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ABSTRACT
Discovering co-movement patterns from large-scale trajec-
tory databases is an important mining task and has a wide
spectrum of applications. Previous studies have identified
several types of interesting co-movement patterns and show-
cased their usefulness. In this paper, we make two key con-
tributions to this research field. First, we propose a more
general co-movement pattern to unify those defined in the
past literature. Second, we propose two types of parallel and
scalable frameworks and deploy them on Apache Spark. To
the best of our knowledge, this is the first work to mine
co-movement patterns in real life trajectory databases with
hundreds of millions of points. Experiments on three real
life large-scale trajectory datasets have verified the efficiency
and scalability of our proposed solutions.

1. INTRODUCTION
The prevalence of positioning devices has drastically ex-

panded the scale and spectrum of trajectory collection to an
unprecedented level. Tremendous amounts of trajectories, in
the form of sequenced spatial-temporal records, are contin-
ually being generated from animal telemetry chips, vehicle
GPSs and wearable devices. Data analysis on large-scale tra-
jectories benefits a wide range of applications and services,
including traffic planning [25], animal analysis [17], location-
aware advertising [7], and social recommendations [3], to
name just a few.

A crucial task of data analysis on top of trajectories is to
discover co-moving objects. A co-movement pattern [14, 24]
refers to a group of objects traveling together for a certain
period of time and the group is normally determined by their
spatial proximity. A pattern is prominent if the size of the
group exceeds M and the length of the duration exceeds K,
where M and K are parameters specified by users. Rooted
from such a basic definition and driven by different mining
applications, there are many variants of co-movement pat-
terns that have been developed with additional constraints.
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Table 1 summarizes several popular co-movement pat-
terns with different constraints with respect to clustering in
spatial proximity, consecutiveness in temporal duration and
computational complexity. In particular, the flock [6] and
the group [20] patterns require all the objects in a group
to be enclosed by a disk with radius r; whereas the con-
voy [8], the swarm [16] and the platoon [15] patterns resort
to density-based spatial clustering. In the temporal dimen-
sion, the flock and the convoy require all the timestamps
of each detected spatial group to be consecutive, which is
referred to as global consecutiveness; whereas the swarm
does not impose any restriction. The group and the pla-
toon adopt a compromised approach by allowing arbitrary
gaps between consecutive segments, which is called local con-
secutiveness. They introduce a parameter L to control the
minimum length of each local consecutive segment.
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Figure 1: Trajectories and co-movement patterns. The ex-
ample consists of six trajectories across six snapshots. Ob-
jects in spatial clusters are enclosed by dotted circles. M is
the minimum cluster cardinality; K denotes the minimum
number of snapshots for the occurrence of a spatial cluster;
and L denotes the minimum length for local consecutiveness.

Figure 1 is an example to demonstrate the concepts of
the various co-movement patterns. The trajectory database
consists of six moving objects and the temporal dimension is
discretized into six snapshots. In each snapshot, we treat the
clustering method as a blackbox and assume that they gen-
erate the same clusters. Objects in proximity are grouped
in the dotted circles. As aforementioned, there are three
parameters to determine the co-movement patterns and the
default settings in this example are M = 2, K = 3 and
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Table 1: Constraints and complexities of co-movement pat-
terns. The time complexity indicates the performance wrt.
|O|, |T| in the worst case, where |O| is the number of objects,
and |T| is the number of discretized timestamps.

Pattern Proximity Conse-
cutiveness

Time Com-
plexity

flock [6] disk global O(|O||T| log(|O|))
convoy [8] density global O(|O|2 + |O||T|)
swarm [16] density - O(2|O||O||T|)
group [20] disk local O(|O|2|T|)
platoon [15] density local O(2|O||O||T|)

L = 2. Both the flock and the convoy require the spa-
tial clusters to last for at least K consecutive timestamps.
Hence,〈o3, o4 : 1, 2, 3〉 and 〈o5, o6 : 3, 4, 5〉 are the only two
candidates matching the patterns. The swarm relaxes the
pattern matching by discarding the temporal consecutive-
ness constraint. Thus, it generates many more candidates
than the flock and the convoy. The group and the platoon
add another constraint on local consecutiveness to retain
meaningful patterns. For instance, 〈o1, o2 : 1, 2, 4, 5〉 is a
pattern matching local consecutiveness because timestamps
(1, 2) and (4, 5) are two segments with length no smaller than
L = 2. The difference between the group and the platoon is
that the platoon has an additional parameter K to specify
the minimum number of snapshots for the spatial clusters.
This explains why 〈o3, o4, o5 : 2, 3〉 is a group pattern but
not a platoon pattern.

As can be seen, there are various co-movement patterns
requested by different applications and it is cumbersome to
design a tailored solution for each type. In addition, de-
spite the generality of the platoon (i.e., it can be reduced
to other types of patterns via proper parameter settings), it
suffers from the so-called loose-connection anomaly. We use
two objects o1 and o2 in Figure 2 to illustrate the scenario.
These two objects form a platoon pattern in timestamps
(1, 2, 3, 102, 103, 104). However, the two consecutive seg-
ments are 98 timestamps apart, resulting in a false positive
co-movement pattern. In reality, such an anomaly may be
caused by the periodic movements of unrelated objects, such
as vehicles stopping at the same petrol station or animals
pausing at the same water source. Unfortunately, none of
the existing patterns have directly addressed this anomaly.

 

 

1 2 3 4 100 101 102 103 104  1 2 3 4 100 101 102 103 104

Figure 2: Loose-connection anomaly. Even though 〈o1, o2〉
is considered as a valid platoon pattern, it is highly probable
that these two objects are not related as the two consecutive
segments are 98 timestamps apart.

The other issue with existing methods is that they are
built on top of centralized indexes which may not be scal-
able. Table 1 shows their theoretical complexities in the
worst cases and the largest real dataset ever evaluated in
previous studies is up to million-scale points collected from
hundreds of moving objects. In practice, the dataset is of
much higher scale and the scalability of existing methods is

left unknown. Thus, we conduct an experimental evaluation
with 4000 objects moving for 2500 timestamps to examine
the scalability. Results in Figure 3 show that their perfor-
mances degrade dramatically as the dataset scales up. For
instance, the detection time of group drops twenty times
as the number of objects grows from 1k to 4k. Similarly,
the performance of swarm drops over fifteen times as the
number of snapshots grows from 1k to 2.5k. These observa-
tions imply that existing methods are not scalable to support
large-scale trajectory databases.
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Figure 3: Performance measures on existing co-movement
patterns. A sampled GeoLife dataset is used with upto 2.4
million data points. Default parameters are M = 15, K =
180, L = 30.

In this paper, we close these two gaps by making the
following contributions. First, we propose the general co-
movement pattern (GCMP) which models various co-moment
patterns in a unified way and can avoid the loose-connection
anomaly. In GCMP, we introduce a new gap parameter
G to pose a constraint on the temporal gap between two
consecutive segments. By setting a feasible G, the loose-
connection anomaly can be effectively controlled. In addi-
tion, our GCMP is also general. It can be reduced to any of
the previous pattern by customizing its parameters.

Second, we investigate deploying our GCMP detector on
the modern MapReduce platform (i.e., Apache Spark) to
tackle the scalability issue. Our technical contributions are
threefold. First, we design a baseline solution by replicating
the snapshots to support effective parallel mining. Second,
we devise a novel Star Partitioning and ApRiori Enumera-
tor (SPARE) framework to resolve limitations of the base-
line. SPARE achieves workload balance by partitioning ob-
jects into fine granular stars. For each partition, an Apriori
Enumerator is adopted to mine the co-movement patterns.
Third, we leverage the temporal monotonicity property of
GCMP to design several optimization techniques including
sequence simplification, monotonicity pruning and forward
closure check to further reduce the number of candidates
enumerated in SPARE.

