
Finding Persistent Items in Data Streams

Haipeng Dai1 Muhammad Shahzad2 Alex X. Liu1 Yuankun Zhong1

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, CHINA
2Department of Computer Science, North Carolina State University, Raleigh, NC, USA

haipengdai@nju.edu.cn, mshahza@ncsu.edu, alexliu@cse.msu.edu, kun@smail.nju.edu.cn

ABSTRACT
Frequent item mining, which deals with finding items that
occur frequently in a given data stream over a period of
time, is one of the heavily studied problems in data stream
mining. A generalized version of frequent item mining is
the persistent item mining, where a persistent item, unlike
a frequent item, does not necessarily occur more frequently
compared to other items over a short period of time, rather
persists and occurs more frequently over a long period of
time. To the best of our knowledge, there is no prior work
on mining persistent items in a data stream. In this paper,
we address the fundamental problem of finding persistent
items in a given data stream during a given period of time
at any given observation point. We propose a novel scheme,
PIE, that can accurately identify each persistent item with
a probability greater than any desired false negative rate
(FNR) while using a very small amount of memory. The
key idea of PIE is that it uses Raptor codes to encode the
ID of each item that appears at the observation point dur-
ing a measurement period and stores only a few bits of the
encoded ID in the memory of that observation point during
that measurement period. The item that is persistent oc-
curs in enough measurement periods that enough encoded
bits for the ID can be retrieved from the observation point
to decode them correctly and get the ID of the persistent
item. We implemented and extensively evaluated PIE using
three real network traffic traces and compared its perfor-
mance with two prior adapted schemes. Our results show
that not only PIE achieves the desired FNR in every sce-
nario, its FNR, on average, is 19.5 times smaller than the
FNR of the best adapted prior art.

1. INTRODUCTION
1.1 Motivation and Problem Statement

With the increase in the popularity of applications that
process large volumes of data generated at high rates, such
as internet traffic analysis [12], business decision support
[3], direct marketing [20], and sensor data mining [2], data

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150-8097/16/12.

stream mining is becoming more and more important. Data
stream mining is the process of extracting information from
a data stream, where a data stream is an ordered sequence
of data items that can often only be read once using limited
computing and storage resources [11]. One of the heavily
studied problems in data stream mining is the fundamental
problem of mining frequent items, which deals with finding
items that occur most frequently in a given data stream over
a period of time [7, 8, 17–19]. Frequent item mining finds
applications in a variety of practical scenarios such as finding
most popular destinations or heaviest users on the Internet
by treating packets as items [7], and the most popular terms
in queries made to an Internet search engine [22].

A more generalized version of frequent item mining is the
persistent frequent item mining. A persistent frequent item,
unlike a frequent item, does not necessarily occur more fre-
quently compared to other items over a short period of time,
rather persists and occurs more frequently compared to oth-
er items only over a long period of time. For the sake of
brevity, onwards, we will call persistent frequent items just
persistent items. Persistent item mining finds applications
in a variety of settings such as network security and click-
fraud detection. For network security, persistent item min-
ing can be used to detect stealthy DDoS attacks, where an
attacker does not overwhelm the target rather degrades its
performance using a small number of attacking machines for
a long period of time [26]. Similarly, it can be used to detec-
t stealthy port scanning attacks, where an attacker uses a
small probing rate for a long period of time to discover sys-
tem vulnerabilities [26]. Persistent item mining can also be
used to detect network bots by monitoring the communica-
tion between a bot and its C&C server [13]. For click-fraud
detection, persistent item mining can be used to detect if
automatic robots are periodically generating clicks on an ad
to increase the payment for an advertiser in pay-per-click
online advertising systems [15].

In this paper, we address the fundamental problem of find-
ing, or in other words, identifying persistent items in a given
data stream during a given period of time at any given ob-
servation point. An observation point is any computing de-
vice that can see the data stream and can process and store
information about items in the data stream. Examples of
observation points include end hosts, network middleboxes
(such as routers and switches), firewalls, and other comput-
ing devices. To formally state the problem statement, let us
divide the given period of time into small equally sized mea-
surement periods. Let us also define the term occurrence as
an event that one or more instances of an item appear in a

289

measurement period. Formally, given a period of time com-
prised of T consecutive equally sized measurement periods, a
threshold Tth, and a desired false negative rate, identify the
persistent items, i.e., the items that occur in more than Tth

out of the T measurement periods, such that the percentage
of persistent item not successfully identified is less than the
desired false negative rate.

1.2 Limitations of Prior Art
To the best of our knowledge, there is no prior work on

identifying persistent items in a data stream. The most re-
lated problem is the extensively studied frequent item min-
ing problem [7, 8, 18, 19]. Unfortunately, none of the exist-
ing schemes for mining frequent items can be directly used
for mining persistent items because frequent item mining
schemes count the frequencies of items without taking the
temporal dimension into account. More specifically, a fre-
quent item mining scheme can calculate the total number
of instances in t measurement periods but it can not cal-
culate the number of measurement periods in which those
instances occurred out of the t measurement periods. For
example, in a stealthy DDoS attack, if an attacking ma-
chine sends 10, 000 packets during 100 measurement periods
while a legitimate machine sends the same number of pack-
ets in 2 measurement periods, existing frequent item min-
ing schemes can calculate that both machines sent 10, 000
packets each, but can not determine the amount of time
they took to send these packets. Furthermore, as existing
schemes for mining frequent items do not take the tempo-
ral dimension into account, they cannot eliminate duplicate
items within a measurement period, such as multiple pack-
ets belonging to the same flow, which can result in the over-
counting of the number of occurrences of an item.

1.3 Proposed Approach
In this paper, we propose PIE, a Persistent items

Identification schemE. PIE can accurately identify each per-
sistent item with a failure probability lower than the desired
false negative rate (FNR), where FNR is defined as the ratio
of the number of persistent items that PIE fails to identify
to the number of all persistent items. The key idea of PIE
is that it uses Raptor codes (proposed in [24]) to encode the
ID of each item that appears at a given observation point
during a measurement period and stores only a few bits of
the encoded ID in the memory of that observation point
during that measurement period. The ID of an item can be
any arbitrary identifier such as for network IP packets, it
can be the standard five tuple (i.e., source IP, destination
IP, source port, destination port, and protocol type). The
motivation behind encoding the ID with Raptor codes and
then storing the result instead of storing the original ID is
that the Raptor codes encode the given ID into a potential-
ly limitless sequence of bits. To decode the bits to obtain
the original ID, Raptor codes need only a small subset of
all the encoded bits. As we shall see later, it is possible
that when an observation point tries to store information
(either encoded or non-encoded) about ID of an item at a
memory location, that memory location may already be oc-
cupied, resulting in a collision and loss of ID information.
Had we been storing original non-encoded ID, the bits that
the observation point could not store due to collision would
be lost and the original ID may never be retrieved correctly.
On the contrary, when storing bits for the ID of an item
encoded with Raptor codes, even if some bits are lost due

to collision during a few measurement periods, if the item
is persistent, there will still be enough encoded bits stored
during other measurement periods such that they can be
correctly decoded to get the item ID. The motivation be-
hind storing only a few bits of the encoded ID during each
measurement period is to minimize the memory required at
the observation point. The item that is persistent will occur
in enough measurement periods that enough encoded bits
for the ID can be retrieved from the observation point to
decode them correctly and get the item ID. If we store e-
nough encoded bits for each item during each measurement
period such that the bits could be decoded to obtain the
original ID from just a single measurement period, it would
only result in wasted memory. To identify persistent items,
PIE simultaneously processes the information of IDs stored
during all measurement periods. For each persistent item,
with a high probability, PIE obtains enough encoded bits to
decode them correctly and get the ID of the persistent item.
We have theoretically calculated the expression for FNR.
PIE uses this expression to calculate the optimal number
of encoded bits for each ID that it should store during the
given measurement period such that the actual FNR never
exceeds the desired FNR and at the same time, the amount
of memory consumed at the observation point in storing the
encoded bits is minimum.

1.4 Key Technical Challenges
The first technical challenge is to store the IDs of persis-

tent items without requiring large amounts of memory at
the observation point. To address this challenge, instead of
storing original IDs of items during each measurement pe-
riod, we use Raptor codes to encode the ID of each item
and then store only a few bits of the encoded ID during
each measurement period. To ensure that the original ID
of each persistent item can be recovered with a high prob-
ability while consuming minimum amount of memory, we
theoretically calculate the expression for FNR as a function
of the length of Raptor codes, and then determine the min-
imum required number of encoded bits to be stored during
each measurement period.

