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ABSTRACT
Complex event processing (CEP) matches patterns over a continuous
stream of events to detect situations of interest. Yet, the definition
of an event pattern that precisely characterises a particular situation
is challenging: there are manifold dimensions to correlate events,
including time windows and value predicates. In the presence of
historic event data that is labelled with the situation to detect, event
patterns can be learned automatically. To cope with the combina-
torial explosion of pattern candidates, existing approaches work
on a type-level and discover patterns based on predefined event
abstractions, aka event types. Hence, discovery is limited to patterns
of a fixed granularity and users face the burden to manually select
appropriate event abstractions.

We present IL-MINER, a system that discovers event patterns
by genuinely working on the instance-level, not assuming a priori
knowledge on event abstractions. In a multi-phase process, IL-
MINER first identifies relevant abstractions for the construction
of event patterns. The set of events explored for pattern discov-
ery is thereby reduced, while still providing formal guarantees on
correctness, minimality, and completeness of the discovery result.
Experiments using real-world datasets from diverse domains show
that IL-MINER discovers a much broader range of event patterns
compared to the state-of-the-art in the field.
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1. INTRODUCTION
Complex event processing (CEP) detects situations of interest

by matching event patterns over continuous streams of events. An
event pattern defines how the events that shall be matched have to
be ordered in the stream and how they are correlated along multi-
ple dimensions, including predicates over their attribute values and
time windows [7]. CEP is the foundation of applications in diverse
domains [7], including financial trading [5], oil and gas [9], health-
care [13], business workflows [24], and urban transportation [3].
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Event Pattern Specification. Traditional CEP applications assume
that a domain expert knows how a situation of interest is manifested
in the event stream. Hence, the expert is able to come up with
the respective definition of an event pattern. The assumption of
knowledgeable expert users is commonly met in reactive applica-
tions, where low-latency detection of a situation of interest enables
immediate implementation of countermeasures.

As an example, consider the case of monitoring a compute cluster
based on events that indicate state changes of executed jobs [19]. To
detect jobs that are terminated, but not re-scheduled for execution, a
pattern would match a termination event that is not followed by a
scheduling event for the same job within a particular timeframe.

Recently, the application of CEP shifted towards pro-active pro-
cessing, where an event pattern anticipates a situation of interest [6].
Matching an event pattern may then trigger actions to prepare for
the situation or to circumvent it. In such applications, however, the
knowledge of a domain expert is typically limited to the occurrence
of the situation of interest. Knowledge about the event pattern that
anticipates the situation is partial at best.

In cluster monitoring, for example, one can anticipate that a
terminated job will not be re-scheduled. While a domain expert may
have anecdotal evidence on what constitutes the respective pattern
(e.g., the jobs belong to a particular class), they lack the insights
needed for a comprehensive pattern definition (e.g., jobs have been
re-scheduled at least twice with increasing priority and ran for more
than two hours).

Automated Pattern Discovery. In the absence of an event pattern
that detects a situation of interest, historic data that is labelled
with the respective situation enables automatic discovery of event
patterns [15]. Historic event data are split into sequences of events,
aka traces, that serve as training examples for a learning process.

Given a set of traces, pattern discovery can be traced back to a
large body of work on temporal knowledge discovery and, specif-
ically, frequent sequence mining [1, 23, 26]. However, all these
techniques have in common that sequential patterns are discovered
on the type-level: they require that events of a stream are partitioned
into types and then aim at identifying an order over these types. A
consequence of this approach is also that any correlation condition
defined based on the data carried by the events is necessarily global,
i.e., it spans the complete pattern.

The limitations of existing sequence mining techniques are il-
lustrated in Fig. 1. The top part shows a stream of six events of
the aforementioned cluster monitoring scenario, each event having
attributes such as the class, status, or priority of a compute job.
Traditional pattern discovery would first require the definition of an
event abstraction, as exemplified in the middle part of Fig. 1. Here,
the event type is defined as the job status (Submit, Terminate, or
Fail), so that a pattern that matches a sequence of two ‘submit’ and
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Traditional Pattern Discovery: Predefined Abstractions and Global Correlation Conditions

Stream of Events

IL-Miner: Automatic Learning of Event Abstractions and Correlation Conditions

Figure 1: Unlike traditional pattern discovery, IL-MINER is not limited
to predefined event abstractions and supports discovery of local

correlation conditions.

a ‘terminate’ event may be discovered. Partitioning the stream based
on attribute values further enables discovery of patterns with global
correlation conditions. An example is shown in Fig. 1 in terms of a
pattern that requires all events to relate to the same compute job.

The above approach to exploit sequence mining for the discovery
of complex event patterns is neither efficient nor effective. Domain
experts rarely know how to chose the appropriate event abstractions.
Hence, an automatic approach needs to explore a large space of
possible abstractions, which quickly becomes intractable in practice.
Despite its inherent complexity, such an approach is also ineffective.
Patterns that are composed of different event abstractions and local
correlation conditions that hold true only for a subset of the matched
events cannot be discovered. Recently, the iCEP miner [15] was
proposed as the first attempt to incorporate local correlation condi-
tions, yet it still works on the level of predefined event abstractions.
As such, existing approaches limit the discovery to the order over
correlated event abstractions, but do not aim at discovery of the
relevant abstractions and correlation conditions.

Contributions. We describe the design and implementation of IL-
MINER, a system that discovers event patterns from labelled
event data by automatically learning event abstractions and
correlation conditions. IL-MINER genuinely works on the instance-
level and copes with the combinatorial explosion of pattern candi-
dates by means of a multi-phase process. As such, it is able to
discover patterns featuring diverse event abstractions and local cor-
relation conditions. For the aforementioned example, the bottom
part of Fig. 1 depicts such a pattern that could not be discovered
by traditional approaches: It combines different event abstractions
(status or a combination of status and class) and correlation
conditions that span only a subset of the events to be matched.

IL-MINER’s discovery process consists of several phases:
(1) Promising event abstractions are identified based on a given set

of traces. Subsequently, frequent sequence mining is employed
to obtain candidate sequences of event abstractions.

(2) The candidate sequences obtained in the first phase are linked to
the events in the traces. This enables us to assess the relevance
of particular event abstractions and correlation conditions on
the instance-level.

(3) Discovery may yield a large set of event patterns. IL-MINER
can thus filter patterns along several dimensions to identify a
small, representative result set.

Our contribution is not limited to the definition of the discovery
process: we also formally show correctness, minimality, and com-
pleteness of the discovery process for conjunctive event patterns.
Finally, we outline optimisations of the implementation of pattern
discovery to achieve scalability.

The remainder of the paper is organised as follows: §2 motivates
event pattern discovery in different application domains and presents
an event processing model; §3 defines the pattern discovery problem;
§4 introduces our multi-phase process for pattern discovery; §5
discusses optimisations to achieve scalability; and §6 presents results
from an evaluation with real-world datasets. The paper finishes with
related work (§7) and conclusions (§8).

2. BACKGROUND
This sections introduces and formally defines the necessary back-

ground that is needed in order to discover event patterns.

2.1 Motivating Scenarios
Discovery of event patterns from labelled event data has applica-

tions in diverse domains, as exemplified below.
(i) Cluster management: To analyse resource usage and correct
operation of compute clusters, events that report changes in resource
utilisation and the job life-cycle may be exploited. Fig. 1 (top) il-
lustrates such a stream of events as it is reported, for example, in
the Google cluster traces [19, 20]. Yet, in many pro-active appli-
cations that aim at anticipating a situation of interest, there is no
comprehensive understanding of the event pattern to be matched.

EXAMPLE 1. Consider a scenario in which terminated compute
jobs are not properly rescheduled for execution. A reactive appli-
cation may identify this situation using a pattern that checks for
termination events that are not followed by scheduling events of the
same job within 1 hour. However, a pro-active application aims at
anticipation of this situation immediately upon job termination. For
instance, it may turn out that the respective jobs are of a particu-
lar class and terminate at most 10 minutes after their submission,
when another job is scheduled on the same machine. A respective
event pattern is shown in the bottom part of Fig. 1: an event with
status=S and class=A is followed by an event with status=S and
the same machine as the first one and, finally, a third event occurs,
with status=T and the same job as the first one.

