
BlueCache: A Scalable Distributed Flash-based Key-value
Store

Shuotao Xu‡ Sungjin Lee† Sang-Woo Jun‡ Ming Liu‡ Jamey Hicks[Arvind‡

‡Massachusetts Institute of Technology †Inha University [Accelerated Tech, Inc
{shuotao, wjun, ml, arvind}@csail.mit.edu sungjin.lee@inha.ac.kr jamey.hicks@accelerated.tech

ABSTRACT
A key-value store (KVS), such as memcached and Redis, is widely
used as a caching layer to augment the slower persistent backend
storage in data centers. DRAM-based KVS provides fast key-value
access, but its scalability is limited by the cost, power and space
needed by the machine cluster to support a large amount of DRAM.
This paper offers a 10X to 100X cheaper solution based on flash
storage and hardware accelerators. In BlueCache key-value pairs
are stored in flash storage and all KVS operations, including the
flash controller are directly implemented in hardware. Further-
more, BlueCache includes a fast interconnect between flash con-
trollers to provide a scalable solution. We show that BlueCache
has 4.18X higher throughput and consumes 25X less power than
a flash-backed KVS software implementation on x86 servers. We
further show that BlueCache can outperform DRAM-based KVS
when the latter has more than 7.4% misses for a read-intensive ap-
plication. BlueCache is an attractive solution for both rack-level
appliances and data-center-scale key-value cache.

1. INTRODUCTION
Big-data applications such as eCommerce, interactive social net-

working, and on-line searching, process large amounts of data to
provide valuable information for end users in real-time. For ex-
ample, in 2014, Google received over 4 million search queries per
minute, and processed about 20 petabytes of information per day [26].
For many web applications, persistent data is kept in ten thousand
to hundred thousand rotating disks or SSDs and is managed using
software such as MySQL, HDFS. Such systems have to be aug-
mented with a middle layer of fast cache in the form of distributed
in-memory KVS to keep up with the rate of incoming user requests.

An application server transforms a user read-request into hun-
dreds of KVS requests, where the key in a key-value pair represents
the query for the backend and the value represents the correspond-
ing query result. Facebook’s memcached [52] and open-source Re-
dis [5], are good examples of such an architecture (Figure 1). Face-
book’s memcached KVS cluster caches trillions of objects and pro-
cesses billions of requests per second to provide high-quality social
networking services for over a billion users around the globe [52].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150-8097/16/12.

KVS caches are used extensively in web infrastructures because of
their simplicity and effectiveness.

Applications that use KVS caches in data centers are the ones
that have guaranteed high hit-rates. Nevertheless, different appli-
cations have very different characteristics in terms of the size of
queries, the size of replies and the request rate. KVS servers are
further subdivided into application pools, each representing a sepa-
rate application domain, to deal with these differences. Each appli-
cation pool has its own prefix of the keys and typically it does not
share its key-value pairs with other applications. Application mixes
also change constantly, therefore it is important for applications to
share KVS for efficient resource usage. The effective size of a KVS
cache is determined by the number of application pools that share
the KVS cluster and the sizes of each application’s working set of
queries. In particular, the effective size of a KVS has little to do
with of the size of the backend storage holding the data. Given
the growth of web services, the scalability of KVS caches, in addi-
tion to the throughput and latency, is of great importance in KVS
design.

Application
Server

Application
Server

Application
Server… Application Layer

KVS
Node

KVS
Node…

KVS
Node

Cache Layer

MySQL Postgres… SciDB

Backend Storage Layer

… End Users

User Requests

Key-Value Requests Cache misses, Updates

Data Center

Figure 1: Using key-value stores as caching layer
In theory, one can scale up the KVS cluster by increasing the to-

tal amount of RAM or the number of servers in the KVS cluster. In
practice, however, hardware cost, power/thermal concerns and floor
space can become obstacles to scaling the memory pool size. As
illustrated in Table 1, NAND flash is 10X cheaper, consumes 10-
100X less power and offers two orders of magnitude greater stor-
age density over DRAM. These characteristics make flash-based
KVS a viable alternative for scaling up the KVS cache size. A
downside of flash-based KVS is that flash has significantly higher
latency than DRAM. Typically flash memory has read latency of
100µs and write latency of milliseconds. DRAM, on the other
hand, offers latency of 10-20ns, which is more than four orders
of magnitude better than flash. Thus to realize the advantage of
flash, a flash-based architecture must overcome this enormous la-
tency differential. One silver lining is that many applications can
tolerate millisecond latency in responses. Facebook’s memcached
cluster reports 95th percentile latency of 1.135 ms [52]. Netflix’s
EVCache KVS cluster has 99th percentile latency of 20 ms and is
still able to deliver rich experience for its end users [3].

301

Table 1: Storage device comparison as in 2016, prices are representative numbers on the Internet
Device Storage Technology Capacity Bandwidth Power Price Price/Capacity Power/Capacity

(GB) (GBps) (Watt) (USD) (USD/GB) (mWatt/GB)
Samsung 950 PRO Series [7] 3D V-NAND PCIe NVMe 512 2.5 5.7 318.59 0.62 11.13
Samsung 850 PRO Series [6] 3D V-NAND SATA SSD 2000 0.5 3.5 836.51 0.42 1.65
Samsung M393A2G40DB0-CPB [8, 9] DDR4-2133MHz ECC RDIMM 16 17 3.52 89.99 5.62 220

This paper presents BlueCache, a new flash-based architecture
for KVS clusters. BlueCache uses hardware accelerators to speed
up KVS operations and manages communications between KVS
nodes completely in hardware. It employs several technical innova-
tions to fully exploit flash bandwidth and to overcome flash’s long
latencies: 1) Hardware-assisted auto-batching of KVS requests; 2)
In-storage hardware-managed network, with dynamic allocation of
dedicated virtual channels for different applications; 3) Hardware-
optimized set-associative KV-index cache; and 4) Elimination of
flash translation layer (FTL) with a log-structured KVS flash man-
ager, which implements simple garbage collection and schedules
out-of-order flash requests to maximize parallelism.

Our prototype implementation of BlueCache supports 75X more
bytes per watt than the DRAM-based KVS and shows:
• 4.18X higher throughput and 4.68X lower latency than the soft-

ware implementation of a flash-based KVS, such as Fatcache [63].
• Superior performance than memcached if capacity cache misses

are taken into account. For example, for applications with the
average query size of 1KB, GET/PUT ratio of 99.9%, BlueCache
can outperform memcached when the latter has more than 7.4%
misses.

We also offer preliminary evidence that the BlueCache solution is
scalable: a four-node prototype uses 97.8% of the flash bandwidth.
A production version of BlueCache can easily support 8TB of flash
per node with 2.5 million requests per second (MRPS) for 8B to
8KB values. In comparison to an x86-based KVS with 256GB of
DRAM, BlueCache provides 32X larger capacity with 1/8 power
consumption. It is difficult to assess the relative performance of the
DRAM-based KVS because it crucially depends on the assump-
tions about cache miss rate, which in turn depends upon the av-
erage value size. BlueCache presents an attractive point in the
cost-performance trade-off for data-center-scale key-value caches
for many applications.

Even though this paper is about KVS caches and does not ex-
ploit the persistence of flash storage, the solution presented can be
extended easily to design a persistent KVS.
Paper organization: In Section 2 we discuss work related to KVS
caches. In Section 3 we describe the architecture of BlueCache, and
in Section 4 we describe the software library to access BlueCache
hardware. In Section 5 we describe a hardware implementation
of BlueCache, and show our results from the implementation in
Section 6. Section 7 concludes the paper.

2. RELATED WORK
We will first present the basic operations of KVS caches and dis-

cuss the related work for both DRAM-based and flash-based KVS.

2.1 A Use Case of Key-Value Store
A common use case of KVSs is to provide a fast look-aside cache

of frequently accessed queries by web applications (See Figure 1).
KVS provides primitive hash-table-like operations, SET, GET and
DELETE on key-value pairs, as well as other more complex opera-
tions built on top of them. To use KVS as a cache, the application
server transforms a user read-request into multiple GET requests,
and checks if data exists in KVS. If there is a cache hit, the applica-
tion server collects the data returned from KVS and formats it as a
response to the end user. If there is a cache miss, application server

queries the backend storage for data, and then issues a SET request
to refill the KVS with the missing data. A user write-request, e.g. a
Facebook user’s “unfriend” request, is transformed by the applica-
tion server into DELETE requests for the relevant key-value pairs
in the KVS, and the new data is sent to the backend storage. The
next GET request for the updated data automatically results in a
miss which forces a cache refill. In real-world applications, more
than 90% KVS queries are GETs [11, 18].

Application servers usually employ hashing to ensure load bal-
ancing across KVS nodes. Inside the KVS node, another level of
hashing is performed to compute the internal memory address of
the key-value pairs. KVS nodes do not communicate with each
other, as each is responsible for its own independent range of keys.

2.2 DRAM-based Key-Value Store
DRAM-based key-value stores are ubiquitous as caching solu-

tions in data centers. Like RAMCloud [54], hundreds to thousands
of such KVS nodes are clustered togother to provide a distributed
in-memory hash table over fast network. Figure 2 shows a typical
DRAM-based KVS node. Key-value data structures are stored on
KVS server’s main memory, and external clients communicate with
the KVS server over network interface card (NIC). Since both keys
and values can be of arbitrary size, an KV-index cache for each
key-value pair is kept in a separate data structure. In the KV-index
cache the data-part of the key-value pair just contains a pointer to
the data which resides in some other part of the cache. This index
data structure is accessed by hashing the key generated by the ap-
plication server. If the key is found in the KV-index cache, the data
is accessed in the DRAM by following the pointer in the KV-index
cache. Otherwise, the KV-index cache and the DRAM have to be
updated by accessing the backend storage.

