 6. Suppose we have 3 candidate match nodes
µ1, µ2, and µ3 (lines 5-6), and the result of looking up H in
line 7 is c1 = c2 = c3 = 168 and b1 = (1000), b2 = (0110),
b3 = (0111) (µi have visit count ci and match map bi). For
clarity of illustration, let z = 168 (z can be any constant);
so m = 1 for all three candidate match nodes. In line 9,
initially their scores are 1, 2, and 3 resp., and they enter
the priority queue in line 11. Initially in line 4, max[.]’s all
four entries are 0. In line 13, the first match node popped
out must be µ3 as it has the highest initial score. Indeed it
is the most “promising” one as it led to the most matches in
H. Note that the current version table is empty, and hence
the updates bitmap of line 14 is empty. Thus line 19 will
process µ3. In line 20, max[.] array is now (0, 1, 1, 1), the
global version becomes 2, and version table associates “ver-
sion 1” with an update-bitmap (0111) for what is changed
in max[.] since version 1. Then the next round line 13 will
pop out µ2 as it has a higher score (2) than µ1. µ2’s version
is 1; looking up the version table finds updates to be (0111)
since version 1 (line 14). As this intersects b2 (line 15), we
re-calculate its score to be 0 (no new bits) in line 16, and it
is put back into Q. Similarly, the next round line 13 will pop
out µ1 which has score 1. Line 14 “updates” is (0111) which
does not intersect b1, implying that its score is exact. So µ1

is processed in line 19. Line 20 updates max[.] to be (1, 1,
1, 1), increments global version, and the version table now
has: version 1 with (1111) and version 2 with (1000). The
last match node to be processed is µ2.

The RC-ACEP algorithm is an online algorithm; we per-
form a competitive analysis with regard to the total count
of match bundles covered. The proofs of all the theorems in
this paper appear in our technical report [3].

Theorem 1. The online algorithm RC-ACEP has a com-
petitive ratio of 1 − 1

e
. Furthermore, it is optimal in the

domain of polynomial time algorithms, even the offline ones
(unless P = NP ).

3.3 An Optimization
We now present an optimization technique that stems

from the idea that we do not need to keep track of all match-
ing trajectories that are very close. Instead, we only record
the most “promising” partial matches at each automaton
state. This is done in such a way that if they do not pro-
duce a final full match, then no other partial matches can.
Moreover, once we find a full match resulted from one of
the promising partial matches, if we choose to recover all
full matching trajectories close to the one we find, we can
efficiently do so. In other words, this optimization does not
lose any matches. Then the key point is what constitutes
the promising match nodes at each automaton state.

Definition 5. (Proxy Match) A proxy match optimiza-
tion is one in which we maintain fewer match nodes, known
as proxies, than the original algorithms. If there is a window
in the stream that contains at least one match found by the
original algorithm, then proxy match can find that window,
and a match with the shortest duration in that window.

We next show a specific strategy for proxy match, together
with its properties. We say that an L-state s1 precedes an-
other L-state s2, denoted as s1 ≺ s2, if in any possible match
trajectory, s1 is reached before s2.

Theorem 2. The following strategy is a proxy match: at
each L-state of the match automaton, we only keep one match
node per error level i = 0, ..., k, which has the greatest (i.e.,
latest) start win among all match nodes there with error
at most i. We write wi

s as the start win of the match
node of error level i at state s. Then (1) for any state s,
w0

s ≤ w1
s ≤ ... ≤ wk

s; (2) for any error level i, and for
any two states s1 ≺ s2, we have wi

s1 ≥ wis2 .

The proxy match strategy described in Theorem 2 can be
seamlessly integrated into ACEP or RC-ACEP, and stores
at most k+1 match nodes at each automaton state. In addi-
tion, if all match trajectories are needed by an application,
the most recent window of events in the stream is always
stored in memory—so that it can be used to find all match
trajectories once the proxy is found to match.