To discover patterns that anticipate a situation of interest, traces
can be constructed from historic event data, e.g., by splitting a
stream whenever the situation occurred. Such traces are then used
as input for automated learning.

Traditional frequent sequence mining requires manual definition
of event abstractions, though, since automated exploration of possi-
ble patterns would have to cope with an exponential blow-up of the
space of possible abstractions. Fig. 2 demonstrates this effect for the
Google cluster traces [20]. Taking only a subset of the 13 attributes
of events in this dataset (specifically, status, job, priority, class,
and machine) yields already around 1,700,000 possible event ab-
stractions, i.e., combinations of attribute values, over which patterns
may be defined. In addition, even for a fixed event abstraction, there
is an exponential number of possible local correlation conditions, so
that naive frequent sequence mining becomes intractable in practice.
(ii) Finance: Events play an important role in computational finance
applications, such as stock trading. Streams of trade events are moni-
tored for particular patterns that hint at market changes and business
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Figure 2: Exponential blow-up of the space of possible event
abstractions for the Google cluster traces.

opportunities. An example would be the head-and-shoulders trad-
ing pattern, see [5], which is defined by two lower peak values that
frame a higher peak value. Here, event pattern discovery based
on historic data serves as a tool to find possible explanations for
relevant situations (e.g., peaks in order volumes), thereby supporting
decision making in the future.

The challenge, again, is the selection of appropriate event abstrac-
tions. Relevant patterns may combine events of different stocks,
specific order volumes, or fixed price ranges. A large number of
numeric event attributes with large domains makes this task par-
ticularly difficult in this domain: it is unclear how fine-granular
order volumes or stock prices shall be abstracted. Further, local
correlation conditions may be needed, e.g., correlating high-order
events of the same stock with price peaks of another one.
(iii) Urban transportation: In traffic management [3], events capture
the movement of buses and taxis in a city. Event patterns over such
event streams may monitor the punctuality of buses and identify on
which routes and at what times a delayed bus can catch up with the
schedule again [27]. Event pattern discovery helps to identify, for
instance, how bottlenecks in the transportation network build up
or under which circumstances neighbourhoods become particularly
profitable for taxi drivers.

Possible event abstractions in this setting are manifold: traffic pat-
terns in bus routes may relate to specific bus routes, neighbourhoods,
bus operators, or levels of accumulated delay. Also, patterns over
taxi utilisation events may need to correlate a subset of matched
events based on drivers, trip distances, or payment types.

2.2 Event Processing Model
Event Streams. We adopt a relational model of event streams, sim-
ilar to the one defined by the continuous query language (CQL) [2].
An event schema is a finite sequence of attributesA = 〈A1, . . . An〉,
each being of a primitive data type that is denoted by dom(Ai) for
attribute Ai. An event is an instance of an event schema, i.e., a
finite sequence of attribute values e = 〈a1, . . . an〉 with ai being
the value of the respective attribute Ai. We write e.Ai to denote the
value ai of attribute Ai of event e. We further assume a discrete,
ordered time domain for timestamps, given as N0. An event e has a
timestamp, denoted by e.t, which is the time of event occurrence. A
stream is an infinite sequence S = 〈e1, e2, . . .〉 of events, in which
the order of events respects timestamps: for two event ej and ek,
j < k implies that ej .t ≤ ek.t. Without loss of generality, we
assume that all events in a stream have the same schema. Table 1
shows an overview of the notation used in this paper.
Event Pattern Matching. While many languages for the definition
of event patterns, see [4, 25, 16], differ in syntax and semantics, they
typically share a common set of concepts [28], such as sequence
operators, value predicates, and time windows. That is, a pattern
defines an order over some event abstractions (aka event types).
Correlation conditions are expressed by predicates over the attributes
of the respective event schema and in terms of a maximal timespan
between the events that are matched.

Table 1: Overview of the used notation

Notation Explanation

A = 〈A1, . . . An〉 An event schema, a sequence of attributes
e = 〈a1, . . . an〉 An event, a sequence of attribute values
e.Ai The value ai of attributeAi of event e
e.t The occurrence time of eventE
S = 〈e1, e2, . . .〉 A stream

P = (V,Θ, τ) An event pattern
V = 〈v1, . . . , vr〉 A sequence of event variables
Θ = {θ1, . . . , θs} A set of constraints
τ A time window
Ω(P, S′) The set of matches of pattern P in stream prefix S′

DEFINITION 1 (Event Pattern). An event pattern, or pattern for
short, is a triple P = (V,Θ, τ), where
◦ V = 〈v1, . . . , vr〉, r ≥ 1, is a sequence of event variables;
◦ Θ = {θ1, . . . , θs}, s ≥ 0, is a set of constraints; and
◦ τ ∈ N0 is a time window.

An event variable vj , j ≤ r, is a placeholder for a set of events
(of schema A = 〈A1, . . . , An〉) that are equivalent under a specific
event abstraction. This abstraction is defined by means of property
constraints of the form vj .Ai φ C, where vj .Ai refers to the value
of attributeAi of the event that shall be assigned to variable vj ; C ∈
dom(Ai) is a constant of the same primitive type as attributeAi, and
φ ∈ {=̇, <̇, ≤̇, >̇, ≥̇} is a comparison operator (distinguished from
the respective mathematical relation by dotted notation). Constraints
can also be of the form vj .Ai φ vk.Al, k ≤ r, j 6= k, l ≤ n. These
constraints, referred to as relation constraints, model correlation
conditions between events.

Semantics of a pattern are defined as follows. Let P = (V,Θ, τ),
V = 〈v1, . . . , vr〉, be a pattern and S′ = 〈e1, . . . , ez〉 a finite
sequence of events, e.g., a prefix of some stream. A match of P in
S′ is a sequence 〈e1, . . . , er〉, such that all constraints in Θ evaluate
to true, if each event variable vj is bound to event ej , j ≤ r. Note
that an event can be part of multiples matches of P in S′. The set of
matches of P in S′ is denoted by Ω(P, S′).

EXAMPLE 2. Taking up Example 1, we illustrate how the respective
pattern (Fig. 1, bottom part) is captured in our model. Let A = 〈id,
granularity, job, class, status, machine, priority〉 be the event
schema. Then, the pattern is defined as P = (〈v1, v2, v3〉,Θ, 10)
with Θ containing:
◦ Property constraints defining the event abstractions:
v1.class =̇ A, v1.status =̇ S, v2.status =̇ S, and v3.status =̇ T;
◦ Relation constraints defining correlation conditions:
v1.machine =̇ v2.machine and v1.job =̇ v3.job.

3. PROBLEM DEFINITION
We frame the problem of event pattern discovery based on the

notion of a trace. A trace is a finite sequence of events, such that the
situation of interest occurs towards the end of the timespan that is
covered by the trace.

DEFINITION 2 (Trace). A trace is a finite, non-empty sequence
of events h = 〈e1, . . . , em〉, such that it holds ej .t ≤ ek.t, for
1 ≤ j < k ≤ m.

We write e ∈ h, if e = ej for some j ≤ m. Traces can be obtained
in different ways. For instance, a maximal duration d ∈ N0 can be
fixed for the patterns to discover: each occurrence of the situation
of interest at time ti ∈ N0 yields a trace comprising all events e of
a stream with ti − d ≤ e.t ≤ ti. Another approach is to partition
a stream (prefix) by the situations of interest, taking each part as a
trace, as it is illustrated in Fig. 3.
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Figure 3: Partitioning an event stream (or a prefix thereof) in traces.