The second technical challenge is to accurately recover
IDs of items using the encoded bits from multiple measure-
ment periods. The encoded bits for the ID of an item in
a measurement period are different from the encoded bits
for the ID of that item in a different measurement period.
Therefore, PIE cannot determine which sets of encoded bits
belong to the same ID. To address this challenge, PIE cal-
culates a hash-print of each ID by applying a hash function
to the ID and stores it along with the encoded bits during
each measurement period in which the item with that ID
appears. Unlike the encoded bits, the hash-print stays the
same across measurement periods. PIE uses this hash-print
to first group all sets of encoded bits across the T mea-
surement periods that have the same hash-print and then
recovers the ID using only the encoded bits in this group. It
is possible that the hash-print of two or more different IDs
may be the same. To address this challenge, after recovering
an ID from a group, PIE applies a two-step verification and
accepts the recovered ID only of the ID passes the two tests.

1.5 Key Contributions
PIE brings forward the state of the art in persistent item

identification on the following three fronts: reliability, scala-
bility, and robustness. For reliability, PIE takes the desired

290

FNR as input from the system operator and ensures that
the actual FNR is smaller than the desired FNR. For scal-
ability, PIE stores information about all items in a single
data structure during one measurement period regardless
of the number of different items and the number of times
each item appears at the observation point. For robustness,
PIE is robust to accidental events, such as loss of informa-
tion due to SRAM failures, because the use of Raptor code
based encoding makes PIE inherently robust to losing some
encoded bits, and still be able to decode the available bits
to correctly recover IDs.

We extensively evaluated PIE and compared it with two
prior schemes IBF [9,14] and CM sketch [8] that we adapted
to enable persistent item identification. In our evaluations,
we used three real-world network traffic traces including a
backbone traffic trace [1], an enterprise network traffic trace
[21], and a data center traffic trace [4]. Our results also
show that the actual FNR of PIE is always less than the
desired FNR. Our results further show that PIE achieves,
on average, 19.5 times lower FNR compared to the adapted
IBF scheme. Similarly, our results show that PIE achieves
at least 426.1 times lower FPR compared to the adapted
CM sketch.

2. RELATED WORK
To the best of our knowledge, there is no prior work on

identifying persistent items in a data stream. However, a
large body of works has been devoted to identifying frequent
items, and some of the existing schemes can be adapted to
identify persistent items. The frequent items problem (also
known as the heavy hitters problem) refers to finding the
items that occur most frequently in a given data stream of
items. There are two main classes of algorithms for finding
frequent items: counter-based algorithms and sketch-based
algorithms [7]. Next, we first briefly describe the prior work
on finding frequent items belonging to these two classes.
After that, we describe an orthogonal class of work, namely
Invertible Bloom Filter (IBF), that is not designed for find-
ing frequent items, but can be modified to identify persistent
items.
Counter-based Algorithms: Manku et al. proposed the
Lossy Counting (LC) algorithm to find frequent items [18].
The LC algorithm maintains a tuple of a lower bound on
the count and the difference between the upper bound and
the lower bound for each item. For each item, LC either
increments its count by 1 if the item was previously seen, or
adds it into the memory if the item is new and appropriately
sets the lower bound for it. LC algorithm does not have any
false negatives and its false positives are bounded, where the
bound is proportional to the size of data stream. Metwally et
al. proposed the Space Saving (SS) algorithm, which stores
k (item, count) pairs [19]. If the incoming item matches an
item in one of the k pairs, SS increments the count in the
corresponding pair by one. Otherwise, it replaces the pair
with the smallest count value by a new pair, which contains
the incoming item and the count equal to the smallest count
value incremented by one. Like LC algorithm, SS algorithm
also does not have any false negatives and its false positives
are bounded, where the bound is proportional to the size of
data stream. These two algorithms and other such counter-
based algorithms need to keep a set of items and counters.
Thus, their errors grow proportionally with the size of the

data stream, which is unacceptable for streams with a large
number of frequent items or with huge size.
Sketch-based Algorithms: Sketch-based algorithms use
sketches, which essentially contain linear projections of the
input. Charikar et al. proposed Count (C) sketch [6] that
consists of a two-dimensional array of counters. For each in-
put item, C-sketch maps it to a counter in each row of coun-
ters using a hash function. In each mapped counter, C-sketch
adds a value ∈ {−1,+1} using another hash function. The
total space, time per update, and error are determined by
the width and height of the array. Cormode et al. proposed
the famous Count-Min (CM) sketch that also consists of a
two-dimensional array of counters [8]. For each input item,
CM-sketch maps it to a counter in each row of counters using
a hash function and increments each of the mapped counter
by 1. To estimate the number of times any given item ap-
peared, CM-sketch first uses the hash-function to identify
the counters in each row that the item maps to, then returns
the value of the smallest counter as the estimate. CM-sketch
consumes less space than C-sketch for a given error require-
ment. Both C- and CM-sketch can be extended to identify
persistent items by allocating enough memory to store infor-
mation about the ID of all items. Unfortunately, the amount
of memory that these two algorithms require becomes pro-
hibitively large when the number of items in a data stream
is large. A common short-coming of both counter-based and
sketch-based algorithms is that as they do not take the tem-
poral dimension into account, they cannot eliminate dupli-
cate items within a measurement period, such as multiple
packets belonging to the same flow, which can result in the
over-counting of the number of occurrences of an item for
our persistent item problem. For this, one can maintain a
conventional Bloom filter as described earlier in Section 6.1.
Invertible Bloom Filter: An invertible Bloom filter (IBF)
is similar to a conventional Bloom filter except that it can be
inverted to yield the IDs of some of the inserted items [9,14].
An IBF contains an array of cells, which in turn contains
three fields: idSum, hashSum, and count. For any incoming
item, the item is mapped into several cells using hash func-
tions. For each cell that the item is mapped to, the count
is incremented by 1, the stored idSum is XORed with the
item ID, and the stored hashSum is XORed with the hash
of the item ID. In the decoding phase, the “pure” cells, i.e.,
the cells with count field either 1 or −1, are first identified
and the item IDs from them are recovered. Using the IDs
recovered from these pure cells, IBF further decodes the IDs
from other cells to which the recovered IDs were mapped
to. Note that, IBF can not always decode all IDs, i.e., it has
false negatives. IBF can be adapted for identifying persistent
items by assigning one IBF to each measurement period and
maintaining an additional Bloom filter as described earlier
in Section 6.1. Unfortunately, this adapted IBF scheme has
a very low memory efficiency because it needs to store the
whole ID information for every item during every measure-
ment period, unlike PIE, which stores only a few encoded
bits of every ID during any given measurement period in
which the item appeared.

3. PIE – ALGORITHM
PIE has two phases: recording phase and identification

phase. In the recording phase, PIE records information
about the ID of each item seen at the observation point
during the given measurement period. To store this infor-

291

mation, during each measurement period, PIE maintains a
data structure called Space-Time Bloom Filter (STBF) in
SRAM and records information about the items in this da-
ta structure. At the end of each measurement period, PIE
transfers this data structure to the permanent storage for
later analysis and starts a new instance of STBF in the next
measurement periods. At the end of T measurement periods,
PIE has T instances of STBF stored in its memory. In the i-
dentification phase, PIE analyzes these T instances of STBF
to identify persistent items during the T measurement pe-
riods. Next, we first describe STBF and then explain PIE’s
recording and identification phases.

Due to space constraints, we omit the table of notations
used in this paper.