KVS caches have two important software components: 1) the
network stack that processes network packets and injects them into
CPU cores; 2) the key-value data access that reads/writes key-value
data structures in main-memory. These two components have a
strong producer-consumer dataflow relationship, and a lot of work
has been done to optimize each component as well as the commu-
nication between them.

App Server

App Server

App Server

App Server
NIC CPU

Cores

Network

stack

Key-value

data

access

KV-Index

Cache

Main Memory

KVS Node

KV-Data

Store

Hardware components Software components Key-Value Data structures

Figure 2: Components of in-memory key-value store

A past study [58] has found that more than 90% processing time
in memcached is spent in the OS kernel network processing. Re-
searchers have demonstrated as much as 10X performance improve-
ment by having user-space network stack [62, 31, 32, 51, 23, 36,
47, 45]. For example, Jose et al. [31, 32] investigated the use
of RDMA-based communication over InfiniBand QDR network,
which reduced KVS process latency to below 12µs and enhanced
throughput to 1.8MRPS. Another example, MICA [47, 45], ex-
ploits modern NIC features such as multiple queues and flow-steering
features to distribute packets to different CPU cores. It also exploits
Intel Data Direct I/O Technology (DDIO) [29] and open-source

302

driver DPDK [30] to let NICs directly inject packets into proces-
sors’ LLC, bypassing the main memory. MICA shards/partitions
key-value data on DRAM and allocates a single core to each par-
tition. Thus, a core can access its own partition in parallel with
other cores, with minimal need for locking. MICA relies on soft-
ware prefetch for both packets and KVS data structures to reduce
latency and keep up with high speed network. With such a holistic
approach, a single MICA node has shown 120MRPS throughput
with 95th percentile latency of 96µs [45].

Berezecki et al. [15] use a 64-core Tilera processor (TILEPro64)
to run memcached, and show that a tuned version of memached
on TILEPro64 can yield at least 67% higher throughput than low-
power x86 servers at comparable latency. It showed 4 TILEPro64
processors running at 866Mhz can achieve 1.34MRPS. This ap-
proache offers less satisfactory improvements than x86-based opti-
mizations.

Heterogeneous CPU-GPU KVS architectures have also been ex-
plored [64, 27, 28]. In particular, Mega-KV [64] stores KV-index
cache on GPUs’ DRAM, and exploits GPUs’ parallel processing
cores and massive memory bandwidth to accelerate the KV-index
cache accesses. KV-data store is kept separately on the server
DRAM, and network packets are processed, like in MICA, using
Intel’s high-speed I/O [30, 29]. On a commodity PC with two
Nvidia GTX 780 GPUs and two CPUs, Mega-KV can process up
to 166 MRPS with 95th percentile latency of 410µs [64].

Researchers have also used FPGAs to offload parts [48, 40, 24]
or the entirety [19, 16] of KVS, and demonstrated good perfor-
mance with great power efficiency. Xilinx’s KVS has the highest
performance based on this approach, and achieves up to 13.2MRPS
by saturating one 10GbE port [16], with the round-trip latency of
3.5µs to 4.5µs. It also shows more than 10x energy efficiency com-
pared with commodity servers running stock memcached.
Discussion: An insightful performance comparison of different ap-
proaches is difficult. First of all, all performance results are re-
ported assuming no capacity cache misses. Even cache misses due
to updates are not properly described. For example, both MICA
and Mega-KV experiments that showed the highest performance
(>120MRPS) assumed 8B key and 8B value. If the application
had 1KB values, then the same cache will hold 128X fewer objects,
which should significantly increase the number of capacity misses.
Unfortunately, the capacity misses vary from application to appli-
cation and cannot be estimated based of the number of objects in
KVS. Even if capacity misses are rare, the throughput in terms of
MRPS will be much lower for larger values. For example, MICA
performance drops from 5MRPS to .538MRPS per core if the value
size is increased from 8B to 1KB [47]. Moreover, a simple calcu-
lation shows that for 1KB values, one 10Gbps port cannot support
more than 1.25MRPS.

The second point to note is that higher throughput requires more
hardware resources. Mega-KV shows 1.38X more performance
than MICA but also increased power consumption by 2X. This is
because it uses two Nvidia GTX 780 GPUs which consume ap-
proximately 500W [4]. If we look at the performance normalized
by the number and speed of network ports then we will reach a
different conclusion. For example, MICA shows a performance
of 120MRPS using 12 10Gbps Ethernet ports (10MRPS per port),
while Xilinx [16] achieves 13.2MRPS using only one 10Gbps port.

One can also ask the question exactly how many resources are
needed to keep a 10Gbps port busy. MICA experiments show that 2
Xeon cores are enough to keep up with a 10Gbps Ethernet port [45],
and Xilinx experiments show that an FPGA-based implementation
can also easily keep up with the 10Gbps port [16]. A past study has
pointed out that traditional super-scalar CPU core pipeline of x86

can be grossly underutilized in performing the required KVS com-
putations (networking, hashing and accessing key-value pairs) [48].
The last level data cache, which takes as much as half of the pro-
cessor area, can be ineffective [48] and can waste a considerable
amount of energy. A simple calculation in terms of cache needed to
hold all in-flight requests and network packets shows that MICA’s
120MRPS throughput can be sustained with only 3.3 MB of LLC,
while a dual-socket Intel Xeon processor has a 60MB LLC!

2.3 Flash-based Key-Value Store
There have been several efforts to use NAND flash in KVS de-

signs because it provides much higher storage density, lower power
per GB and higher GB per dollar than DRAM [61, 14, 50, 44, 57,
49]. In one organization, NAND flash is used as a simple swap
device [60, 39] for DRAM. However, the virtual memory manage-
ment of the existing OS kernels is not suitable for NAND flash
because it leads to excessive read/write traffic. NAND flash is un-
desirable for small random writes because an entire page has to be
erased before new data is appended. High write-traffic not only
wastes the I/O bandwidth but shortens the NAND lifetime [12].

A better flash-based KVS architecture uses flash as a cache for
objects where the object granularity is one page or larger [46, 25].
Examples of such an architecture include Twitter’s Fatcache [63],
FAWN-KV [10], Hybrid Memory [56], Xilinx’s KVS [17] and Flash-
Store [22]. KV-index cache stores key-value metadata such as times-
tamps, which has frequent updates. Like Figure 2, they move key-
value data to flash while keeping KV-index cache in DRAM, be-
cause in-place index updates on flash would make it prohibitively
inefficient and complicated. The NAND flash chips are written as a
sequence of blocks produced by a log-structured flash management
layer to overcome NAND flash’s overwriting limitations [43, 42].

..
.

addr
0

requested
key

addr n-1

..
.

obj 0

obj n-1

obj 1

DRAM

hash

KV-Index
Cache

KV-Data
Store

DRAM

..
.

addr
0

requested
key

addr n-1

..
.

obj 0

obj n-1

obj 1

hash

KV-Index
Cache

KV-Data
Store

DRAM

Flash

Object pointers Key-value metadata Abbreviated keyKey Value

F
la

sh
-b

as
ed

 K
V

S
F

la
sh

-b
as

ed
 K

V
S

D
R

A
M

-b
as

ed
 K

V
S

D
R

A
M

-b
as

ed
 K

V
S

Figure 3: Internal data structures of DRAM-based KVS and flash-
based KVS

A superior way of maintaining an in-memory KV-index cache
is to use fixed-size representation for variable size keys (See Fig-
ure 3). This can be done by applying a hash function like SHA-1
to keys [63, 22] and keeping the fixed-size abbreviated keys on
DRAM with pointers to the full keys and values on flash. False
positive match of an abbreviated key can be detected by comparing
request key with the full key stored on flash. Such data structure
organization ensures that 1) on a KV-index cache miss, there is no
flash access; and 2) on a KV-index cache hit, a single flash access
is needed to access both the key and data.

One can calculate the rarity of a false positive match of an abbre-
viated key. Assuming each hash bucket has four 128-bit entries, an
8GB hash table has 233−2−4 = 227 hash buckets. Assuming 21-bit
abbreviated keys, the false positive for key hit on a index entry is as
low as 1/(227+21) = 1/248. This ensures that a negligible portion
of KVS misses are penalized by expensive flash reads.

One can estimate the size of KV-index cache based on the aver-
age size of objects in the workload. For example, assuming 16-byte
index entries, a 16GB KV-index cache can store 230 or ~a billion
key-value pairs in flash. Such an index cache can address 1TB

303

KV-data store, assuming average object size of 1KB, or can ad-
dress 250GB KV-data store, assuming average object size of 256B.
Thus, in this system organization, a terabyte of SSD can be paired
with 10 to 50 GB of DRAM to increase the size of KVS by 10X to
100X on a single server.

KV-index cache reduces write traffic to NAND flash by 81% [56],
which implies 5.3X improvement in storage lifetime. FlashStore [22]
is the best performing single-node flash-backed KVS in this cate-
gory, achieving 57.2 KRPS. Though the capacity is much larger,
the total performance, ignoring DRAM cache misses, is more than
one to two orders of magnitude less than the DRAM-based solu-
tions. Unlike MICA [45], the throughput of FlashStore is lim-
ited by the bandwidth of the flash device and not the NIC. If the
flash device organizes NAND chips into more parallel buses, the
throughput of flash-based KVS will increase, and it should be pos-
sible for the KVS to saturate a 10Gbps Ethernet. The throughput
can be increased even further by eliminating flash translation layer
(FTL) [21] in SSDs, as has been shown for flash-based filesystems,
such as SDF [55], F2FS [41], REDO [42] and AMF [43].