Traces serve as training examples for learning event patterns.
However, there may be multiple patterns, say P and P ′, that cre-
ate matches for the given traces. In that case, patterns P and P ′

may be comparable. In particular, we say that P is stricter than
P ′, denoted by P ≺ P ′, if Ω(P, S′) ⊂ Ω(P ′, S′) for any finite
event sequence S′. In event pattern discovery, it is sufficient to dis-
cover the strictest patterns—the assumption being that they provide
the most precise characterisations of how the situation of interest
materialises in the event stream.

Given a set of traces and based on the notion of strictness of event
patterns, we state the problem addressed in this work as follows:

PROBLEM 1. Given a set of traces H , event pattern discovery is
the construction of a set of event patterns P , such that
◦ P is correct; each pattern creates at least a single match per

trace: for all P ∈ P and h ∈ H it holds that |Ω(P, h)| > 0;
◦ P is minimal; only the strictest patterns are considered:

for all P, P ′ ∈ P it holds that neither P ≺ P ′ nor P ′ ≺ P .
◦ P is complete; if there exists a pattern P with |Ω(P, h)| > 0 for

all h ∈ H , but there does not exist a pattern P ′ with P ′ ≺ P
and |Ω(P ′, h)| > 0 for all h ∈ H , then it holds that P ∈ P .

For a pattern P = (V,Θ, τ) to create a match for a trace, all event
variables V must be bound and all constraints Θ must be satisfied.
As such, event pattern discovery inherently requires generalisation:
patterns are constructed based on event abstractions and correlation
conditions that are relevant to create matches in all given traces.

Table 2: Two example traces

ID t Gran. Job Class Status Machine Prio.

h1 e1 10 Tsk J3 A S M5 2
e2 12 Tsk J2 B S M5 8
e3 15 Tsk J3 A T M5 2

h2 e4 31 Tsk J4 A S M2 3
e5 35 Tsk J7 D S M2 1
e6 41 Tsk J4 E T M6 3
e7 45 Tsk J5 C T M6 0

EXAMPLE 3. Table 2 lists two example traces for the aforemen-
tioned scenario. The pattern P = (〈v1, v2, v3〉,Θ, 10), which is
formalised in Example 2, creates matches for both of these traces.
However, it would not be constructed by event pattern discovery.
Rather, we would find a stricter pattern that defines additional prop-
erty constraints. Specifically, discovered event patterns would in-
clude constraints of the form vj .granularity =̇ Tsk, j ∈ {1, 2, 3},
encoding that all events provide information on the level of tasks of
a compute job.

4. MULTI-PHASE PATTERN DISCOVERY
This section presents IL-MINER’s multi-phase process to dis-

cover event patterns from traces. We begin this section with an
overview of the discovery process (§4.1) outlining the general ap-
proach. Subsequently, we provide details on the individual phases:
learning of sequence templates (§4.2), pattern construction (§4.3),
and pattern filtering (§4.4). Finally, we turn to the formal guarantees
of the discovery process (§4.5).
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Figure 4: IL-MINER’s multi-phase process to pattern discovery.

4.1 Overview
The discovery process of IL-MINER is organised in three phases.

As illustrated in Fig. 4, these phases are executed sequentially and
comprise several individual steps:
Sequence Template Learning. IL-MINER first identifies promising

candidate event abstractions, referred to as relevant event tem-
plates. This is achieved by determining the set of equivalence
predicates that are satisfied by the events of the given traces.
Interpreting the traces in terms of the identified relevant event
templates, frequent sequence mining yields a set of sequence
templates, each serving as a skeleton for a set of event patterns.

Pattern Construction. To construct a pattern, each sequence tem-
plate is first linked to the events of the given traces. Using the
resulting sequences of events, property constraints as well as
relation constraints are learned. Finally, plausible combinations
of both types of constraints are identified and the time window
of the resulting patterns is determined.

Pattern Filtering. To cope with a potentially large number of dis-
covered event patterns, IL-MINER includes a filtering phase
to identify a small, representative set of patterns. To this end,
clustering based on syntactic and semantics measures for event
patterns is leveraged.

4.2 Sequence Template Learning

Learning Relevant Event Templates.. An event template repre-
sents a possible event abstraction for the construction of a pattern. It
is formalised as a set of equivalence predicates. An event template
may later serve as the basis to define a property constraint in the
construction of an event pattern, see §2.2. Let A = 〈A1, . . . An〉
be an event schema. Then, an event template is a set of predicates
Ai = C, i ≤ n, where C ∈ dom(Ai) is a constant.

An event e = 〈a1, . . . an〉 induces a set of atomic equivalence
predicates Ai =̇ ai, each assigning to an attribute Ai the respective
value ai of e. The set of possible event templates induced by e is the
powerset of such atomic predicates: ζ(e) = ℘

(⋃
i≤n {Ai =̇ ai}

)
.

Each event of a trace induces a set of possible event templates.
As such, the set of possible event templates can be lifted to a trace
h ∈ H as ζ(h) =

⋃
e∈h ζ(e). IL-MINER considers event templates

to be relevant, if they materialise in all given tracesH . Consequently,
the set of relevant event types R is the intersection of the possible
templates per trace, R = relevant(H) =

⋂
h∈H ζ(h).
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It is worth to note that R contains all event templates that ma-
terialise in all traces, not only the most restrictive ones, i.e., not
only those with the maximal number of equivalence predicates. At
later stages, this will enable IL-MINER to discover patterns that are
based on diverse event abstractions.

EXAMPLE 4. We take the traces H = {h1, h2} listed in Table 2
as an example. Then, a subset of the relevant event templates
R = relevant(H) is given below (we assign identifiers (1-5) to
each of the templates for later reference):

R = { 1 : {gran. = Tsk},
2 : {gran. =̇ Tsk, status =̇ T},
3 : {gran. =̇ Tsk, status =̇ S},
4 : {gran. =̇ Tsk, class =̇ A},
5 : {gran. =̇ Tsk, status =̇ S, class =̇ A}, . . . }.

Learning Sequence Templates. Using the identified relevant event
templates, this step constructs sequence templates, sequences o =
〈o1, . . . , ol〉 with oi ∈ R, i ≤ l of event templates that materialise
in all given traces. These sequences are then used to define the order
of event variables in a discovered pattern.

As a first step, each trace is interpreted in terms of the relevant
event templates. From each trace h = 〈e1, . . . , em〉 ∈ H , we derive
a sequence of sets of event templates, h′ = 〈t1, . . . , tm〉, such that
ti = R ∩ ζ(ei), i ≤ m. In other words, each event is assigned the
set of relevant event templates for which it satisfies the respective
equivalence predicates.

In a second step, IL-MINER identifies which of the possible
orders of event templates are frequent. Here, the common problem
of frequent sequence mining (FSM) [1] is solved, which, in our
setting, discovers frequent sequences of sets of event templates
based on the set of traces. Specifically, we consider FSM with a
minimum support value of 1.0 and extract only closed sequences.
The former means that only sequences that appear in all traces shall
be considered [21]. That is to ensure that any discovered pattern
indeed identifies all situations of interest (see Problem 1). The latter
limits the result to maximal sequences [23].

Various algorithms have been present for FSM, e.g., Bide [23]
and CloSpan [26]. Taking into account that we are only interested in
closed sequences with a minimum support value of 1.0, we employ
a simple FSM algorithm that adopts the idea of Pincer-Search [12]
and implements a top-down search: it starts with the longest possible
subsequence and step-wise shortens it until reaching the required
support value.

The result of FSM in our setting are sequences of sets of event
templates. At each position in such a sequence, all of the respective
event templates are viable candidates for the definition of a sequence
template—and, eventually, for the definition of property constraints
in an event pattern. Hence, a single sequence identified by FSM
actually induces a set of sequence templates, i.e., sequences of
individual event templates. Each of these sequence templates is
considered in the remaining steps of the discovery process. Since
this may lead to an exponential number of sequence templates per
sequence found by FSM, we later discuss an optimisation to avoid
the exponential blow-up of sequences at the expense of potential
incompleteness of the discovery process.

