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ABSTRACT

We present a novel storage manager for multi-dimensional ar-
rays that arise in scientific applications, which is part of a
larger scientific data management system called TileDB. In
contrast to existing solutions, TileDB is optimized for both
dense and sparse arrays. Its key idea is to organize array el-
ements into ordered collections called fragments. Each frag-
ment is dense or sparse, and groups contiguous array elements
into data tiles of fixed capacity. The organization into frag-
ments turns random writes into sequential writes, and, cou-
pled with a novel read algorithm, leads to very efficient reads.
TileDB enables parallelization via multi-threading and multi-
processing, offering thread-/process-safety and atomicity via
lightweight locking. We show that TileDB delivers compa-
rable performance to the HDFS dense array storage manager,
while providing much faster random writes. We also show
that TileDB offers substantially faster reads and writes than
the SciDB array database system with both dense and sparse
arrays. Finally, we demonstrate that TileDB is considerably
faster than adaptations of the Vertica relational column-store
for dense array storage management, and at least as fast for
the case of sparse arrays.

1. INTRODUCTION

Many scientific and engineering fields generate enormous
amounts of data through measurement, simulation, and exper-
imentation. Examples of data produced in such fields include
astronomical images, DNA sequences, geo-locations, social
relationships, and so on. All of these are naturally represented
as multi-dimensional arrays, which can be either dense (when
every array element has a value) or sparse (when the majority
of the array elements are empty, i.e., zero or null). For in-
stance, an astronomical image can be represented by a dense
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2D array, where each element corresponds to a pixel. Geo-
locations (i.e., points in a 2D or 3D coordinate space) can be
represented by non-empty elements in a sparse 2D or 3D array
that models the coordinate space.

Scientific array data can be very large, containing billions
of non-null values that do not readily fit into the memory of
a single or even multiple machines. As a result, many appli-
cations need to read and write both individual (random) ele-
ments as well as large sequential extents of these arrays to and
from the disk. Simply storing arrays as files forces application
programmers to handle many issues, including array represen-
tation on disk (i.e., sparse vs. dense layouts), compression,
parallel access, and performance. Alternatively, these issues
can be handled by optimized, special-purpose array data stor-
age management systems, which perform complex analytics
on scientific data. Central to such systems are efficient data
access primitives to read and write arrays. These primitives
are the focus of this work.

1.1 Existing Array Management Systems

A number of others systems and libraries for managing and
accessing arrays exist. HDF5 [16] is a well-known array data
storage manager. It is a dense array format, coupled with a
C library for performing the storage management tasks. Sev-
eral scientific computing packages integrate HDF5 as the core
storage manager (such as NetCDF-4 [9], hSpy [6] and PyTa-
bles [13]). HDFS groups array elements into regular hyper-
rectangles, called chunks, which are stored on the disk in bi-
nary format in a single large file. HDF5 suffers from two main
shortcomings. First, it does not efficiently capture sparse ar-
rays. A typical approach is to represent denser regions of a
sparse array as separate dense arrays, and store them into a
(dense) HDFS array of arrays. This requires enormous manual
labor to identify dense regions and track them as they change.
Second, HDFS is optimized for in-place writes of large blocks.
In-place updates result in poor performance when writing small
blocks of elements that are randomly distributed, due to the
expensive random disk accesses they incur. Parallel HDFS
(PHDFS) is a parallel version of HDF5 with some additional
limitations: (i) it does not allow concurrent writes to com-
pressed data, (ii) it does not support variable-length element
values, and (iii) operation atomicity requires some coding ef-
fort from the user, and imposes extra ordering semantics [4].



Random writes are important in many applications. For in-
stance, random writes occur with large OLAP cube applica-
tions [1] and selective image processing (e.g., applying blur
and de-noising filters). In dense linear algebra, while tradi-
tional algorithms [15] are designed around regular updates of
large blocks, more recent algorithms based on DAG schedul-
ing [11] often result in small block updates irregularly dis-
tributed throughout the matrix. When combined with Asyn-
chronous Many-Task runtime systems [3, 7] for extreme scale
systems, this irregularity requires an array storage manager op-
timized for random updates of small blocks.

Array-oriented databases implement their own storage man-
agers and, thus, they can arguably serve as the storage layer for
other scientific applications built on top (see [24] for a survey
of these systems). SciDB [18] is a popular array database,
which however also has significant storage management lim-
itations. It is not truly designed for sparse arrays as it relies
on regular dimensional chunking (similar to HDFS5). It also
requires reading an entire chunk even if a small portion of it
is requested, and updating an entire chunk even when a sin-
gle element changes, leading to poor performance in the case
of random writes. ArrayStore [25] propose optimizations for
the sparse case on top of SciDB, including grouping underuti-
lized chunks into bigger ones to address imbalance. However,
the original chunks still remain the atomic units of processing,
thus many of the above problems persist.

Alternatively, relational databases (e.g., MonetDB[20] or
Vertica [21]) have been used as the storage backend for array
management (e.g., in RAM [26] for dense and SRAM [19] for
sparse arrays), storing non-empty elements as records and ex-
plicitly encoding the element indices as extra table columns.
Subarray queries (used to retrieve any part of the array) are
performed via optimized SELECT WHERE SQL queries on
the array indices. This explicit index encoding leads to poor
performance in the case of dense arrays. Similar to RAM and
SRAM, RasDaMan [17] stores array data as binary large ob-
jects (BLOBs) in PostgreSQL [12], and enables query process-
ing via a SQL-based array query language called RasQL. Like
RAM and SRAM, array storage and access has to go through
PostgreSQL, which is typically quite slow. Moreover, Ras-
DaMan is designed mainly for dense arrays; its support for
sparse arrays relies on the user manually decomposing the ar-
ray space into irregular regions of approximately equal number
of non-empty elements, which is cumbersome (similar to the
case of HDF5).

A second concern with the database approach (for some
users) is that databases run as a separate server that is accessed
via SQL queries over a ODBC/JDBC interface. In contrast,
programmers of high-performance scientific and image pro-
cessing applications who make heavy use of arrays usually
want API-based access to directly write and read array ele-
ments; they either prefer libraries like HDF5 for dense data,
or develop their own special-purpose tools (such as Generi-
clO [5], designed to manage sparse 3D particles).

1.2 Our Approach

In this paper we introduce the first array storage manager
that is optimized for both dense and sparse arrays, and which
lies at the core of a new scientific data management system
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called TileDB. TileDB is an open-source software system writ-
ten in C++ and maintained by Intel Labs and MIT. More infor-
mation and code can be foundathttp://www.tiledb.org.
TileDB is already in use by the Broad Institute, one of the
largest genomics institutes in the world, for storing many Ter-
abytes of genomics data, which are modeled as a huge sparse
2D array [2]. The focus of this paper is on TileDB’s stor-
age module (we defer a discussion of TileDB’s distributed ar-
chitecture and complex analytics engine to follow-up work).
Throughout the rest of the paper, we use 7ileDB to refer to the
storage manager component of the larger TileDB system.

TileDB exposes a C library for efficient writes and reads
to arrays using a novel dense and sparse on-disk representa-
tion, while supporting important features such as compression,
parallelism, and more. Contrary to specialized software like
GenericlO, TileDB handles arrays of arbitrary dimensionality
and schema and, thus, can be readily used in a wide range of
large-scale scientific applications. The key idea of TileDB is
that it organizes array elements into ordered collections called
fragments. Fragments may overlap in the index space of the
array and are used to represent batches of updates to the ar-
ray. They may also have either a dense or a sparse repre-
sentation. Dense fragments group their elements into regular-
sized chunks in the index space, which we call data tiles. A
sparse fragment represents an element by explicitly storing its
indices in a specific, global order. Sparse elements are grouped
into data tiles of fixed element capacity (in contrast to SciDB),
which balances I/O cost when accessing the array.