3. BLUECACHE ARCHITECTURE
The BlueCache architecture consists of a homogeneous array of

hardware accelerators which directly manage key-value pairs on
error-corrected NAND-flash array of chips without any general pur-
pose processor (See Figure 4). It organizes key-value data struc-
tures the same way as shown in Figure 3. The KV-index cache
stores abbreviated keys and key-value pointers on DRAM, and the
KV data, i.e., the full key and value pairs, on flash. BlueCache also
uses a small portion of DRAM to cache hot KV-data-store entries.
Based on the average size of key-value pairs, BlueCache architec-
ture typically requires the DRAM capacity to be 1/100 to 1/10 of
the flash capacity in order to address all the data on flash.

Key-Value Data structures

B
lu

e
C

a
c
h

e
 N

e
tw

o
rk

KV-Index

Cache

DRAMBlueCache KVS Node

KV-Data

Store

NAND Flash

…

KV-Index

Cache Mngr

…

Key-value

data

access

BlueCache KVS Node

BlueCache KVS Node

Storage Media Component Interactions

KV-Data

Store Mngr

Accelerators

N
e

t.
 E

n
g

.App

Server

KVS Prot.

Engine

PCIe

N
e

t.
E

n
g

.

App

Server

KVS Prot.

Engine

PCIe

N
e

t.
E

n
g

.

App

Server

KVS Prot.

Engine

PCIe

N
e

t.
E

n
g

.

Figure 4: BlueCache high-level system architecture
The KVS Protocol Engine is plugged into each application server’s

PCIe slot and forwards each KVS request to the BlueCache KVS
node responsible for processing it. In order to maximize paral-
lelism and maintain high performance, KVS requests are batched
on application server’s DRAM and transferred to the Protocol En-
gine as DMA bursts. When responses are returned from various
KVS nodes, the Protocol Engine batches the responses and sends
them back to the application server. The Protocol Engine com-
municates with KVS nodes via high-speed BlueCache network ac-
cessed using the Network Engine; there is no communication be-
tween KVS nodes.

Each KVS node (See Figure 4) runs a KV-Index Cache Man-
ager and a KV-Data Store Manager to manage the KV-index cache
and the KV-data store, respectively. Based on the size of KV-index
cache, some DRAM is also used to cache KV-data store. Just like
the KVS cluster described in Section 2.1, BlueCache architecture
deploys two levels of hashing to process a key-value query. The
first level of hashing is performed by the KVS Protocol Engine
to find the KVS node responsible for the query, while the second
level of hashing is performed within the KVS node to find the cor-
responding index entry in the KV-index cache.

We use Field-programmable Gate Arrays (FPGA), which contain
reprogramable logic blocks, to implement BlueCache (See Sec-
tion 5). In our FPGA-based implementation, each FPGA board
has its own DRAM and NAND flash chips and is directly plugged
into a PCI Express slot of the application server (see Figure 5).
Both the KVS Protocol Engine and the KVS node are mapped into
a single FPGA board and share the same Network Engine. FPGA
boards can communicate with each other using 8 10Gbps bidirec-
tional serial links [35]. In the following sections, we describe each
hardware accelerator in detail.

KV-Index

Cache

DRAM

FPGA

KV-Data

Store

NAND Flash

App

Server

KVS

Protocol

Engine

PCIe

Accelerators Storage Media Key-value Data structures

Network

Engine

KV-Index

Cache

Manager

KV-Data

Store

Manager

Remote BlueCache

Devices
Remote BlueCache

DevicesRemote FPGAs

High-speed Serial Link

BlueCache KVS Node

App

Server
App

Server
App

Server

PCIe

Figure 5: A BlueCache architecture implementation

3.1 KVS Protocol Engine
Unlike KVS such as memcached [52] which relies on client soft-

ware (e.g. getMulti(String[] keys)) to batch KVS queries, Blue-
cache uses hardware accelerators to automatically batch KVS re-
quests from multiple applications. The application server collects
KVS requests in 8KB segments in the DRAM and, when a seg-
ment is filled up, passes the segment ID to the Protocol Engine for
a DMA transfer (See Figure 6). The application server then picks
up a new free segment and repeats the above process. The Protocol
Engine receives requests in order and sends an acknowledgement
to the application server after reading the segment. A segment can
be reused by the application server after the acknowledgement has
been received. Since KVS requests are of variable length, a re-
quest can be misaligned with the segment boundary. In such cases,
the Protocol Engine merges segments to produce a complete KVS
request. KVS responses are batched together similarly by the Pro-
tocol Engine and sent as DMA bursts to the application server. Our
implementation uses 128 segments DMA buffers in each direction.

DMA Read Engine

Buffer 0

Buffer 1

Buffer 127

...

ci
rc

u
la

r
a

p
p

e
n

d

{KVS Requests,
nodeID, reqID}

Buffer 127

Buffer 1

Buffer 0

...

DMA Write Engine

{KVS Responses,
reqID}

...

...

 DRAM Request Buffer DRAM Response Buffer

DMA data DMA req/ack

DMA data DMA interrupt/ack

KVS Protocol Engine

Valid response

Valid request

Application Server

Host Interface

ci
rc

u
la

r
a

p
p

e
n

d

PCIe

Request
Decoder

Response
Encoder

In-flight Req.
Key Table

Figure 6: Application to KVS Protocol Engine communication
The request decoder (See Figure 6) computes the destination

BlueCache node ID by using the equation:
nodeID = hash(key) mod #nodes (1)

to distribute the requests across the KVS nodes evenly. The hash
function in the equation should be a consistent hashing function [37],
so that when a node joins or leaves the cluster, minimum number
of key-value pairs have to be reshuffled. KVS Protocol Engine also
keeps a table of the in-flight request keys because the responses do

304

not necessarily came back in order. In Section 3.3 we will describe
how request and response keys are matched to form a response for
the application server.

3.2 Network Engine
Each request carries a destination node ID which is used by the

Network Engine to route the requests to its destination. Each re-
quest also carries the source ID, i.e., the ID of the node that sends
the request; these are used by the Network Engine to send back
responses. The Network Engine splits the KVS requests into lo-
cal and remote request queues (Figure 7). The requests in the
remote-request queue are forwarded to remote node via the network
router. When a remote request is received at its destination node,
it is merged into the local-request queue of the remote node. Sim-
ilarly, the responses are split into the local-response queue and the
remote-response queue depending on their requests’ origins. The
response network router forwards the non-local KVS responses to
the remote nodes, which are later merged into the local response
queues at their sources. The request and response networks are
kept separate using the support for virtual networks in our network
implementation [35]. With the support of virtual networks, Blue-
cache can also dynamically assign a dedicated network channel for
a running application, so that the network interference between ap-
plications is minized.

Request
Network
Router

KVS Request KVS Response

Splitter

Merger

Network Engine

Client

KVS Protocol
Engine

Response
Network
Router

KV-Index Cache

Request
Network
Router

RemQ

LocQ

Request
Network
Router

1. Reserve Req

2. Reserve Ack

3. PayloadS
en

de
r

R
ec

ei
ve

r

...

In
te

r-
co

n
tr

ol
le

r
ne

tw
or

k

Node A Node B

{request, sender ID} {response, sender ID}

KV-Data Store

Figure 7: Network Engine Architecture
Our multi-FPGA platforms network is designed to be lossless

and thus, uses a simple handshake network protocol. Before send-
ing a payload, the sender sends a reserve request to the receiver
with the size of the payload. The receiver then reserves the mem-
ory for the incoming payload, and acknowledges the sender. After
receiving the acknowledgment, the sender sends the payload data to
the receiver. Because of the simplicity of the protocol, our network
has only a 1.5µs latency per hop.

3.3 KV-Index Cache Manager
The KV-index cache is organized as a set-associative hash table

on DRAM (Figure 8). A key is mapped into a hash bucket by com-
puting the Jenkins hash function [1], which is also used in mem-
cached. A hash bucket contains fixed number of 128-bit index en-
tries, each of which contain 5 fields describing a key-value pair. A
41-bit key-value pointer field points to the location of the key-value
pair in a 2TB address space; a 8-bit key length field represents the
key size (up to 255B); a 20-bit value length field represents value
size (up to 1MB); a 32-bit timestamp field represents the key-value
pair’s latest access time, which is used to evict an index entry; and
a 21-bit field stores the truncated SHA-1 hash value of the key to
resolve hash function collisions. The maximum key and value
sizes are chosen as in memcached. If there is a need to support a
larger key or value size, the index entry has to be changed by either

increasing the size of the index entry, or decreasing the abbreviated
key field size within an acceptable false positive hit rate.

Since it is inefficient to use linked list or rehashing to handle hash
function collisions in hardware, we check all four index entries in
the hash bucket in parallel. For a KV-index cache hit, the requested
key needs to match the abbreviated key and the key length.

Because our FPGA platform returns 512-bit data per DRAM re-
quest, we assign each hash bucket to every 512-bit aligned DRAM
address. In this way, each hash bucket has four index entries.
Yet, such a 4-way set-associative hash table design can guarantee
good performance since each hash table operation only needs one
DRAM read to check keys, and one DRAM write to update times-
tamps and/or insert a new entry. Higher set associativity can reduce
conflict misses of KV-index cache and increase performance in the-
ory. Yet, increasing associativity requires more hardware, more
DRAM requests and more clock cycles per operation, which can
offset benefits of a higher hit rate.

entry 0 entry 1 entry 2 entry 3
Key

hash bucket 1

hash bucket 2

...

hash bucket n-1

= = =

{key length, abbr. key}

hit/miss

key length16-byte entry value length key-value pointer

41 bits8 bits 20 bits

timestamp abbr. key

32 bits 27 bits

=

hash bucket 0

Hash Func.

Figure 8: 4-way set-associative KV-index cache
When there are more than four collisions at a hash bucket, an old

index entry is evicted. Since KVS workload shows strong temporal
locality [11], the KV-Index Cache Manager uses LRU replacement
policy to select the victim by reading their timestamps. When a
key-value pair is deleted, only its index entry is removed from KV-
index cache, and the object on KV-data store is simply ignored,
which can be garbage collected later.