We conduct a set of extensive experiments on three large-
scale real datasets with hundreds of millions of temporal
points. The results show that both our parallel schemes effi-
ciently support GCMP mining in large datasets. In particu-
lar, with over 170 million trajectory points, SPARE achieves
upto 112 times speedup using 162 cores as compared to the
state-of-the-art centralized schemes. Moreover, SPARE fur-
ther achieves almost linear scalability with upto 14 times
efficiency as compared to the baseline algorithm.

The rest of our paper is organized as follows: Section 2
summarizes related work. Section 3 states the problem of
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general co-movement pattern mining. Section 4 provides a
baseline solution. An advanced solution named Star Parti-
tioning and ApRiori Enumerator (SPARE) is presented in
Section 5. Section 6 reports our experimental evaluation.
Finally, Section 7 concludes the paper.

2. RELATED WORK
Related work can be grouped into three categories: co-

movement patterns, dynamic movement patterns and trajec-
tory mining frameworks.

2.1 Co-Movement Patterns

2.1.1 Flock and Convoy
The difference between flock and convoy lies in the object

clustering methods. In flock, objects are clustered based on
their distances. Specifically, the objects in the same cluster
need to have a pairwise distance less than min dist. This
essentially requires the objects to be within a disk-region of
delimiter less than min dist. In contrast, convoy clusters ob-
jects using density-based spatial clustering [5]. Technically,
flock utilizes a mth-order Voronoi diagram [12] to detect
whether a subset of n (n ≥ m) objects stay in a disk region.
Convoy employs a trajectory simplification [4] technique to
boost pairwise distance computations in the density-based
clustering. After clustering, both flock and convoy use a se-
quential scanning method to examine each snapshot. During
the scan, the object groups that do not appear in consec-
utive snapshots are pruned. However, such a method faces
high complexity when supporting other patterns. For in-
stance, in swarm, the candidate set during the sequential
scanning grows exponentially, and many candidates can only
be pruned after the entire dataset are scanned.

2.1.2 Group, Swarm and Platoon
Different from flock and convoy, all the group,swarm and

platoon patterns have more relaxed constraints on the pat-
tern duration. Therefore, their techniques of mining are
of the same skeleton. The main idea of mining is to grow
an object set from an empty set in a depth-first manner.
During the growth, various pruning techniques are provided
to prune unnecessary branches. Group pattern uses a VG-
graph to guide the pruning of false candidates [20]. Swarm
designs two more pruning rules called backward pruning and
forward pruning [16]. Platoon [15] leverages a prefix table
structure to steer the depth-first search, which shows effi-
ciency as compared to the other two methods. However, the
pruning rules adopted by the three patterns heavily rely on
depth-first search which loses efficiency in a parallel scenario.

2.2 Other Related Trajectory Patterns
A closely related literature to co-movement patterns is the

dynamic movement patterns. Instead of requiring the same
set of object traveling together, dynamic movement patterns
allow objects to temporally join or leave a group. Typical
works include moving clusters [10], evolving convoy [2], gath-
ering [23] etc. These works cannot model GCMP since they
enforce global consecutiveness on the temporal domain.

2.3 Trajectory Mining Frameworks
Jinno et al. in [9] designed a MapReduce based algo-

rithm to efficiently support T -pattern discovery, where a T -
pattern is a set of objects visiting the same place at simliar

time. Li et al. proposed a framework of processing online
evolving group pattern [13], which focuses on supporting effi-
cient updates of arriving objects. As these works essentially
differ from co-movement pattern, their techniques cannot be
directly applied to discover GCMPs.

3. PROBLEM STATEMENT
Let O = {o1, o2, ..., on} be the set of objects and T =

(1, 2, ..., N) be the discretized temporal dimension. A time
sequence T is defined as an ordered subset of T. Given
two time sequences T1 and T2, we define commonly-used
operators in this paper in Table 2.

Table 2: Operators on time sequence.

Operator Definition
T [i] the i-th element in the sequence T
|T | the number of elements in T

max(T ) the maximum element in T
min(T ) the minimum element in T

range(T ) the range of T , i.e., max(T )−min(T ) + 1
T [i : j] subsequence of T from T [i] to T [j] (inclusive)
T1 ⊆ T2 ∀T1[x] ∈ T1, we have T1[x] ∈ T2.

T3 = T1 ∪ T2 ∀T3[x] ∈ T3, we have T3[x] ∈ T1 or T3[x] ∈ T2

T3 = T1 ∩ T2 ∀T3[x] ∈ T3, we have T3[x] ∈ T1 and T3[x] ∈ T2

We say a sequence T is consecutive if ∀1 ≤ i < |T |, T [i+
1] = T [i]+1. We refer to each consecutive subsequence of T
as a segment. It is obvious that any time sequence T can be
decomposed into segments and we say T is L-consecutive [15]
if the length of every segment is no smaller than L. As
illustrated in Figure 2, patterns adopting the notion of L-
consecutiveness (e.g., platoon and group) still suffer from
the loose-connection anomaly. To avoid such an anomaly
without losing generality, we introduce a parameter G to
control the gaps between timestamps in a pattern. Formally,
a G-connected time sequence is defined as follows:

Definition 1 (G-connected). A time sequence T is G-con-
nected if the gap between any of its neighboring timestamps
is no greater than G, i.e., ∀1 ≤ i < |T |, T [i+ 1]− T [i] ≤ G.

We take T = (1, 2, 3, 5, 6) as an example. T can be de-
composed into two segments (1, 2, 3) and (5, 6). T is not
3-consecutive since the length of (5, 6) is 2. But it is safe to
say either T is 1-consecutive or 2-consecutive. On the other
hand, T is 2-connected since the maximum gap between its
neighboring timestamps is 2. It is worth noting that T is
not 1-connected because the gap between T [3] and T [4] is 2
(i.e., 5− 3 = 2).

Given a trajectory database that is discretized into snap-
shots, we can conduct a clustering method, either disk-based
or density-based, to identify groups with spatial proximity.
Let T be the set of timestamps in which a group of objects
O are clustered. We are ready to define a more general
co-movement pattern:

Definition 2 (General Co-Movement Pattern). A general
co-movement pattern finds a set of objects O satisfying the
following five constraints: (1) closeness: the objects in O
belong to the same cluster in every timestamps of T ; (2)
significance: |O| ≥ M ; (3) duration: |T | ≥ K; (4) con-
secutiveness: T is L-consecutive; and (5) connection: T
is G-connected.
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There are four parameters in our general co-movement
pattern, including object constraint M and temporal con-
straints K,L,G. By customizing these parameters, our pat-
tern can express other patterns proposed in the literature,
as illustrated in Table 3. In particular, by setting G = |T|,
we achieve the platoon pattern. By setting G = |T|, L = 1,
we reach the swarm pattern. By setting G = |T|, M = 2,
K = 1, we gain the group pattern. Finally by setting G = 1,
we result in the convoy and flock patterns. In addition to
the flexibility of representing other existing patterns, our
GCMP is able to avoid the loose-connection anomaly by
tuning the parameter G.

Table 3: Expressing other patterns using GCMP. · indicates
a user specified value.