4. SKETCHING HISTORY
The history data structure H can be very large; thus we

devise an effective sketch for H. Our sketch stems from a
count-min sketch [8], but we modify it to incorporate match
map information. Recall that a count-min sketch is rep-
resented by a two-dimensional array counts with length l
and depth d: count[1, 1] ...count[d, l]. Additionally, it uses
d hash functions h1...hd : {1...n} → {1...l} chosen uniformly
at random from a pairwise independent family. We modify
it such that each cell of the two-dimensional array is not just
a count count[i, j], but it also includes a bitmap b[i, j] of m
bits. The hash functions h1...hd are applied over the match
vectors (state, remaining w, err, time since last).

Algorithm 3: BuildSketch(s,A, k)

Input: s: incoming stream; A: automaton for pattern p; k:
error threshold

Output: history sketch
1 for each new match vector v during ACEPMatch(s,A, k)

do
2 for each i← 1...d do
3 j ← hi(v)
4 count[i, j]← count[i, j] + 1

5 if v is at a final state then
6 for each match vector u traced back from v do
7 for each i← 1...d do
8 j ← hi(µ)
9 set a bit in b[i, j] to be 1 for this match

bundle

10 return count[· , · ] and b[· , · ]

In lines 2-4 of BuildSketch, we apply the d hash func-
tions on the match vector v. For a hash value j from the
i’th hash function hi (line 3), we increment the counter at
row i column j. Initially all counters are 0. When we have
a full match (line 5), we trace back all the match vectors
in the trajectory, applying the d hash functions, find the
d cells in the sketch, and set the bit corresponding to this
match bundle to be 1 in all bitmaps of the d cells (lines 8-9).
The usage of the sketch is in LookUpSketch. It basically
puts the minimum count into c, and the intersection (bitwise
AND) of all d bitmaps into bm, which are returned. Figure
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Figure 4: Illustrating the history sketch.

4 illustrates a sketch, where multiple match vectors (e.g., µ1

and µ2) may collide in the same cell. The algorithm will
return µ1’s visit count as 168 and match map as 1000.

Algorithm 4: LookUpSketch(v, count[· , · ], b[· , · ])
Input: v: match vector; count[· , · ], b[· , · ]: history sketch
Output: visit count and match map of v

1 c← count[1, h1(v)]
2 bm← b[1, h1(v)]
3 for each i← 2...d do
4 j ← hi(v)
5 c← min(c, count[i, j])
6 bm← bm & b[i, j]

7 return c and bm

Let us analyze the history sketch. It is clear that both
the counts and the match map may only have positive, but
not negative, errors (i.e., increased counts and more bits
set). This bias is alleviated by the fact that RC-ACEP only
relatively compares the counts and match maps of two match
vectors to determine which one is processed first.

Theorem 3. Consider a match vector v. If LookUpS-
ketch gives a false positive on its i’th bit of the match map,
then the returned count value also has a positive error. The
converse may not be true.

Theorem 3 indicates that an error of any bit in the match
map implies an error in the count. Since we typically have
many bits in the match map, it is more significant to opti-
mize the parameter choice of the sketch by minimizing the
error probability on each bit. Since each cell takes the same
amount of space, we study the problem that given a space
budget d× l = c, how to choose d and l in the history sketch
so as to minimize this error probability.

Theorem 4. Given a space constraint d× l = c, the pa-
rameters that minimize the probability of a bit i being a false
positive in the match map of a match vector is l = α

ln2
and

d = c
a
ln2, where α is the number of match vectors on the

path to match bundle i in H.

Different match bundles may have different α values. We
can use their average for choosing d and l.

5. ADAPTATION TO DATA STREAMS
While we use H to make decisions for RC-ACEP, for each

match-vector vertex in H (likewise for each array-cell of a
history sketch), we accumulate a second copy of match map
and visit count. Each bit in the secondary match maps
corresponds to a new match bundle found. When the new
match bundles fill up the secondary match map (which has
a fixed size) completely, we switch to this new/secondary set
of match maps and visit counts for RC-ACEP, and this it-
erative process continues. However, when we use H to pick
match nodes/vectors, we always tend to follow the most

promising paths according to the existing H, which may be-
come sub-optimal as time goes and stream trend changes—
some match nodes may never get chosen due to time con-
straints. There is no mechanism to systematically explore
the vector space outside, which may become better. We pro-
pose a novel method to update H. We say that each match
vector is an agent. In RC-ACEP, many agents collectively
make decisions on who proceeds. The basic idea is that while
running the collective decision making, in the background,
we run a few lightweight agents who do not branch out to
multiple match trajectories, but each of them decides a sin-
gle trajectory towards the final state. They are powered by
reinforcement learning (RL) [17]; we call them RL agents.