Algorithm 1 outlines the complete algorithm to learn a set of
sequence templates O, given a set of relevant event templates R and
a set of traces H . In a first step, a sequence of sets of relevant event
templates is constructed per trace (lines 1 to 3). Subsequently, the
shortest of these sequences is selected (line 4) as a starting point for
the frequent sequence mining (lines 5 to 9). Here, sequences are
iteratively simplified (by removing one template from one of the sets
in the sequence) until a sequence of relevant event templates is found

Algorithm 1: order(R,H) – Learning Sequence Templates
Input: R – a set of relevant event templates

H – a set of traces
Output: O – a set of sequence templates

/* Construct sequences of relevant event templates */
1 seq ← ∅;
2 for 〈e1, . . . , em〉 ∈ H do
3 seq ← seq ∪ 〈(R ∩ ζ(e1)), . . . , (R ∩ ζ(em))〉;

/* Conduct frequent sequence mining */
4 s← arg min〈t1,...,tm〉∈seq m;
5 F ← {s};
6 for 〈t1, . . . , tm〉 ∈ F do
7 if ∃ 〈e1, . . . , em〉 ∈ H, 1 ≤ i ≤ m : ti 6⊆ ζ(ei) then
8 F ← F \ {〈t1, . . . , tm〉};
9 F ← F ∪ {〈t′1, . . . , t

′
m〉 | ∃ 1 ≤ i ≤ m : t′i ⊂ ti

. ∧ |t′i|+ 1 = |ti| ∧ ∀ 1 ≤ j ≤ m, i 6= j : t′j = tj};

/* Derive sequences of individual event templates */
10 O ←

⋃
〈t1,...,tm〉∈F {〈o1, . . . , om〉 | ∀ 1 ≤ i ≤ m : oi ∈ ti};

11 returnO;

that is in line with all traces (the templates of the respective events
are subsets of the templates in the candidate sequence). Finally,
sequences of individual templates are obtained from sequences of
sets of templates (line 10).

EXAMPLE 5. Using the identifiers assigned to the event templates in
Example 4, the traces of Table 2 are encoded for frequent sequence
mining as:

h1: 〈{1, 3, 4, 5}, {1, 3}, {1, 2, 4}〉
h2: 〈{1, 3, 4, 5}, {1, 3}, {1, 2}, {1, 2}〉

Applying Algorithm 1, we first construct the following frequent
sequence of sets of event templates: 〈{1, 3, 4, 5}, {1, 3}, {1, 2}〉.
From this sequence, various sequence templates are constructed,
e.g., 〈1, 1, 2〉 or 〈4, 3, 1〉. The latter, for instance, corresponds to a
sequence of three events with granularity =̇ Tsk, while it also holds
class =̇ A for the first event and status =̇ S for the second event.

4.3 Pattern Construction
The pattern construction phase of IL-MINER is executed for

each sequence template in O and involves four steps: (i) linking
the sequence template to events of traces; extracting (ii) property
constraints and (iii) relation constraints from the respective events;
(iv) merge the constraints to derive an event pattern. As illustrated
in Fig. 4, steps (ii) and (iii) are independent of each other and are
thus executed in parallel.

Linking Sequence Templates. A sequence template represents a
frequent sequence of promising event abstractions, thereby provid-
ing a first hint on how to discover an event pattern. However, a
sequence template is still a rather coarse-grained abstraction: the
identified sequences may not be relevant for all traces without fur-
ther refinement. To explore the relevance of event abstractions and
correlation conditions, IL-MINER considers the instance-level, i.e.,
the actual events of the given traces. Therefore, this step determines
all sequences of events of any trace that are instantiations of the
sequence template.

Technically, IL-MINER relies on event pattern matching: for
a sequence template o = 〈o1, . . . , om〉, an event pattern Po =
(Vo,Θo, τo) is derived: Vo = 〈v1, . . . , vm〉 are event variables, one
per event template in o; Θo contains property constraints that assign
for each variable vi the equivalence predicates of the event template
oi; and τo is set as the maximum timespan between the first and the
last event of all traces in H .

The result of this step is then obtained by matching pattern Po

over all traces H , i.e., by computing Ω(Po, h) for all h ∈ H .
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EXAMPLE 6. Let Po be the event pattern of sequence template
〈4, 3, 1〉 (see Example 5). Then, matching Po to trace h1 of Table 2
yields Ω(Po, h1) = {〈e1, e2, e3〉}. Matching it to trace h2 yields
two matches, Ω(Po, h2) = {〈e4, e5, e6〉, 〈e4, e5, e7〉}.

Extracting Property Constraints. Based on the matches obtained
for pattern Po for a sequence template o ∈ O, this step extracts the
property constraints for the resulting event pattern. As such, this
step is similar to learning of relevant event templates as presented
above (§4.2). However, it differs in two aspects: first, we consider
only constraints that hold true for at least one event in all matches;
second, not only constraints with equivalence predicates, but all
types of comparison predicates are taken into account.

Inequality predicates are explored solely for numeric attributes.
While this is typically intractable for the whole set of events con-
sidered in the first phase (sequence template learning), it becomes
feasible once the set of considered events has been narrowed based
on sequence templates.

Let ΓPro be the set of candidate property constraints vj .Ai φ C,
such that vj , j ≤ m, is an event variable of pattern Po with Vo =
〈v1, . . . , vm〉; Ai is an attribute; C ∈ dom(Ai) a constant; and
φ ∈ {=̇, <̇, ≤̇, >̇, ≥̇} is a comparison operator. Then, the set
of extracted property constraints, which is denoted by ΘPro =
extractP (Ω(Po, h1), . . . ,Ω(Po, hw)), contains all the constraints
(vj .Ai φ C) ∈ ΓPro, such that for all h ∈ H = {h1, . . . , hw}
there exists a match 〈e1, . . . , em〉 ∈ Ω(Po, h) and it holds that
ej .Ai φ C for some j ≤ m.

Extracting Relation Constraints. Relation constraints model cor-
relation conditions between pairs of events to be matched. Again,
IL-MINER extracts these constraints on the instance-level, using
the matches obtained for pattern Po. Let ΓRel be the set of all
candidate relation constraints vj .Ai φ vk.Al, such that vj and vk,
j ≤ m, k ≤ m, j 6= k, are event variables of pattern Po with Vo =
〈v1, . . . , vm〉; Ai and Al are attributes; and φ ∈ {=̇, <̇, ≤̇, >̇, ≥̇}
is a comparison operator. Extraction of relation constraints identifies
all constraints satisfied by at least one match per trace: ΘRel =
extractR(Ω(Po, h1), . . . ,Ω(Po, hw)) contains all the constraints
(vj .Ai φ vk.Al) ∈ ΓRel, such that for all h ∈ H = {h1, . . . , hk}
there exists a match 〈e1, . . . , em〉 ∈ Ω(Po, h) and it holds that
ej .Ai φ ek.Al for some j ≤ m, k ≤ m, j 6= k.

EXAMPLE 7. We consider Ω(Po, h1) = {〈e1, e2, e3〉} as well as
Ω(Po, h2) = {〈e4, e5, e6〉, 〈e4, e5, e7〉} of Example 6. For ex-
ample, there exists a match for h1 as well as for h2, in which
the first and the third event have equivalent values for attribute
priority. IL-MINER would therefore extract the relation constraint
v1.priority =̇ v3.priority. In the same vein, IL-MINER would
extract the constraint v2.priority >̇ v3.priority, since it holds
that e2.priority >̇ e3.priority (match of h1) and e5.priority >̇
e7.priority (match of h2). We note that both constraints have been
extracted from different matches of h2.

Merging Constraints. As the last step in pattern construction,
IL-MINER explores possible conjunctions of the candidate prop-
erty constraints (ΘPro) and candidate relation constraints (ΘRel)
based on the respective sequence template o ∈ O and the traces H .
Exploration of possible constraint conjunctions has to take into
account that constraints may originate from different matches per
trace, as illustrated in Example 7. Hence, constraints may be in-
compatible as their conjunction may no longer be satisfied by any
of the matches of a trace. In the above example, this is indeed the
case: The conjunction of constraints v1.priority =̇ v3.priority
and v2.priority >̇ v3.priority is not satisfied by any of the matches
(〈e4, e5, e6〉, 〈e4, e5, e7〉) of trace h2.