Pattern M K L G Clustering
Group 2 1 2 |T| disk
Flock · · K 1 disk
Convoy · · K 1 density
Swarm · · 1 |T| density
Platoon · · · |T| density

Our definition of GCMP is independent of the clustering
method. Users can apply different clustering methods to
facilitate different application needs. We currently expose
both disk-region based clustering and DBSCAN as options
to the users. In summary, the goal of this paper is to present
a parallel solution for discovering all the valid GCMPs from
large-scale trajectory databases. Before we move on to the
algorithmic part, we list the notations that are used in the
following sections.

Table 4: Summary of notations.

Symbol Meaning
St snapshot of objects at time t
M significance constraint
K duration constraint
L consecutiveness constraint
G connection constraint

P = 〈O : T 〉 pattern with object set O, time sequence T
St set of clusters at snapshot t
η replication factor in the TRPM framework
λt partition with snapshots St, .., St+η−1

GA aggregated graph in SPARE framework
Sri star partition for object (vertex) i

4. BASELINE: TEMPORAL REPLICATION
AND PARALLEL MINING

In this section, we propose a baseline solution that resorts
to MapReduce as a general, parallel and scalable paradigm
for GCMP mining. The framework, named temporal repli-
cation and parallel mining (TRPM), is illustrated in Fig-
ure 4. There are two stages of mapreduce jobs connected in
a pipeline manner. The first stage deals with spatial clus-
tering of objects in each snapshot, which can be seen as a
preprocessing step for the subsequent pattern mining phase.
In particular, for the first stage, the timestamp is treated
as the key in the map phase and objects within the same
snapshot are clustered (DBSCAN or disk-based clustering)

in the reduce phase. Finally, the reducers output clusters of
objects in each snapshot, represented by a list of key-value
pairs 〈t, St〉, where t is the timestamp and St is a set of
clustered objects at snapshot t.

Our focus in this paper is on the second mapreduce stage
of parallel mining, which essentially addresses two key chal-
lenges. The first is to ensure effective data partitioning such
that the mining on each partition can be conducted inde-
pendently; and the second is to efficiently mine the valid
patterns within each partition.

It is obvious that we cannot simply split the trajectory
database into disjoint partitions because a GCMP requires
L-consecutiveness and the corresponding segments may span
multiple partitions. Our strategy is to use data replica-
tion to enable parallel mining. Each snapshot will replicate
its clusters to η − 1 preceding snapshots. In other words,
the partition for the snapshot St contains clusters in St,
St+1 . . . , St+η−1. Determining a proper η is critical in en-
suring the correctness and efficiency of TRPM. If η is too
small, certain cross-partition patterns may be missed. If
η is too large, expensive network communication and CPU
processing costs would be incurred in the map and reduce
phases respectively. Our objective is to find an η that is not
large but can guarantee correctness.

In our implementation, we set η = (dK
L
e − 1) ∗ (G− 1) +

K+L−1. Intuitively, with K timestamps, at most dK
L
e−1

gaps may be generated as the length of each L-consecutive
segment is at least L. Since the gap size is at most G −
1, (dK

L
e − 1) ∗ (G − 1) is the upper bound of timestamps

allocated to gaps. The remaining part of the expression,
K +L− 1, is used to capture the upper bound allocated for
the L-consecutive segments. We formally prove that η can
guarantee correctness.

Theorem 1. η = (dK
L
e−1)∗(G−1)+K+L−1 guarantees

that no valid pattern is missed.

Proof. Given a valid pattern P , we can always find at least
one valid subsequence of P.T that is also valid. Let T ′

denote the valid subsequence of P.T with the minimum
length. In the worst case, T ′ = P.T . We define range(T ) =
max(T )−min(T )+1 and prove the theorem by showing that
range(T ′) ≤ η. Since T ′ can be written as a sequence of
L-consecutive segments interleaved by gaps: l1, g1, . . . , ln−1,
gn−1, ln (n ≥ 1), where li is a segment and gi is a gap. Then,
range(T ′) is calculated as Σi=ni=1 |li|+ Σi=n−1

i=1 |gi|. Since T ′ is
valid, then Σi=ni=1 |li| ≥ K. As T ′ is minimum, if we remove
the last ln, the resulting sequence should not be valid. Let
K′ = Σi=n−1

i=1 |li|, which is the size of the first (n−1) segments
of T ′. Then, K′ ≤ K − 1. Note that every |li| ≥ L, thus

n ≤ dK
′

L
e ≤ dK

L
e. By using the fact that every |gi| ≤ G− 1,

we achieve Σi=n−1
i=1 |gi| ≤ (n− 1)(G− 1) ≤ (dK

L
e− 1)(G− 1).

Next, we consider the difference between K and K′, denoted
by ∆ = K −K′. To ensure T ′’s validity, ln must equal to
min(L,∆). Then, Σi=ni=1 |li| = K′+ln = K−∆+min(L,∆) ≤
K − 1 +L. We finish showing range(T ′) ≤ η. Therefore, for
any valid sequence T , there is at least one valid subsequence
with range no greater than η and hence this pattern can be
detected in a partition with η snapshots.

Based on the above theorem, under TRPM, every con-
secutive η snapshots form a partition. In other words, each
snapshot St corresponds to a partition λt = {St, ..., St+η−1}.
Next, we aim to design an efficient pattern mining strategy
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Figure 4: Workflow of Temporal Replication and Parallel Mining (TRPM). (a) and (b) correspond to the first mapreduce
stage which clusters objects in each snapshot. (c) and (d) is the second mapreduce stage which uses TRPM to detect GCMPs.

within each partition. Our solution includes a line sweep al-
gorithm to sequentially scan the η snapshots in a partition
and an effective candidate pattern enumeration mechanism.

Algorithm 1 Line Sweep Mining

Require: λt = {St, ..., St+η−1}
1: C ← {} . Candidate set
2: for all clusters s in snapshot St do
3: if |s| ≥M then
4: C ← C ∪ {〈s, t〉}
5: for all Sj ∈ {St+1, . . . , St+η−1} do
6: N ← {}
7: for all (c, s) ∈ C × Sj do
8: c′ ← 〈c.O ∩ s.O, c.T ∪ {j}〉
9: if c′.T is valid then

10: output c′

11: else if |c′.O| ≥M then
12: N ← N ∪ {c′}
13: for all c ∈ C do
14: if j −max(c.T ) ≥ G then
15: C ← C − {c}
16: output c, if c is a valid pattern

17: if c’s first segment is less than L then
18: C ← C − {c}
19: C ← C ∪N
20: output valid patterns in C

Details of the algorithm are presented in Algorithm 1. We
keep a candidate set C (Line 1) during the sweeping. It is
initialized using the clusters with size no smaller than M in
the first snapshot. Then, we sequentially scan each snapshot
(Lines 5-19) and generate new candidates by extending the
original ones in C. Specifically, we join candidates in C with
all the clusters in Sj to form new candidates (Lines 7-12).

After sweeping all the snapshots, all the valid patterns are
stored in C (Line 20). It is worth noting that C continues
to grow during sweeping. We can use three pruning rules to
remove false candidates early from C. Since there is a parti-
tion λt for each St, only patterns that start from timestamp
t need to be discovered. Therefore, those patterns that do
not appear in the St are false candidates. In particular,
our three pruning rules are as follows: First, when sweeping

snapshot Sj , new candidates with object set smaller than
M are pruned (Line 12). Second, after joining with all clus-
ters in Sj , candidates in C with the maximum timestamp
no smaller than j−G are pruned (Lines 14-16). Third, can-
didates in C with the size of the first segment smaller than
L are pruned (Lines 17-18). With the three pruning rules,
the size of C can be significantly reduced.