3.1 Space-Time Bloom Filter
STBF can be regarded as an extended version of the con-

ventional Bloom filter (BF) [5], which not only records the
membership information of items in a set but also records
information about their IDs. Let h1(.), · · · , hk(.) be k inde-
pendent hash functions with uniformly distributed outputs.
Given a set of elements S, BF first constructs an array A of
m bits, where each bit is initialized to 0, and for each item e
in S, BF sets the k bits A[h1(e)%m], · · · , A[hk(e)%m] to 1.
To process a membership query of whether item e is in set S,
BF returns true if all corresponding k bits are 1 (i.e., returns
∧k

y=1A[hy(e)%m]). In STBF, each bit in BF is replaced by
a cell. Thus, STBF is an array Ci of m cells. For each item
e that appears during a measurement period i, PIE applies
the same k independent hash functions h1(.), · · · , hk(.) on
e to identify the cells Ci[h1(e)%m], · · · , Ci[hk(e)%m] in the
array Ci of the STBF in this measurement period to which
this item e maps. Each cell is comprised of three data fields:
flag field, Raptor code field, and hash-print field. The Raptor
code field of cell x, where 1 ≤ x ≤ m, stores an r-bit Raptor
code of the ID of an item e if some hash function maps the
item e to this cell, i.e., if for some y, hy(e)%m = x, where
1 ≤ y ≤ k. Typically r is much smaller than the length of
item IDs. PIE selects the value of r such that the probabili-
ty of decoding the IDs of persistent flows is high during the
identification phase, while at the same time the amount of
memory Raptor code fields consume in the STBF is min-
imum. We will present the mathematical model that PIE
uses to calculate the optimal value of r in Section 5.2. PIE
uses the information stored in the Raptor code fields of cells
to recover the exact IDs of persistent items during the iden-
tification phase. We represent the Raptor code field of cell
x with CiR[x]. The hash-print field of cell x stores an p-bit
hash-print of the ID of an item e if some hash function map-
s the item e to this cell, i.e., if for some y, hy(e)%m = x,
where 1 ≤ y ≤ k. The hash-print of an item ID is calculated
using a hash function, which is different from the k hash
functions used to map the item to k cells in STBFs. PIE
uses the hash-print values stored in the hash-print fields of
cells during the identification phase to group the cells across
different STBFs that are storing the Raptor codes for the
same ID. We represent the hash-print field of cell x with
CiP [x]. PIE selects the value of p such that the probabili-
ty of collision between hash-prints of different IDs is small,
while at the same time the amount of memory hash-print
fields consume in the STBF is minimum. We will present
the mathematical model that PIE uses to calculate the op-
timal value of p in Section 5.2. The flag field is just a single

bit that indicates whether the cell is empty, singleton, or
collided depending on whether the hash functions of none,
one, or more than one items, respectively, mapped them to
this cell. We represent the flag field of cell x with CiF [x].
More specifically, CiF [x] = 1 indicates that only one item is
mapped to cell x, i.e., cell x is a singleton cell. If CiF [x] = 0
and CiR[x] = CiP [x] = 0, this indicates that no item is
mapped to cell i, i.e., cell x is an empty cell. If CiF [x] = 0
and CiR[x] = 2r − 1 and CiP [x] = 2p − 1, i.e., all bits of
Raptor code field and hash-print field are set to 1, this in-
dicates that more than one item are mapped to cell x, i.e.,
cell x is a collided cell.

e1 e2

1 || CiR[x1] ||
CiP[x1]

000000 1 || CiR[x3] ||
Ci [x3]

011111 1 || CiR[x5] ||
CiP[x5]

1 || CiR[x6] ||
CiP[x6]

h3(e2)%mh2(e2)%mh1(e2)%mh3(e1)%m h2(e1)%mh1(e1)%m

Figure 1: Space-time code Bloom filter

Figure 1 shows a simple toy example of STBF. The illus-
trated STBF has 6 cells, and applies 3 different hash func-
tions to each item. For the two distinct items e1 and e2,
STBF maps them to three cells each. There is one cell, the
fourth from left, which both items are mapped to and is thus
collided. There is one cell, the second from the left, which
no item mapped to and is thus an empty cell with all bits
set to 0. All remaining cells have the flag fields set to 1, and
the appropriate Raptor codes and hash values stored.

Note that we chose to extend BF to build STBF. Another
data structure that provides similar functionality but bet-
ter performance compared to BF is Cuckoo filter [10]. Next,
we explain why we did not choose to extend Cuckoo filter
to build STBF. Cuckoo filter maintains an array of buckets
and maps each item to two buckets using two independen-
t hash functions. For any given item, if either of the two
buckets the item maps to is empty, Cuckoo filter inserts the
item in that bucket. If neither of the two buckets is emp-
ty, then Cuckoo filter kicks out the existing item from one
of the two buckets, inserts the new item into this vacated
bucket, and tries to re-insert the kicked-out item to the oth-
er bucket it maps to. Cuckoo filter repeats this process until
either a maximum number of kicks are made or the kicked
out item finds an empty bucket. Unfortunately, these kick-
s and reinsertions can take a long time and still result in
insertion failures. If we were to use Cuckoo filters, when-
ever insertion of a given packet takes a larger duration of
time due to these kicks, some of the packets arriving imme-
diately after the given packet cannot be processed in time
and their information will not be recorded by Cuckoo fil-
ter. This indeed happens in reality because the inter-arrival
time of packets is comparable with the processing time of
recording [16]. As the insertion time of Cuckoo filter is ran-
domly distributed, any packet has similar probability to be
missed. Thus, persistent items, which already have very few
packets in each measurement period, will also be missed.
In contrast, traditional BF has deterministic insertion time
and can, therefore, be implemented to process packets at
line-rate. As a result, we chose to extend BF to build STBF
instead of extending Cuckoo filter.

292

3.2 Recording Phase
In the recording phase, PIE records information about

the ID of each item seen at the observation point during
the given measurement period. To store this information, at
the start of each measurement period, PIE initializes STBF
in SRAM, records information about the items in it, and
dumps it into the permanent storage at the end of the mea-
surement period. For STBF initialization, PIE sets all three
fields (flag, Raptor code, and hash) in all cells of the STBF to
0. For each item e seen at the observation point in the mea-
surement period i, PIE performs the following three steps.
First, it computes an r-bit Raptor code of the ID of the
item and a p-bit hash-print of the ID. Second, it calculates
the k hash functions hy(e), where 1 ≤ y ≤ k and identifies
the k cells Ci[hy(e)%m] to which the element maps. Third,
for each cell Ci[hy(e)%m], PIE checks whether the cell is
empty, singleton, or collided. If the cell is empty, PIE
sets the flag field CiF [hy(e)%m] to 1, inserts the Raptor
code of the ID in CiR[hy(e)%m], and the hash-print of the
ID in CiP [hy(e)%m]. If the cell is singleton, PIE checks
whether the Raptor code and the hash-print stored in the
cell match the Raptor code and hash-print of the current
item e. If they do, there is a high probability, that item e
was seen earlier as well during the current measurement pe-
riod, and PIE had set the Raptor code and hash-print fields
of this element at that time. In this case, PIE does not need
to store the information of the current item e again because
it has already been stored in the cell when element e was seen
earlier during the current measurement period. If, however,
the cell is singleton but the Raptor codes and hash-print pre-
viously stored in the cell do not match those of the current
item e, then this singleton cell now becomes collided and
PIE sets the flag field to 0 and all the remaining bits in the
cell to 1, i.e., CiF [hy(e)%m] = 0, CiR[hy(e)%m] = 2r − 1,
and CiP [hy(e)%m] = 2p − 1. If the cell is collided, PIE
does not need to do anything further to process this cell.

3.2.1 Raptor Code Based Encoding
Raptor code is a forward error correction (FEC) technolo-

gy that is primarily used to provide application-layer protec-
tion against network packet loss [24]. The main advantages
of Raptor codes are linear time encoding and decoding, the
ability to encode a number of symbols into a potentially lim-
itless sequence of symbols, and quite small decoding failure
probability, Pdf , which is the probability that one can not
decode the symbols encoded through Raptor codes to obtain
the original set of symbols. Let the length of the item ID be
l bits, and let we use r bits to encode the ID using Rap-
tor codes, Pdf is given by the following equation (derived
in [24]).

Pdf (r; l) =

{
1, if r < l

0.85× 0.567r−l, if r ≥ l
. (1)

In this paper, we use traditional Raptor code, which oper-
ates over Galois field GF (2). There is an enhanced version of
Raptor code called RaptorQ code [25], which operates over
GF (256) and achieves better performance. Unfortunately,
RaptorQ code is not suitable for our setting for two rea-
sons. First, it is space inefficient. Second, its output has a
byte level granularity, while the output of GF (2) Raptor
code has bit-level granularity. Typically the length of item
IDs is no more than a few bytes. Thus, the required length
of Raptor codes in each measurement period is just a few
bits, which makes, GF (2) Raptor code more suitable than

RaptorQ code. Onwards, whenever we say Raptor code, we
mean GF (2) Raptor code.

The generalized encoding process based on Raptor codes is
complicated, but in our setting, it can be viewed as a weight-
ed linear sum of the bits in the item ID. Let us represent the
ID of an element e with a vector Ie = (Ie1 Ie2 ... Iel), where
Iex represents the xth bit in the ID Ie. To encode the IDs of
items during any measurement period i, at the start of the
period, PIE uses i as a seed to generate r encoding-coefficient
vectors aij , where 1 ≤ j ≤ r. Each encoding-coefficient vec-
tor aij contains l encoding-coefficients ax

ij , where 1 ≤ x ≤ l.
The encoding-coefficients ax

ij serves as the weight for the

xth bit in the weighted linear sum of the bits of the item
ID. Note that PIE uses same r encoding-coefficients vec-
tors for each item in a given measurement period, but the
encoding-coefficient vectors for different measurement peri-
ods are different.