Algorithm 2: merge(o,ΘPro,ΘRel, H) – Merging Constraints
Input: o – a sequence template

ΘPro – a set of property constraints
ΘRel – a set of relation constraints
H – a set of traces

Output: P – a set of event patterns

/* Construct all maximal subsets of constraints per
trace, TC is a set of sets of constraints */

1 TC ← ∅;
2 for h ∈ H do
3 TC ← TC ∪ combine(ΘPro, ΘRel, h)

/* Construct all maximal subsets of intersections of
sets of constraints that have been obtained per
trace */

4 init_TC ← random_element(TC);
5 PC ← init_TC;
6 for tc ∈ (TC \ {init_TC}) do
7 for c ∈ tc do
8 TC′ ← ∅;
9 for pc ∈ PC do

10 if (pc ∩ c) 6= ∅ then TC′ ← TC′ ∪ (pc ∩ c) ;

11 PC ← TC′;

/* Construct event patterns based on the constraint
sets */

12 P ← ∅;
13 for pc ∈ PC do
14 V ← 〈v1, . . . , vm〉 for o = 〈o1, . . . , om〉;
15 τ ← maxh∈H( minimal_timestamp_diff(pc, h));
16 P ← (V, pc, τ);

17 return P ;

Against this background, IL-MINER creates a set of event patterns
based on the maximal sets of property and relation constraints that
are compatible, i.e., at least a single match per trace satisfies their
conjunction. Moreover, the time window of a pattern is determined:
For each trace, we consider the time differences of the first and last
event per match and determine the minimum of these differences,
referred to as the trace window. Then, the window of the respective
event pattern is set to the maximal trace window over all traces.

We formalise this procedure in Algorithm 2, which takes as input
a sequence template, sets of property and relations constraints, and
the traces. In a first step, all maximal subsets of constraints are
computed per trace, such that each event variable can be assigned
a single event in the trace and all constraints are satisfied (lines 1
to 3). This gives us a set of sets of constraints for each trace. Next,
all possible non-empty intersections of the sets of constraints per
trace are extracted (lines 4 to 11). Starting with a random set of
constraints (selected from the constraint sets of a random trace),
intersections are computed with all constraint sets of all other traces.
Finally, the actual patterns are constructed for each obtained set of
constraints (lines 12 to 16). That is, a set of event variables is defined
(induced by the sequence template). In addition, we compute the
trace windows (i.e., the minimal difference between the timestamps
of events in matches that satisfy the current set of constraints) and
set the maximum of the trace windows as the window of the pattern.

EXAMPLE 8. To illustrate the merging of constraints and construc-
tion of event patterns, we consider the following relation constraints,
which are a subset of the constraints actually extracted for our
running example (again, we assign identifiers to the constraints for
later reference):

ΘRel = { I : v1.status =̇ v2.status
II : v1.machine =̇ v2.machine
III : v1.job =̇ v3.job
IV : v1.priority =̇ v3.priority
V : v1.priority >̇ v3.priority }.
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We observe that a conjunction of all these constraints is satisfied
by the only match (see Example 6) obtained for trace h1. For
trace h2, constraints IV and V cannot be used together, so that the
maximal sets of constraints for the construction of an event pattern
are given as {I, II, III, IV } and {I, II, III, V }.

4.4 Pattern Filtering
The first two phases of IL-MINER’s discovery process may yield

a large set of event patterns. However, many of these patterns
are likely to be rather similar, so that returning all of them is of
limited usefulness in practice. Hence, the last phase of IL-MINER’s
discovery process aims at identifying a representative sample of the
discovered patterns. To this end, IL-MINER employs clustering to
distinguish of patterns that have different characteristics. Selecting a
few patterns from each cluster then yields a sample that exemplifies
the basic properties of the discovered patterns.

We consider two dimensions to cluster event patterns, outlined
in Table 3. On the one hand, patterns may be assessed based on
their syntax or their semantics. On the other hand, each pattern
can be considered in isolation (absolute measure) or in relation
to other patterns (relative measure). To assess patterns along these
dimensions, Table 3 lists several measures. With ∆ as the symmetric
difference of two sets and Ω(P,H) =

⋃
h∈H Ω(P, h) as the set of

all matches of pattern P in traces H , these measures are defined as:
◦ Structural Simplicity measures the complexity of an individual

pattern (V,Θ, τ) and is defined as 1/1+|Θ|+|V |.
◦ Structural Similarity quantifies the similarity of two patterns in

terms of their syntax. For patterns (V,Θ, τ) and (V ′,Θ′, τ ′),
we define this measure based on the symmetric difference of
their constraint sets as 1/1+|Θ ∆ Θ′|.
◦ The Number of Matches |Ω(P,H)| of pattern P in traces H is

a measure to quantify its strictness (aka selectivity).
◦ Matches Similarity quantifies the similarity of two patterns P

and P ′ in terms of their semantics. It is defined based on the
symmetric difference of their sets of matches obtained for the
traces H as 1/1+|Ω(P,H) ∆ Ω(P ′,H)|.

Using the above measures, the filtering procedure of works as fol-
lows: For the absolute measures evaluating each pattern in isolation,
IL-MINER employs a density-based clustering algorithm and se-
lects one pattern from either end of the measure spectrum. For the
relative measures, IL-MINER relies on hierarchical clustering and
selects a fixed amount of patterns from the hierarchy. Starting with
the maximal measure value, we move down the hierarchy until the
number of patterns to select is larger or equal than the number of
clusters. Then, one pattern is chosen randomly from each cluster.

4.5 Formal Guarantees
The definition of the problem of event pattern discovery (Prob-

lem 1) outlines three dimensions on which any solution is to be
evaluated: correctness, minimality, and completeness. To assess
to which extent the multi-phase discovery process of IL-MINER
meets these requirements, we consider solely the first two phases,
sequence template learning and pattern construction. The third
phase, pattern filtering, aims at increasing the practical usefulness
of the approach and is inherently heuristic.

First and foremost, we observed that IL-MINER’s discovery pro-
cess is correct and minimal. In other words, each of the discovered
patterns creates at least a single match for each trace and the dis-
covered set does not include a stricter pattern. Completeness, in
turn, can be achieved solely for conjunctive patterns: a pattern
P = (V,Θ, τ) is conjunctive, if all (property and relation) con-
straints in Θ are built of equivalence predicates (operator =̇). The

Table 3: Overview of measures to filter event patterns.

Individual Pattern Pairs of Patterns
(absolute) (relative)

Syntax Structural Simplicity Structural Similarity
Semantics Number of Matches Matches Similarity

restriction to conjunctive patterns stems from the fact that the dis-
covery of the constant C of property constraints built of inequality
predicates (operators <̇, ≤̇, >̇, ≥̇) cannot be guaranteed as it de-
pends on the attribute values of the events in the traces.

Following the structure of Problem 1, we formalise these guaran-
tees as follows:

THEOREM 1. Let H be a set of traces and P be the set of patterns
discovered by IL-MINER (without filtering).
◦ P is correct: for all patterns P ∈ P and traces h ∈ H it holds

that |Ω(P, h)| > 0;
◦ P is minimal: for all patterns P, P ′ ∈ P it holds that neither
P ≺ P ′ nor P ′ ≺ P .
◦ P is complete for conjunctive patterns; if there exists a con-

junctive pattern P with |Ω(P, h)| > 0 for all h ∈ H , but
there does not exist a conjunctive pattern P ′ with P ′ ≺ P and
|Ω(P ′, h)| > 0 for all h ∈ H , then it holds that P ∈ P .

The proof can be found in Appendix A.

5. SCALABILITY CONSIDERATIONS
Event pattern discovery typically has to cope with a large number

of traces, each having a large number of events. To address the
resulting challenges in terms of scalability of the discovery process,
we outline optimisations that have been incorporated in IL-MINER.