We need to run RL for individual agents rather than all
agents together to avoid too large a state space and action
space. The RL agents are rewarded (i.e., reinforced) for
discovering new promising match trajectories due to stream
trend shift. The trajectory of an RL agent is also written
in H. Hence, once new matching trajectories leading to full
matches are discovered by RL agents, they are further picked
up, adopted, and corroborated by collective decision making
agents (Section 3). In this way, H is updated. Q-learning is
a type of RL; we refer the reader to [17, 3] for details.

A key challenge is how to map the behavior of an agent
to the states and actions in Q-learning. For an L-state σ,
denote post(σ) as the set of L-states that immediately follow
σ in the automaton without considering back edges. For σ,
its Q-learning states are of the form (σ, remaining w, err,
time since last, next letter), where remaining w, err, and
time since last have the same meaning as before, and next letter
can be any letter in post(σ) or “others”. Let |post(σ)| = p.
At L-state σ, there are 2p+1 actions, corresponding to “ad-
vance to post-state 1”, ..., “advance to post-state p”, “skip
to post-state 1”, ..., “skip to post-state p”, and “stay put”,
respectively. Algorithm 5 sets up the initial Q function.

Algorithm 5: UpdateHistorySetup(A, k)

Input: A: automaton for pattern p; k: error threshold
Output: Q[· , · ]

1 for each state σ of A in reverse topological sort order do
2 post(σ)← ∅
3 dist(σ)←∞
4 for each succeeding state ϕ of σ do
5 if ϕ is an L-state then
6 post(σ)← post(σ) ∪ ϕ
7 if dist(σ) > dist(ϕ) + 1 then
8 dist(σ)← dist(ϕ) + 1

9 else
10 post(σ)← post(σ) ∪ post(ϕ)
11 if dist(σ) > dist(ϕ) then
12 dist(σ)← dist(ϕ)

13 if σ is an ε-state then
14 continue

15 for each state ϕ ∈ post(σ) do
16 for each err ← 0 to k do
17 for r win← 1 to iw do
18 qs← (σ, err, r win, letter(ϕ))
19 for each ϕ′ ∈ post(σ) \ {ϕ} do
20 Q[qs, “advance to letter(ϕ′)”]← −∞
21 Q[qs, “skip to letter(ϕ)”]← −∞

Lines 1-12 compute the set of following L-states (post) for
each automaton state, and its shortest distance (in number
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of edges) to a final state (the dist(· ) function). Without
considering back edges of the automaton, its graph is a DAG.
We later use the dist(· ) function to assign rewards. Lines
13-21 initialize the Q-function table to all 0’s except some
illegal actions. For example, advancing to a post-state that
is different from the next letter specified in the Q-learning
state is illegal, for which we give Q value −∞.

We now look at UpdateHistory (Algorithm 6). When a
new match node is created from a seed, we mark it as a Q-
learning agent (line 3). In line 5, qs is the Q-learning state
based on information of µ. The f(Q[qs, a], n[qs, a]) function
in line 6 is called the exploration function [17], which deter-
mines how greed (preference for high values of Q) is traded
off against curiosity (preference for low values of n—actions
that have not been tried often). f should be increasing in
Q and decreasing in n. Similar to [17], we use a simple one:

f(Q[qs, a], n[qs, a]) =

{
∞ if n[qs, a] < 5

Q[qs, a] otherwise
. This has

the effect of trying each action-state pair at least five times.