The concept of fragments dramatically improves write per-
formance as writes are performed in batches, and each batch
(which may consist of many small, random writes) is written
to a separate fragment sequentially. Most importantly, sparse
fragments can be used to speed up random writes even in dense
arrays. In contrast to HDF5’s in-place updates, TileDB batches
random requests and sequentially writes many at a time as a
sparse fragment. This approach also enables efficient repre-
sentation and update of variable-length values (such as strings).

Turning random-writes into sequential appends is a classic
technique in storage systems [23], but implementing it in an
array storage manager is non-trivial. This is because multiple
fragments may cover the same logical region of an array, and
some fragments may be sparse, which makes it hard for the
read algorithm to find the most recent fragment that updated
each returned element. TileDB implements an efficient read
algorithm that does this; it also avoids unnecessary tile reads
when a portion of a fragment is totally covered by a newer
fragment. Finally, as the number of fragments grows and read
performance may degrade, TileDB employs a consolidation
algorithm that merges multiple fragments into a single one.
Consolidation can be performed in the background while other
concurrent reads and writes are performed.

TileDB supports parallelism through both multi-threading
(pthreads and OpenMP) and multi-processing (e.g., via forks
and MPI). It provides thread-/process-safety with lightweight
locking. Moreover, it guarantees operation atomicity, without
imposing any additional ordering constraints (this is in con-
trast to parallel implementations of HDFS5, like PHDFS [10]).

The key contributions of this paper are the following:



e We describe the TileDB storage manager designed to
support both sparse and dense arrays. TileDB uses tiles
of fixed element capacity, making efficient use of the
1/0 subsystem. It also employs a fragment-based layout,
which makes all writes sequential, and implements pro-
tocols for efficiently reading elements in the presence of
multiple fragments, as well as a consolidation algorithm
for compacting many fragments into one.

We describe how these features allow TileDB to provide
desirable properties for parallel programming, such as
thread- and process-safety, as well as atomicity of con-
current reads and writes to a single array.

e We conduct a thorough experimental evaluation. We
show that, for dense arrays, TileDB delivers comparable
performance to HDF5, while being orders of magnitude
faster on random element writes. We also demonstrate
that TileDB offers orders of magnitude faster reads and
writes than SciDB in most settings for both dense and
sparse arrays. In addition, TileDB is 2x-40x faster than
Vertica for dense arrays, and at least as fast as Vertica for
sparse arrays. Finally, we confirm the effectiveness of
our multi-fragment read and consolidation, and the fact
that TileDB offers excellent scalability, both in terms of
parallelism and when operating on large datasets.

2. TileDB OVERVIEW

Data Model. TileDB provides an array-oriented data model
that is similar to that of SciDB [18]. An array consists of di-
mensions and attributes. Each dimension has a domain, and all
dimension domains collectively orient the logical space of the
array. A combination of dimension domain values, referred
to as coordinates, uniquely identifies an array element, called
cell. A cell may either be empty (null) or contain a tuple of
attribute values. Each attribute is either a primitive type (int,
float, or char), or a fixed or variable-sized vector of a
primitive type. For instance, consider an attribute represent-
ing complex numbers. Each cell may then store two float
values for this attribute, one for the real part and the other for
the imaginary part. As another example, a string can be repre-
sented as a vector of characters.

Arrays in TileDB can be dense, where every cell contains an
attribute tuple, or sparse, where some cells may be empty; all
TileDB operations can be performed on either type of array,
but the choice of dense vs. sparse can significantly impact
application performance. Typically, an array is stored in sparse
format if more than some threshold fraction of cells are empty,
which highly depends on the application.

All dimension domains have the same type. For dense ar-
rays, only int dimensions are supported; for sparse arrays
float dimensions are also allowed. This is because TileDB
materializes the coordinates of the non-empty cells for sparse
arrays and, thus, can store them as real numbers (see Sec-
tion 3). In other words, TileDB natively supports continuous
multi-dimensional spaces, without the need for discretization.
On the other hand, dense arrays have inherently discrete do-
mains that are naturally represented as integers.
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This is sufficient to capture many applications, as long as
each data item can be uniquely identified by a set of coordi-
nates. For example, in an imaging application, each image can
be modeled by a 2D dense array, with each cell representing
the RGB values for that pixel. Another application is Twitter,
where geo-tagged tweets can be stored in a 2D sparse array
whose cells are identified by £1oat geographical coordinates,
with each tweet stored in a variable-length char attribute.

Figure 1 shows two example arrays, one dense one sparse,
which have two dimensions, rows and columns. Both di-
mensions have domain [1,4]. The arrays have two attributes,
al of type int32 and a2 of type variable char. Each cell is
identified by its coordinates, i.e., a pair of rows, columns.
In our examples, empty cells are shown in white, and non-
empty cells in gray. In the dense array, every cell has an at-
tribute tuple, e.g., cell (4,4) contains (15, pppp), whereas sev-
eral cells in the sparse array are empty, e.g., cell (4,1).

Dense array Sparse array

_—— columns columns

dimensions

1 2 3 4 1 2 3 4
o| 1|45 o |1 2
D O (e (R O Tha | w cce
2 3 6 7 3
rows cce [dddd | geg |nhhh rows it
3 g g 12 | 13 empty 3 4 6 7
i i m | nn cell \ e 888 | hhhh
domain [1,4] 4 10 | 11 | 14 | 15 4 5
kkk | M | ooo |pppp ff
tuple of cell (4,4)
<al (int32), a2 (var char)> = <15, pppp>
-
attributes

Figure 1: The logical array view

Global cell order. Whenever multi-dimensional data is stored
to disk or memory it must be laid out in some linear order,
since these storage media are single-dimensional. This choice
of ordering can significantly impact application performance,
since it affects which cells are near each other in storage. In
TileDB, we call the mapping from multiple dimensions to a
linear order the global cell order.

A desirable property is that cells that are accessed together
should be co-located on the disk and in memory, to minimize
disk seeks, page reads, and cache misses. The best choice of
global cell order is dictated by application-specific characteris-
tics; for example, if an application reads data a row-at-a-time,
data should be laid out in rows. A columnar layout in this case
will result in a massive number of additional page reads.

TileDB offers various ways to define the global cell order
for an array, enabling the user to tailor the array storage to his
or her application for maximum performance. For dense ar-
rays, the global cell order is specified in three steps. First, the
user decomposes the dimensional array domain into space tiles
by specifying a tile extent per dimension (e.g., 2 x 2 tiles). This
effectively creates equi-sized hyper-rectangles (i.e., each con-
taining the same number of cells) that cover the entire logical
space. Second, the user determines the cell order within each
space tile, which can be either row-major or column-major.
Third, the user determines a tile order, which is also either
row-major or column-major. Figure 2 shows the global cell
orders resulting from different choices in these three steps (the
space tiles are depicted in blue).