3.4 KV-Data Store Manager
The key-value object data is stored either in the DRAM or in the

flash (Figure 9). Key-value pairs are first written in DRAM and
when it becomes full, less popular key-value pairs are evicted to
the flash to make space. Each entry in the KV-data store keeps a
backward pointer to the corresponding entry in the KV-index cache.
When the KV data is moved from the DRAM to the flash, the cor-
responding KV index entry is updated. The most significant bit of
key-value pair pointer in the KV-index cache indicates whether the
data is in DRAM or flash.

Page 0 Page 1 ...

Flash pages

Reorder
Buffer

Bad Block
List

Write
Buffer

Page n

 Flash KV Data Store

Slab class 0 for small objects of size M0 bytes

 DRAM KV Data Store

Slab class N for large objects of size MN bytes

...

 DRAM KV Data Store

key-value data timestamp backward ptr On DRAM On SRAM On Flash

Figure 9: KV-data store architecture

DRAM KV-Data Store: The DRAM KV-data store is organized as
a collection of slab classes, where each slab class stores objects of
a predetermined size (Figure 9). A slab-structured DRAM store
implementation requires simple hardware logic, and its dense for-
mat enables better RAM efficiency. The KV-data store in mem-
cached [52] uses a similar technique in order to minimize DRAM
fragmentation in software. When an object needs to be moved
to the flash, the victim is determined by the entry with the oldest

305

timestamps amongst four randomly-chosen entries in the slab. Af-
ter the victim is evicted, the in-memory KV-index cache is updated
using backward pointer of the evicted object. This policy behaves
like a pseudo-LRU replacement policy, which keeps hot objects in
DRAM. Since the KV-Data Store shares the DRAM with the KV-
index cache, and the size of DRAM KV-data store can be dynami-
cally adjusted in respect to the size of active KV-index cache.

...

Channel 0

...

Channel 1 Channel n-1

NAND Chip 0

...

 appending

Chunk 0 Chunk 1 Chunk 2 Chunk 3 Chunk N-1

Write
Buffer 0

Write
Buffer 1

Flash Logic View

Bad Block List
Flash Physical View

DRAM

NAND Flash

 Write buffer ready to be flushed Victim chunk to be discarded and overwritten

 Chunk data is uniformly striped on all flash chipsWrite buffer/Chunk of 1MB

Logical block ID

Physical block ID

NAND Chip 1

NAND Chip m-1

...

...

Figure 10: Log-structured flash store architecture
Flash KV-Data Store: The data structure on the KV flash data store
is very different from the DRAM KV-data store. On flash one has
to erase a page before it can be overwritten. Though flash chip al-
lows reads and writes at the granularity of a page, it permits only
block erasures, where the typical size of a block is 64 to 128 pages.
Block erasure has high overhead (several milliseconds) and is per-
formed in the background as needed. To avoid small overwrites, we
use log-structured techniques [43, 42] for writing in flash. Victims
from the DRAM KV-data store are collected in a separate DRAM
buffer, and written to flash in 128-page chunks as a log (Figure 9,
Figure 10). The KV-data manager has the flexibility to map the
data pages on the flash array and instead writing a 128-page chunk
on one chip, it stripes the chunk acrossN flash chips for maximum
parallelism. This also ensures good wear-leveling of flash blocks.
The manager also has to maintain a list of bad blocks, because flash
blocks wear out with usage (Figure 10).

Similar to work [20], the KV-Data Store Manager schedules reads
concurrently to maximize parallelism, and consequently, the re-
sponses do not necessarily come back in order. A reorder buffer is
used to assemble pages to construct the response for a request [49].

Flash KV-data store also implements a minimalist garbage col-
lection algorithm for KV-data store. When space is needed, an old
flash chunk from the beginning of the log is simply erased and
overwritten. The keys corresponding to the erased data have to
be deleted from the KV-index cache to produce a miss. In KVS
workloads, newly written data has higher popularity [11] and by
overwriting the oldest data, it is more likely that cold objects are
replaced by hot ones. Consequently new objects are always writ-
ten in the DRAM cache. BlueCache’s simple garbage collection
ensures good temporal locality.

Such a KV-data store requires direct accesses to NAND flash
chips, which is very difficult to implement with commercial SSDs.
Manufactures often deploy a flash translation layer (FTL) inside
SSDs to emulate hard drives behaviors, and this comes in the way
of exploiting the full flash bandwidth [55, 17]. The BlueCache
architecture eliminates FTL and uses direct management of parallel
NAND flash chips to support KVS operations.

3.5 From KVS Cache to Persistent KVS
The BlueCache architecture described so far does not use the

non-volatility of flash it only exploits the capacity advantage of

flash over DRAM. However, it can be easily transformed into a
persistent KVS.

In order to guarantee persistency, BlueCache needs to recover
from crashes due to power outage as well as other system failures.
If the KV-index cache is lost then the KV-data store essentially be-
comes inaccessible. Like filesystems [43, 41], we can periodically
write the KV-index cache to flash for persistency. The KV-index
cache checkpoints are stored in a different region of the flash than
the one hold the KV data. In this way, a slightly older version
of KV-index cache can be brought back in DRAM quickly. We
can read the flash KV-data store, replay log from the timestamp of
the KV-index cache checkpoint, and apply SET operation on the
key-value pairs sequentially from the log to recover the KV-index
cache. When checkpoints are being made, updates to KV-index
cache should not be allowed. To allow high availability of the KVS,
we could devise a small interim KV hash table, which can be later
merged with KV-index cache and KV-data store after the check-
point operation finishes.

The write policy for the DRAM data cache should depend on the
requirement of data recovery by different applications. For applica-
tions that need fast retrieval of hot data, write-through policy should
be chosen because key-value pairs will be immediately logged on to
flash. Yet, this comes at the cost of having a smaller effective KVS
size. On the other hand, write-back policy works for applications
which have relaxed requirement for recovering the most recent data
and benefit from larger capacity.

4. SOFTWARE INTERFACE
In data centers, a KVS cluster is typically shared by multiple ap-

plication. BlueCache provides a software interface, which allows
many multi-threaded applications to share the KVS concurrently.
The software interface implements a partial memcached client API
consisting of three basic C++ functions: GET, SET, DELETE, as
listed below. The C++ functions can be also accessed by other pro-
gramming languages via their C wrappers, such as JAVA through
Java Native Interface (JNI).

1 boo l bluecache_set (c h a r * key , c h a r * value ,
2 size_t key_length , size_t value_length) ;
3 vo id bluecache_get (c h a r * key , size_t key_length ,
4 c h a r ** value , size_t* value_length) ;
5 boo l bluecache_delete (c h a r * key , size_t key_length) ;

These functions provides synchronous interfaces. The BlueCache
KVS throughput via the software interface increases as there are
more concurrent accesses, and it stops scaling beyond 128 concur-
rent application threads (See Section 6.3).

Application
thread 0

Application
thread 1

Application
thread n-1... Response

Thread
Flushing
Thread

R
e

q
u

e
st

 Q
u

e
u

e

K
V

S
 R

e
tu

rn
P

o
in

te
r

Ta
b

le

R
e

sp
o

n
se

 Q
u

e
u

e

Client 0

Client 1

Client n-1

..
.

DMA Read
to BlueCache

DMA write
from BlueCache

struct table_entry{
 char** valueptr;
 size_t* value_length;
 bool* success;
 sem_t done_signal;
};

set up
return ptrs

1enq request2 deq response3
copy resp data

4

return data5

Figure 11: BlueCache software interface
BlueCache software interface is implemented by using three types

of threads (Figure 11). Application threads send KVS queries via
the API. Flushing thread periodically pushes partially filled DMA
segments to host interface in background if there are no incoming

306

requests. Response thread handles DMA interrupts from hardware,
and dispatches responses to the application threads.

Furthermore, BlueCache software interface has three data struc-
tures owned by different threads. The request queue buffers all
KVS requests, and is shared by the application threads and the
flushing thread. The response queue buffers all KVS responses
returned from hardware, which is solely owned by the response
thread. The KVS return pointer table is shared by the application
threads and the response threads, and maintains an array of return
pointers for each clients. Once the hardware returns KVS query
results, the response thread can signal the right application thread
with the data. All the shared data structures are protected by mutex
locks.

Figure 11 also illustrates the internal operations of the software
interface. When an application thread queries BlueCache, it first
sets up its return pointers on the KVS return pointer table. Second,
the application thread push the KVS queries to the request queue,
which is later send to BlueCache via DMA. The client thread then
waits for the response. The response thread receives an interrupt
from the hardware after BlueCache pushes KVS query results to
the response queue. The response thread then dequeues the KVS
response, copies response data into a byte array, and signals the
application thread with the response by referring to the information
on the KVS return pointer table.

5. BLUECACHE IMPLEMENTATION
We use Field Programmable Gate Arrays (FPGA) to implement

BlueCache. In this section we describe BlueCache’s implementa-
tion platform, hardware resource usage, and power characteristics
in order.

5.1 BlueDBM Platform
BlueCache is implemented on MIT’s BlueDBM [34, 33] cluster,

a multi-FPGA platform consisting of identical nodes. Each node is
a Intel Xeon server with a BlueDBM storage node plugged into
a PCIe slot. Each BlueDBM node storage consists of a Xilinx
VC707 FPGA development board with two 0.5TB custom flash
cards. The VC707 board is the primary carrier card, and it has a
Virtex-7 FPGA and a 1GB DDR3 SODIMM. Each flash card is
plugged into a standard FPGA Mezzanine Card (FMC) port on the
VC707 board, and provides an error-free parallel access into an ar-
ray NAND flash chips (1.2GB/s or 150K IOPs for random 8KB
page read) [49]. Each BlueDBM storage node has four 10Gbps se-
rial transceivers configured as Aurora 64B/66B encoded links with
0.5µs latency per hop. BlueDBM also supports a virtual network
over the serial links, which provides virtual channels with end-to-
end flow control [35].