In a measurement period i, to generate the jth of the r
encoded bits of item ID e represented by Re

ij , which will be
stored in the Raptor code field of appropriate cells, i.e., in
CiR[hy(e)%m], where 1 ≤ y ≤ k, PIE takes the dot product
of the encoding-coefficient vector aij with the ID vector Ie.
PIE obtains this dot product for all values of j, where 1 ≤
j ≤ r, to get the r bits of the Raptor code of the given item
ID. This process is represented by the following equation.⎛

⎜⎜⎜⎝
a1
i1 a2

i1 . . . al
i1

a1
i2 a2

i2 . . . al
i2

...
...

...
a1
ir a2

ir . . . al
ir

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

Ie1
Ie2
...
Iel

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Re
i1

Re
i2

...
Re

ir

⎞
⎟⎟⎟⎠ (2)

Note that PIE needs the IDs of all items to be of equal
length, which is trivial because IDs with smaller length can
be made equal in length to other IDs by appending appro-
priate number of 0s at the start of the ID.

3.2.2 Hash-print Calculation
The process of calculating the hash-print is straight for-

ward. PIE simply applies a hash function with uniformly
distributed output to calculate the p-bit hash-print of any
given ID and stores it in the hash-print field of the k appro-
priate cells. Note that, while Raptor codes of a given ID are
different across measurement periods, i.e., Re

ij is different
for different values of i, the hash-print value stays the same.

3.3 Identification Phase
In the identification phase, to recover the IDs of the per-

sistent items with more than Tth occurrences in any set of T
measurement periods, PIE processes the STBFs generated
during those T periods and recovers the IDs of all such per-
sistent items with high probability. In Section 4.1, we will
calculate the probability that PIE fails to recover the ID of
any given persistent item.

To recover the IDs, PIE picks all the cells at the same
cell position from the T STBFs, which we name a cell line.
Formally, all cells C1[x], C2[x], · · · , CT [x] constitute a cell
line, where 1 ≤ x ≤ m. Note that each cell line is comprised
of T cells, and there are m such cell lines. Figure 2 shows 6
STBFs obtained in 6 measurement periods. The highlighted
group of cells at the 7th position constitute the cell line with
x = 7. PIE starts with x = 1 and processes this cell line
before moving to the cell line with x = 2 and so on until it
has processed the last cell line with x = m, at which point
PIE should have recovered IDs of all items that occurred

293

STBF 1

STBF 2

STBF 3

STBF 4

STBF 5

STBF 6

cell line 7 with 3 groups
Figure 2: Cell line

in more than Tth measurement periods. Next, we explain
processing of each cell line.

3.3.1 Cell Line Processing
To process the cell at location x from the left, PIE per-

forms the following three steps. First, it discards all empty
and collided cells in this cell line because such cells do not
contain information about any item. Second, out of the re-
maining cells in the cell line, PIE divides the cells into groups
such that the hash-prints of all cells in the same group are
the same. The motivation behind this type of grouping is
that the cells containing the same hash-print are highly like-
ly to contain the encoded bits of the ID of the same item
because probability that hash-prints of two IDs will be the
same is very small (but not zero; and we will shortly handle
the case if hash-prints of multiple IDs indeed are the same).
PIE uses the bits in the Raptor code fields of the cells in
each group to recover the ID from that group. In our ex-
ample in Figure 2, each item is mapped to 3 locations, i.e.,
k = 3. To keep the example simple, we have assumed that
in this particular example, each STBF contains information
about only one item. The same shade of grey in this figure
represents the information with same hash-prints (but may
be from different items). In this example, cell line with x = 7
has 3 different groups marked by 3 different shades from 4
items. Note that the ID of the item in STBF 2 differs from
that in STBF 1 and 6 as their three cell locations are not
exactly the same. This leads to mingled groups as will be
described in Section 3.3.3. Third, PIE compares the hash-
prints of the groups generated from the current cell line with
the hash-prints of the groups generated from the previous
x− 1 cell lines, and merges the groups with the same hash-
prints. PIE performs these three steps on all cell lines from
x = 2 to x = m, except on the cell line with x = 1, on
which it only performs the first two steps. Note that after
processing all the cell lines, each group of cells has a unique
hash-print.

3.3.2 Recovering Item IDs
To recover the ID of the item from any given group con-

taining g cells, PIE uses Equation (2). PIE regenerates the
encoding-coefficient vectors aij , where 1 ≤ j ≤ r using the
index i of the measurement period, which it already knows.
It observes the values of Re

ij from the cells in the group. It
then plugs in all the values of aij and Re

ij into Equation (2)
and obtains a set of g × r linear equations, which it solves
to get the ID vector Ie. Finally, it verifies that the recovered
ID is correct. For this, it performs two verification tests.
First, it calculates the hash-print of the recovered ID and
compares it with the hash-prints in the cells of the group.
If the hash-prints match, the recovered ID has passed the
first test. Second, it applies the k hash functions and checks
the cells at locations h1(ID), · · · , hk(ID) in all those STBFs
from which the cells in the group were taken. For the recov-

ered ID to pass the second test, unless the cells at these k
locations in these STBFs are collided, the Raptor code fields
of all these cells should be the same and the hash-prints of
all these cells must match the hash-print of the recovered
ID. If that is indeed the case, the recovered ID has passed
the second test, and can be considered correct with high
probability.

Note that the value of r is much smaller than the ID
length l and to solve the linear equations successfully to
recover Ie, PIE needs at least l equations, i.e., PIE needs
g × r to be ≥ l, or in other words, it needs g ≥ �l/r� to be
able to recover the original ID of the item of that group. PIE
calculates the values of r andm such that the number of cells
g in the group of a persistent item, i.e., the item with more
than Tth occurrences in T periods, is greater than �l/r� with
a very high probability. We will present the mathematical
equations that PIE uses to calculate the values of r and m
in Section 5.2.

3.3.3 Mingled Groups
Next, we describe how PIE recovers the IDs if the cells in

a group contain encoded bits coming from two or more IDs
instead of a single ID. We call such groups mingled groups.
This happens when the hash-prints of two or more IDs are
the same, i.e., there is a hash-print collision. For instance,
cell line 7 in Figure 2 indeed has 4 groups, but two groups
among them are mingled groups. In such a setting, when
PIE recovers an ID, the hash-print of the recovered ID will
not match the hash-print stored in the hash-print fields of
the cells in the group. In this case, PIE temporarily removes
gr cells from the group and tries to recover the ID using
only the remaining g− gr cells. More specifically, PIE starts
with gr = 1, and performs

(
g
gr

)
iterations, where in each

iteration, it temporarily removes a unique set of gr cells
from the original set of g cells and recovers an ID using only
g−gr cells. As soon as PIE recovers an ID whose hash-print
matches that of the cells in the group, it records that ID and
continues to perform the iterations to recover any more IDs
whose cells might be present in this group. PIE increments
gr by one when it has performed

(
g
gr

)
iterations using the

current value of gr, until the value of gr becomes equal to
a threshold gT . Although PIE can set the threshold to be
equal to g, it typically does not do that because the value
of g can be quite large, resulting in a prohibitively large
number of iterations. PIE typically sets the threshold gT
to be no more than 2. We have observed from our extensive
evaluation that PIE recovers, on average, 93.5% of persistent
items using this threshold.

4. PIE – ANALYSIS
In this section, we derive the false negative rate (FNR)

and false positive rate (FPR) of PIE.

4.1 False Negative Rate
There are two reasons that can cause PIE to fail to recov-

er the IDs of persistent items: hash-mapping collisions and
hash-print collisions. Next we describe these two reasons.
Hash-mapping Collisions: It is possible that several
cells out of the k cells Ci[h1(e)%m], · · · , Ci[hk(e)%m] to
which a given item e is mapped using the k hash functions
h1(e), · · · , hk(e) are collided because the k hash functions
may map other items to these cells, especially if the number
of items is large. Due to such hash-mapping collisions, the

294

number of cells g in the group of item e during the identi-
fication phase may not satisfy the requirement g ≥ �l/r�,
leading to the failure of PIE in recovering the ID of the item
e.
Hash-print Collisions: It is possible that due to the lim-
ited number of bits in the hash-print fields of cells, the
hash-prints of some items may be the same. Due to such
hash-print collisions, PIE may put the cells of different item-
s into the same group during the identification phase, i.e.,
the group becomes mingled. Although PIE can recover IDs
of multiple items from mingled groups as explained in Sec-
tion 3.3.3, if the number of mingled cells is greater than the
threshold gT , PIE may fail to recover the IDs of any item
from the group.