Efficient Set Intersection. IL-MINER’s discovery process often
requires computation of intersections of sets (e.g., of event tem-
plates or constraints). To achieve an efficient implementation of
the intersection operation for sets, bitwise operations over a binary
encoding of sets can be exploited: each set is encoded as a binary
feature vector, so that a bitwise AND yields a vector representing
the intersection.

Exploiting Event Template Dependencies. When preparing the
sequences of sets of event templates for frequent sequence mining,
some templates may be removed to speed-up the mining process.
First, if an event template t can be expressed as the conjunction
of two other templates, say t′ and t′′, template t can be removed
before the mining process. In the obtained sequences of sets of event
templates, template t is added again to each set containing t′ and t′′.
Consequently, no information is lost in the discovery process.

Assessing Event Template Relevance. A particular event template
may be considered to be irrelevant, if it occurs in each set of a se-
quence of all sequences obtained from all traces. In this case, it may
be removed before the frequent sequence mining and added again
to the obtained frequent sequences of event templates. However, we
note that this optimisation may be lossy, if the removal yields an
empty set for some position in a sequence of sets of templates. In
that case, correctness, minimality, and completeness of discovery
(see §4.5) are no longer guaranteed.

If trading the formal guarantees of discovery for increased run-
time performance is a viable option, a more drastic approach may
be followed to reduce the number of event templates that are sub-
ject to frequent sequence mining. The general idea is to remove
templates that appear to be less relevant for identifying sequence
templates. With R as the set of relevant event templates, we es-
timate the probability P (t) for template t ∈ R being part of an
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extracted set of templates (i.e., those that appear in one of the se-
quence templates O) by the ratio of the number of sets that contain t
and the number of all sets. For P (t), we then calculate the Shan-
non information content as c(t) = log2(1/P (t)), see [14]. The
entropy of R is calculated as the average Shannon information
contentH =

∑
t∈R P (t)log2(1/P (t)). Then, each event template

for which it holds that c(t) < H is not considered further in the
discovery process.

6. EVALUATION
We evaluate IL-MINER using four real-world datasets from dif-

ferent domains. We first show that event pattern discovery with
IL-MINER is indeed highly effective (§6.2). Second, we demon-
strate that IL-MINER discovers event patterns in large-scale datasets
within a matter of seconds (§6.3). Third, we compare the effective-
ness of IL-MINER with iCEP, a state-of-the-art system for event
pattern discovery (§6.4).

6.1 Experimental Setup and Datasets
Experimental Workflow. To assess the effectiveness of IL-MINER,
we rely on the experimental workflow outlined in Fig. 5. The input
of IL-MINER are traces in which the situation of interest occurred.
Our real-world event streams do not provide labels for particular
situations to detect. Therefore, for each dataset, we consider a
workload of several patterns and split the event data into a training
dataset Dtrain (∼20% of the data) and an evaluation dataset Deval

(∼80% of the data). Then, for each pattern P , we obtain the matches
Mtrain and Meval for datasets Dtrain and Deval, respectively.
These matches serve as the situation of interest that shall be detected
by the discovered pattern.

As the starting point for event pattern discovery, traces are ob-
tained from the training dataset Dtrain by splitting the respective
event stream into traces based on the matches Mtrain. The obtained
traces are used as input for event pattern discovery, which yields a
pattern P ∗ (or a set thereof). The discovered pattern P ∗ is compared
with pattern P in terms of the matches Meval and M∗eval obtained
by both patterns for the evaluation dataset. It is important to note
that even if P is conjunctive, P ∗ may differ from P as it can be
stricter, P ∗ ≺ P . If so, pattern P ∗ may yield less matches in dataset
Deval compared to P , i.e., |M∗eval| < |Meval|.
Evaluation Measures. A comparison of matchesM∗eval andMeval

yields sets of true positive (TP), false positive (FP), and false nega-
tive (FN) matches. A match in M∗eval is a TP, if the timestamp of
the last event in the match has the same timestamp as the last event
of a match in M∗eval, otherwise it is a FP. A match in Meval is a FN,
if there exists no match in M∗eval for which the timestamp of the
last event coincides with the one of the last event of this match.

Based on these measures, precision and recall are calculated.
Precision denotes how well a pattern only detects the situation
of interest and is defined as pre = TP /TP+FP . Recall denotes
how well a pattern finds all situations of interest. It is defined as
rec = TP /TP+FN .

Datasets. We use four real-world datasets from different domains,
namely urban traffic, finance, and cluster management. We consider
a workload of three event patterns per dataset to execute the above
experimental workflow. Half of the patterns are conjunctive. Be-
low, we describe the intuition of all patterns. Their comprehensive
specification can be found in Appendix B.

Dublin: This dataset comprises events used for urban traffic
management in the city of Dublin1. The events describe the status

1http://dublinked.com/datastore/datasets/dataset-304.php

Evaluate a chosen pattern P on datasets Dtrain and Deval  
to get matches Mtrain and Meval 

Extract traces Htrain from dataset Dtrain using matches Mtrain 

Discover pattern P* based on Htrain 

Evaluate P* on dataset Deval to get matches M*eval 

Compare matches Meval and M*eval 

Figure 5: Experimental workflow

and position of buses for one month. We consider three patterns that
are relevant for managing the punctuality of buses (time windows
between 1min and 10min): PatternDublinp1 describes a monotonic
increase of the delay of buses of a particular line, measured at bus
stops, over a sequence of three events. Pattern Dublinp2 matches
two events of the same vehicle that indicate decreasing delay. Pattern
Dublinp3 describes a busy bus stop, i.e., three buses need to arrive
at the same stop within a short period of time.

Stock: The second dataset describes intraday stock trade events
from the NASDAQ in November 2010. Again, we consider three
patterns (time windows between 50sec and 10min): Pattern Stockp1

captures an increase of the lowest stock trade value of two consec-
utive trades of Google stocks. Pattern Stockp2 has been adopted
from [11] and detects trades of three specific stocks (MSFT, GOOG,
and AAPL) with increasing volumes. Stockp3 detects sequences of
four trade events (any stock) with equal volumes.

DEBS: The third dataset was published as part of the ACM DEBS
2015 Grand Challenge [10] and also represents an urban transporta-
tion scenario. The events are a stream of trip reports of taxis in
New York City in 2013. The first pattern, DEBSp1, is related to
a task posted in the Grand Challenge: it identifies taxis driving in
a specific direction based on their GPS coordinates (time window
6min). Pattern DEBSp2 detects sequences of three trip events
(within 80sec) with equal payment types, also comparing the dis-
tances of these trips. Pattern DEBSp3 detects sequences of three
trip events (within 80sec) with different payment types and further
compares four properties of these trips (distance, tip received by
driver, fare, total amount paid).

Cluster: The Google cluster traces [19, 20] used for illustration
in this paper are used as a fourth dataset. They contain the events
related to job scheduling in a cluster of about 12.5k machines over
a whole month. We consider three patterns that monitor the execu-
tion of jobs (time windows between 100min and 100sec): Pattern
Clusterp1 detects jobs that are submitted, killed and resubmit-
ted on the same machine. Pattern Clusterp2 matches four events
that indicate finished jobs on the same machine. The third pattern,
Clusterp3, introduced already in Example 1, detects termination
of a job due to another job being scheduled on the same machine.

Implementation. IL-MINER is implemented using the Java pro-
gramming language and is publicly available2. All experiments
where conducted on a Desktop with an Intel Core i7-3770 CPU
@3.40Ghz and 16GB RAM.