BlueCache KVS components are mapped into different BlueDBM
parts. The Xeon computer nodes are used as application servers,
and BlueDBM storage nodes are used as the KVS. On each BlueDBM
storage node, the KV-index cache is stored in the DDR3 SODIMM,
and the KV-data store is stored in the flash. The high-speed serial
links are used as the BlueCache network. The Virtex-7 FPGA hosts
all the hardware accelerators, which are developed in the high-level
hardware description language Bluespec [2].

On the BlueDBM’s Xeon servers, the software interface is de-
veloped on Ubuntu 12.04 with Linux 3.13.0 kernel. We used the
Connectal [38] hardware-software codesign library which provides
RPC-like interfaces and DMA over PCIe. We used a PCIe gen 1
version of Connectal, which supports 1 GB/s to and 1.6GB/s from
FPGA. Two flash cards would provide a total of 2.4 GB/s band-
width which would exceed the PCIe gen 1 speed; however, only

one flash card is used due the limitation of FPGA resources to be
explained in Section 5.2.

5.2 FPGA Resource Utilization
Table 2: Host Virtex 7 resource usage

Module Name LUTs Registers RAMB36 RAMB18
KVS Protocol Engine 17128 13477 8 0
Network Engine 74968 184926 189 11
KV Data Store Manager 33454 32373 228 2
KV Index Cache Manager Table 52920 49122 0 0
Virtex-7 Total 265660 227662 524 25

(88%) (37%) (51%) (1%)

Table 2 shows the VC707 resource usage for a single node of a
four node configuration with one active flash card per node. This
configuration uses most (88%) of the LUTs and half the BRAM
blocks. Given the current design, the VC707 does not support a
full-scale BlueCache KVS by using all the hardware resources pro-
vided by BlueDBM platform (20-node KVS node with 20TB flash
capacity).

5.3 Power Consumption
Table 3: BlueCache power consumption vs. other KVS platforms
Platforms Capacity Power Capacity/Watt

(GB) (Watt) (GB/Watt)
FPGA with Raw Flash Memory(BlueCache) 20,000 800 25.00
FPGA with SATA SSD(memcached) [17] 272 27.2 10.00
Xeon Server(FlashStore) [22] 80 83.5 0.96
Xeon Server(optimized MICA) [45] 128 399.2 0.32
Xeon Server+GPU(Mega-KV) [64] 128 899.2 0.14

Table 3 compares the power consumption of BlueCache with
other KVS systems. Thanks to the lower consumption of FPGAs,
one BlueCache node only consumes approximately 40 Watts at
peak. A 20-node BlueCache cluster consumes 800 Watts and pro-
vides 20TB of key-value capacity. Compared to other top KVS
platforms in literature, BlueCache has the highest capacity per watt,
which is at least 25X better than x86 Xeon server platforms, and
2.5X over an FPGA-based KVS with SATA SSDs. A production
system of BlueCache can easily support 8TB NAND flash chips
per node, and a single node can provide 2.5M IOPs of random 8KB
page read and comsumes less than 50W (1/8 of a Xeon server) [59].

6. EVALUATION

6.1 Single-Node Performance
We evaluated GET and SET operation performance on a single

BlueCache node. We measured both throughput and latency of the
operations. Measurements are made from application servers with-
out multi-thread software interface to test the peak performance of
the BlueCache hardware.

6.1.1 DRAM-only Performance
This part evaluates the performance of a single-node BlueCache

DRAM-only implementation. All key-value pairs are resident on
the slab-structured DRAM store of the KV data cache. Measure-
ments are made with key-value pairs of different sizes, keys are all
32B.

1) Operation Throughput: Figure 12 shows the throughput of a
single-node DRAM-only BlueCache. DRAM-only BlueCache has
peak performance of 4.14MRPS for SET operations and 4.01MRPS
for GET. This is a 10X improvement over the stock memcached
running on a Xeon server which support 410 KRPS at peak.

BlueCache operation throughput is limited by different hardware
components depending on the size of key-value pairs. For small
key-value pairs (<512B), operation throughput is bottlenecked by

307

 1

 4

 16

 64

 256

 1024

 4096

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M
 0

 0.5

 1

 1.5

 2
T

hr
ou

gh
pu

t (
K

R
P

S
)

Lo
gs

ca
le

B
an

dw
id

th
 (

G
B

/s
)

Key-value pair size in Bytes

(a) SET Throughput

SET operation throughput
Bandwidth

 1

 4

 16

 64

 256

 1024

 4096

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M
 0

 0.5

 1

 1.5

 2

T
hr

ou
gh

pu
t (

K
R

P
S

)
Lo

gs
ca

le

B
an

dw
id

th
 (

G
B

/s
)

Key-value pair size in Bytes

(b) GET Throughput

GET operation throughput
Bandwidth

Figure 12: Single-node operation throughput on DRAM only

 0

 200

 400

 600

 800

 1000

 1200

 1400

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

La
te

nc
y

(u
s)

Key-value pair size in Bytes

(a) SET Latency

PCIe Latency
Data Transfer Latency
SW Latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

La
te

nc
y

(u
s)

Key-value pair size in Bytes

(b) GET Latency

PCIe Latency
Data Transfer Latency
SW Latency

Figure 13: Single-node operation latency on DRAM only

random access bandwidth of the DDR3 memory. DRAMs sup-
port fast sequential accesses, but is slow for random accesses. As
measured from the 1GB DDR3 DRAM, bandwidth is 12.8GB/s
for sequential access vs 1.28GB/s for random access. For large
key-value pairs (>512B), DRAM sequential accesses dominate but
PCIe bandwidth limits the performance of BlueCache. PCIe gen1
limits transfers from the application server to BlueCache at 1.2GB/s
for SETs and 1.6GB/s in the reverse direction for GETs.

2) Operation Latency: Operation latency consists of PCIe la-
tency, data transfer latency and software latency. Figure 13 shows
that operation latency of single-node DRAM-only BlueCache varies
from 20µs to 1200µs. PCIe latency is constant about 20µs (10µs
per direction), and it is the dominant latency source when key-
value pairs are small(<8KB). Data transfer latency increases as
key-value pairs become larger, and it dominates latency for key-
value pairs larger than 8KB. Software latency includes processing
time of PCIe interrupts, DMA requests and other software com-
ponents. Software latency is small because only one interrupt is
needed for key-value sizes smaller than 8KB. For bigger key-value
pairs, there are more DMA bursts which requires more interrupts
per KVS request, and the software overhead becomes significant.

6.1.2 Performance with Flash
This section evaluates the performance of a single-node Blue-

Cache implementation with flash. All key-value pairs are resident
on the log-structured flash store of the key-value data cache. Mea-
surements are made with key-value pairs of different sizes, keys are
all 32B.

1) Operation Throughput: Figure 14 shows the throughput of a
single-node BlueCache with one flash board. Using flash, Blue-
Cache has peak performance of 6.45MRPS for SET operations and
148.49KRPS for GET operations with 64 byte key-value pairs.

For SET operations, key-value pairs are buffered in DRAM and
then written to flash in bulk at the 430MB/s NAND Flash write
bandwidth (Figure 14(a)). For 64-byte key-value pairs, SET oper-
ations on flash has more bandwidth than DRAM (Figure 14(a) vs.
Figure 12(a)). The slower performance on DRAM is due to poor
random accesses on the single-channel DDR3 SDRAM. For flash,

 0.25

 1

 4

 16

 64

 256

 1024

 4096

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
hr

ou
gh

pu
t (

K
R

P
S

)
Lo

gs
ca

le

B
an

dw
id

th
 (

G
B

/s
)

Key-value pair size in Bytes

(a) SET Throughput

SET operation throughput
Bandwidth

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
hr

ou
gh

pu
t (

K
R

P
S

)
Lo

gs
ca

le

B
an

dw
id

th
 (

G
B

/s
)

Key-value pair size in Bytes

(b) GET Throughput

GET operation throughput
Bandwidth

Figure 14: Single-node operation throughput on flash

 0

 200

 400

 600

 800

 1000

 1200

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

La
te

nc
y

(u
s)

Key-value pair size in Bytes

(a) SET Latency

PCIe Latency
Data Transfer Latency
SW Latency

 0

 200

 400

 600

 800

 1000

 1200

64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M

La
te

nc
y

(u
s)

Key-value pair size in Bytes

(b) GET Latency

PCIe Latency
Flash Read Latency
Data Transfer Latency
SW Latency

Figure 15: Single-node operation latency on flash

performance is better because there are more sequential DRAM
write pattern from the DRAM write buffer on the flash KV data
store.

For GET operations, the requirement to read 8KB NAND pages
limits throughput to 148K IO/s. As shown in Figure 14(a), for key-
value pairs smaller than 8KB, only one page of flash is read and
so the operation throughput is same as that of flash (~148KPS).
For key-value pairs greater than 8KB, multiple pages are read from
flash, and operation throughput is limited by flash read bandwidth.

2) Operation Latency: Figure 15 shows operation latency of a
single-node BlueCache. SET operation latency of BlueCache using
flash varies from 21µs to 1100µs, which is similar to that using
DRAM only, because all SET operations are buffered in DRAM
before being written to flash. GET operation latency consists of
PCIe latency, flash read latency, data transfer latency, and software
latency. GET operation latency varies from 150µ to 1024µs. Data
transfer latency dominates, because an entire flash page needs to be
fetched even for small reads.

6.2 Multi-Node Performance
We measured multi-node performance by chaining four Blue-

Cache nodes together in a linear array. Each BlueCache node is
attached to an application server via PCIe.