‘space tile extents: 2x2
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space tile extents: 2x2
tile order:  column-major
row-major

space tile extents: 4x2
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cellorder:  row-major
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Figure 2: Global cell orders in dense arrays

cell order;

The notion of a global cell order also applies to sparse ar-
rays. However, creating sparse tiles is somewhat more com-
plex because simply using tiles of fixed logical size could lead
to many empty tiles. Even if we suppressed storage of empty
tiles, skew in many sparse datasets would create tiles of highly
varied capacity, leading to ineffective compression, bookkeep-
ing overheads, and some very small tiles where seek times rep-
resent a large fraction of access cost. Therefore, to address the
case of sparse tiles, we introduce the notion of data tiles.

Data tiles. A data tile is a group of non-empty cells. It is the
atomic unit of compression and has a crucial role during reads
(explained in Section 4.1). Similarly to a space tile, a data tile
is enclosed in logical space by a hyper-rectangle. For dense
arrays, each data tile has a one-to-one mapping to a space tile,
i.e., it encompasses the cells included in the space tile.

For the sparse case, TileDB instead allows the user to spec-
ify a data tile capacity, and creates the data tiles such that they
all have the same number of non-empty cells, equal to the ca-
pacity. To implement this, assuming that the fixed capacity is
denoted by ¢, TileDB simply traverses the cells in the global
cell order imposed by the space tiles and creates one data tile
for every c non-empty cells. A data tile of a sparse array is
represented in the logical space by the tightest hyper-rectangle
that encompasses the non-empty cells it groups, called the
minimum bounding rectangle (MBR). Figure 3 illustrates var-
ious data tiles resulting from different global cell orders, as-
suming that the tile capacity is 2. The space tiles are depicted
in blue color and the (MBR of the) data tiles in black. Note that
data tiles in the sparse case may overlap, but each non-empty
cell corresponds to exactly one data tile.

space tile extents: 2x2
tile order;  column-major
cellorder; row-major

‘space tile extents: 4x2
tile order:  row-major
cellorder; row-major

space tile extents; 2x2
tile order;  row-major
cellorder; row-major

space tiles

N

data tiles

Figure 3: Data tiles in sparse arrays

Compression. TileDB employs tile-based compression. Ad-
ditionally, it allows the user to select different compression
schemes on a per-attribute basis, as attributes are stored sepa-
rately (as discussed in Section 3). The API supports defining
different compression schemes for each attribute, but currently
only gzip is implemented. In the future, TileDB will be able to
support more compression schemes, such as RLE, LZ, as well
as user-defined schemes.
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Fragments. A fragment is a timestamped snapshot of a batch
of array updates, i.e., a collection of array modifications car-
ried out via write operations and made visible at a particular
time instant. For instance, the initial loading of the data into
the array constitutes the first array fragment. If at a later time
a set of cells is modified, then these cells constitute the second
array fragment, and so on. In that sense, an array is comprised
of a collection of array fragments, each of which can be re-
garded as a separate array, whose collective logical overlap
composes the current logical view of the array.

A fragment can be either dense or sparse. Dense fragments
are used only with dense arrays, but sparse fragments may be
applied to both dense and sparse arrays.

Figure 4 shows an example of an array with three fragments;
the first two are dense and the third is sparse. Observe that the
second fragment is dense within a hyper-rectangular subarray,
whereas any cell outside this subarray is empty. The figure
also illustrates the collective logical view of the array; the cells
of the most recent fragments overwrite those of the older ones.

Fragment #1 Fragment #2 Fragment #3
(dense) (dense) (sparse)
1 2 3 4 1 2 3 4 1 2 3 4
1 1 1
2 2 2
3 3 AE 3
4 4 000 Pebe 4

Collective logical array view

1 2 3 4

PO C RN

14 115
000 PPPP

Figure 4: Fragment examples

Fragments are the key concept that enables TileDB to per-
form rapid writes. If they cover relatively disjoint subareas
of the domain, or if their number is modest (e.g., hundreds to
thousands as shown in our experiments in Section 6), then their
presence does not significantly affect the read performance.
If numerous fragments are created and the read performance
becomes unsatisfactory, TileDB employs an efficient consoli-
dation mechanism that coalesces fragments into a single one.
Consolidation can happen in parallel in the background, while
reads and writes continue to access the array. The concept of
fragments and their benefits are explained in Section 4.

Array metadata. TileDB stores two types of metadata about
an array: the array schema and the fragment bookkeeping.
The former contains information about the definition of the
array, such as its name, the number, names and types of di-
mensions and attributes, the dimension domain, the space tile
extents, data tile capacity, and the compression types. The lat-
ter summarizes information about the physical organization of
the stored array data in a fragment (explained in Section 3).

System architecture. The TileDB storage manager is exposed
as a C API library to users. The system architecture is de-
scribed in Figure 5. The basic array operations are init,



write, read, consolidate and finalize; these are
thoroughly explained in Section 4. The storage manager keeps
in-memory state for the open arrays, i.e., arrays that have been
initialized and not yet finalized. This state keeps the book-
keeping metadata for each fragment of every open array in
memory; this is shared between multiple threads that access
the same array at the same time. Locks are used to mediate
access to the state (covered in detail in Section 5). Each thread
has its own array object, which encapsulates a read state and
one fragment object with its own read and write state.

Storage Manager Array
CAPI Read State
init P Locking i Fragment

write — g 1 ' i
read i Open Arrays J/————BOOkkeerg

consolidate 1 . 3 Read State
finalize i Bookkeeping ! Write State
}, 7777777777777777777777 H

Figure 5: The TileDB storage manager architecture

3. PHYSICAL ORGANIZATION

An array in TileDB is physically stored as a directory in
the underlying file system. The array directory contains one
sub-directory per array fragment, plus a file storing the array
schema in binary format. Every fragment directory contains
one file per fixed-sized attribute, and two files per variable-
sized attribute. The attribute files store cell values in the global
cell order in a binary representation. Storing a file per attribute
is a form of “vertical partitioning”, and allows efficient subset-
ting of the attributes in read requests. Each fragment directory
also contains a file that stores the bookkeeping metadata of the
fragment in binary, compressed format. We explain the physi-
cal storage for dense and sparse arrays with examples below.

Figure 6 shows the physical organization of the dense ar-
ray of Figure 1, assuming that it follows the global cell order
illustrated in the middle array of Figure 2. The cell values
along the fixed-sized attribute al are stored in a file called
al.tdb, always following the specified global cell order. At-
tribute a2 is variable-sized and, thus, TileDB uses two files
to store its values. File a2_var.tdb stores the variable-
sized cell values (serialized in the global cell order), whereas
a2 .tdb stores the starting offsets of each variable-sized cell
value in file a2 _var. tdb. This enables TileDB to efficiently
locate the actual cell value in file a2_var.tdb during read
requests. For instance, cell (2,3) appears 7th in the global cell
order. Therefore, TileDB can efficiently look-up the 7th off-
set in file a2 .tdb (since the offsets are fixed-sized), which
points to the beginning of the cell value ggg in a2_var.tdb.

Using this organization, TileDB does not need to maintain
any special bookkeeping information. It only needs to record
the subarray in which the dense fragment is constrained, plus
some extra information in the case of compression.