Algorithm 6: UpdateHistory(s,A, k)

Input: s: incoming stream; A: automaton for pattern p; k:
error threshold

Output: history sketch
1 for each matching letter s[i] do
2 if s[i] moves a seed match node to a new state then
3 mark new match node as Q-learning agent

4 for each match node µ marked as Q-learning agent do
5 qs← (σ, err, r win, s[i]) based on µ
6 action← argmaxaf(Q[qs, a], n[qs, a])
7 σ ← next(σ, action)
8 if σ changed then

9 r ← R/2dist(σ)

10 move µ to state σ of A

11 if qs′ 6= null then
12 n[qs′, a′]← n[qs′, a′] + 1
13 Q[qs′, a′]← Q[qs′, a′] + α(n[qs′, a′])(r′ +

γmaxaQ[qs, a]−Q[qs′, a′])

14 (qs′, a′, r′)← (qs, action, r)
15 update history H or its sketch based on σ
16 report a match if σ is a final state

Line 7 determines the next state based on the chosen ac-
tion, while line 9 assigns the reward r if moving to a new
state. For a constant R, r decrease exponentially with the
distance to final states. Lines 11-13 give the adjustment of
Q[qs′, a′] based on the current estimate of the next state’s
optimal action’s Q value. The α(n[qs′, a′]) is the learning
rate function, which decreases as the number of times a
state has been visited (n[qs′, a′]) increases. Like [17], we
use α(n[σ, a]) = 60/(59 + n[σ, a]). It iteratively updates the
Q table, which gives the optimal action policy for the RL
agent, adaptive to dynamic changes of streams.

6. EXPERIMENTS
6.1 Datasets and Setup

We use two real world datasets: (1) Twitter Data. We
use the Twitter Stream API [1] and twenty most common
words [2] as keywords (which results in a high data rate) to
download two weeks of tweets, resulting in a data size of 24
GB. Each tweet message tuple has a fixed format: user ID,
tweet text and timestamp, from which events are extracted.
The data rate is on average about 110 tuples per second.

(2) PHEV Data. This is a public test dataset for plug-in
hybrid electric vehicle (PHEV) applications in smart grid de-
veloped by Akhavan-Hejazi et al. [7, 4]. It contains driving
traces for 536 GPS-equipped hybrid electric taxi vehicles for
3 weeks in San Francisco, CA. The dataset is about 800 MB,
and the data rate is about 54 events per second. It consists
of information such as state-of-charges, charging loads at
different identified charging stations, timestamp, etc. There
is a revenue opportunity for PHEV fleet owners (such as taxi
or rental companies) if unused vehicles give electricity back
to the grid which can provide ancillary services, such as load
leveling, regulation and reserve [10]. We implement all our
algorithms presented in this paper in Java. All experiments
are performed on a machine with an Intel Core i7 2.50 GHz
processor and an 8GB memory.

6.2 Experimental Results
We issue the following queries to the Twitter data. Query

Q1 is: [Sa(b|d|w|r|h|t|c)E]2+[Sa(g|e|u)E]2+ (similar to Ex-
ample 1), where most of the letters are described in Example
1, with a few additions: h is “head and shoulder bottom”,
t is “ascending triangle”, and c is “cup with handle”, which
are all bullish stock chart patterns. As noted in Example
1, these basic events (i.e., letters) are derived from match-
ing keywords with tweets (there are 43 letters in total that
we extract from the tweets), and the timestamp of a letter
is the timestamp of the corresponding tweet. Query Q2
is to find when Apple has a bearish stock chart pattern:
Sa(t1|t2)ESa(R|H)ESa(B|D)E, where t1, t2, R, H, B, D
denote “double top”, “triple top”, “rising wedge”, “head
and shoulder top”, “bump and run reversal”, and “descend-
ing triangle”, respectively. Similarly, we have query Q3:
SGgESGeESGuE where G is the stock symbol $GOOGL
(Google), and other letters are as before. Q3 detects the
events of good news of Google. Finally, query Q4 detects
the bullish patterns of one company with the bearish pat-
terns of the other: [Sa(b|d|w|r|h|t|c)E SG(t1|t2|R|H|B|D)E]
| [SG(b|d|w|r|h|t|c)E Sa(t1|t2|R|H|B|D)E], which may in-
dicate a chance of trading stocks between the two companies.