1) Operation Throughput: We measured BlueCache throughput
under the following scenarios: (1) a single application server ac-
cessing multiple BlueCache nodes (Figure 16(a)). (2) multiple ap-
plication servers accessing a single BlueCache node (Figure 16(b)).
(3) multiple application servers accessing multiple BlueCache nodes
(Figure 16(c)). All accesses are 40,000 random GET operations of
8KB key-value pairs on flash.

The first scenario examines the scalability of BlueCache when
there is only one application server accessing BlueCache. We ob-
served some speed-up (from 148 KPRS to 200 KRPS) by accessing
multiple storage nodes in parallel (See Figure 16(a)), but ultimately
we are bottlenecked by PCIe (current x8 Gen 1.0 at 1.6GB/s). We
are currently upgrading BlueCache pipeline for PCIe Gen 2.0, which
would double the bandwidth. In general, since the total throughput
from multiple BlueCache servers is extremely high, a single appli-

308

 0

 50

 100

 150

 200

 250

1 2 3 4
 0

 0.5

 1

 1.5

 2

PCIe bandwidth

T
hr

ou
gh

pu
t (

K
R

P
S

)

B
an

dw
id

th
 (

G
B

/s
)

Number of Bluecache Nodes
(a)

 0

 50

 100

 150

 200

 250

1 2 3 4
 0

 0.5

 1

 1.5

 2

T
hr

ou
gh

pu
t (

K
R

P
S

)

B
an

dw
id

th
 (

G
B

/s
)

Number of Application Servers
(b)

App Server[0]
App Server[1]
App Server[2]
App Server[3]

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4
 0

 1

 2

 3

 4

 5

T
hr

ou
gh

pu
t (

K
R

P
S

)

B
an

dw
id

th
 (

G
B

/s
)

Number of Application Servers
(c)

App Server[0]
App Server[1]
App Server[2]
App Server[3]
Total Internal Flash BW

Figure 16: Multi-node GET operation bandwidth. (a) single app server, multiple BlueCache nodes, (b) multiple app servers, single Bluecache
node, (c) multiple app servers, multiple BlueCache nodes

cation server with a host interface cannot consume the aggregate
internal bandwidth of a BlueCache KVS cluster.

The second scenario examines the behavior of BlueCache when
there is resource contention for a BlueCache storage node by multi-
ple application servers. Figure 16(b) shows that the network engine
is able to maintain the peak flash performance, but favors the appli-
cation server to which it is attached. In the current implementation,
half of the flash bandwidth is allocated to the application server
attached to a storage node.

The last scenario illustrates the aggregated bandwidth scalabil-
ity of BlueCache KVS cluster, with multiple application servers
accessing all KVS nodes. The line in Figure 16(c) shows the to-
tal maximum internal flash bandwidth of all BlueCache nodes, and
the stacked bars show overall throughput achieved by all applica-
tion servers. We achieved 99.4% of the maximum potential scaling
for 2 nodes, 97.7% for 3 nodes, and 92.7% for 4 nodes at total of
550.16 KRPS.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3

La
te

nc
y

(u
s)

Number of Hops

Average GET latency on DRAM
Average GET latency on Flash

24.15 26.05 30.92 31.05

155.93 156.37 153.87 158.24

Figure 17: Multi-node GET operation latency on DRAM/Flash
2) Operation Latency: Figure 17 shows the average GET oper-

ation latency for 8KB key-value pairs over multiple hops of Blue-
Cache nodes. Latency is measured from both DRAM and flash.
We measured that that each hop takes ~0.5µs, therefore BlueCache
handshake network protocol only takes 1.5µs per hop. When key-
value pairs are on DRAM, we observed a ~2µs increase of access
latency per hop for various number of node traversals, which is
much smaller than overall access latency (~25µs). Access varia-
tions from other parts of BlueCache hardware are far greater than
the network latency, as shown as error bars in Figure 17. Because
accessing remote nodes are equally as fast as local nodes, the entire
BlueCache KVS cluster appears as a fast local KVS storage, even
though it is physically distributed among different devices.

6.3 Application Multi-Access Performance
Applications use BlueCache’s software interface (See Section 4)

to access BlueCache KVS cluster concurrently. Figure 18 shows
the performance of BlueCache’s software interface when there are
multiple application threads sending synchronous GET requests.
When there are a small number of application threads, BlueCache
delivers nearly raw flash device latency of 200µs. However, flash

bandwidth is not saturated because there are not enough outstand-
ing requests. Increasing the number of concurrent threads increases
in-flight KVS requests and KVS throughput. However, if there
are too many threads, latency increases to the undesirable millisec-
ond range because of significant software overheads from context
switching, locking, and request clustering. Configuring the appli-
cation with 128 threads delivers 132.552 KRPS throughput at only
640.90 µs average latency on 1KB key-value pair GETs.

 0

 20

 40

 60

 80

 100

 120

 140

 160

32 64 128 256
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
hr

ou
gh

pu
t (

K
R

P
S

)

A
ve

ra
ge

 L
at

en
cy

 (
us

)

Number of concurent threads

GET operation throughput
Average Latency

Figure 18: Accessing BlueCache via software interface, key-value
pair sizes are 1KB

We also ran the same experiments on Fatcache, which is an SSD-
backed software KVS implemention. We ran Fatcache on a 24-
core Xeon server with one 0.5TB PCIe-based Samsung SSD and
one 1Gbps Ethernet. The SSD performs like BlueCache’s Flash
board (130K IOPs vs 150K IOPs for 8KB page reads). Our result
shows that Fatcache only provides 32KRPS throughput and 3000µs
average latency. In comparison, BlueCache can fully exploit the
raw flash device performance, and shows 4.18X higher throughput
and 4.68X lower latency over Fatcache.

Figure 19 breaks down the latency of Fatcache and BlueCache
requests. The actual Flash access latency is the same, but Blue-
Cache eliminates 300µs of network latency [53], 128 µs of NIC
latency [58, 53], and 2000 µs of KVS software latency.

6.4 Social Networking Benchmark
We used BG [13], a social networking benchmark, to evaluate

BlueCache as a data-center cache. BG consists of a back-end stor-
ing profiles for a fixed number of users, and a front-end multi-
threaded workload simulator. Each front-end thread simulates a
user performing social actions. Social actions consist of View Pro-
file, List Friends, Post Comment, Delete Comment, and so forth.

An example of a BG backend is a MySQL database. The MySQL
database persistently stores member profiles in four tables with
proper primary/foreign keys and secondary indexes to enable effi-
cient database operations. BG implements 11 social actions which
can be translated to SQL statements to access the database.

BG also supports augmenting the back-end with a KVS cache.
A social action type is prefixed with the member ID to form a KVS
request key, the corresponding MySQL query result is stored as the

309

KVS SW
(1000us)

KVS SW
(1000 us)

Flash read latency
(100 us)

NIC
(32 us)

Switches + Wire time
(150 us)

NIC
(32 us)

NIC
(32 us)

Switches + Wire time
(150 us)

NIC
(32us)

App Server Network NetworkSoftware KVS Node
App SW
(250 us)

App SW
(250 us)

App Server

Network
(1.5us)

Network
(1.5us)

RTL logics
(1us)

PCIe
(10us)

PCIe
(10us)

Flash read latency
(100 us)

BlueCache NodeApp Server App Server

App SW
(250 us)

App SW
(250 us)

(a) Flash-based KVS software(~3000us) (b) BlueCache(~640us)

Figure 19: End-to-end processing latency comparison of SSD KVS software and BlueCache

value. The interactions between KVS and MySQL database are the
same as were described in Section 2.1. The average size of key-
value pairs of BG benchmark is 1.54KB.

We performed experiments with BG benchmark by using three
different KVS systems: BlueCache, a DRAM-based KVS (stock
memcached) and a flash-based KVS (Fatcache [63]). In the next
two sections we describe the experiment setup and three experi-
ments to evaluate BlueCache.

6.4.1 Experiment setup
MySQL Server runs a MySQL database containing persistent user
data of BG benchmark. It is a single dedicated machine which has
two Intel Xeon E5-2665 CPUs (32 logical cores, 2.4GHz), 64GB
DRAM, 3x 0.5TB M.2 PCIe SSDs in RAID-0 (~3GB/s bandwidth)
and a 1Gbps Ethernet adapter. The database is pre-populated with
member profiles of 20 millions users, which is ~600GB of data.
The database is configured with a 40GB InnoDB buffer pool.
Application Server runs BG’s front-end workload simulator on a
single machine which has two Intel Xeon X5670 CPUs (24 logic
cores, 2.93GHz), and 48GB DRAM. BG’s front-end multi-threaded
workload simulator supports a maximum of 6 million active users
on this server, which is about 20GB of working set. The front end
has a zipfian distribution with mean value of 0.27, to mimic the
skew nature of the workload.
Key-Value Store caches MySQL database query results. We ex-
perimented with three KVS systems to examine behaviors of dif-
ferent KVSs as data-center caching solutions.

System A, Software DRAM-based KVS: System A uses stock
memcached as a in-memory key-value cache, and uses 48 appli-
cation threads to maximize throughput of memcached.

System B, Hardware flash-based KVS: System B uses a single
BlueCache node as a key-value cache. The BlueCache node is at-
tached to the client server via PCIe. System B uses 128 application
threads to maximize throughput of BlueCache.

System C, Software flash-based KVS: System C uses Fatcache, a
software implementation of memcached on commodity SSD. Sys-
tem C uses 48 application threads to maximize throughput of Fat-
cache.

Table 4 compares the characteristics of storage medium used by
three different KVS systems.