Figure 7 illustrates the physical organization of the sparse
array of Figure 1, assuming that it follows the global cell order
of the middle array of Figure 3. The attribute files of sparse
arrays are organized in the same manner as those of dense,
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space tile extents: 2x2
tile order: row-major
cell order: row-major

1 2 3 4 Files
fol1Ta]s (binary format)
2 1bbl el ff al.tdb [0 1234567891011 1213 14 15 |
2 2 (3 6 |7
Scsocdﬂdd 828 | bbb a2.tdb [0 13 6 10 11 13 16 20 21 23 26 30 31 33 36
9 [12]13
Ll w52 var.tdb [a bb ccc dddd e ff ggg hhhh i 3j kkk 1111 m .|
gl uTuls -
kkk | M | ooo | pppp

Figure 6: Physical organization of dense fragments

except that they contain only non-empty cells. That is, the
cell values follow the global cell order in the attribute files,
and there is an extra file for variable-sized attributes storing
the starting offsets of the variable-sized cell values. Unlike
dense arrays where the offset of each cell value can be di-
rectly computed, the same is not possible in sparse arrays,
since the exact distribution of the non-empty cells is unknown.
In order to locate the non-empty cells, TileDB stores an addi-
tional file with the explicit coordinates of the non-empty cells
(-—.coords.tdb in the figure), which are again serialized in
the global cell order. Note that the coordinates follow the order
of the dimensions, as specified in the array schema.

space tile extents: 2x2

tile order: row-major
cell order: row-major Files
1 2 3 4 (binary format)
o 1 2 . 01234567
el 2 al.tdb
9 2 a2.tdb [0 1 3 610 11 13 16
3|4 6 | 7 a2 var.tdb [a bb ccc dddd e ff ggg hhhh |
828
4 5 coords.tdb [1,/1 1,2 1,4 2,3 3,1 4,2 3,3 3,4 |

Figure 7: Physical organization of sparse fragments

In order to achieve efficient reads, TileDB stores two types
of bookkeeping information about the data tiles of a sparse
array. Recall that a data tile is a group of non-empty cells
of fixed capacity, associated with an MBR. TileDB stores the
MBRs of the data tiles in the bookkeeping metadata, which
facilitate the search for non-empty cells during a read request.
In addition, it stores bounding coordinates, which are the first
and last cell of the data tile along in the global cell order. These
are important for reads as well, as explained in Section 4.1.

A final remark on physical storage concerns compression.
As mentioned earlier, TileDB compresses each attribute data
tile separately, based on the compression type specified in the
array schema for each attribute. In other words, for every at-
tribute file, TileDB compresses the data corresponding to each
tile separately prior to writing them into the file. Note that dif-
ferent tiles may be compressed into blocks of different size,
even for fixed-sized attributes. TileDB maintains bookkeeping
information in order to be able to properly locate and decom-
press each tile upon a read request.

4. OPERATIONS

In this section, we describe the core functions of TileDB.

4.1 Read

Read returns the values of any subset of attributes inside
a user-supplied subarray. The result is sorted on the global



cell order within the subarray. The user specifies the subarray
and attributes in the init call. During initialization, TileDB
loads the bookkeeping data of each array fragment from the
disk into main memory. This bookkeeping data is of negligible
size (a few KB) in the dense case, whereas in the sparse case it
depends on the tile capacity. For typical tile capacities of 10K-
1M, the bookkeeping size is 4-6 orders of magnitude smaller
than the total array size.

The user calls read one or more times with allocated buffers
that will store the results, one per fixed-length attribute, two
per variable-lengthed attribute, along with their sizes. TileDB
populates the buffers with the results, following the global
cell order within the specified subarray. For variable-sized
attributes, the first buffer contains the starting cell offsets of
the variable-sized cells in the second buffer. For variable-
length attributes and sparse arrays, the result size may be un-
predictable, or exceed the size of the available main memory.
To address this issue, TileDB gracefully handles buffer over-
flow. If the read results exceed the size of some buffer, TileDB
fills in as much data as it can into the buffer and returns. The
user can then consume the current results, and resume the pro-
cess by invoking read once again. TileDB maintains read
state that captures the location where reading stopped.

The main challenge of reads is the presence of multiple frag-
ments in the array. This is because the results must be returned
in the global cell order, and read cannot simply search each
fragment individually; if a recent fragment overwrites a cell
of an older fragment, no data should be retrieved from the old
fragment for this cell, but the old fragment should be used for
adjacent cells. TileDB implements a read algorithm that al-
lows it to efficiently access all fragments, skipping data that
does not qualify for the result. The algorithm is slightly differ-
ent for dense and sparse arrays, explained in turn below.

Dense arrays. The algorithm has two stages. The first com-
putes a sorted list of tuples of the form ([sc, ec], fid); [sc, ec]
is a range of cells between start coordinates sc and end coor-
dinates ec (inclusive), where sc precedes or is equal to ec in
the global cell order, and fid is a fragment id. Each fragment
is assigned a unique fid based on its timestamp, with larger
fid values corresponding to more recent fragments (ties are
broken arbitrarily based on the id of the thread or process that
created the fragment). The following rules hold: (i) all ranges
must be disjoint, (ii) the ranges must be sorted in the global
cell order, (iii) the ranges in the ordered list must contain all
and only the actual, up-to-date result cells, and (iv) the cells
covered in each range must appear contiguously on the disk.
Given this list, the second stage retrieves the actual attribute
values from the respective fragment files, with a single file I/O
into the user buffers for each range of each requested attribute.
We focus the rest of this section on the first stage, as the sec-
ond stage is simple (given sc and ec, it easy to calculate their
offsets in the files via closed formulas).

The first stage proceeds iteratively, with each iteration oper-
ating on a single space tile. Space tiles are visited in the global
order. For each tile 7', the algorithm considers each fragment
overlapping T'. It computes a set of disjoint coordinate ranges
[sc, ec] that are in the query subarray within 7', such that the
cells in these ranges are adjacent in the global cell order. For
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instance, if the subarray covers the entire tile [1:2, 1:2] (i.e.,
the upper left tile) of our dense array examples, then a single
range is created, [(1,1),(2,2)]. If the subarray covers only
one row of this tile, say [1:1, 1:2], then the range [(1, 1), (1, 2)]
is created. However, if it covers a column, say [1:2, 1:1] (recall
that our cell order is row-major), then two ranges are created,
namely [(1,1),(1,1)] and [(2, 1), (2,1)]. This is because we
cannot construct a single range such that (1, 1) and (2, 1) ap-
pear adjacent in the global cell order. In other words, the al-
gorithm operates on whole qualifying ranges of cells stored
contiguously on the disk, rather than individual cells, thus opti-
mizing performance. For sparse fragments, similar ranges are
created, but this time considering the bounding coordinates of
each tile overlapping with the subarray. Note that these ranges
are sparse, i.e., they may cover also empty cells.

Next, the algortihm creates one tuple {[sc, ec], fid) for each
such range of fragment fid, and inserts them into a priority
queue pq. The comparator of pq gives precedence to tuples
with smallest sc value, breaking ties by giving precedence to
the tuple with the largest fid. For each tuple, through fid we
can know whether it comes from a dense or sparse fragment.

Once a priority queue has been built for 7", the algorithm
pops a tuple at a time from pq (we call this tuple popped). The
algorithm compares popped to the new top tuple, emitting new
result tuples for the second stage of the algorithm to consume
and re-inserting some tuples into pqg. Figure 8 illustrates the
possible overlaps between popped and top tuples. Here a solid
thick line corresponds to a range of a dense fragment, a dashed
thin line to a range of a sparse fragment, and a double solid line
to a range of either a dense or a sparse fragment (recall that a
dense array may consist of both dense and sparse fragments).