Algorithm 2 Temporal Replication and Parallel Mining

Require: list of 〈t, St〉 pairs
1: η ← (dK

L
e − 1) ∗ (G− 1) +K + L− 1

2: —Map Phase—
3: for all snapshots St do
4: for all i ∈ 1...η − 1 do
5: emit key-value pair 〈max(t− i, 0), St〉
6: —Partition and Shuffle Phase—
7: for all key-value pairs 〈t, S〉 do
8: group-by t and emit a key-value pair 〈t, λt〉, where
λt = {St, St+1, ..St+η−1}

9: —Reduce Phase—
10: for all key-value pairs 〈t, λt〉 do
11: call line sweep mining for partition λt

The complete picture of TRPM is shown in Algorithm 2.
We illustrate the workflow of TRPM using Figures 4 (c) and
(d) with pattern parameters M = 2,K = 3, L = 2, G = 2.
By Theorem 1, η is calculated as (dK

L
e − 1) ∗ (G − 1) +

K + L − 1 = 5. Therefore, in Figure 4 (c), every 5 consec-
utive snapshots are combined into a partition in the map
phase. In Figure 4 (d), the line sweep method is illustrated
for partition λ1. Let Ci be the candidate set when sweep-
ing snapshot Si. Initially, C1 contains all object sets in
S1. At snapshot S4, the candidate 〈o5, o6〉 is removed be-
cause the gap between its latest timestamp (i.e., 2) and the
next sweeping timestamp (i.e., 5) is 3, which violates the G-
connected constraint. Next, at snapshot S5, the candidate
〈o1, o2〉 is removed because its local consecutive segment (4)
has only 1 element, which violates the L-consecutive con-
straint. Finally, 〈o3, o4〉 is the valid pattern and is returned.
Note that in this example, η = 5 is the minimum setting that
can guarantee correctness. If η is set to be 4, the pattern
〈o3, o4〉 would be missed.

317



3,4: 1,2,3  3,5: 2,3  3,6: 3  

3,4,5: 2,3  3,4,6: 3  3,5,6: 3  

3,4,5,6:  

3 4 1 22 3

3 46: 3 4 5: 2

3 56 3

3 4 63

2

4 6

3 12 3

3,43 4,5: 2

5 256 3

3,3 6: 36: 3

5

,444,64 65 6: 35,6: 3 3 4 5

6:6:

6 3

3,4,5,64 5 6

--- Monotonicity 

Pruning 

Valid GCMP  

---  
Forward Closure 

Check 

--- Sequence 

Simplification 

(a) Aggregated Graph (b) Star Partitioning (c) Apriori Enumerator 

Star Partitioning and Apriori Enumerator 

3,5,,5

Snapshot 

Clusters 
Map Reduce 

Pattern Set 

, ,  

, ,  

… 

1 2 

3 

4 5 

6 

(2,3) 

(4) 

(1
,2

,3
) 

(3) 

(2,3,5,6) 

(3
) 

1 
2 2,3 

3 4 

2 
3 3,4 

4 3 

5 3 

3 
4 1,2,3 

5 2,3 

6 3 

4 
5 2,3,5,6 

6 3,4 

5 6 2,3 

Figure 5: Star Partitioning and ApRiori Enumerator (SPARE). (a) Aggregated graph GA generated from Figure 1. (b) Five
star partitions are generated from GA. Star IDs are circled, vertexes and inverted lists are in the connected tables. (c) Apriori
Enumerator with various pruning techniques.

5. SPARE: STAR PARTITIONING AND APRI-
ORI ENUMERATOR

The aforementioned TRPM scheme replicates snapshots
based on the temporal dimension which suffers from two
drawbacks. First, the replication factor η can be large. Sec-
ond, the same valid pattern may be redundantly discovered
from different partitions. To resolve these limitations, we
propose a new Star Partitioning and ApRiori Enumerator,
named SPARE, to replace the second stage of the mapre-
duce jobs in Figure 4. Our new parallel mining framework
is shown in Figure 5. Its input is the set of clusters gener-
ated in each snapshot and the output contains all the valid
GCMPs. In the following, we explain the two major com-
ponents: star partitioning and apriori enumerator.

5.1 Star Partitioning
Let Gt be a graph for snapshot St, in which each node

is a moving object and two objects are connected if they
appear in the same cluster. It is obvious that Gt consists of
a set of small cliques. Based on Gt, we define an aggregated
graph GA to summarize the cluster relationship among all
the snapshots. In GA, two objects form an edge if they are
connected in any Gts. Furthermore, we attach an inverted
list for each edge, storing the associated timestamps in which
the two objects are connected. An example of GA, built on
the trajectory database in Figure 1, is shown in Figure 5
(a). As long as two objects are clustered in any timestamps,
they are connected in GA. The object pair 〈o1, o2〉 appears
in two clusters at timestamps 2 and 3 and is thus associated
with an inverted list (2, 3).

We use star [21] as the data structure to capture the pair
relationships. To avoid duplication, as Gt is an undirected
graph and an edge may appear in multiple stars, we enforce
a global vertex ordering among the objects and propose a
concept named directed star.

Definition 3 (Directed Star). Given a vertex with global ID
s, its directed star Srs is defined as the set of neighboring
vertexes with global ID t > s. We call s the star ID.

With the global vertex ordering, we can guarantee that
each edge is contained in a unique star partition. Given
the aggregated graph GA in Figure 5 (a), we enumerate all
the possible directed stars in Figure 5 (b). These stars are

emitted from mappers to different reducers. The key is the
star ID and the value is the neighbors in the star as well as
the associated inverted lists. The reducer will then call the
Apriori-based algorithm to enumerate all the valid GCMPs.

Before we introduce the Apriori Enumerator, we are in-
terested to examine the issue of global vertex ordering. This
is because assigning different IDs to the objects will produce
different star partitioning results, which will eventually af-
fect the workload balance among reducers. The job with the
performance bottleneck is often known as a straggler [11].
In the context of star partitioning, a straggler refers to the
job assigned with the maximum star partition. We use Γ
to denote the size of such straggler partition and Γ is set to
the number of edges in a directed star1. Clearly, a star par-
titioning with small Γ is preferred. For example, Figure 6
gives two star partitioning results under different vertex or-
dering on the same graph. The top one has Γ = 5 while
the bottom one has Γ = 3. Obviously, the bottom one with
smaller Γ is much more balanced.
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Figure 6: Star partitioning with different vertex orderings.

Although it is very challenging to find the optimal vertex
ordering from the n! possibilities, we observe that a random
order can actually achieve satisfactory performance based
on the following theorem.

Theorem 2. Let Γ∗ be the value derived from the optimal
vertex ordering and Γ be the value derived from a random
vertex ordering. With probability 1 − 1/n, we have Γ =
Γ∗ +O(

√
n logn).

Proof. See Appendix A.

1A star is essentially a tree structure and the number of
nodes equals the number of edges minus one.
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If GA is dense, we can get a tighter bound for (Γ− Γ∗).

Theorem 3. Let d be the average degree in GA. If d ≥√
12 logn, with high probability 1−1/n, Γ = Γ∗+O(

√
d logn).

Proof. See Appendix A.

Hence, we can simply use object ID to determine the ver-
tex ordering in our implementation.

5.2 Apriori Enumerator
Intuitively, given a GCMP with an object set {o1, . . . , om},

all the pairs of 〈oi, oj〉 with 1 ≤ i < j ≤ m must be con-
nected in the associated temporal graphs {Gt}. This inspires
us to leverage the classic Apriori algorithm [1] to enumerate
all the valid GCMPs starting from pairs of objects. How-
ever, we observe that the monotonicity property does not
hold between an object set and its supersets.