Next, we first derive the probabilities that PIE can re-
cover the ID of any given item despite hash-mapping col-
lisions and hash-print collisions. We name these probabil-
ities “hash-mapping collision survival probability” Pm and
“hash-print collision survival probability” Pp. After that, we
use Pm and Pp to derive an expression for the overall FNR
of PIE.

4.1.1 Hash-mapping Collision Survival Probability
Let the total number of occurrences of all items during

T measurement periods be N . Thus, the expected number
of occurrences in each measurement period is N/T . Conse-
quently, the probability Pnc that a cell in a given STBF to
which a given item e maps is not collided, i.e., no other item
maps to this cell is given by the following equation.

Pnc =

(
1− 1

m

)k(N
T

−1)

≈
(
1− 1

m

)kN
T

(3)

If the given item e appears in t out of the T measurement
periods, then the expected number of cells in the group of
item e during the identification phase will be t× Pnc (note:
for now, we have ignored the mingling due to hash-print
collisions; we will consider that shortly in Section 4.1.2).
Consequently, the number of encoded bits available in these
cells for PIE to use to recover the ID of item e is equal to
r × t × Pnc Using the expression for the decoding failure
probability of Raptor codes from Equation (1), the hash-
mapping collision survival probability Pm of PIE to recover
IDs with length l is calculated by the following equation.

Pm = 1− Pdf (r × t× Pnc; l) (4)

Note that to calculate the value of Pm, we need the value
N of the total number of occurrences of all items in Equa-
tion (3), which is not directly known. Next, we present our
maximum likelihood based estimation scheme to calculate
the estimate Ñ of N .

Let Zi0, Zi1, and ZiC represent the number of empty, sin-
gleton, and collided cells, respectively, in the STBF of mea-
surement period i containing m cells. The likelihood that
the number of distinct items seen during the measurement
period i and stored in the corresponding STBF is ni is given
by the following likelihood function.

L(ni) =

(
(1− 1

m
)kni

)Zi0

×
(
kni

1

m
(1− 1

m
)kni−1

)Zi1

×
(
1− (1− 1

m
)kni − kni

1

m
(1− 1

m
)kni−1

)ZiC

To simplify the equation above, we define q = (1− 1
m
)kni and

substitute it into this equation. We also substitute ZiC =
m− Zi0 − Zi1 into this equation.

L(q) = qZi0 ×
(

q ln {q}
(m− 1)(ln

{
1− 1

m

}
)

)Zi1

×
(
1− q − q ln {q}

(m− 1)(ln
{
1− 1

m

}
)

)m−Zi0−Zi1

Taking the first-order derivative of the equation above and
equating to 0, we get the sufficient condition that maximizes
L(q) as

Zi1 − qZi1 + (Zi0 + Zi1) ln {q}
+q {cZi0 − (c+ 1)m} ln {q} − cmq ln

{
q2
}
= 0

where c = 1
m−1

× 1
ln(1−1/m)

. We numerically calculate the

value q̃ of q that satisfies the equation above, and is, thus, the
maximum likelihood estimate of q. As q = (1 − 1

m
)kni , the

maximum likelihood estimate ñi of the number of distinct
items seen during the measurement period i is given by the
following equation.

ñi =
ln ˜{q}

k ln
{
1− 1

m

} (5)

As ñi is the estimate of the number of distinct items seen
during the measurement period i, the estimate Ñ of the total
number of occurrences N during T measurement periods is
given by Ñ =

∑T
i=1 ñi.

4.1.2 Hash-print Collision Survival Probability
Calculating the hash-print collision survival probability

Pp is very challenging because we need to calculate the oc-
currence probability for a given number of cells in a mingled
group. For this, we need to enumerate all possible combi-
nations that lead to the same number of cells in a mingled
group. For examples, if we have 90 cells in a mingled group,
these 90 cells may have resulted from two items with 45
occurrences each, or from three items with 30 occurrences
each, etc. Thus, this becomes a mathematically and compu-
tationally intractable combinatorics problem. To solve the
problem of intractability, we present a novel bipartite ap-
proximation scheme to calculate Pp. For this, let λ represent
a threshold such that if an item e≥λ with occurrences larger
than or equal to λ in the T measurement periods makes a
group mingled, then no item ID, except that for e≥λ, can be
recovered from that mingled group. Next, we first calculate
hash-print collision survival probability when at least one
of the items in a mingled group has ≥ λ occurrences. We
represent this probability with P≥λ

p . After this, we calculate
hash-print collision survival probability when all of the items
in a mingled group have < λ occurrences. We represent this
probability with P<λ

p .

To calculate P≥λ
p , we first calculate the probability that

an item e≥λ with occurrences ≥ λ makes the group of any
given item e mingled, and then calculate the expected value
of the number of items with occurrences ≥ λ. The item e≥λ

makes the group of the item e mingled when the item e≥λ

maps to a specific cell out of the m cells in a given STBF and
has the same hash-print as the item e. Considering only a
single mapping hash function, this happens with probability
1/m× 1/2p, where p is the number of bits in the hash-print
field of each cell. As there are k mapping hash functions, the
probability that the item e≥λ does not make the group of
the item e mingled is (1−1/m×1/2p)k. Let wt represent the
percentage of items that appear in t out of T measurement
periods. The expected number of occurrences of items, i.e.,
the average number of measurement periods during which
an item appears, is given by

∑T
t=1(wt ·t). Thus, the expected

295

number of distinct items is N/
∑T

t=1(wt · t). Consequently,
the expected number of items with occurrences ≥ λ is N ×∑T

t=λ wt/
∑T

t=1(wt · t). As each item is mapped to k cells,
the probability that none of the items with occurrences ≥ λ
make the group of the given item e mingled is given by the
following equation.

P≥λ
p =

(
1− 1

m
× 1

2p

)kN

∑T
t=λ wt

∑T
t=1(wt·t)

(6)

To calculate P<λ
p , we treat each item with t < λ occur-

rences as t distinct items with a single occurrence each. With
this notion, the expected number of items with occurrences
< λ is N×∑λ−1

t=1 (wt · t)/∑T
t=1(wt ·t) . Let Xm be a random

variable representing the number of such items mapped to
a given cell. With k mapping hash functions, it is straight-
forward to see that Xm follows the binomial distribution
Xm ∼ Binom(k×N×∑λ−1

t=1 (wt ·t)/∑T
t=1(wt ·t), 1/m×1/2p).

PIE fails to recover the ID of an item e from the mingled
group only when the number of all cells from other items e<

with occurrences < λ in that group is less than the threshold
gT . Thus, P

<λ
p is given by the following equation.

P<λ
p =

∑gT
j=0

(j

kN

∑λ−1
t=1 (wt·t)

∑T
t=1(wt·t)

)× (
1
m

× 1
2p

)j

× (
1− 1

m
× 1

2p

)kN ∑λ−1
t=1 (wt·t)

∑T
t=1(wt·t)

−j

(7)

The overall hash-print collision survival probability Pp is
simply the product of P≥λ

p and P<λ
p , i.e.,

Pp = P≥λ
p × P<λ

p . (8)

Discussion: Setting an appropriate value for λ is a criti-
cal issue to calculate Pp using our bipartite approximation
scheme. An appropriate way to set λ is to put it equal to
gT /Pnc because the expected number of cells in a mingled
group by an item with occurrences ≥ λ is λ× Pnc, and this
number must not be greater than the threshold gT for PIE
to be able to successfully decode the IDs of other items in
the mingled group. The value of λ can also be selected af-
ter performing an empirical study with different values of
λ in the range [2 gT]. The rationale behind developing a
bipartite approximation scheme lies in the skewed distribu-
tion of item occurrence as well as the small value for gT .
The distributions of item occurrences in practical applica-
tions typically follows Zipf or “Zipf-like” distribution, which
are highly skewed [23]. We observed this trend in the traces
used for evaluation of PIE as well as shown in Figure 3(a).
We observe from this figure that almost 75% of all occur-
rences are contributed by items with individual occurrences
no more than 4. Similarly, about 40% of all occurrences are
by item with individual occurrence of just 1. As typically λ
is proportional to gT (e.g., λ = gT /Pnc), and gT is a small
number, λ is also small. Consequently, such a value of λ does
not introduce much error when we treat an item with t < λ
occurrences as t items with a single occurrence each. Thus,
the overall error in the calculation of Pp due to the bipartite
approximation is very small.