In case (i), since popped does not overlap with top, it is
guaranteed not to overlap with any other range of any other
fragment (by the definition of pq) and, thus, it is simply in-
serted in the result. In case (ii), only the disjoint portion of
the popped range can be inserted in the result. The other part
must be re-inserted in pq, because the overlapping portion of
top may be from a more recent fragment (since the priority
queue is sorted by sc). This re-insertion will result in (iii)
or (iv) triggering. In case (iii), popped is a range of a dense
fragment that begins at the same sc value as top. This must
come from a more recent fragment than top, thus top can be
discarded (the disjoint portion of top is re-inserted into pq.)
Note, however, that popped may still overlap with some other
older fragment starting at a later sc value, hence it cannot be
emitted yet. Instead, the algorithm pops pg and processes the
new top versus this popped; this will generally result in case
(1), (ii) or (iii) being triggered.

Finally, case (iv) applies when popped is sparse. Recall
that initially the sparse ranges inserted into pg may also cover
empty cells. Thus, the algorithm identifies the first two non-
empty cells in popped, which requires reading from the data
tile (these are shown as x’s in the figure). It then inserts the first
coordinate as a unary dense tuple in pq, to be handled by case
(iii). Finally, it re-inserts the truncated sparse range starting at
the second coordinate into pg, as shown in the figure.

In summary, the algorithm performs a right sweep on the
global cell order, and inserts disjoint ranges into the ordered
list, such that recent fragments always overwrite older ones.
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Due to this invariant, the emitted list abides by the rules we
stated above and, thus, the algorithm is correct.

Sparse arrays. The algorithm for sparse arrays is very sim-
ilar to that for dense. There are only two differences in the
first stage of computing the sorted cell range list. First, it-
eration does not focus on space tiles (since they may be too
large in sparse arrays). Instead, it focuses only on ranges that
start before the minimum end bounding coordinate of a data
tile in a fragment, and then proceeds by properly updating the
next minimum end bounding coordinate. This keeps the queue
small in each iteration. Second, case (iii) of Figure 8 never
arises, since a sparse array consists only of sparse fragments.

TileDB supports various read I/O methods, such as POSIX
read, memory map (mmap), MPI-1O [14], even asynchronous
I/O, which can be configured easily even upon run-time. The
benefits of each method vary based on the application.

The above read algorithm demonstrates the importance of
the global cell order, which maps a multi-dimensional prob-
lem into a single-dimensional one that can be handled more
intuitively and efficiently. Because the algorithm spends more
time when the cell ranges overlap considerably across frag-
ments, it is beneficial for the user to co-locate updates when
possible across batch writes. If this is not possible and the
number of fragments becomes excessive, read performance
may degrade. This is mainly because I/O is not performed
sequentially, since data retrievals from multiple fragment files
are interleaved. Moreover, storage space is wasted if there are
many overwrites in both dense and sparse arrays, or numerous
deletions in sparse arrays. TileDB offers a way to consolidate
multiple fragments into a single one, described in Section 4.3.

4.2 Write

Write loads and updates data in TileDB arrays. Each write
session writes cells sequentially in batches, creating a separate
fragment. A write session begins when an array is initialized in
write mode (with init), comprises one or more write calls,
and terminates when the array is finalized (with finalize).
Depending on the way the array is initialized, the new frag-
ment may be dense or sparse. A dense array may be updated
with dense or sparse fragments, while a sparse array is only up-
dated with sparse fragments. We explain the creation of dense
and sparse fragments separately below.

Dense fragments. Upon array initialization, the user specifies
the subarray region in which the dense fragment is constrained
(it can be the entire domain). Then, the user populates one
buffer per array attribute, storing the cell values respecting the
global cell order. This means the user must be aware of the
tiling, as well as the tile and cell order specified upon the ar-
ray creation (HDF5 and SciDB operate similarly). The buffer
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memory is managed solely by the user. The write function
simply appends the values from the buffers into the corre-
sponding attribute files, writing them sequentially, and with-
out requiring any additional internal buffering (i.e., it writes
directly from the user buffers to the files). Note that the user
may call write repeatedly with different buffer contents, in
the event that memory is insufficient to hold all the data at
once. Each write invocation results in a series of sequential
writes to the same fragment, one write per attribute file.

Sparse fragments. There are two different modes for creat-
ing sparse fragments. In the first, similar to the dense case,
the user provides cell buffers to write. These buffers must
be sorted in the global cell order. There are three differences
with the dense case. First, the user provides values only for the
non-empty cells. Second, the user includes an extra buffer with
the coordinates of the non-empty cells. Third, TileDB main-
tains some extra write state information for each created data
tile (recall that a data tile may be different from a space tile).
Specifically, it counts the number of cells seen so far and, for
every c cells (where c is the data tile capacity specified upon
array creation), TileDB stores the minimum bounding rectan-
gle (MBR) and the bounding coordinates (first and last coor-
dinates) of the data tile. Note that the MBR initially includes
the first coordinates in the data tile, and expands as more co-
ordinates are seen. For each data tile, TileDB stores its MBR
and bounding coordinates into the bookkeeping structures of
the fragment.

Sparse fragments are typically created when random up-
dates arrive at the system, and it may be cumbersome for the
user to sort the random cells along the global order. To han-
dle this, TileDB also enables the user to provide unsorted cell
buffers to write. TileDB internally sorts the buffers (using
multiple threads), and then proceeds as explained above for the
sorted case. The only difference is that each write call in un-
sorted mode creates a separate fragment. This is very similar
to the sorted runs created in the traditional merge sort algo-
rithm. In Section 4.3 we explain that TileDB can effectively
merge all the sorted fragments into a single one.

Sparse fragments also support deletions. TileDB handles
deletions as insertions of empty cells (TileDB uses special
constants for identifying values of “empty” cells). The user
can then test if a retrieved cell is empty or not (using the spe-
cial constants). If the number of deletions is high (e.g., many
more deletion entries appear in a subarray query than actual
results), the read performance will likely be impacted. In such
cases, the user can invoke consolidate (see Section 4.3),
which merges the fragments purging the deletion entries.

Two final notes concern compression and variable-length
attributes, applicable to both dense and sparse fragments. If
compression is enabled for some attribute, TileDB buffers the
cell values corresponding to the same data tile for that at-
tribute. When the tile fills up, TileDB compresses it internally
and appends it to the corresponding file. For variable-length
attributes, write takes two buffers from the user; the first
stores the variable-length cell values, and the second stores
the starting offsets of each cell value in the first buffer. TileDB
uses this information to create the extra attribute file that stores
the starting cell offsets, as explained in Section 3.



4.3 Consolidate

Consolidation takes a set of fragments as input and pro-
duces a single new output fragment. It is easy to implement in
TileDB given the multi-fragment read algorithm discussed in
Section 4.1: it simply repeatedly performs a read on the en-
tire domain, providing buffers whose size is configurable de-
pending on the available memory. After every read, the func-
tion invokes a write command which writes the retrieved
cells into the new fragment. Due to the way it handles buffer
overflow, TileDB stops reading when the buffers are full. If
any of the read fragments are dense, the consolidated fragment
is also dense. If all fragments are sparse, then the consolidated
fragment is sparse. Since the cells are read in the global cell
order, the resulting fragment stores the cells in the global cell
order as well. In addition, the consolidation process discards
any deleted entries. Upon successful termination, the function
deletes the old fragments. The new fragment is identified by a
timestamp that is larger than that of all the old fragments.