Example 1. In this example, we show that if an object
set is not a valid pattern, we cannot prune all its super
sets. Consider two candidates P1 = 〈o1, o2 : 1, 2, 3, 6〉 and
P2 = 〈o1, o3 : 1, 2, 3, 7〉. Let L = 2,K = 3 and G = 2.
Both candidates are not valid patterns because the constraint
on L is not satisfied. However, when considering their ob-
ject superset 〈o1, o2, o3〉, we can infer that their co-clustering
timestamps are in (1, 2, 3). This is a valid pattern conform-
ing to the constraints of L,K,G. Thus, we need a new type
of monotonicity to facilitate pruning.

5.2.1 Monotonicity
To ensure monotonicity, we first introduce a procedure

named sequence simplification, to reduce the number of edges
as well as unnecessary timestamps in the inverted lists. For
instance, if the size of the inverted list for an edge e is smaller
than K, then the edge can be safely removed because the
number of timestamps in which its supersets are clustered
must also be smaller than K. To generalize the idea, we
propose three concepts: maximal G-connected subsequence,
decomposable sequence and sequence simplification.

Definition 4 (Maximal G-connected Subsequence). A se-
quence T ′ is said to be a maximal G-connected subsequence
of T if (1) T ′ is the subsequence of T , (2) T ′ is G-connected,
and (3) there exists no other subsequence T ′′ of T such that
T ′ is the subsequence of T ′′ and T ′′ is G-connected.

Example 2. Suppose G = 2 and consider two sequences
T1 = (1, 2, 4, 5, 6, 9, 10, 11, 13) and T2 = (1, 2, 4, 5, 6, 8, 9). T1

has two maximal 2-connected subsequences:TA1 = (1, 2, 4, 5, 6)
and TB1 = (9, 10, 11, 13). This is because the gap between TA1
and TB1 is 3 and it is impossible for the timestamps from TA1
and TB1 to form a new subsequence with G ≤ 2. Since T2

is 2-connected, T2 has only one maximal 2-connected subse-
quence which is itself.

The maximal G-connected subsequence has the following
two properties:

Lemma 1. Suppose {T1, T2, . . . , Tm} is the set of all maxi-
mal G-connected subsequences of T , we have (1) Ti ∩Tj = ∅
for i 6= j and (2) T1 ∪ T2 ∪ . . . ∪ Tm = T .

Proof. We assume Ti∩Tj 6= ∅. Let Ti = (Ti[1], Ti[2], . . . , Ti[p])
and Tj = (Tj [1], Tj [2], . . . , Tj [n]). Suppose T [x] is a times-
tamp occurring in both Ti and Tj . Let T [y] = min{Ti[1], Tj [1]},

i.e., the minimum timestamp of Ti[1] and Tj [1] occurs at the
y-th position of sequence T . Similarly, we assume T [z] =
max{Ti[p], Tj [n]}. Apparently, the two subsequences T [y :
x] and T [x : z] are G-connected because Ti and Tj are
both G-connected. Then, sequence (Ty, . . . , Tx, . . . , Tz), the
superset of Ti and Tj , is also G-connected. This contra-
dicts with the assumptions that Ti and Tj are maximal G-
connected subsequences.

To prove (2), we assume ∪i=mi=1 Ti does not cover all the
timestamps in T . Then, we can find a subsequence T ′ =
T [x : x+t] such that T [x−1] ∈ Ta (1 ≤ a ≤ m), T [x+t+1] ∈
Tb (1 ≤ b ≤ m) and all the timestamps in T ′ is not included
in any Ti. Let g′ = min{T [x]−T [x−1], T [x+t+1]−T [x+t]}.
If g′ ≤ G, then it is easy to infer that Ta or Tb is not a
maximal G-connected subsequence because we can combine
it with T [x] or T [x+ t] to form a superset which is also G-
connected. If g′ > G, T ′ itself is a maximal G-connected
subsequence which is missed in ∪i=mi=1 Ti. Both cases lead to
contradictions.

Lemma 2. If T1 ⊆ T2, then for any maximal G-connected
subsequence T ′1 of T1, we can find a maximal G-connected
subsequence T ′2 of T2 such that T ′1 ⊆ T ′2.

Proof. Since T ′1 ⊆ T1 ⊆ T2, we know T ′1 is a G-connected
subsequence of T2. Based on Lemma 1, we can find a max-
imal G-connected subsequence of T2, denoted by T ′2, such
that T ′1∩T ′2 6= ∅. If there exists a timestamp T ′1[x] such that
T ′1[x] /∈ T ′2, similar to the proof of case (1) in Lemma 1, we
can obtain a contradiction. Thus, all the timestamps in T ′1
must occur in T ′2.

Definition 5 (Decomposable Sequence). T is decomposable
if for any of its maximal G-connected subsequence T ′, we
have (1) T ′ is L-consecutive; and (2) |T ′| ≥ K.

Example 3. Let L = 2,K = 4 and we follow the above
example. T1 is not a decomposable sequence because one
of its maximal 2-connected subsequence (i.e., TB1 ) is not
2-consecutive. In contrast, T2 is a decomposable sequence
because the sequence itself is the maximal 2-connected sub-
sequence, which is also 2-consecutive and with size ≥ 4.

Definition 6 (Sequence Simplification). Given a sequence
T , the simplification procedure sim(T ) = gG,K ·fL(T ) can be
seen as a composite function with two steps:

1. f-step: remove segments of T that are not L-consecutive;
2. g-step: among the maximal G-connected subsequences

of fL(T ), remove those with size smaller than K.

Example 4. Take T = (1, 2, 4, 5, 6, 9, 10, 11, 13) as an ex-
ample for sequence simplification. Let L = 2,K = 4 and
G = 2. In the f-step, T is reduced to f2(T ) = (1, 2, 4, 5, 6, 9,
10, 11). The segment (13) is removed due to the constraint
of L = 2. f2(T ) has two maximal 2-consecutive subse-
quences: (1, 2, 4, 5, 6) and (9, 10, 11). Since K = 4, we
will remove (9, 10, 11) in the g-step. Finally, the output is
sim(T ) = (1, 2, 4, 5, 6).

It is possible that the simplified sequence sim(T ) = ∅. For
example, Let T = (1, 2, 5, 6) and L = 3. All the segments
will be removed in the f -step and the output is ∅. We define
∅ to be not decomposable. We then link sequence simplifi-
cation and decomposable sequence in the following lemma:
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Lemma 3. If sequence T is a superset of any decomposable
sequence, then sim(T ) 6= ∅.

Proof. It is obvious that sim(T ) is a one-to-one function.
Given an input sequence T, there is a unique sim(T ). Let
Tp be a decomposable subset of T and we prove the lemma
by showing that sim(T ) is a superset of Tp.

Suppose Tp can be decomposed into a set of maximal G-
connected subsequences T 1

p , . . . , T
m
p (m ≥ 1). Since Tp is a

subset of T , all the T ip are also subsets of T . By definition,

each T ip is L-consecutive. Thus, in the f -step of sim(T ), none

of T ip will be removed. In the g-step, based on Lemma 2,

we know that each T ip has a superset in the maximal G-

connected subsequences of fL(T ). Since |T ip| ≥ K, none of

T ip will be removed in the g-step. Therefore, all the T ip will be
retained after the simplification process and sim(T ) 6= ∅.