Table 4: KVS storage technology comparison
KVS systems Storage Media Capacity Bandwidth
memcached DDR3 SDRAM DIMMs 15GB 64GB/s
BlueCache NAND flash chips 0.5TB 1.2GB/s or 150K IOPs
FatCache Samsung m.2 PCIe SSD 0.5TB 1GB/s or 130K IOPs

We also found that running the benchmark frontend and mem-
cached on the same server has higher throughput than running them
on separate machines. The network connection speed between the
application server and the KVS plays a critical role in the over-
all system performance. Figure 20 shows that the throughput of
stock memcached decreases exponentially when more of the pro-
cessing time is spent on network compared to actual in-memory
KVS access. We measured peak throughput of stock memcached
via 1Gbps Ethernet, which is about 113 KRPS and is lower than
the peak throughput of BlueCache. The 1Gbps Ethernet can limit
the performance of System A and C, while BlueCache’s fast net-
work is not a bottleneck for System B. When memcached and the

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
R

P
S

)

Ratio of network latency to in-memory key-value processing time

GET Operation Throughput

Figure 20: Throughput of memcached for relative network laten-
cies
application runs on the same server, the throughput is 423KRPS,
and the server utilizes <50% of CPU cycles at peak, which means
sharing CPU cycles was not a bottleneck in such a set-up. For our
experiments, we eliminated the 1Gbps network bottleneck and de-
ployed both System A and C on the same physical machine of the
application server, to have a fair comparison with System B.

6.4.2 Experiments
We ran BG benchmark with our experimental setup to evalu-

ate the characteristics of BlueCache and other KVSs as data-center
caches. Misses from KVS are penalized by reading the slower
backend to refill the KVS cache, thus KVS miss rate is an important
metric to evaluate the efficacy of the cache. There are two types of
misses for KVS caches. First type happens when KVS capacity is
limited and can not hold the entire working set of the application.
We call them capacity misses. The second type of KVS misses are
caused by updates to the backend. When new data is written, the
application DELETEs the relevant key-value pairs in KVS to make
KVS coherent with the new data in the backend. In this case, the
next corresponding GET request will return a miss. We call such
misses coherence misses.

We ran three experiments to examine how KVS misses can effect
the overall performance of different KVS cache solutions.

Experiment 1 evaluates the benefits of a slow and large KVS
cache over a fast and small one. Like typical real use cases [18, 11],
the front-end application in this experiment has a very low update
rate (0.1%), thus coherence misses are rare. DRAM-based solu-
tion (memcached) is faster than flash-based solution (BlueCache),
but its superiority can quickly diminish as the former suffers from
more capacity misses. We will show the cross point where Blue-
Cache overtakes memcached. We will also show the superiority of
a hardware-accelerated flashed-based KVS solution over a software
implementation (BlueCache vs. Fatcache).

Experiment 2 examines the behavior of BlueCache and mem-
cached when they have the same capacity. In such cases, both KVS
solutions will experience capacity misses, and we will show the
performance drop as capacity misses increase for both systems.

Experiment 3 examines the behavior of BlueCache and mem-
cached when the application has more updates to the backend. In
such cases, both KVS solutions will experience coherence misses,
and we will show the performance drop as coherence misses in-
crease for both systems.
Results: Experiment 1 shows that BlueCache can sustain more
request rate than memcached, when the latter has the more than

310

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

M
is

s
R

at
e(

%
)

of Active Users (Millions)
(a) KVS Miss Rate

memcached
BlueCache

FatCache

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

T
hr

ou
gh

pu
t (

K
R

P
S

)

of Active Users (Millions)
(b) KVS-augmented MySQL Throughput

memcached
BlueCache

FatCache

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

A
ve

ra
ge

 L
at

en
cy

 (
us

)

of Active Users (Millions)
(c) End-to-end Latency (Average)

memcached
BlueCache

FatCache

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

95
th

 P
er

ce
nt

ile
 L

at
en

cy
 (

us
)

of Active Users (Millions)
(d) End-to-end Latency (95th Percentile)

memcached
BlueCache

FatCache

Figure 21: Performance of BlueCache and other KVS systems as augmentations to a MySQL database, which stores simulated data of a
social network generated by BG benchmark. Evaluations are made with various numbers of active social network users.

7.4% misses (See Figure 21(a)(b)). With no capacity misses, mem-
cached sustains 3.8X higher request rate (415KRPS) than Blue-
Cache (123KRPS), and 12.9X higher than Fatcache (32KRPS). As
the number of active users increases, the capacity of memcached is
exceeded and its miss rate increases. Increasing miss rate degrades
throughput of the overall system, since each memcached miss re-
quires MySQL accesses. BlueCache and memcached meet at the
cross point at 7.4% miss rate. Fatcache, on the other hand, is 4.18X
slower than memcached, and its Fatcache throughput does not ex-
ceed that of memcached until the number of active users exceeds
5.75 million and memcached’s miss rate exceeds 18%.

Similar trend can also be found in the end-to-end application la-
tency of BG benchmark for different KVS solutions (Figure 21(c)(d)).
When there are no capacity misses, memcached provides an av-
erage latency of 100µs that is 20X faster than BlueCache.When
memcached suffers more than 10% misses, BlueCache shows much
better 95th percentile latency (2600µs) than memcached (3600µs-
6900µs), because of miss penalties by MySQL. On the other hand,
Fatcache shows about similar average latency with BlueCache (1700µs
vs. 2100µs), but it has much larger variations in the latency pro-
file and has 1.5X shorter 95th percentile latency than BlueCache
(4000µs vs. 2600µs).

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.05 0.1 0.15 0.2 0.25

T
hr

ou
gh

pu
t (

K
R

P
S

)

Cache Miss Rate
(a) System Throughput

memcached
Bluecache

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 L
at

en
cy

 (
us

)

Cache Miss Rate
(b) System Latency

Memcached on local DRAM
Bluecache

Figure 22: BG performance for different capacity miss rates, both
memcached and BlueCache have the same capacity of 15GB

Experiment 2 examines the behavior of capacity cache misses of
BlueCache and memcached. In this experiment, we configured the
BlueCache to the same size of as memcached of 15GB, and made
the benchmark to issue read-only requests. Thus, all misses are ca-
pacity misses. Figure 22(a) shows that throughput of both KVSs
decreases as miss rate increases, with memcached dropping at a
faster pace. Beyond 16% miss rate, both KVSs merge at the same
throughput when the backend becomes the bottleneck. Figure 22(b)
shows that latency also increases as miss rate increases, but mem-
cached delivers shorter latency than BlueCache in general. On Fig-
ure 22(b), there is a breakpoint of the latency for BlueCache, be-
cause of change of thread counts of the benchmark. The benchmark
changes the thread count from 128 to 64 at the breakpoint, in order
to reduce request congestion and lower latency while maintaining

maximum throughput. In an ideal case, the benchmark would dy-
namically adjust the request admission rate, so that the curve in
Figure 22(b) would be smooth.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 0.05 0.1 0.15 0.2 0.25

T
hr

ou
gh

pu
t (

K
R

P
S

)

Cache Miss Rate
(a) System Throughput

memcached
Bluecache

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 L
at

en
cy

 (
us

)

Cache Miss Rate
(b) System Latency

Memcached on local DRAM
Bluecache

Figure 23: BG performance for different coherence miss rates
Experiment 3 examines the behavior of coherence cache misses

of BlueCache and memcached. In this experiment, we vary read-
/write ratios of the benchmark, to control the coherence cache miss
rate. Similar to Experiment 1, the throughput of both KVSs de-
creases as miss rate increases, with memcached dropping at a faster
pace (Figure 23(a)). And at merely 6% miss rate, both KVSs merge
at the same throughput when the backend becomes the bottleneck.
Figure 23(b) shows that latency also increases as miss rate increases,
but memcached delivers shorter latency than BlueCache in general.
Similar to Experiment 2, the break point of latency for BlueCache
is due to change of request thread count to reduce request conges-
tion from the applications.

7. CONCLUSION
We have presented BlueCache, a fast distributed flash-based key

value store appliance that uses near-storage KVS-aware flash man-
agement and integrated network as an alternative to the DRAM-
based software solutions at much lower cost and power. A rack-
sized BlueCache mini-cluster is likely to be an order of magnitude
cheaper than an in-memory KVS cloud with enough DRAM to
accommodate 10~20TB of data. We have demonstrated the per-
formance benefits of BlueCache over other flash-based key value
store software without KVS-aware flash management. We have
demonstrated the scalability of BlueCache by using the fast inte-
grated network. Moreover, we have shown that the performance of
a system which relies data being resident in in-memory KVS, drops
rapidly even if a small portion of data has to be stored in the sec-
ondary storage. With more that 7.4% misses from in-memory KVS,
BlueCache is superior solution in data centers than a DRAM-based
KVS, with more affordable and much larger storage capacity.

All of the source codes of the work are available to the public
under the MIT license. Please refer to the git repositories: https:
//github.com/xushuotao/bluecache.git and https:
//github.com/sangwoojun/bluedbm.git.

311

https://github.com/xushuotao/bluecache.git
https://github.com/xushuotao/bluecache.git
https://github.com/sangwoojun/bluedbm.git
https://github.com/sangwoojun/bluedbm.git

Acknowledgments. This work is partially funded by Samsung
(Res. Agmt. Eff. 01/01/12), SK Hynix, Netapp and MIT Lincoln
Laboratory (PO7000261350) under various grants to CSAIL, MIT.
We thank Quanta Computer for providing help and funding (Agmt.
Dtd. 04/01/05) in building BlueDBM on which all our experiments
were performed. We also thank Xilinx for their generous donation
of VC707 FPGA boards and FPGA design expertise.