Consolidating many small fragments with a few large ones
can be costly, since the total consolidation time is dominated
by reading and writing the large fragments. This suggests con-
solidation should be applied on fragments of approximately
equal size. Moreover, read performance degrades when many
data tiles of different fragments overlap in the logical space.
Thus, it is important to consolidate those fragments before
others. To address these issues, TileDB enables the user to
run consolidation on a specific subset of fragments. An ad-
ditional benefit of selective consolidation applies specifically
for the case where all the fragments have approximately the
same size. In particular, the user can implement a hierarchical
consolidation mechanism similar to that employed in LSM-
Trees [22], to amortize the total consolidation cost.

S. PARALLEL PROGRAMMING

TileDB allows both concurrent reads and writes on single

array, offers thread-/process-safety and atomic reads and writes.

It also enables consolidation to be performed in the background
without obstructing concurrent reads and writes. Fragments
enable all of these features as writes happen to independent
fragments, and partial fragments are not visible to readers.
Concurrent writes are achieved by having each thread or
process create a separate fragment. No internal state is shared
and, thus, no locking is necessary. Each thread/process creates
a fragment with a unique name, using its id and the current
time. Thus, there are no conflicts even at the file system level.
Reads from multiple processes are independent and no lock-
ing is required. Every process loads its own bookkeeping data
from the disk, and maintains its own read state. For multi-
threaded reads, TileDB maintains a single copy of the frag-
ment bookkeeping data, utilizing locking to protect the open
arrays structure so that only one thread modifies the bookkeep-
ing data at a time. Reads themselves do not require locking.
Concurrent reads and writes can be arbitrarily mixed. Each
fragment contains a special file in its sub directory that in-
dicates that this fragment should be visible. This file is not
created until the fragment is finalized, so that fragments under
creation are not visible to reads. Fragment-based writes make
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it so that reads simply see the logical view of the array with-
out the new fragment. This is in contrast to PHDFS, which
imposes ordering constraints to ensure atomicity.

Finally, consolidation can be performed in the background
in parallel with other reads and writes. Locking is required
only for a very brief period. Specifically, consolidation is per-
formed independently of reads and writes. The new fragment
that is being created is not visible to reads before consolidation
is completed. The only time when locking is required is after
the consolidation finishes, when the old fragments are deleted
and the new fragment becomes visible. TileDB enforces its
own file locking at this point. After all current reads release
their shared lock, the consolidation function gets an exclusive
lock, deletes the old fragments, makes the new fragment vis-
ible, and releases the lock. After that point, any future reads
see the consolidated fragment.

6. EXPERIMENTS

In this section we experimentally evaluate TileDB in a num-
ber of dense and sparse array settings. We focus on 3 competi-
tors, 2D arrays, and fixed-length attributes due to space limi-
tations. However, TileDB is an active project; we will keep on
posting benchmark results and include future suggested com-
parisons online at www.tiledb.org.

Competitors. We compared TileDB against HDF5 [16] (for

dense arrays), SciDB [18] (for dense and sparse arrays), and

Vertica [21] (for dense and sparse arrays). For all parallel

experiments, we used the parallel version of HDFS5, namely

PHDFS5. SciDB and Vertica are complete database systems,

but we only focused on their storage management capabilities

on a single node, namely writes (load and update) and reads

(various types of subarray queries), as well as parallel execu-

tion. All our benchmarks can found at https://github.com/
Intel-HLS/TileDB/tree/benchmarks.

System configuration. We performed all our experiments on
an Intel®) x86_64 platform with a 2.3 GHz 36-core CPU and
128 GB of RAM, running CentOS6. We utilized a 4 TB, 7200
rpm Western Digital HDD and a 480 GB Intel® SSD both
not RAID-ed and equipped with the ex#4 file system. Because
the HDD is I/O bound even with a single thread, we ran serial
experiments on the HDD. Because the SSD is so much faster,
we ran our parallel experiments on SSDs.

We compared against SciDB v15.12, Vertica v7.02.0201,
and HDF5 v1.10.0. TileDB is implemented in C++, and the
source code is available online at www.tiledb.orqg. For
TileDB, SciDB and HDF5, we experimented both with and
without gzip compression, using compression level 6. Note
that PHDF5 does not support parallel load or updates on com-
pressed datasets. In addition, Vertica cannot be used without
compression; the default compression method is RLE, which
is currently not supported by TileDB. Therefore, we used Ver-
tica with gzip (compression level 6). Note that Vertica uses a
fixed 64 KB compression block. We gave an unlimited cache
size to HDF5, SciDB and Vertica. TileDB does not use a
caching mechanism, but it rather relies on the OS caching.
Before every experiment we flush all caches, and after every
load/update we sync the files. Finally, note that Vertica by



default uses all the available cores in the system. In order to
vary the number of threads used in our parallel experiments,
we simply shut down a subset of the cores at the OS level.

Datasets. For dense arrays, we constructed synthetic 2D ar-
rays of variable sizes, with a single int32 attribute, since
the distribution of cell values in our experiments affects only
compression (we perform writes and reads, not array computa-
tions). To make compression effective, we stored in each cell
(4,7) the value ¢ % #col + j, where #col is the number of
columns in the array (this led to a 2.9 compression ratio). The
array domain type is int 64. For the case of sparse arrays, we
used datasets retrieved from the AIS database [8], which was
collected by the National Oceanic and Atmospheric Adminis-
tration by tracking ship vessels in the U.S. and international
waters. We extracted attributes X (longitude), Y (latitude),
SOG, COG, Heading, ROT, Status, VoyagelD, and MMSI. We
used X,Y as the dimensions (i.e., we created a 2D array), and
the rest characteristics as the attributes. SciDB does not sup-
port real dimension values, thus we converted X and Y into
int 64, transforming the domain of (X,Y) to [0, 360M], [O,
180M]. For simplicity, we represented all attributes as int 64.
The resulting array is very sparse and skewed; most ship loca-
tions appear around the coasts of the U.S., they become very
sparse as they move into the ocean, and are never on land.

Takeaways. Our evaluation reveals the following main re-
sults: (i) TileDB is several orders of magnitude faster than
HDFS5 in the case of random element updates for dense arrays,
and at least as efficient in other settings, offering up to 2x bet-
ter performance on compressed data; (ii) TileDB outperforms
SciDB in all settings, generally by several orders of magni-
tude; (iii) TileDB is 2x-40x faster than Vertica in the dense
case. It is also at least as fast as Vertica in the sparse case,
featuring up to more than 2x faster parallel reads; (iv) the per-
formance of the read algorithm in TileDB is robust up to a
large number of fragments, whereas the consolidation mecha-
nism requires marginally higher time than that needed for the
initial loading; (v) TileDB exhibits excellent scalability as the
dataset size and level of parallelism increase.

6.1 Dense Arrays

We compared versus HDFS, SciDB and Vertica. HDF5 and
SciDB are natural competitors for the dense case. On the other
hand, there are multiple ways to use Vertica for dense array
management. In the following we focus mostly on HDF5 and
SciDB, including a discussion on Vertica and a summary of
our results at the end of the sub section.