With Lemma 3, we are ready to define the monotonicity
concept based on the simplified sequences to facilitate the
pruning in the Apriori algorithm.

Theorem 4 (Monotonicity). Given a candidate pattern P =
{O : T}, if sim(P.T ) = ∅, then any pattern candidate P ′

with P.O ⊆ P ′.O can be pruned.

Proof. We prove by contradiction. Suppose there exists a
valid pattern P2 such that P2.O ⊇ P.O. It is obvious that
P2.T ⊆ P.T . Based on Definition 2, the following conditions
hold: (1) P2.T is G-connected. (2) |P2.T | ≥ K and (3) P2.T
is L-consecutive. Note that the entire P2.T is G-connected.
Thus, P2.T itself is the only maximal G-connected subse-
quence. Based on conditions (1),(2),(3) and Definition 6,
P2.T is decomposable. Then, based on Lemma 3, we know
sim(T ) 6= ∅ because P2.T ⊆ P.T and P2.T is decomposable.
This leads to a contradiction with sim(P.T ) = ∅.

5.2.2 Apriori Enumerator
We design an Apriori based enumeration algorithm to ef-

ficiently discover all the valid patterns in a star partition.
The principle of the Apriori algorithm is to construct a lat-
tice structure and enumerate all the possible candidate sets
in a bottom-up manner. Its merit lies in the monotonic
property such that if a candidate set is not valid, then all
its supersets can be pruned. Thus, it works well in practice
in spite of the exponential search space.

Our customized Apriori Enumerator is presented in Al-
gorithm 3. Initially, the edges (pairs of objects) in the star
constitute the bottom level (Lines 2-4) and invalid candi-
dates are excluded (Line 4). An indicator level is used to
control the result size for candidate joins. During each iter-
ation (Lines 6-19), only candidates with object size equals
to level are generated (Line 8). When two candidates c1
and c2 are joined, the new candidate becomes c′ = 〈c1.O ∪
c2.O, c1.T ∩ c2.T 〉 (Line 9). To check the validity of the can-
didate, we calculate sim(c′.T ). If its simplified sequence is
empty, c′ is excluded from the next level (Line 10). This
ensures that all the candidates with P.O ⊇ c′.O are pruned.
If a candidate cannot generate any new candidate, then it is
directly reported (Lines 12-14). To further improve the per-
formance, we adopt the idea of forward closure [19, 18] and
aggressively check if the union of all the current candidates
form a valid pattern (Lines 15-18). If yes, we can terminate
the algorithm early and output the results.

Algorithm 3 Apriori Enumerator

Require: Srs
1: C ← ∅
2: for all edges c = 〈oi ∪ oj , Toi ∩ Toj 〉 in Srs do
3: if sim(Toi ∩ Toj ) 6= ∅ then
4: C ← C ∪ {c}
5: level← 2
6: while C 6= ∅ do
7: for all c1 ∈ C do
8: for all c2 ∈ C and |c2.O ∪ c2.O| = level do
9: c′ ← 〈c1.O ∪ c2.O : (c1.T ∩ c2.T )〉

10: if sim(c′.T ) 6= ∅ then
11: C′ ← C′ ∪ {c′}
12: if no c′ is added to C′ then
13: if c1 is a valid pattern then
14: output c1

15: Ou ← union of c.O in C
16: Tu ← intersection of c.T in C
17: if 〈Ou, Tu〉 is a valid pattern then
18: output 〈Ou, Tu〉, break

19: C ← C′;C′ ← ∅; level← level + 1

20: output C

Example 5. As shown in Figure 5 (c), in the bottom level
of the lattice structure, candidate 〈3, 6 : 3〉 is pruned because
its simplified sequence is empty. Thus, all the object sets
containing 〈3, 6〉 can be pruned. The remaining two can-
didates (i.e., 〈3, 4 : 1, 2, 3〉 and 〈3, 5 : 2, 3〉) derive a new
〈3, 4, 5 : 2, 3〉 which is valid. By the forward closure check-
ing, the algorithm can terminate and output 〈3, 4, 5 : 2, 3〉 as
the final pattern.

5.3 Put Everything Together
We summarize the workflow of SPARE in Figure 5 as fol-

lows. After the parallel clustering in each snapshot, for ease
of presentation, we use an aggregated graph GA to capture
the clustering relationship. However, in the implementation
of the map phase, there is no need to create GA in advance.
Instead, we simply need to emit the edges within a star to
the same reducer. Each reducer is an Apriori Enumerator.
When receiving a star Sri, the reducer creates initial can-
didate patterns. Specifically, for each o ∈ Sri, a candidate
pattern 〈o, i : e(o, i)〉 is created. Then it enumerates all the
valid patterns from the candidate patterns. The pseudocode
of SPARE is presented in Algorithm 4. In our implementa-
tion of SPARE on Spark [22], we take advantage of Spark
features to achieve better workload balance. In particular,
we utilize Spark DAG execution engine to inject a planning
phase between map and reduce phases. By knowing all map
results (i.e., star sizes), a simple best-fit strategy is adopted
which assigns the most costly unallocated star to the most
lightly loaded reducer, where the edges in a star are used as
cost estimations. We also leverage Spark in-memory cache
to avoid recomputing all stars after the planning phase.

Compared with TRPM, the SPARE framework does not
rely on snapshot replication to guarantee correctness. In ad-
dition, we can show that the patterns derived from a star
partition are unique and there would not be duplicate pat-
terns mined from different star partitions.
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Algorithm 4 Star Partitioning and ApRiori Enumerator

Require: list of 〈t, St〉 pairs
1: —Map phase—
2: for all C ∈ St do
3: for all o1 ∈ C, o2 ∈ C, o1 < o2 do
4: emit a 〈o1, o2, {t}〉 triplet

5: —Partition and Shuffle phase—
6: for all 〈o1, o2, {t}〉 triplets do
7: group-by o1, emit 〈o1, Sro1〉
8: —Reduce phase—
9: for all 〈o, Sro〉 do

10: call Apriori Enumerator for star Sro

Theorem 5 (Pattern Uniqueness). Let Sri and Srj (i 6= j)
be two star partitions. Let Pi (resp. Pj) be the patterns
discovered from Sri (resp. Srj). Then, ∀pi ∈ Pi,∀pj ∈ Pj,
we have pi.O 6= pj .O.

Proof. We prove by contradiction. Suppose there exist pi ∈
Pi and pj ∈ Pj with the same object set. Note that the
center vertex of the star is associated with the minimum id.
Let oi and oj be the center vertexes of the two partitions and
we have oi = oj . However, Pi and Pj are from different stars,
meaning their center vertexes are different (i.e., oi 6= oj),
leading to a contradiction.

Theorem 5 implies that no mining efforts are wasted in
discovering redundant patterns in the SPARE framework,
which is superior to the TRPM baseline. Finally, we show
the correctness of the SPARE framework.

Theorem 6. The SPARE framework guarantees complete-
ness and soundness.

Proof. See Appendix B.

6. EXPERIMENTAL STUDY
In this section, we evaluate the efficiency and scalability

of our proposed parallel GCMP detectors on real trajectory
datasets. All the experiments are carried out in a cluster
with 12 nodes, each equipped with four quad-core 2.2GHz
Intel processors, 32GB memory and Gigabit Ethernet.