6.2 How effective is event pattern discovery
with IL-Miner?

We first explore the effectiveness of IL-MINER by executing the
above mentioned experimental workflow (Fig. 5) for each workload
pattern P . Assessing the quality of the best discovered pattern P ∗

based on the comparison of Meval and M∗eval, the precision and

2https://github.com/Xerxekyran/IL-Miner
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recall is shown in Fig. 6 and Fig. 7, respectively. For all patterns, pre-
cision is 1.0. While this is expected for the six conjunctive patterns,
it highlights IL-MINER’s effectiveness in terms of precision also if
there are no formal guarantees for the discovery process. Recall is
generally high and only drops to 0.8 for one pattern. We stress that
a recall value of 1.0 is not guaranteed even for conjunctive patterns
(IL-MINER may learn a stricter pattern from the training dataset),
so that Fig. 7 witnesses generally high effectiveness of IL-MINER
in terms of recall.

Next, we explore the impact of various parameters of the pat-
tern P , which characterises the situation of interest, on effectiveness
of discovery. Based on pattern Dublinp1, we create two baseline
patterns, each comprising only property constraints over a single
attribute (lineID and atStop, respectively). Increasing the length of
the sequence of event variables in both patterns, Fig. 8 shows that
the obtained results. Recall for the pattern based on attribute lineID

is not affected, whereas recall worsens with increased sequence
length for the pattern based on atStop—which suggests that the
effect largely depends on the stream characteristics.

Similarly, Fig. 9 shows the results obtained for a baseline pattern
(using the Dublin data) of fixed sequence length when varying the
number of property constraints per event variable. Despite a glitch
in recall when a stricter pattern was discovered, we do not observe
that this parameter influences the results.

Turning to the influence of the number of traces on the discov-
ery effectiveness, Fig. 10 shows the results obtained for patterns
Dublinp1 and Stockp1. Increasing the number of traces increases
the recall, since more traces allow for a better generalisation and
thus enable discovery of more accurate patterns. Still, perfect recall
is reached in both cases with 36 traces, which is remarkably small
subset of the up to 8000 traces obtained from the training dataset.
However, a minimal number of traces is needed to obtain a set of
discovered patterns of manageable size, see Fig. 11.

Since discovery may yield tens or even hundreds of patterns, we
also evaluate the filtering phase of IL-MINER. For all experiment
runs resulting in more than one pattern, we found that a random
selection of five patterns includes the best pattern in only 21% of the
cases. Selecting five patterns using IL-MINER’s filtering strategy
results in the best pattern being selected in 71% of the experiments.

Table 4: Excerpt of dataset sizes.

Dataset # total events Pattern # traces # events in traces

Dublin 9,546,612 Dublinp1 827 6,204
Stock 7,176,930 Stockp1 3,413 3,199,033
DEBS 980,319 DEBSp1 14 1,880
Cluster 9,489,484 Clusterp1 4,001 17,744

6.3 How efficient is event pattern discovery
with IL-Miner?

To assess the efficiency of IL-MINER, we measure the absolute
execution times of the discovery process for the first pattern of each
dataset. The measurements cover the third step (discover pattern P∗
based on Htrain) of the experimental workflow outlined in Fig. 5.
We note that the construction of traces Htrain yields diverse results
for the four datasets, in terms of the number of traces as well as the
number of events in these traces, see Table 4.

Fig. 12 shows the measured absolute execution times. Run-times
between milliseconds and tens of seconds witness a high variability,
but demonstrate general feasibility. Interestingly, we observe high
variability of the amount of time spent for particular phases of the
discovery process. Fig. 13 depicts the relative share of the learning
of relevant event templates (Relevant), the learning of sequence
templates (Order), and the pattern construction phase (Constraint).
A follow-up analysis reveals that these differences are largely due
to the structure of the patterns and the characteristics of the event
stream: a large number of relation constraint candidates as well as
very similar and long traces influence the relative amount of time
used for the phases of the discovery process.

6.4 How does IL-Miner compare to the state-
of-the-art?

We compare the performance of IL-MINER with iCEP [15], a
recently proposed system for event pattern discovery. To this end,
we follow the above experimental workflow. Since iCEP has limited
support for learning event abstractions, for the comparison, we had
to simplify the discovery task and rely on patterns that define a
unique property constraint per event variable. We considered six
such patterns, which are also included in Appendix B.
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The obtained precision and recall values, shown in Fig. 14, indi-
cate large differences between iCEP and IL-MINER. iCEP fails to
discover accurate event patterns for many scenarios. In particular,
event patterns that are built of event variables for which overlapping
sets of property constraints have been defined turn out to be problem-
atic. IL-MINER discovers a much broader range of event patterns,
thereby consistently achieving high precision and high recall.

7. RELATED WORK
Closest to our work is the aforementioned iCEP miner introduced

by Margara et al. [15]. It aims at discovering event patterns from a
given set of traces, thereby assuming the same setting as IL-MINER.
iCEP supports limited discovery of event abstractions. Given an
initial definition, it discovers additional property constraints that
may refine an event abstraction. However, the actual detections
of the order of an event pattern is done purely on the type-level,
which renders it impossible to discover patterns that require multiple
occurrences of the same event abstraction. As shown in §6.4, this is
often not sufficient to discover comprehensive patterns that detect a
situation of interest.

Moreover, event pattern discovery relates to work on mining of
sequential patterns, see [1, 23, 26]. In particular, frequent sequences
may be identified based on an interval-based event model [18],
which accommodates for the need to consider time windows. How-
ever, as virtually all traditional approaches for mining of sequential
patterns, this approach requires the a priori definition of event ab-
stractions. The definition of constraints for sequential patterns has
been explored in [8]. Yet, in [8], constraints are used to inject
external knowledge into the discovery process to improve mining
performance. In our work, constraints are an integral part of the pat-
tern model, defining event abstractions and correlation conditions.

Pattern discovery has also been investigated for data streams,
streams of atomic data entities. The CrossMatch algorithm [22]
identifies local patterns in data streams using dynamic time warp-
ing, while SPIRIT [17] detects correlations and hidden variables
corresponding to trends in co-evolving data streams. All these ap-
proaches have been devised for a coarse-grained data model and
do not target the discovery of fine-granular event abstractions and
correlation conditions.

8. CONCLUSION
We have presented IL-MINER, a system that, given a set of traces,

discovers event patterns. In particular, IL-MINER does not require
an a priori definition of event abstractions. In a multi-phase pro-
cess, IL-MINER identifies relevant abstractions for the construction
of event patterns, exploits frequent sequence mining over these
abstractions, and finally learns constraints that encode correlation
conditions. We have shown that this process is not only correct
and minimal, but also complete for conjunctive event patterns. Fi-
nally, our experiments with four real-world datasets highlight that
IL-MINER is able to discover a broad range of event patterns that

could not be found by a state-of-the-art discovery algorithm. In
future work, we aim at exploring event pattern discovery for noisy
traces. Moving to a probabilistic model, this raises the question of
how to derive error bounds for the correctness and completeness of
the discovery process.
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APPENDIX
A. PROOF OF THEOREM 1
THEOREM 1. Let H be a set of traces and P be the set of patterns
discovered by IL-MINER (without filtering).
◦ P is correct: for all patterns P ∈ P and traces h ∈ H it holds

that |Ω(P, h)| > 0;
◦ P is minimal: for all patterns P, P ′ ∈ P it holds that neither
P ≺ P ′ nor P ′ ≺ P .
◦ P is complete for conjunctive patterns; if there exists a con-

junctive pattern P with |Ω(P, h)| > 0 for all h ∈ H , but
there does not exist a conjunctive pattern P ′ with P ′ ≺ P and
|Ω(P ′, h)| > 0 for all h ∈ H , then it holds that P ∈ P .

Proof. Let H be a set of traces and P be the set of patterns discov-
ered by IL-MINER (without filtering).

Correctness. Suppose that there exist a pattern P ∈ P and a trace
h ∈ H such that Ω(P, h) = ∅. Backtracking the discovery process
yields a contradiction of this assumption: Since P was returned by
Algorithm 2, there exists a sequence template o and a constraint set
pc from which P was created. The time window of P is selected as
the maximal difference between events satisfying pc over all traces,
including h. Hence, Ω(P, h) = ∅ can only be caused by pc being

not satisfied by any subsequence of events in h. Constraint set pc
is a maximal subset of intersections of constraint sets obtained per
trace, including h. Hence, all constraints in pc are part of tc ∈ TC
(see Algorithm 2) created for h. Set tc, in turn, is constructed from a
single match m, obtained by evaluating the pattern Po for sequence
template o over h. This contradicts the assumption of pc being not
satisfied by any subsequence of events in h.