Load. Figure 9(a) shows the time to load a dense array into
TileDB, HDFS5 and SciDB, as well as their gzip-compressed
versions, denoted TileDB+Z, HDF5+Z and SciDB+Z, respec-
tively. In this experiment, only one CPU core is activated
and each system runs on a single instance. We generated 2D
synthetic arrays with sizes 4 GB, 8 GB, and 16 GB (a scala-
bility experiment with much larger arrays is described later),
and dimension domains 50, 000 x 20, 000, 50, 000 x 40, 000,
and 100,000 x 40, 000, respectively. For all methods, we fix
the space tile extents (chunk extents in HDFS and SciDB) to
2,500 x 1,000, which effectively creates tiles/chunks of size
10 MB. The cell and tile order is row-major for all systems.
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The input data are saved as binary files. The cell values are
sorted in the global cell order. TileDB and HDFS5 read the in-
put file in internal buffers, and then issue write commands
that write cells in batches. In SciDB, we follow the recom-
mended method that loads the chunks directly into the array
without the expensive redimension process.

TileDB matches the performance of HDFS5 (it takes only 60s
to load 4GB), and it is consistently more than an order of mag-
nitude faster than SciDB. A dollar (’$’) symbol indicates that
the system did not manage to terminate within the shown time.
Note that we experimented also with larger tile sizes for the
case of 4 GB dataset (plot omitted), and found that all systems
are unaffected by the tile size. However, the performance of
TileDB+Z, HDF5+Z and SciDB+Z deteriorates as we increase
the tile size; this is due to overheads of of gzip on large files.
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Figure 9: Load performance of dense arrays

Figure 9(b) assesses the cost of loading data in parallel, for
the 4GB array. For SciDB, we spawn multiple worker in-
stances, whereas for TileDB and HDF5 we spawn multiple
MPI processes. Each instance writes an equal number of tiles
to the array. For SciDB, we follow the recommended approach
that avoids redimension. We activate as many CPU cores
as the number of tested instances. We exclude HDF5+Z, since
PHDFS does not allow parallel writes with compression.

TileDB and HDFS are unaffected by the level of parallelism,
as they are I/O bound. Moreover, each process writes large
data chunks at a time monopolizing the internal parallelism of
the SSD and, thus, no extra savings are noticed with parallel
processes. SciDB seems to scale because it is CPU bound.
Moreover, the compressed versions of all systems scale nicely,
since they are CPU bound as well due to the CPU cost of gzip
compression. The performance of TileDB and HDF5 match,
whereas TileDB and TileDB+Z are between 2x and 7x faster
than SciDB and SciDB+Z.

Update. Figure 10(a) shows the time to perform random ele-
ment updates to the 4 GB array, as a function of the number
of updated elements. We generated random element coordi-
nates and stored them in a binary file. In HDF5 we batched
the random updates using select_elements, whereas in
SciDB we loaded the updates into a sparse array and then
called insert with redimension. We exclude HDF5+Z
as it does not support updates on compressed data.

TileDB is up to more than 2 orders of magnitude faster than
HDFS5, with 100K updates running in less than 1s in TileDB
vs. more than 100s in HDFS, and more than 4 orders of magni-
tude faster than SciDB. This is due to the sequential, fragment-
based writes of TileDB, as opposed to the in-place updates



in HDFS and the chunk-based updates in SciDB. The perfor-
mance gap increases with the number of updated elements.
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Figure 10: Random update performance of dense arrays

Figure 10(b) illustrates the update cost on SSDs when vary-
ing the number of instances and fixing the number of element
updates to 100K. We split the updates equally into separate
binary files, one for each instance. TileDB and HDFS are un-
affected by the number of instances and, thus, all the previ-
ous observations hold. SciDB performance improves with the
number of instances. However, it is still up to more than 3
orders of magnitude slower than TileDB.

We performed an additional experiment with large sequen-
tial writes (e.g., whole tiles), not shown here. Note that in that
experiment the performances of TileDB and HDFS match, and
both systems are substantially faster than SciDB (the obser-
vations are very similar to the case of single-instance load).
Finally, we experimented with different tile/chunk sizes (plot
omitted due to space limitations). TileDB and HDFS5 are prac-
tically unaffected by this parameter (TileDB writes sequen-
tially to a new fragment, whereas HDF5 writes in-place, uti-
lizing a B-tree for finding the chunks whose height grows log-
arithmically with the number of chunks). However, SciDB’s
performance deteriorates substantially with the chunk size, as
for every update an entire chunk must be read from and written
to the disk. Note that this is true in both SciDB and SciDB+Z.

Subarray. Figure 11(a) shows the read performance of all
systems (on a single instance), versus different subarray types,
focusing on the 4 GB array with a fixed 2500 x 1000 (10 MB)
tile size. In TileDB and HDFS5, the results are written into the
user’s memory buffers. In SciDB, we execute the between
function (followed by the recommended consume) and write
the results in a temporary main-memory binary table. In TileDB
we use the Linux read I/O method, whereas in TileDB+Z we
use the mmap I/O method that leads to better performance (as
it avoids double-buffering the compressed tiles). As noted in
Section 4.1, TileDB can run on either of these read modes, and
properly tuning the mode may affect performance.

We tested three different subarray types: (i) Tile, where the
subarray covers exactly one tile, (ii) Par (for partial), where
the subarray query is a 2499 x 999 rectangle completely con-
tained in a tile, and (iii) Col, where the subarray is a full array
column, vertically intersecting 20 tiles.

The performances of TileDB and HDFS5 once again match,
except for the case of Par where TileDB is 10x faster than
HDFS5. This is due to TileDB’s efficient way of handling en-
tire contiguous cell ranges instead of investigating cells one by
one. TileDB is 1-2 orders of magnitude faster than SciDB.
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Figure 11(b) plots the time as a function of the number of
sequential tiles read. This experiment shows that all methods
scale linearly with the number of tiles, maintaining their per-
formance differences.

TileDB ——1
5 TileDB+Z

#Tiles

(b) vs. #tiles (HDD)

Subarray type

vs. subarray type (HDD)

TileDB C—1
TileDB+Z

TileDB ——1
TileDB+Z
HDF5 ===

10K
# Elements

(c) vs. # elements (HDD)

100K

# Instances

(d) vs. # instances (SSD)

Figure 11: Subarray performance for dense arrays

Figure 11(c) shows read performance when reading ran-
dom elements instead of contiguous subarrays. For this ex-
periment, we generated random coordinates for the elements,
which we batched in HDF5 with the select_elements
API. In TileDB we used a similar API. In SciDB we used the
cross_between function, which performs a similar batch-
ing of the random element reads. The cost in TileDB and
HDFS5 is the same. TileDB is up to 2 orders of magnitude
faster than SciDB. This is because TileDB and HDF5 read
only the relevant cells to the query from the disk, whereas
SciDB fetches entire tiles.

Figure 11(d) shows the performance of parallel random ele-
ment reads, as a function of the number of instances. We fixed
the number of elements to 100K, and divided them equally
across the instances. In TileDB, we found out that Linux read
works better than mmap and, thus, we report the times us-
ing the latter I/O method. The reason is that a mmap call is
more expensive than a read call, which becomes noticeable
on SSDs with sub-millisecond access times. TileDB matches
the performance of HDFS, and both systems seem to scale
with the number of instances. However, TileDB+Z scales bet-
ter than HDF5+Z, becoming up to 7x faster than HDF5+Z.
On the other hand, SciDB did not complete in a reasonable
amount of time for any setting.