Environment Setup: We use Yarn2 to manage our clus-
ter. We pick one machine as Yarn’s master node, and for
each of the remaining machines, we reserve one core and
2GB memory for Yarn processes. We deploy our GCMP de-
tector on Apache Spark 1.5.23 with the remaining 11 nodes
as the computing nodes. To fully utilize the computing re-
sources, we configure each node to run five executors, each
taking three cores and 5GB memory. In Spark, one of the
55 executors is taken as the Application Master for coordi-
nation, therefore our setting results in 54 executors. We set

2http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html
3We have experimented with a query-based TRPM using
Spark-SQL 2.0.0 window function. We find that Spark-
SQL fails to execute the query-based TRPM in parallel,
which results in a 120x performance slowdown compared
to mapreduce-based TRPM. Thus we only report the per-
formance of mapreduce-based TRPM in this paper.

Table 5: Statistics of datasets.

Attributes Shopping GeoLife Taxi
# objects 13,183 18,670 15,054
# data points 41,052,242 54,594,696 296,075,837
# snapshots 16,931 10,699 44,364
# clusters 211,403 206,704 536,804
avg. cluster size 171 223 484

the number of partitions to be 486 to fully utilize the multi-
threading feature of every core. All our implementations as
well as cluster setups are publicly available4.

Datasets: We use three real trajectory datasets that are
collected from different applications:
• Shopping5: The dataset contains trajectories of visi-

tors in the ATC shopping center in Osaka. To better
capture the indoor activities, the visitor locations are
sampled every half second, resulting in 13, 183 long
trajectories.
• GeoLife6: The dataset essentially keeps all the travel

records of 182 users for a period of over three years, in-
cluding multiple kinds of transportation modes (walk-
ing, driving and taking public transportation). For
each user, the GPS information is collected periodi-
cally and 91 percent of the trajectories are sampled
every 1 to 5 seconds.
• Taxi7: The dataset tracks the trajectories of 15, 054

taxies in Singapore. For each taxi, the GPS informa-
tion are continually collected for one entire month with
the sampling rate around 30 seconds.

Preprocessing: We replace timestamps with global se-
quences (starting from 1) for each dataset. We set a fixed
sampling rate for each dataset (i.e., GeoLife = 5 seconds,
Shopping=0.5 seconds, Taxi = 30 seconds) and use linear in-
terpolation to fill missing values. For the clustering method,
we use DBSCAN [5] and customize its two parameters ε
(proximity threshold) and minPt (the minimum number of
points required to form a dense region). We set ε = 5,
minPt = 10 for GeoLife and Shopping datasets; and ε = 20,
minPt = 10 for Taxi dataset. After preprocessing, the
statistics of the three datasets are listed in Table 5.

Table 6: Parameters and their default values.

Param. Meaning Values
M min objects 5, 10, 15, 20, 25
K min duration 120, 150, 180, 210, 240
L min local duration 10, 20, 30, 40,50
G max gap 10, 15, 20, 25, 30
Or ratio of objects 20%,40%,60%,80%,100%
Tr ratio of snapshots 20%,40%,60%,80%,100%
N number of machines 1, 3, 5, 7, 9, 11

Parameters: To systematically study the performance
of our algorithms, we conduct experiments on various pa-
rameter settings. The parameters to be evaluated are listed
in Table 6, with default settings in bold.

4https://github.com/fanqi1909/TrajectoryMining/.
5http://www.irc.atr.jp/crest2010_HRI/ATC_dataset/
6http://research.microsoft.com/en-us/projects/
geolife/
7Taxi is our proprietary dataset
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6.1 Performance Evaluation
Varying M : Figures 7 (a),(g),(m) present the perfor-

mance with increasing M . The SPARE framework demon-
strates a clear superiority over the TRPM framework, with
a performance gain by a factor of 2.7 times in Shopping, 3.1
times in GeoLife and 7 times in Taxi. As M increases, the
running time of both frameworks slightly improve because
the number of clusters in each snapshot drops, generating
fewer valid candidates.

Varying K: The performance with increasing K is shown
in Figures 7 (b),(h),(n). SPARE tends to run faster, whereas
the performance of TRPM degrades dramatically. This is
caused by the sequence simplification procedure in SPARE,
which can prune many candidates with large K. However,
the line sweep algorithm in TRPM does not utilize such
property for pruning. It takes longer time because more
replicated data has to be handled in each partition.

Varying L: Figures 7 (c),(i),(o) present the performances
with increasing L. When L = 10, SPARE can outperform
TRPM by around 10 times. We also observe that there is
a significant performance improvement for TPRM when L
increases from 10 to 20 and later the running time drops
smoothly. This is because η is proportional to O(K ∗G/L+
L). When L is small (i.e., from 10 to 20), η decreases dras-
tically. As L increases, η varies less significantly.

Varying G: Figures 7 (d),(j),(p) present the performances
with increasing G. TRPM is rather sensitive to G. When G
is relaxed to larger values, more valid patterns would be gen-
erated. TPRM has to set a higher replication factor and its
running time degrades drastically when G increases from 20
to 30. In contrast, with much more effective pruning strat-
egy, SPARE scales well with G. Particularly, SPARE is 14
times faster than TRPM when G = 20 in GeoLife dataset.

Varying Or:Figures 7 (e),(k),(q) present the performances
with increasing number of moving objects. Both TRPM
and SPARE take longer time to find patterns in a larger
database. We can see that the performance gap between
SPARE and TRPM is widened as more objects are involved,
which shows SPARE is more scalable.

Varying Tr: Figures 7 (f),(l),(r) present the performances
with increasing number of snapshots. As Tr increases, SPARE
scales much better than TRPM due to its effective pruning
in the temporal dimension.

Resources: Table 7 lists the system resources taken by
TRPM and SPARE under the default setting. Both TRPM
and SPARE are resource efficient as they only occupy less
than 20% of the available memory (i.e., 270GB) . Again,
SPARE outperforms TRPM in both the execution time and
the memory usage.

Table 7: Resources taken for TRPM and SPARE. Vcore-
seconds is the aggregate of time spent in each core. Memory
is the actual size (in MB) of RDDs.

Dataset Method Vcore-seconds Memory

Shopping
TRPM 90,859 10,019
SPARE 33,638 8,613

Geolife
TRPM 106,428 18,454
SPARE 35,343 14,369

Taxi
TRPM 503,460 51,691
SPARE 68,580 35,912

6.2 Analysis of SPARE framework
In this part, we extensively evaluate SPARE from three

aspects: (1) the advantages brought by the sequence sim-
plification, (2) the effectiveness of load balance, and (3) the
scalability with increasing computing resources.

6.2.1 Power of sequence simplification
To study the power of Sequence Simplification (SS), we

collect two types of statistics: (1) the number of pairs that
are shuffled to the reducers and (2) the number of pairs that
are fed to the Apirori Enumerator. Their difference is the
number of size-2 candidates pruned by SS. The results in
Table 8 show that SS is very powerful and eliminates nearly
90 percent of the object pairs, which significantly reduces
the overhead of the Apriori enumerator. In fact, without SS
Apriori cannot finish in five hours.

Table 8: Pruning power of SPARE.

Dataset Shopping GeoLife Taxi
Before pruning 878,309 1,134,228 2,210,101
After pruning 76,672 123,410 270,921
Prune ratio 91.2% 89.1% 87.7%

6.2.2 Load balance
To study the effect of load balance in the SPARE frame-

work, we use random task allocation (the default setting of
Spark) as a baseline, denoted by SPARE-RD, and compare
it with our best-fit method. In best-fit, the largest unas-
signed star is allocated to the currently most lightly loaded
reducer. Figure 8 shows the breakdown of the costs in the
mapreduce stages for SPARE and SPARE-RD. We observe
that the map and shuffle time of SPARE and SPARE-RD
are identical. The difference is that SPARE incurs an ad-
ditional overhead to generate an allocation plan for load
balance (around 4% of the total cost), resulting in signifi-
cant savings in the reduce stage (around 20% of the total
cost). Meanwhile, both SPARE and SPARE-RD outperform
TRPM in each phase. This shows the efficiency of the star
partition and apriori enumeration. We also report the cost
of the longest job (Max) and the standard deviation (Std.
Dev.) for all jobs in Table 9, whose results clearly verify the
effectiveness of our allocation strategy for load balance.