4.1.3 False Negative Rate Estimation
An item with t occurrences, where Tth ≤ t ≤ T , can

be recovered if and only if it survives both hash-mapping
collisions as well as hash-print collisions, i.e., the probability
of the successful recovery of the ID of an item is Pm × Pp,
where Pm and Pp are calculated in Equations (4) and (8),
respectively. The expected probability of successful recovery

Psr for an item at a specific cell can be derived by taking
into account all possible long-duration items as shown in the
following equation.

Psr =

∑T
t=Tth

wt × Pm∑T
t=Tth

wt

× Pp (9)

As PIE fails to recover an item only when it cannot be re-
covered from any of its k mapped cells, the FNR is given by
the following equations.

PFN = (1− Psr)
k (10)

To see the accuracy of our proposed calculation of FNR, we
conducted a simulation study and compared the FNR ob-
tained through this study with the FNR calculated theoret-
ically using the Equation (10). Figure 3(b) plots the FNR
calculated from the simulation study as well as the FNR
calculated theoretically using Equation (10). For this simu-
lation study, we used the following parameters: N=59752,
T=60, Tth=40, l=64, k=3, gT=2, r=3 and p=1. We ob-
serve from this figure that the empirically calculated values
of FNR lie very close to the theoretically calculated values
of FNR. This supports our intuition from the discussion in
Section 4.1.2 that the overall error in the calculation of Pp

due to the bipartite approximation is very small.

10 20 30 40 50 600

0.1

0.2

0.3

0.4

← λ

Item Occurrence

Pr
ob

ab
ilit

y
D

is
tri

bu
tio

n

(a) Item occurrence prob. dis-
t. for DC trace [4]

4 5 6 7 8
x 104

0

0.05

0.1

0.15

0.2

0.25

Size of STBF (bits)

Fa
ls

e
N

eg
at

iv
e

R
at

e Practical Value
Theoretical Value

(b) FNR with bipartite ap-
proximation

Figure 3: Dist. of item occurrences and the compar-
ison of theoretical and empirical FNR

4.2 False Positive Rate
Recall that PIE verifies each ID it recovers by first com-

paring the hash-print of the recovered ID with the hash-
prints stored in the cells of the group and then comparing
the hash-print with the hash prints in the cells at locations
h1(ID), · · · , hk(ID). False positive rate (FPR) refers to the
ratio of non-persistent items, which pass the two verification
tests, to the number of all non-persistent items. There are
two scenarios that give rise to false positives: (1) the recov-
ered ID does not actually belong to any of the items seen
at the observation point during the T measurement periods;
and (2) the recovered ID is exactly the same as some other
persistent item. Next, we discuss these two scenarios.
Scenario 1: The item ID must be recovered from encoded
bits that come from at least two different items from two d-
ifferent cells. During the verification, PIE will first examine
whether the hash-print of the recovered ID is consistent with
the one stored in the cells that corresponds to at least two
different items at the considered position. The probability
of error here equals 1/2p. During the verification, PIE will
also check the other k − 1 cells for recorded Raptor codes
and hash-prints. This verification step will fail if the other
k−1 cells are all collided, where the probability of a cell not
being collided was calculated in Equation (3) and is repre-
sented by Pnc. Thus, the probability of failure of this second
verification step is (1/2r+p)2(k−1)Pnc . The false positive rate
for this scenario is given by the following equation.

PFP1 =

(
1

2p

)(
1

2r+p

)2(k−1)Pnc

= 2−{p+2(r+p)(k−1)Pnc}

296

Scenario 2: Suppose the recovered item ID corresponds to
an item with occurrence t (1 ≤ t < Tth), then there must be
extra cells from other items that make the group mingled.
Consider the worst case when there is only one other item
making the group mingled. By similar analysis as for the
first case, we can derive that the false positive rate for the
second scenario is given by the following equation.

PFP2 = 2−{r+(r+p)(k−1)Pnc} (11)

Combining the analysis for these two scenarios, the FPR for
the worst case is given by the following equation.

PFP = max{PFP1, PFP2}. (12)

5. PIE – PARAMETER OPTIMIZATION
In this section, we calculate the optimal values of three

parameters, the number of bits r in the Raptor-code field of
each cell, the number of bits p in the hash-print field of each
cell, and the number of cells m in each STBF. The optimal
values of r, p, and m will minimize the FNR of PIE. Next,
we will first formulate the optimization problem. After that,
we will discuss how to solve this optimization problem to
obtain the optimal values of r, p, and m.

5.1 Optimization Problem Formulation
Let M represent the size of the entire STBF in bits. The

value of M can be provided by the system manager, who
wants to allocate no more than M bits of SRAM for record-
ing information about the IDs of items. As the size of each
cell in bits is r+ p+1 and there are m cells, the sum of the
sizes of all these cells should at most be equal to M . Thus,
the straightforward formulation of the optimization problem
is as follows.
Formulation 1: Minimize PFN such that m(r+p+1) = M
and r,m ∈ Z

+, p ∈ Z
+
0 .

From Equation (10), we observe that minimizing PFN is
equivalent to maximizing Psr as long as the value of k, i.e.,
the number of hash functions used to map an item to cell-
s, is fixed. The expression for Psr in Equation (9) can be
expanded and written as below.

Psr =

(∑T
t=Tth

wt × (1− Pdf (r × t× Pnc; l))∑T
i=Tth

wi

)(
P≥λ
p × P<λ

p

)

The first term on the right hand side of the equation above
depends on Pdf (r × t × Pnc; l). When r × t × Pnc < l, the
value of Pdf (r × t × Pnc; l) is equal to 1. Thus, this first
term equals 0. When r× t×Pnc > l, the value of Pdf (r× t×
Pnc; l) exponentially approaches 0 and this first term almost
achieves its maximum possible value of 1. Thus, to maximize
Psr, we should ensure that r × Tth × Pnc ≥ κl, where κ is
a preset constant such as κ = 1.01 or κ = 1.1. This serves
as a new constraint, and our optimization problem can be
reformulated as:
Formulation 2: Maximize (P≥λ

p × P<λ
p) such that m(r +

p+ 1) = M ; r × Tth × Pnc ≥ κl; and r,m ∈ Z
+, p ∈ Z

+
0 .

Recall that P≥λ
p and P<λ

p are calculated using Equations
(6) and (7), respectively. Due to the complexity of these two
equations, it is quite challenging to maximize their prod-
uct. To address this challenge, we take a new approach to
find a simpler expression for describing the hash-print col-
lision survival probability Pp that is feasible for parameter
optimization. Let’s consider the average number of cells cor-
responding to different IDs but with the same hash-print

at a specific cell line. The probability that an item map-
s to a non-collided cell in this cell line and has the same
hash-print as stored in some other cell in this cell-line is
1/2p × 1/m×Pnc. As the total number of occurrences of all
items in the T STBFs is N , the average number of mingling
cells is N × 1/2p × 1/m × Pnc Intuitively, the probability
that the number of mingling cells in a group is less than
the threshold gT , i.e., the hash-print collision survival prob-
ability P≥λ

p and P<λ
p , should be negatively correlated to the

average number of mingling cells, which means maximizing
the former is equivalent to minimizing the latter. As each
item is mapped to k positions, our optimization problem
can be reformulated as follows.
Formulation 3: Minimize (N × 1/2p × 1/m× Pnc)

k such
that m(r + p + 1) = M ; r × Tth × Pnc ≥ κl; and r,m ∈
Z
+, p ∈ Z

+
0 .

Note that in this formulation, we do not see the term wt,
i.e., the probabilistic distribution of occurrences of item-
s. This is a highly desirable property of this formulation
because now in implementing our proposed scheme in real
applications we no longer need to know such probabilistic
distribution a priori.

5.2 Calculating Optimal Values
Lemma 1. Given a fixed value of m and m(r + p+ 1) =

M the false negative rate is minimized when the inequality
r × Tth × Pnc ≥ κl takes an equal sign.

Lemma 2. Given a fixed value r of the size of Raptor code
field in cells and m(r + p + 1) = M , the false negative rate
is minimized when the inequality r × Tth × Pnc ≥ κl takes
an equal sign.

Lemma 3. Given a fixed value of p of the hash-print field
in cells and m(r + p + 1) = M , the false negative rate is
minimized when the inequality r × Tth × Pnc ≥ κl takes the
equal sign.