Effect of number of fragments and consolidation. In Fig-
ure 12(a) we show read time as a function of the number of
fragments present in an array. We take the initial 4 GB array
as the first dense fragment, and update it with a number of
batches, where each batch contains 1000 randomly generated
elements, creating a new sparse fragment. on the x-axis of the
figure, 1 means the initial 4 GB dense fragment, 1+10, 1+100
and 1+1000 means the initial fragment plus 10, 100 and 1000



sparse fragments, respectively, and 1C is 1+1000 after con-
solidation into a single fragment. We report the average time
of 100 1K x 1K subarray query randomly positioned inside the
array space. Even after inserting 100 fragments, the read per-
formance deteriorates only by 7% (86 ms vs. 92 ms). After
1000 fragments, it becomes 2.8x worse. However, after con-
solidation, the read time becomes 84 ms again. Note that the
memory consumption of TileDB is negligible, regardless of
the number of existing fragments.
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Figure 12: Effect of # fragments in dense arrays
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Figure 12(b) depicts the consolidation time, when varying
the number of fragments. Consolidating 100 fragments into
the 4 GB array takes the same time as the initial load, whereas
merging 1000 fragments takes 3.4% longer. The memory con-
sumption is 10 MB (a system parameter that determines the
buffering size) regardless of the number of fragments being
consolidated. As described in Section 4.3, the system can con-
tinue to process array operations while consolidation occurs.

Scalability. The last experiment for the dense case loads into
TileDB and queries two large arrays with sizes 128 GB and
256 GB (we omit the plots due to space limitations), with tiles
of size 2,500 x 1,000. The loading times were 1,815.78 s
and 3,630.89 s, respectively, which indicates perfect scalabil-
ity. We issued random 1K x 1K subarray queries to both arrays
(similar to those used in Figure 12(a)), and got times of 80 ms
and 84 ms, respectively. Comparing these times to the 75 ms
we observed in the case of the 6 GB array, we conclude that
the read performance of TileDB is practically unaffected by
the array size. Finally, the memory consumption upon loading
in TileDB is negligible.

Vertica experiments. We conducted additional experiments
with three different variants for implementing dense array man-
agement with Vertica, which offer different trade-offs: (i) we
treated each dense element as a tuple, explicitly storing the
X and Y element indices as table columns, and sorting first
on X and then on Y (row-major order), (ii) similar to (i), but
adding an extra column for the tile ID, and sorting on tile ID
first, and then on X and Y (this imposes an identical global
cell order to TileDB), and (iii) we followed the RAM [26] ap-
proach and stored a cell ID per element instead of X and Y
(i.e., a single extra column), where the cell IDs are calculated
based on the TileDB global cell order. For all these three al-
ternatives, we tested compressing the extra columns with both
GZIP and RLE. TileDB was consistently 2x-40x better in all
settings versus all these solutions. The main reason is that
Vertica performs operations on a cell-basis, whereas TileDB
operates on large batches of cells during reads and writes. In-
dividual benchmarks are available in the TileDB Github repo.
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6.2 Sparse Arrays

We next focus on sparse arrays, comparing TileDB with
Vertica+Z (gzip-compressed and following SRAM [19]) and
SciDB on the AIS dataset. HDFS5 is not optimized for sparse
arrays, thus we omit it from these experiments.

Load. Figure 13(a) shows the load performance of the three
systems. We created three different datasets with sizes 6 GB,
12 GB, 24 GB by loading from the dataset (originally in CSV
format), after de-duplicating the coordinates. The dataset is
organized based on the months of data collection. In TileDB,
we called write for each month. In Vertica, we used the
COPY statement (which bypasses the write optimized store to
directly write to the read optimized store) to load each dataset
into a relational table. Each tuple in this table corresponds to
a (non-empty) array cell, where the X, Y coordinates repre-
sent different database columns and constitute the composite
key. Vertica sorts the data first on X and then on Y, effec-
tively enforcing a row-major order on the array elements. In
SciDB, we first loaded the data into a 1D array, and then in-
voked redimension followed by store. The tile extents
for TileDB and SciDB were 10K x 10K, and the data tile ca-
pacity for TileDB was 10K.

TileDB is once again more than an order of magnitude faster
than SciDB. Moreover, TileDB+Z is always slightly faster than
Vertica+Z. Note that we experimented with different tile ex-
tents (not shown here) and discovered that they do not consid-
erably affect TileDB and SciDB.

TileDB ——
6 TileDB+Z SSSY

Dataset size

(a) vs. dataset size (HDD)

# Instances

(b) vs. # instances (SSD)

Figure 13: Load performance of sparse arrays

Figure 13(b) plots the time to load the 6 GB dataset in par-
allel, versus the number of instances. Note that Vertica by de-
fault uses all the cores in the system. Thus, when we vary the
number of instances, we activate only as many CPU cores as
the number of tested instances. The input files are evenly split
by lines across the multiple processes in TileDB. In Vertica,
the COPY command automatically utilizes the available cores
to load from a single file. In SciDB, the evenly split files are
saved inside the instance directories. TileDB, TileDB+Z and
Vertica+Z scale nicely with the number of instances. The per-
formance differences among the systems are similar to what
was explained above for the serial case.

Subarray. The next set of experiments evaluates the subar-
ray performance. In this experiment, we identified two array
regions, one dense (Los Angeles harbor) and one sparse (the
middle of Pacific ocean); henceforth, DQ (SQ) refers to this
dense (sparse) domain area. In each of the following experi-
ments, we selected a subarray with the target result size, and



then derived from it 50 subarrays of similar size by shifting it
using a random offset. Each query returns the X and Y cell
coordinates that fall in the specified subarray. In TileDB, we
called read once per subarray; in SciDB we batched all reads
with the cross_between command; in Vertica we issued
a SQL SELECT WHERE query. Once again, the results of
Vertica and SciDB are written into temporary main-memory
binary tables. In TileDB, we fix the data tile capacity to 10K.

Figures 14(a) and 14(b) show the subarray times for the
dense and sparse areas, as a function of the result size (sin-
gle instance on HDDs). TileDB is 1-2 orders of magnitude
faster than SciDB, and at least as fast as Vertica in all settings.
Note that because we cannot disable compression in Vertica, it
is not fair to compare uncompressed TileDB to Vertica+Z.
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Figure 14: Subarray performance for sparse arrays

Figures 14(c) and 14(d) plot the subarray times for the dense
and sparse areas, as a function of the number of instances
(on SSD). In these two experiments, we evenly divided 320
random subarray queries (created inside the dense and sparse
area, respectively) across the instances, and reported the total
time. Each subarray returns 1M elements. TileDB+Z and Ver-
tica+Z scale nicely with the number of instances and feature
similar performance, whereas TileDB is more than an order of
magnitude faster than SciDB in all settings.

Consolidate. We conducted a similar experiment to the dense
case, drawing randomly the new cells from the AIS dataset.
The observations are similar to the dense case (we omit the
plot). The read time of TileDB deteriorates by only 18% af-
ter inserting 100 fragments, and by about 2x after 1000 frag-
ments, but returns to normal after consolidation. Moreover,
consolidation takes the same time as the original load (and,
once again, can be performed in the background).
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7. CONCLUSION

We presented the TileDB multi-dimensional array storage
manager, which is optimized for both dense and sparse ar-
rays. We described the basic concepts of TileDB, such as
the organization of elements into tiles and fragments, its read
and consolidation algorithms, and the effect of parallelism.
We experimentally demonstrated that TileDB offers (i) orders
of magnitude better performance than the HDF5 dense array
manager for random element writes, while matching its read
performance, (ii) better performance in all settings than the
SciDB array database for both dense and sparse arrays, most
of the time by several orders of magnitude, and (iii) an equiv-
alent performance to the parallel Vertica columnar database
on sparse arrays, while offering a programmer-friendly API-
based interface similar to HDFS5.
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