Query Q5 is for the PHEV Data and is to locate a candi-
date vehicle to charge the grid: (lp5+(d|c|a))|(p5+n(d|c|a)),
where l is drawing a large amount of power from the station
in the past minute (> 2.5), p is in parking status, n is no
power drawn from the station in the past minute, and d, c,
a are location at downtown, cab depot, and airport, respec-
tively. Intuitively, if a vehicle has drawn a large amount of
power, has stayed in parking position for a while, and it is in
one of our interested locations, or if it has parked at a charg-
ing station for a while and then no power is drawn (as it is in
full power), then such a vehicle may be a candidate to charge
the grid back. In addition, there is an equivalence test [18]
requiring that all matching events have the same vehicle ID.
Query Q6 is (zL)5+, also with an equivalence test on vehi-
cle ID, where z is for speed 0 and L is for a low speed in [2,
10] mph, which indicates a situation of traffic jam. Query
Q7 is zLM1M2H with an equivalence test on vehicle ID,
where M1, M2, and H are medium speed in [11, 20] mph,
medium speed in [21, 30] mph, and high speed above 30mph,
respectively. Q7 may signify that a taxi is starting a trip.
Finally, Query Q8 is lllll (recall that l is drawing a large
amount of power from a station), with an equivalent test
on location and each l event has a predicate that its vehicle
ID is different from previous l matches. Thus, Q8 indicates
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that a particular station has been busy—at least 5 vehicles
have drawn large amounts of power there.

In the first set of experiments, we examine the perfor-
mance of ACEP. We first use the Twitter Data and measure
the system throughput in number of events the algorithm
can process per second. We have discussed in Section 3.1
that, when the error threshold k is 0, ACEPMatch is algo-
rithmically equivalent to SASE with optimizations in [18],
plus union but minus negation. As many queries in our
experiments do require union, we denote as SASEU the
SASE algorithm augmented with union support, which is
equivalent to ACEPMatch when k = 0 (for queries with-
out negation). Figure 5 shows the throughputs of Q1 to Q4
of SASEU and ACEPMatch when k = 1, 2, with a win-
dow size of 3 million events (about 8 hours). As also found
in [18], the throughput decreases significantly for long/large
query patterns, which is the case for Q1 and Q4 (e.g., Q1
has 32 letters/L-states). This is because the number of in-
termediate match nodes (or size of Active Instance Stacks
[18]) increases drastically when the number of automaton
states is large. In addition, a large window size also makes
such intermediate data stay long without expiration (albeit
the window pushdown [18]). We also see that, when k in-
creases, the throughput decreases. This is because more
non-determinism is added to each match node when k in-
creases, as it needs to be processed and multiplied into
more copies at each step through the propagate procedure
in ACEPMatch.

We then repeat the experiment for a much smaller window
size, 100K events, the result of which is shown in Figure 6.
While the relative performance among queries is the same,
the throughputs in general are much higher. The reason of
this is as explained previously for Figure 5—ACEPMatch
eagerly checks window expiration and expunges the expired
match nodes, corresponding to the pushing windows down
optimization in [18]. This is very effective in improving effi-
ciency, since otherwise the intermediate match results would
multiply quickly with new events.

We then perform this experiment over queries Q5 to Q8
on the PHEV data with a window size of 50,000 events,
and show the result in Figure 7. Q5’s pattern has a size
of 18, and is the largest among these four queries. In Fig-
ure 8, for the same window size as Figure 7, we further
examine the throughput as pattern size changes using the
PHEV data. To get various sizes, each query is based on
the templates Q5 to Q8, possibly adding/removing a min-
imum number of letters from a template. Figure 8 clearly
shows the trend that as pattern size increases, throughput

decreases, because the number of automaton states increases
and the chances of event matching and intermediate result
propagation grow significantly. We also see that a greater k
entails a smaller throughput capability, the reason of which
is explained above. In what follows, unless otherwise speci-
fied, we use a default value of k = 2.