Table 9: Statistics of execution time (seconds) on all jobs.

Dataset
SPARE-RD SPARE

Max Std. Dev. Max Std. Dev.
Shopping 295 41 237 21
GeoLife 484 108 341 56

Taxi 681 147 580 96

6.2.3 Scalability
When examining SPARE with increasing computing re-

sources (number of machines), we also compare SPARE with
the state-of-the-art solutions for swarm and platoon in the
single-node setting. Since the original swarm and platoon
detectors cannot handle very large-scale datasets, we only
use 60% of each dataset for evaluation. For a fair compar-
isons, we customize two variants of SPARE to mine swarms
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Figure 7: Performance of SPARE and TRPM on real datasets under different pattern parameters.

0

500

1000

1500

2000

2500

3000

3500

        

T
im

e 
(S

ec
on

ds
)

SPARE-RD-MapShuffle
SPARE-RD-Reduce
SPARE-MapShuffle
SPARE-Plan
SPARE-Reduce
TRPM-MapShuffle
TRPM-Reduce

TaxiGeoLifeShopping

Figure 8: Cost breakdown of TRPM,
SPARE-RD and SPARE.

0

1,000

2,000

3,000

4,000

5,000

6,000

1 3 5 7 9 11

T
im

e 
(S

ec
on

ds
)

PLATOON: 15,703 seconds
SWARM: 47,118 seconds

PLATOON
SWARM

SPARE-P
SPARE-S

(a) Shopping vary N

0

1,000

2,000

3,000

4,000

5,000

6,000

1 3 5 7 9 11

T
im

e 
(S

ec
on

ds
)

PLATOON: 22,572 seconds
SWARM: 64,491 seconds

PLATOON
SWARM

SPARE-P
SPARE-S

(b) GeoLife vary N

0

2,500

5,000

7,500

10,000

1 3 5 7 9 11

T
im

e 
(S

ec
on

ds
)

PLATOON: 41,980 seconds
SWARM: 111,123 seconds

PLATOON
SWARM

SPARE-P
SPARE-S

(c) Taxi vary N

Figure 9: Comparisons among TRMP, SPARE, PLATOON and SWARM.

and platoons, which are denoted as SPARE-S and SPARE-
P respectively. The customization is according to the set-
tings in Table 3 and the results are reported in Figure 9.
First, the centralized schemes are not suitable to discover
patterns in large-scale trajectory databases. It takes nearly
30 hours to detect swarms and 11 hours to detect platoons
in the Taxi dataset in a single machine. In contrast, when
utilizing the multi-core (i.e., a single node with four execu-
tors) environment, SPARE-P achieves 7 times speedup and
SPARE-S achieves 10 times speedup. Second, we see that
SPARE schemes demonstrate promising scalability in terms
of the number of machines available. The running times de-
crease almost inversely as more machines are used. When
all the 11 nodes (162 cores) are available, SPARE-P is upto
65 times and SPARE-S is upto 112 times better than the
state-of-the-art centralized schemes.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a generalized co-movement

pattern to unify those proposed in the past literature. We
also devised two types of parallel frameworks in Spark that
can scale to support pattern detection in trajectory databases
with hundreds of millions of points. The efficiency and scal-
ability were verified by extensive experiments on three real

datasets. In the future, we intend to examine co-movement
pattern detection in streaming data for real-time monitor-
ing. We are also interested in extending the current parallel
frameworks to support other types of advanced patterns.
Acknowledgment: The authors would like to thank the
anonymous reviewers for their responsible feedback.
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APPENDIX
A. PROOFS OF THEOREM 2 AND 3

Proof. Γ can be formalized using linear algebra: Let J be
the adjacent matrix of GA. A vertex order on GA can be
represented as PJPT where P is a permutation matrix 8.
Consider an assignment matrix B of star partitioning (i.e.,
bi,j = 1 if vertex j is in star Sri), B = triu(PJPT ) 9 holds.

Let vector ~b be the one10 vector with size n. Let ~c = B~b,
then each ci denotes the number of edges in star Sri. Thus,

Γ can be represented as the infinity norm of B~b. Let Γ∗ be
the minimum Γ among all vertex orderings, that is:

Γ∗ = min
P∈P
||B~b||∞ ,where ||B~b||∞ = max

1≤j≤n
(cj) (1)

Let B∗ be the optimal assignment matrix. It follows that

Γ∗ = ||B∗~b||∞ ≥ d/2. Next, let ei,j be an entry in PJPT ,
ei,js are independent. Further, E[Σ1≤j≤nei,j ] = d where d
is the average degree of GA. On the other hand, bi,j = ei,j
for i > j. Since i > j and ei,js are independent. E[bi,j ] =
E[ei,j ]E[i > j] = E[ei,j ]/2. By linearity of expectations, we
get: E[ci] = E[Σ1≤j≤nbi,j ] = E[Σ1≤j≤nei,j ]/2 = d/2. Let
µ = E[ci] = d/2, t =

√
n logn, by Hoeffding Bound, the

following holds:

Pr(ci ≥ µ+ t) ≤ exp(
−2t2

n
) = exp(−2 logn) = n−2

Next, the event (max1≤j≤n(cj) ≥ µ+ t) can be viewed as
∪ci(ci ≥ µ+ t), by Union Bound, the following holds:

Pr(Γ ≥ µ+ t) = Pr( max
1≤j≤n

(cj) ≥ µ+ t) = Pr(∪ci(ci ≥ µ+ t))

≤ Σ1≤i≤nPr(ci ≥ µ+ t) = n−1 = 1/n

This indicates the probability of (Γ − d/2) ≤ O(
√
n logn)

is (1 − 1/n). Since Γ∗ ≥ d/2, Theorem 2 holds. When the
aggregated graph is dense (i.e., d ≥

√
12 logn), the Chernoff

Bound can be used to derive a tighter bound of O(
√
d logn)

following a similar reasoning.

B. PROOF OF THEOREM 6

Proof. For soundness, let P be a pattern enumerated by
SPARE. For any two objects o1, o2 ∈ P.O, the edge e(o1, o2)
is a superset of P.T . As P.T is a valid sequence, by the def-
inition of GCMP, P is a true pattern. For completeness, let
P be a true pattern. Let s be the object with the smallest ID
in P.O. We prove that P must be outputted by Algorithm 3
from Srs. First, based on the definition of star, every ob-
ject in P.O appears in Srs. Since P.T is decomposable, then
by Lemma 3 the time sequence of any subset would not be
eliminated by any sim operations. Next, we prove at every
iteration level ≤ |P.O|, P.O ⊂ Ou, where Ou is the forward
closure. We prove by induction. level = 2 trivially holds.
If P.O ⊂ Ou at level i, then any subsets of P.O with size i
are in the candidate set. This suggests that no subsets are
removed by Lines 12-20. Then, P.O ⊂ Ui+1 holds. Since
P.O does not pruned by simplification, monotonicity and
forward closure, P must be returned by SPARE.

8An identity matrix with rows shuffled
9triu is the upper triangle part of a matrix

10Every element in ~b is 1
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