Combining Lemmas 1, 2 and 3, we get the following following
theorem.

Theorem 1. The false negative rate is minimized if the
inequality r×Tth×Pnc ≥ κl takes the equal sign when m(r+
p + 1) = M , and the number of cells m is equal to
m∗�,
where m∗ satisfies the following equation(

1−
(
1 +

kN

T

)
1

m∗

)
− ln 2 · 1

m∗

(
1− 1

m∗

)

×
(
M − κl

Tth

kN

T

(
1− 1

m∗

)− kN
T

−1
)

= 0 (13)

and parameters r and p are calculated as below

r =

⌈
κl

Tth

(
1− 1

m

)− kN
T

⌉
(14)

p =

⌊
M

m

⌋
−

⌈
κl

Tth

(
1− 1

m

)−kN/T
⌉
− 1 (15)

Proof. We omit the proofs of Lemmas 1, 2, 3, and The-
orem 1 to save space.

Discussion The parameter optimization scheme proposed
in Theorem 1 has its inherent limitation. There exists a lower
threshold for the objective function in Formulation 3, which

297

0

0.02

0.04

0.06

0.08

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Theoretical False Negative Rate

Em
pi

ric
al

 F
al

se
 N

eg
at

ive
 R

at
e

(a) CHIC

0

0.02

0.04

0.06

0.08

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Theoretical False Negative Rate

Em
pi

ric
al

 F
al

se
 N

eg
at

ive
 R

at
e

(b) DC

0

0.02

0.04

0.06

0.08

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Theoretical False Negative Rate

Em
pi

ric
al

 F
al

se
 N

eg
at

ive
 R

at
e

(c) ICSI
Figure 4: Empirical false negative rate vs. theoretical false negative rate when Tth = 40

0

0.02

0.04

0.06

0.08

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Theoretical False Negative Rate

Em
pi

ric
al

 F
al

se
 N

eg
at

ive
 R

at
e

(a) CHIC

0

0.02

0.04

0.06

0.08

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Theoretical False Negative Rate

Em
pi

ric
al

 F
al

se
 N

eg
at

ive
 R

at
e

(b) DC

0

0.02

0.04

0.06

0.08

0.1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Theoretical False Negative Rate

Em
pi

ric
al

 F
al

se
 N

eg
at

ive
 R

at
e

(c) ICSI
Figure 5: Empirical false negative rate vs. theoretical false negative rate when Tth = 50

can be written in the form of (κ × gT)
k where κ is a con-

stant that can be empirically estimated. When the value of
the objective function in the Formulation 3 falls below κgT ,
the hash-print collision survival probability is very close to
1, Therefore, further minimization at this point is not just
meaningless, but could also hurt the overall optimality in
some cases. To avoid this problem, we can simply enumer-
ate all possible values of the length of hash-print p from 0 to
l to compute m and r using the equations m(r+p+1) = M
and r × Tth × Pnc = κl and then substitute them into E-
quation (10) to calculate the false negative ratio. Finally, we
pick the value of p that leads to the minimum false negative
ratio and use the corresponding values of m and r. Overall,
such process will terminate within O(l) time, which is fairly
fast as l is typically anywhere from 16 bits to 64 bits.

6. PERFORMANCE EVALUATION
We implemented and extensively evaluated PIE along

with two other schemes namely Invertible Bloom Filter
(IBF) [9,14] and Count-Min (CM) sketch [8] in Matlab. Nex-
t, we first describe the three network traces that we used for
evaluation. After that, we present our results from the eval-
uation of PIE’s FNR and FPR and compare them with IBF
and CM sketch.

6.1 Item Traces and Setup
Item Traces: To evaluate the performance of PIE, we use
three real network traces CHIC [1], ICSI [21] and DC [4].
CHIC is a backbone header trace, published by CAIDA and
collected in 2015, which includes the arrival times of packets
at a 10GigE link interface along with the flow IDs associated
with those packets. For this evaluation, we used HTTP flows
from 6 minutes of packet capture. We treat each packet as
an item and the 5-tuple flow ID of each packet as the item
ID. ICSI is an enterprise network traffic trace collected at
a medium-sized enterprise network. From this trace, we use
TCP traces generated from 22 different ports in one hour of
packet capture. DC is a data center traffic trace collected at
a university data center collected for a little more than an
hour. From this trace, we use TCP traces generated from one
hour of packet capture. Table 1 reports the total duration,
number of packets and number of distinct flows of these

10 20 30 40 50 60

0.4

0.6

0.8

1

← λ

Item Occurrence

Pr
ob

ab
ilit

y
D

is
tri

bu
tio

n

 CHIC
 DC
 ICSI

Figure 6: Item occurrence prob. dist. for three traces

three network traces. Figure 6 shows the item occurrence
probability distributions for three network traces.

Table 1: Summary of Item Traces
Trace Duration # pkts # flows
CHIC 6 mins 25.3M 101374
ICSI 1h 1.49M 8797
DC 1h 8.09M 10289

System Parameters: In our experiments, for each trace,
we set the number of measurement periods as T = 60, the
constant for Raptor code decoding κ = 1.05, the number
of mapping hash functions k = 3, the mingling threshold
gT = 1, and the amount of memory allocated to build STBF
M = 600kbits for CHIC, M = 100kbits for ICSI, and M =
300kbits for DC, respectively.
Baseline Setup: As IBF and CM sketch can not be di-
rectly applied to identify persistent items, we adapt them
to make performance comparison possible. For IBF, instead
of employing a single IBF throughout all measurement pe-
riods, we allocate one IBF to each measurement period. As
IBF can not tell whether an incoming item is recorded or
not, we need an additional conventional Bloom filter (BF)
to store existence information of items. When an arriving
item is not bound in the associated conventional BF, we ad-
d its information to both conventional BF and IBF. For CM
sketch, we again need a conventional BF to avoid count-
ing of multiple repetitions of the same item in any given
measurement period. Furthermore, for fair comparison, we
allocate the same amount of memory to build IBF or CM
sketch as that to build PIE. Moreover, to the advantage of
IBF and CM sketch, we neglect the storage cost of these
assisting conventional BFs for both IBF and CM sketch. We

298

5.2 5.4 5.6 5.8 6 6.2

x 105

10−1

100

Size of STBF (bits)

Fa
ls

e
N

eg
at

iv
e

R
at

e
 IBF
 Practical PIE
 Theoretical PIE

(a) CHIC

0.9 0.95 1 1.05 1.1 1.15

x 105

10−2

10−1

100

Size of STBF (bits)

Fa
lse

 N
eg

at
ive

 R
at

e IBF
 Practical PIE
 Theoretical PIE

(b) DC

2.6 2.8 3 3.2 3.4 3.6

x 105

10−1

100

Size of STBF (bits)

Fa
ls

e
N

eg
at

iv
e

R
at

e

 IBF
 Practical PIE
 Theoretical PIE

(c) ICSI
Figure 7: False negative rate when Tth = 40

0 2 4 6 8
0

0.005

0.01

0.015

0.02

0.025

Length of Hash−print (bits)

Fa
lse

 P
os

itiv
e

Ra
te

 CM sketch
 Practical PIE
 Theoretical Bound of PIE

(a) CHIC

0 2 4 6 8
0

0.005

0.01

0.015

0.02

0.025

Length of Hash−print (bits)
Fa

lse
 P

os
itiv

e
Ra

te

 CM sketch
 Practical PIE
 Theoretical Bound of PIE

(b) DC

0 2 4 6 8
0

0.005

0.01

0.015

0.02

0.025

Length of Hash−print (bits)

Fa
lse

 P
os

itiv
e

Ra
te

 CM sketch
 Practical PIE
 Theoretical Bound of PIE

(c) ICSI
Figure 8: False positive rate when Tth = 40

also ignore the space cost of CM sketch for recording IDs
of persistent items, which would be considerable when the
number of distinct items is large.

6.2 False Negative Rate
We first present the FNR of PIE. For this, we set a max-

imum desired value of FNR, calculate the optimal values of
r, p, and m for the maximum desired FNR as described in
Section 5.2, perform the simulations, and compare the FNR
obtained from the simulations with the maximum desired
FNR. We repeat this process for multiple values of maxi-
mum desired FNR. After this, we compare the FNR of PIE
with the FNR of IBF. We do not compare the FNR of PIE
with the FNR of CM sketch because the FNR for CM sketch
is always 0.