In the next set of experiments, we examine the effective-
ness and benefit of RC-ACEP. We build the history H us-
ing ACEPMatch until there are 512 match bundles (i.e., a
match map has a size of 512 bits). First, using the Twitter
Data, and varying the inter-arrival time between two basic
events, we measure the fraction of full matches found by RC-
ACEP while fixing k = 2 for Q1. This is shown in Figure
9. The actual total number of all matches is obtained by
running ACEPMatch without the inter-arrival time con-
straints. We compare RC-ACEP’s fraction of true matches
found with the version of ACEPMatch that has timeouts
(i.e., the processing of an incoming letter stops when the
next incoming letter arrives). When the inter-arrival time
is small, i.e., when the processing engine is overloaded and
cannot keep up with the stream rate, RC-ACEP finds a sig-
nificantly greater fraction of matches than ACEPMatch
with timeout. The reason is that RC-ACEP judiciously and
efficiently selects the most probable match nodes that may
result in full matches in a best-first approach. As the inter-
arrival time gets larger, the processing engine starts to catch
up, and we see that for a small range, ACEP picks up slightly
more matches than RC-ACEP, before they both reach frac-
tion 1. This is because RC-ACEP still has a little overhead
in selecting the most promising match nodes in an A*-style
search, even though it is small compared to query process-
ing. Both algorithms reach fraction 1 when the processing
engine can fully keep up with the data stream.

We do the same experiment with the PHEV Data using a
window size of 50,000 events as the default for this dataset.
The result on Q5 is shown in Figure 10. Again, RC-ACEP
finds a much greater fraction of matches than ACEPMatch
with timeout when the inter-arrival time is at the low range,
although this low range is different from Q1, since their over-
load thresholds are different due to query parameters in-
cluding pattern size and window size. Figure 10 also shows
that within a small range ACEPMatch finds slightly more
matches than RC-ACEP before they both reach fraction 1
(when they are able to keep up with the stream). The rea-
sons for these are explained earlier. With other queries on
the two datasets, we find a similar trend, but at different
overload thresholds which depend on factors such as pattern
size and window size. In a system involving many patterns
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and dynamically changing data streams, the processing en-
gine may be constantly overloaded for any/all queries, and
RC-ACEP has clear advantages over ACEPMatch.

We next examine history sketch. We calculate the pa-
rameters based on Theorem 4 (while fixing c = 800). First,
using the Twitter Data, we compare the memory usage of
RC-ACEP with and without the sketch, varying the total
pattern length (by union of multiple patterns for different
companies); the result is in Figure 11. We do the same
on the PHEV data; the result is in Figure 13. With the
history sketch, it takes significantly less memory. The mem-
ory usage of RC-ACEP with sketch grows very slowly, be-
cause we always hash the match vectors into the same two-
dimensional array. We next measure the fraction of matches
found with and without the sketch. As indicated in pre-
vious experiments, each query pattern size corresponds to
a different stream inter-arrival time threshold. Thus, we
show the fraction of found-matches vs. inter-arrival time
for query Q1 over the Twitter data in Figure 12, and for
Q5 over the PHEV data in Figure 14 (the results for other
queries have a similar trend). We can see that the number
of found-matches for the version of using history sketches
closely traces that without sketches, and is a little less. The
difference is 0 when the processing engine can keep up with
the stream rate, because regardless of whether the history
sketch causes any error, all match nodes will be processed in
time. Using history sketch has some accuracy loss when the
system is overloaded mainly because of hash collisions in the
data structure. Due to the use of multiple hash functions,
this loss is minimized given a compact structure. Moreover,
the error is only on one side (i.e., only possibly increasing a
count), which is the same for all match nodes; this fact mit-
igates the accuracy loss as the match-node choice decision is
based on the relative comparison among the match nodes.

Next we evaluate the proxy match optimization. Using
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Twitter Data, we first compare the fractions of full matches
found for various event inter-arrival times with and without
proxy match for RC-ACEP. The result on Q1 is shown in
Figure 15. With proxy match, the fraction of full matches
found is even higher. This is because there are fewer match
nodes in the automaton, which results in greater efficiency.
We also measure the memory usage with and without proxy
match under various pattern lengths, and show the result in
Figure 16. With proxy match, the memory consumed is con-
siderably less. This is because the automaton system keeps
significantly fewer match nodes, as discussed in Section 3.3.
The results with the PHEV Data show similar trends, and
we therefore omit them here.