Minimality. Suppose there exist patterns P, P ′ ∈ P and P ≺
P ′. Hence, Ω(P, S′) ⊂ Ω(P ′, S′) for any event sequence S′.
This means that either τ ′ < τ or Θ′ ⊂ Θ for the respective time
windows and sets of constraints, respectively. Since time windows
are determined based on the maximum over all traces of the minimal
timespan between events satisfying the respective constraint sets,
τ ′ < τ actually implies Θ′ ⊂ Θ, so that it suffices to show that this
yields a contradiction. Θ′ ⊂ Θ implies that both sets are part of
PC in Algorithm 2, which contradicts the fact that PC contains
only maximal sets (lines 8 to 11 in Algorithm 2).

Completeness. We show completeness by construction. Let
P = (V,Θ, τ) be a pattern with |Ω(P, h)| > 0 for all h ∈ H .
Suppose that there is no stricter pattern P ′ with |Ω(P ′, h)| > 0 for
all h ∈ H (this case is covered by the minimality property already).
Consider Algorithm 1: Set seq contains a sequence of sets of event
templates that comprises all predicates of property constraints in Θ
of P . This sequence must be part of F , since P creates matches
based on the property constraints built from these templates for all
traces H . Further, each sequence of individual event templates of
property constraints in Θ is part of O, the result of Algorithm 1.

Consider one of these sequences o ∈ O: For the respective pattern
Po, it holds Ω(P, h) ⊆ Ω(Po, h) for all h ∈ H . Now, consider
Algorithm 2: since P is conjunctive, for each event and attribute
in a match in Ω(Po, h), there is solely a single property constraint
that can be part of TC and, since it is the intersection of constraints
per trace, also in PC. Hence, by computing the maximal subsets
of constraint intersections, we have Θ ∈ PC. Finally, consider
the time window of the pattern created for this constraint set, i.e.,
the maximum over all traces of the minimal timespan between
events satisfying Θ per trace. Any time window smaller than τ , the
window of P , would mean that there exists a trace h for the which
minimal timespan between events satisfying Θ is larger than τ , so
that Ω(P, h) =. On the other hand, any time window larger than
τ contradicts the assumption of not having a stricter conjunctive
pattern P ′. Hence, we conclude that P ∈ P .

B. PATTERN WORKLOADS
Patterns are expressed using the SASE language, as defined in [28].

Urban transportation: Dublin bus events
-- Schema of Bus: vehicleID (int),
-- lineID (int), stopID (int),
-- atStop ({0,1}), delay (float),
-- operator (string), journey (string)

-- Pattern Dublinp1
Pattern SEQ(Bus a, Bus b, Bus c)
Where a.lineID=b.lineID=c.lineID
And a.delay<b.delay<c.delay
And a.atStop=b.atStop=c.atStop=1
Within 10 minutes

-- Pattern Dublinp2
Pattern SEQ(Bus a, Bus b)
Where a.atStop=b.atStop=0
And a.vehicleID=b.vehicleID
And a.delay>b.delay
Within 10 minutes
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-- Pattern Dublinp3
Pattern SEQ(Bus a, Bus b, Bus c)
Where a.atStop=b.atStop=c.atStop=1
And a.stopID=b.stopID=c.stopID
Within 1 minutes

Patterns (unique property constraint per event variable) for the
comparison with iCEP, based on the Dublin bus events
-- Pattern1
Pattern SEQ(Bus a, Bus b)
Where a.lineID=46 And b.lineID=38
And a.delay=b.delay
Within 200 seconds

-- Pattern2
Pattern SEQ(Bus a, Bus b, Bus c)
Where a.lineID=c.lineID=46 And b.lineID=38
Within 15 minutes

-- Pattern3
Pattern SEQ(Bus a, Bus b)
Where a.lineID=46 And b.lineID=38
And a.delay>-1000 And a.delay<1000
And b.delay>-1000 And b.delay<1000
Within 15 minutes

-- Pattern4
Pattern SEQ(Bus a, Bus b, Bus c, Bus d)
Where a.lineID=46 And b.lineID=38
And c.lineID=27 And d.lineID=83
Within 15 minutes

-- Pattern5
Pattern SEQ(Bus a, Bus b, Bus c, Bus d)
Where a.lineID=46 And b.lineID=38
And c.lineID=27 And d.lineID=83
And a.delay<b.delay And c.delay=d.delay
Within 15 minutes

-- Pattern6
Pattern SEQ(Bus a, Bus b)
Where a.lineID=31 And b.lineID=38
And a.journey=’00311001’ And b.atStop=1
Within 15 minutes

Finance: NASDAQ stock ticker events
-- Schema of Stock: ticker (string),
-- per (string), date (long),
-- open (float), high (float),
-- low (float), close (float), vol (float)

-- Pattern Stockp1
Pattern SEQ(Stock a, Stock b)
Where a.ticker=b.ticker=’GOOG’
And a.low>b.low
Within 800 seconds

-- Pattern Stockp2
Pattern SEQ(Stock a, Stock b, Stock c)
Where a.ticker=’MSFT’ And b.ticker=’GOOG’
And c.ticker=’AAPL’ And a.vol<b.vol
And b.vol<c.vol
Within 10 minutes

-- Pattern Stockp3
Pattern
SEQ(Stock a, Stock b, Stock c, Stock d)
Where a.vol=b.vol And a.vol=c.vol
And a.vol=d.vol
Within 50 seconds

Urban transportation: NYC taxi events
-- Schema of Taxi: medallion (string),
-- license (string), pickup (datetime),
-- dropoff (datetime), trip_time (int),
-- distance (float), pickup_lon (float),
-- pickup_lat (float),
-- dropoff_lon (float),
-- dropoff_lat (float), payment (string),
-- fare (float), tip (float),
-- total (float)

-- Pattern DEBSp1
Pattern SEQ(Taxi a, Taxi b)
Where a.medaillon=b.medaillon
And b.pickup_lon<a.dropoff_lon
And b.pickup<a.dropoff_lat
Within 6 minutes

-- Pattern DEBSp2
Pattern SEQ(Taxi a, Taxi b, Taxi c)
Where a.payment=’CSH’ And b.payment=’CSH’
And c.payment=’CSH’
And a.distance<b.distance
And b.distance=c.distance
Within 80 seconds

-- Pattern DEBSp3
Pattern SEQ(Taxi a, Taxi b, Taxi c)
Where a.payment=’CRD’ And c.payment=’CRD’
And b.payment=’CSH’ And b.tip<a.tip
And b.fare<a.fare And c.total=b.total
And c.distance=b.distance
Within 80 seconds

Cluster management: Google cluster traces
-- Schema of Task: missing (string),
-- job (string), task (int),
-- machine (string), class (string),
-- taskType ({0,...,8}), user (string),
-- priority (float), reqCPU (float),
-- reqRAM (float), reqHDD (float),
-- con ({0,1})

-- Pattern Clusterp1
Pattern SEQ(Task a, Task b, Task c)
Where a.status=c.status=0 And b.status=5
And a.job=b.job And a.job=c.job
And a.machine=b.machine
And a.machine=c.machine
Within 60 minutes

-- Pattern Clusterp2
Pattern SEQ(Task a, Task b, Task c, Task d)
Where a.machine=b.machine
And a.machine=c.machine
And a.machine=d.machine
And a.status=4 And b.status=4
And c.status=4 And d.status=4
Within 100 minutes

-- Pattern Clusterp3
Pattern SEQ(Task a, Task b, Task c)
Where a.machine=b.machine And a.job=c.job
And a.status=1 And b.status=1 And c.status=2
Within 100 seconds
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