8. REFERENCES
[1] A Hash Function for Hash Table Lookup. http://goo.gl/VDzzLb.
[2] Bluespec Inc. http://www.bluespec.com.
[3] Netflix EVCache. http://goo.gl/9zoxJ6.
[4] Nvidia GeForce GTX 780 Specifications. http://goo.gl/6Yhlv6.
[5] Redis. http://redis.io.
[6] Samsung 850 PRO. http://goo.gl/vjPj7V.
[7] Samsung 950 PRO. http://goo.gl/DCwQpd.
[8] Samsung M393A2G40DB0-CPB. http://goo.gl/BOL4ye.
[9] Samsung DDR4 SDRAM. http://goo.gl/LO1ExG, June 2013.

[10] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. FAWN: A Fast Array of Wimpy Nodes. In SOSP, pages 1–14,
2009.

[11] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload
analysis of a large-scale key-value store. In SIGMETRICS, pages 53–64, 2012.

[12] A. Badam and V. S. Pai. SSDAlloc: Hybrid SSD/RAM Memory Management
Made Easy. In NSDI, pages 211–224, 2011.

[13] S. Barahmand and S. Ghandeharizadeh. BG: A Benchmark to Evaluate
Interactive Social Networking Actions. In CIDR, 2013.

[14] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’T
Thrash: How to Cache Your Hash on Flash. Proc. VLDB Endow., pages
1627–1637, 2012.

[15] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core
Key-value Store. In IGCC, pages 1–8, 2011.

[16] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István. Achieving 10Gbps
Line-rate Key-value Stores with FPGAs. In Presented as part of the 5th
USENIX Workshop on Hot Topics in Cloud Computing, 2013.

[17] M. Blott, L. Liu, K. Karras, and K. Vissers. Scaling Out to a Single-Node
80Gbps Memcached Server with 40Terabytes of Memory. In HotStorage, 2015.

[18] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,
A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani. TAO: Facebook’s Distributed Data Store for the Social
Graph. In USENIX ATC, pages 49–60, 2013.

[19] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan, and
M. Margala. An FPGA Memcached Appliance. In FPGA, pages 245–254, 2013.

[20] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting internal parallelism
of flash memory based solid state drives in high-speed data processing. In
HPCA, pages 266–277, 2011.

[21] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song. System
Software for Flash Memory: A Survey. In EUC, pages 394–404, 2006.

[22] B. K. Debnath, S. Sengupta, and J. Li. FlashStore: High Throughput Persistent
Key-Value Store. Proc. VLDB Endow., pages 1414–1425, 2010.

[23] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast Remote
Memory. In NSDI, pages 401–414, 2014.

[24] E. S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai, and
M. Motomura. Caching memcached at reconfigurable network interface. In
FPL, pages 1–6, 2014.

[25] Fusion IO. using membrain as a flash-based cache.
http://goo.gl/Khecz6, December 2011.

[26] S. Gunelius. The Data Explosion in 2014 Minute by Minute Infographic.
http://goo.gl/9CqKj5, July 2014.

[27] T. H. Hetherington, M. O’Connor, and T. M. Aamodt. MemcachedGPU:
Scaling-up Scale-out Key-value Stores. In SoCC, pages 43–57, 2015.

[28] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt.
Characterizing and Evaluating a Key-value Store Application on Heterogeneous
CPU-GPU Systems. In ISPASS, pages 88–98, 2012.

[29] Intel Inc. Intel Data Direct I/O Technology. http://goo.gl/2puCwN.
[30] Intel Inc. Intel Data Plane Development Kit(Intel DPDK) Overview - Packet

Processing on Intel Architecture. http://goo.gl/W5oBBV, December
2012.

[31] J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur Rahman, H. Wang,
S. Narravula, and D. K. Panda. Scalable Memcached Design for InfiniBand
Clusters Using Hybrid Transports. In CCGRID, pages 236–243, 2012.

[32] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur Rahman, N. S.
Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda. Memcached Design on
High Performance RDMA Capable Interconnects. In ICPP, pages 743–752,
2011.

[33] S.-W. Jun, M. Liu, K. E. Fleming, and Arvind. Scalable Multi-access Flash
Store for Big Data Analytics. In FPGA, pages 55–64, 2014.

[34] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and Arvind.
BlueDBM: An Appliance for Big Data Analytics. In ISCA, pages 1–13, 2015.

[35] S.-W. Jun, M. Liu, S. Xu, and Arvind. A transport-layer network for distributed
fpga platforms. In FPL, pages 1–4, 2015.

[36] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently for
Key-value Services. In SIGCOMM, pages 295–306, 2014.

[37] D. Karger, E. Lehman, T. Leighton, R. Panigraphy, M. Levine, and D. Lewin.
Consistent hashing and random trees: distributed caching protocols for
relieving hot spots on the World Wide Web. In STOC, pages 654–663, 1997.

[38] M. King, J. Hicks, and J. Ankcorn. Software-Driven Hardware Development. In
FPGA, pages 13–22, 2015.

[39] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh. A New Linux Swap System for
Flash Memory Storage Devices. In ICCSA, pages 151–156, 2008.

[40] M. Lavasani, H. Angepat, and D. Chiou. An FPGA-based In-Line Accelerator
for Memcached. Computer Architecture Letters, pages 57–60, 2014.

[41] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A New File System for Flash
Storage. In FAST, pages 273–286, 2015.

[42] S. Lee, J. Kim, and Arvind. Refactored Design of I/O Architecture for Flash
Storage. Computer Architecture Letters, pages 70–74, 2015.

[43] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind. Application-Managed Flash.
In FAST, pages 339–353, 2016.

[44] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A case for flash
memory ssd in enterprise database applications. In SIGMOD, pages 1075–1086,
2008.

[45] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G. Andersen,
O. Seongil, S. Lee, and P. Dubey. Architecting to Achieve a Billion Requests
Per Second Throughput on a Single Key-value Store Server Platform. In ISCA,
pages 476–488, 2015.

[46] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. Silt: A memory-efficient,
high-performance key-value store. In SOSP, pages 1–13, 2011.

[47] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A Holistic
Approach to Fast In-memory Key-value Storage. In NSDI, pages 429–444,
2014.

[48] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch. Thin
servers with smart pipes: Designing soc accelerators for memcached. In ISCA,
pages 36–47, 2013.

[49] M. Liu, S.-W. Jun, S. Lee, J. Hicks, and Arvind. minflash: A minimalistic
clustered flash array. In DATE, pages 1255–1260, 2016.

[50] X. Liu and K. Salem. Hybrid Storage Management for Database Systems. Proc.
VLDB Endow., pages 541–552, 2013.

[51] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA Reads to Build a Fast,
CPU-Efficient Key-Value Store. In USENIX ATC, pages 103–114, 2013.

[52] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling Memcache at Facebook. In NSDI, pages 385–398,
2013.

[53] J. Ousterhout. RAMCloud and the Low-Latency Datacenter.
http://goo.gl/uWsPnu, 2014.

[54] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The Case for RAMClouds: Scalable
High-performance Storage Entirely in DRAM. ACM SIGOPS Operating
Systems Review, pages 92–105, 2010.

[55] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. SDF:
Software-defined Flash for Web-scale Internet Storage Systems. In ASPLOS,
pages 471–484, 2014.

[56] X. Ouyang, N. Islam, R. Rajachandrasekar, J. Jose, M. Luo, H. Wang, and
D. Panda. SSD-Assisted Hybrid Memory to Accelerate Memcached over High
Performance Networks. In ICPP, pages 470–479, 2012.

[57] I. Petrov, G. Almeida, A. Buchmann, and U. Gräf. Building Large Storage
Based On Flash Disks. In ADMS@ VLDB, 2010.

[58] M. Rosenblum and A. N. Mario Flajslik. Low Latency RPC in RAMCloud.
http://goo.gl/3FwCnU, 2011.

[59] SanDisk. Fusion ioMemory PX600 PCIe Application Accelerators.
http://goo.gl/rqePxN.

[60] M. Saxena and M. M. Swift. FlashVM: Virtual Memory Management on Flash.
In USENIX ATC, pages 14–14, 2010.

[61] R. Stoica and A. Ailamaki. Improving Flash Write Performance by Using
Update Frequency. Proc. VLDB Endow., pages 733–744, 2013.

[62] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy Nodes with 10GbE: Leveraging
One-Sided Operations in Soft-RDMA to Boost Memcached. In USENIX ATC,
pages 347–353, 2012.

[63] Twitter Inc. Fatcache: memcache on SSD.
https://github.com/twitter/fatcache.

[64] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. Mega-KV: A Case
for GPUs to Maximize the Throughput of In-memory Key-value Stores. Proc.
VLDB Endow., pages 1226–1237, 2015.

312

http://goo.gl/VDzzLb
http://www.bluespec.com
http://goo.gl/9zoxJ6
http://goo.gl/6Yhlv6
http://redis.io
http://goo.gl/vjPj7V
http://goo.gl/DCwQpd
http://goo.gl/BOL4ye
http://goo.gl/LO1ExG
http://goo.gl/Khecz6
http://goo.gl/9CqKj5
http://goo.gl/2puCwN
http://goo.gl/W5oBBV
http://goo.gl/uWsPnu
http://goo.gl/3FwCnU
http://goo.gl/rqePxN
https://github.com/twitter/fatcache

	Introduction
	Related Work
	A Use Case of Key-Value Store
	DRAM-based Key-Value Store
	Flash-based Key-Value Store

	BlueCache Architecture
	KVS Protocol Engine
	Network Engine
	KV-Index Cache Manager
	KV-Data Store Manager
	From KVS Cache to Persistent KVS

	Software Interface
	BlueCache Implementation
	BlueDBM Platform
	FPGA Resource Utilization
	Power Consumption

	Evaluation
	Single-Node Performance
	DRAM-only Performance
	Performance with Flash

	Multi-Node Performance
	Application Multi-Access Performance
	Social Networking Benchmark
	Experiment setup
	Experiments

	Conclusion
	References