Finally, we examine the adaptive history update, using
Twitter data with the same same settings as in the previous
experiment and an inter-arrival time of 300 µs. We use the
same length of history as before, and vary the age when the
history was built between 1 day and 4 days. In the version
of no adaptation, we do not run the Q-learning updates, but
only run RC-ACEP itself (with its own updates to H). In
the version with adaptation, we run the Q-learning updates
presented in Section 5 as well. The result is shown in Fig-
ure 17. To examine the performance of Q-learning history
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adaptation in the event that there is actually no significant
change in data streams, we also run the two versions of the
algorithm over a semi-synthetic data stream where we sim-
ply duplicate the first day’s stream to each of the following
days (labeled as “no change” in Figure 17).

First, when data stream has virtually no change, the ver-
sion using Q-learning history adaptation finds almost as
many matches (slightly fewer) as the version without adap-
tation. The slight difference is due to the small overhead in
running Q-learning agents. The overhead is small because
each Q-learning agent only follows a single path without
branching and forking into multiple paths. However, for
the actual data when there are some stream changes over
time, the version with adaptation performs much better.
The fraction of matches found under the adaptation version
remains consistently high, while it drops sharply when the
history age is between two and three days. This is because
the Q-learning adaptation explores match nodes that are
evaluated poorly before but have improved due to stream
changes. This exploration result is reinforced through the
rewards from match progression. Moreover, this is built into
the history structure and corroborated further by the collec-
tive decision making in RC-ACEP. In addition, we compare
the memory usage between the two versions under different
pattern lengths, the result of which is shown in Figure 18.
The Q-learning adaptation has little memory usage overhead
because a Q-learning agent does not branch out to fork into
multiple match trajectories, but only chooses one route.

Summary. Our experiments show that the throughput of
ACEP decreases for large patterns or when the error thresh-
old or window size increases. The system can be easily over-
loaded when monitoring many queries. To keep up with the
stream rates, it is necessary to use RC-ACEP, which is effec-
tive in judiciously selecting the most promising match nodes
to process. Using history sketch has a small and nearly con-
stant memory footprint with little loss on the fraction of full
matches. The proxy match optimization is very effective in
further reducing the memory foot-print as well as in im-
proving the fraction of matches found. Finally, the adaptive
history building is helpful in keeping the history structure
up-to-date and incurs little memory overhead.

7. OTHER RELATED WORK
Most closely related work is discussed in its context above.

In Section 2, we have discussed at length the connections be-
tween ACEP and specific CEP languages and systems. In
addition, Zhao and Wu [19] study approximate event pro-
cessing in a content-based publish/subscribe system, and
propose a hierarchical indexing table to store subscriptions
and to give approximate answers. However, their event
queries are only limited to range queries on an attribute;
i.e., they do not deal with complex event queries.

To our knowledge, previous work does not consider the
resource-constrained processing of complex event queries.
Sketch is a probabilistic technique that has been applied
to data streams as well as approximate query processing [8].
However, we modify a count-min sketch significantly to in-
clude both counts and bitmaps for our purpose of sketching
the history. Further more, our changes require a novel anal-
ysis on the probabilistic properties and the choice of param-
eters. Finally, Q-learning [17] is a model-free reinforcement
learning technique. Mapping our ACEP matching problem

to Q-learning states and actions is our contribution with the
goal of dynamically updating the history structure.

8. CONCLUSIONS
In this paper, we propose the ACEP algorithm and a novel

RC-ACEP algorithm based on collective learning from a his-
tory data structure. We prove the competitive ratio of our
online algorithm, which is optimal in the domain of poly-
nomial algorithms. Moreover, we devise the proxy match
optimization and a history sketch with its analysis. Finally,
we devise a scheme to dynamically update the history struc-
ture with little overhead.
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