FNR of PIE: Our results show that the average FNR of
PIE calculated from simulations is always less than the max-
imum desired FNR. We vary the maximum desired FNR
from 0.01 to 0.1 and for each value of FNR, calculate the
parameters r, p, and m for the three traces. For each set of
parameters, we randomly select part of the data with fixed
size from each of three networks traces, and repeat the ex-
periments 50 times. This gives us 50 values of FNR from
simulations for each value of maximum desired FNR. We do
all these experiments with two values for the threshold Tth,
i.e., Tth = 40 and Tth = 50; and plot the results in Figures 4
and 5, respectively. We plot the 50 values of FNR obtained
from simulations for each value of maximum desired FNR as
a box-plot. On each box-plot, the central mark is the medi-
an, the edges of the box are the 25-th and 75-th percentiles,
and the crosses are the outliers. The dashed lines in each
figure corresponds to the function y = x. From these fig-
ures, we observe that the average values of FNR obtained
from simulations are always less than the maximum desired
FNR. This indicates that PIE can be configured to achieve
any desired value of FNR by appropriately adjusting the
parameters r, p, and m.

Comparison with IBF: Our results show that the average
FNR of PIE is almost twice an order of magnitude small-
er than the FNR of IBF. Figure 7 plots the FNRs of PIE
and IBF for Tth = 40. We do not plot figures for Tth = 50
due to space constraints. These figures also plot the FN-
R of PIE calculated theoretically using Equation (10). We
observe that the theoretically calculated FNR closely match-

es the empirically calculated FNR of PIE. We also observe
from these figures that FNRs of both PIE and IBF decrease
with the increase in the number of bits M allocated to their
corresponding data structures. From our experiments, we
calculated that on average, PIE achieves 19.5 times smaller
FNR compared to IBF. We observe from these figures that
the FNR of IBF remains almost 1 when M is small, and
then drops rapidly as the value of M increases. The rea-
son behind this observation is that the recovering process of
IBF resembles the “peeling process” of finding a 2-core in
random hypergraphs, and its success probability of recov-
ering rockets when the percentage of cells that store only
one item, which is determined by M , is sufficiently large.
Note that IBF achieves a better performance compared to
PIE only when the size of its data structure is significantly
large. For example, IBF needs 1.12 × 105 bits of storage s-
pace for DC trace, which is so large that it equals half the
space required to store all occurrences of items along with
their original IDs. This cost may not be acceptable for real
applications.

6.3 False Positive Rate
For FPR, we compare the FPR of PIE with the FPR of

CM sketch. We do not compare with IBF because the FPR
for IBF is always 0. For the simulations to obtain results for
this section, we fix the length of Raptor code field in cells of
STBF to 2, and set the size of each counter in CM sketch
to 8 bits, which is sufficient to record items that appear in
all 60 measurement periods.

Our results show that FPR of PIE is at least 426.1 times
less than the FPR of CM sketch. Figure 8 plots the FPR
of PIE and CM sketch along with the theoretical bound on
FPR calculated using Equation 12. We only plot figures for
Tth = 40 and not for Tth = 50 due to space constraints. We
observe that the empirically obtained FPR of PIE is always
less than the theoretically calculated bound. We also observe
from these figures that the FPR of PIE becomes 0 when the
length of hash-print field exceeds 5 for Tth = 40 for all three
traces. Even in the worst case, the FPR of PIE is just 24.9%
the FPR of CM sketch. These figures further show that the
FPRs of both PIE and CM sketch improve with increasing
p. This happens because larger p means fewer hash-print
collisions and more success during verification steps for PIE
and more counters for CM sketch.

299

We also observe from our experiments that overall, the
FPR of CM sketch increase with Tth while the FPR of PIE
decrease with Tth. As described in [8], the estimate occur-

rence î of an item obtained through CM sketch is subject to
î ≤ i+B×N with some probability α. Though the absolute
error of estimation, i.e., B×N , is roughly stable, the number
of eligible items decreases with an increasing Tth. This gives
rise to an increasing FPR for CM-sketch. On the contrary,
for PIE, with a large Tth, there are potentially more cells
recording a given item, which provides more opportunities
for verification of item ID and thus reduces the FPR.

7. CONCLUSION
The key contribution of this paper is in proposing a

scheme to identify persistent items. The key technical novel-
ty of this paper is in proposing the space-time Bloom filter,
which uses Raptor codes and hash-prints to efficiently store
information about the IDs of items in such a way that the
IDs of persistent items can be recovered with the desired
FNR. The key technical depth of this paper is in calculating
the FNR and FPR and using them to obtain optimal values
of system parameters. Our theoretical analysis and exper-
imental results show that PIE always achieves the desired
FNR and its FNR is always less than the FNRs of prior
schemes adapted for persistent item identification. PIE is s-
calable in that it is designed to store information about the
IDs of all items in a single data structure, the STBF, in
a given measurement period and periodically transfers the
contents of the STBF to permanent storage.

Acknowledgment
Alex X. Liu is also affiliated with the Department of Com-
puter Science and Engineering, Michigan State Universi-
ty, East Lansing, MI, USA. This work is partially sup-
ported by the National Science Foundation under Grant
Numbers CNS-1318563, CNS-1524698, and CNS-1421407,
and the National Natural Science Foundation of China un-
der Grant Numbers 61502229, 61472184, and 61321491,
and the Jiangsu High-level Innovation and Entrepreneurship
(Shuangchuang) Program.

8. REFERENCES
[1] The caida ucsd anonymized 2011 internet traces.

http://www.caida.org/data/overview.

[2] C. C. Aggarwal. An introduction to sensor data
analytics. In Managing and Mining Sensor Data,
pages 1–8. Springer, 2013.

[3] M. H. S. Bangalore. Resource adaptive technique for
frequent itemset mining in transactional data streams.
IJCSNS, 12(10):87, 2012.

[4] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
Proc. IMC, pages 267–280. ACM, 2010.

[5] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
mathematics, 1(4):485–509, 2004.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Automata,
Languages and Programming, pages 693–703. Springer,
2002.

[7] G. Cormode and M. Hadjieleftheriou. Finding the
frequent items in streams of data. Communications of
the ACM, 52(10):97–105, 2009.

[8] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[9] D. Eppstein, M. T. Goodrich, F. Uyeda, and
G. Varghese. What’s the difference?: efficient set
reconciliation without prior context. In Proc.
SIGCOMM, volume 41, pages 218–229. ACM, 2011.

[10] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than
bloom. In Proc. CoNEXT, pages 75–88. ACM, 2014.

[11] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy.
Data stream mining. In Data Mining and Knowledge
Discovery Handbook, pages 759–787. Springer, 2010.

[12] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Quicksand: Quick summary and analysis
of network data. Technical report.

[13] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler,
and D. Papagiannaki. Exploiting temporal persistence
to detect covert botnet channels. In Recent Advances
in Intrusion Detection, pages 326–345. Springer, 2009.

[14] M. T. Goodrich and M. Mitzenmacher. Invertible
bloom lookup tables. In Proc. Allerton, pages
792–799. IEEE, 2011.

[15] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar.
Click fraud resistant methods for learning
click-through rates. In Internet and Network
Economics, pages 34–45. Springer, 2005.

[16] Y. Li, H. Wu, T. Pan, H. Dai, J. Lu, and B. Liu. Case:
Cache-assisted stretchable estimator for high speed
per-flow measurement. In Proc. INFOCOM.

[17] H. Liu, Y. Lin, and J. Han. Methods for mining
frequent items in data streams: an overview.
Knowledge and information systems, 26(1):1–30, 2011.

[18] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. VLDB, pages
346–357. VLDB Endowment, 2002.

[19] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
computation of frequent and top-k elements in data
streams. In Database Theory-ICDT 2005, pages
398–412. Springer, 2005.

[20] S. Moro, R. Laureano, and P. Cortez. Using data
mining for bank direct marketing: An application of
the crisp-dm methodology. In Proc. ESM, pages
117–121. Eurosis, 2011.

[21] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A first look at modern enterprise
traffic. In Proc. IMC, pages 15–28, 2005.

[22] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming, 13(4):277–298, 2005.

[23] S. Sen and J. Wang. Analyzing peer-to-peer traffic
across large networks. IEEE/ACM Transactions on
Networking, 12(2):219–232, 2004.

[24] A. Shokrollahi. Raptor codes. IEEE Transactions on
Information Theory, 52(6):2551–2567, 2006.

[25] R. M. Transport. Raptorq forward error correction
scheme for object delivery. Technical report, IETF
Internet Draft, 2011.

[26] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen. Estimating
the persistent spreads in high-speed networks. In Proc.
ICNP, pages 131–142. IEEE, 2014.

300

