
Estimating Join Selectivities using
Bandwidth-Optimized Kernel Density Models

Martin Kiefer1 Max Heimel2 Sebastian Breß1,3 Volker Markl1,3

1Technische Universität Berlin
first.lastname@tu-berlin.de

2Snowflake Computing
max.heimel@snowflake.net

3German Research Center for
Artificial Intelligence (DFKI)

first.lastname@dfki.de

ABSTRACT
Accurately predicting the cardinality of intermediate plan
operations is an essential part of any modern relational query
optimizer. The accuracy of said estimates has a strong and
direct impact on the quality of the generated plans, and in-
correct estimates can have a negative impact on query per-
formance. One of the biggest challenges in this field is to
predict the result size of join operations.

Kernel Density Estimation (KDE) is a statistical method
to estimate multivariate probability distributions from a data
sample. Previously, we introduced a modern, self-tuning se-
lectivity estimator for range scans based on KDE that out-
performs state-of-the-art multidimensional histograms and
is e�cient to evaluate on graphics cards. In this paper, we
extend these bandwidth-optimized KDE models to estimate
the result size of single and multiple joins. In particular, we
propose two approaches: (1) Building a KDE model from a
sample drawn from the join result. (2) E�ciently combining
the information from base table KDE models.

We evaluated our KDE-based join estimators on a vari-
ety of synthetic and real-world datasets, demonstrating that
they are superior to state-of-the art join estimators based on
sketching or sampling.

1. INTRODUCTION
In order to correctly predict the cost of candidate plans,

the query optimizer of a relational database engine requires
accurate information about the result sizes of intermediate
plan operations [32]. The accuracy of these cardinality es-
timates has a direct impact on the quality of the generated
query plans. Incorrect estimates are known to cause un-
expectedly bad query performance [6, 15, 20, 23, 28]. In
fact, due to the multiplicative nature of joins, errors in these
estimates typically propagate exponentially through larger
query plans [15]. This means that even small improvements
can dramatically improve the information quality that is
available to the query optimizer [15, 20].

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 13

Copyright 2017 VLDB Endowment 2150-8097/17/08.

A particular challenging problem is to accurately and con-
sistently predict the result size of joins [34]. The typical
approach for this is to combine the information from base
table estimators under the assumptions of uniformity, in-
dependence, and containment [34]. However, while easy to
compute, this approach can cause severe estimation errors
if any of the underlying assumptions is violated [6]. Mul-
tiple authors suggested specialized methods to tackle the
Join Estimation problem, including Sampling [8, 11, 21, 36],
Graphical Models [9, 35], and Sketches [19, 30]. However,
none of them managed to manifest themselves as a gener-
ally viable solution, leaving the problem as one of the major
unsolved challenges in research on query optimization [22].

In prior work, we introduced bandwidth-optimized Kernel
Density Models (KDE) as a way to compute multidimen-
sional selectivity estimates. KDE is a data-driven, non-
parametric method to estimate probability densities from
a data sample [31]. We demonstrated that combining KDE
with a query-driven tuning mechanism to optimally pick the
so-called bandwidth yields an estimator that typically out-
performs the accuracy of state-of-the-art multidimensional
histograms. Furthermore, the estimator is easy to maintain
and to parallelize on modern hardware [12]. In this paper,
we significantly expand upon this work and demonstrate
how to estimate the result size of queries spanning mul-
tiple equijoins and base table predicates from bandwidth-
optimized KDE models. In particular, we explain how to
compute estimates from both joint models and combined
base table models. We present pruning methods to reduce
the computational overhead and demonstrate a mechanism
to automatically tune the bandwidth parameters. Based
on an extensive experimental evaluation, we found that our
family of estimators matches and usually outperforms the
accuracy of existing state-of-the-art join estimators like cor-
related sampling [36] or the AGMS sketch [30]. Finally, we
provide all sources and experimental scripts to allow others
to reproduce and build upon our results.1

In the following two sections, we introduce background
knowledge on the join estimation problem and bandwidth-
optimized KDE models. In Section 4, we lay the theoretical
foundation of our work, explaining how to estimate join se-
lectivities from a KDE model. Section 5 introduces pruning
techniques to reduce the computational overhead, and Sec-
tion 6 discusses strategies to fine-tune the bandwidth pa-
rameter of these models. Finally, Section 7 presents our
experimental evaluation, and Section 8 concludes the paper
by summarizing our findings.

1The source code is available at: goo.gl/RejjVk.

2085

2. THE JOIN ESTIMATION PROBLEM
Given a set of n relations R1, R2, . . . , R

n

, and a query
Q = ‡

c1 (R1) ÛÙ
◊1

!
. . . ÛÙ

◊

n≠1 ‡
c

n

(R
n

)
"
, where ‡

c

i

denotes
a selection with (local) predicate c

i

and ÛÙ
◊

i

a join with join
predicate ◊

i

, our goal is to predict the fraction of tuples
from the Cartesian Product R1 ◊ . . . ◊ R

n

that fall into
the query’s result. This Join Estimation Problem is one of
the classic problems from query optimization research [22],
and improving the quality of join estimates has a direct and
measurable impact on the plan quality produced by cost-
based optimizers [6, 15, 18, 20, 23, 28, 33]. We consider the
important subproblem where all joins are equijoins.

2.1 Classic Join Estimation
The classic way to estimate an equijoin between two ta-

bles R1 and R2 requires us to know the number of distinct
keys n

R1.A1 and n
R2.A1 in the corresponding join columns.

Assuming uniformity, each distinct key in R
i

will appear
|R

i

|/n

R

i

.A1 times. Further assuming that the key domain
from the table with fewer distinct keys is a subset of the
other table’s domain – the containment assumption –, and
assuming that the local predicates c1 and c2 are independent
of the join attribute, we arrive at the classic join estimation
formula that is used by most query optimizers [32, 34]:

|‡
c1 (R1) ÛÙ ‡

c2 (R2)| ¥ |‡
c1 (R1)| · |‡

c2 (R2)|
max (n

R1.A1 , n
R2.A1) (1)

While straightforward to derive and easy to compute, the
underlying assumptions make Equation (1) susceptible to
several sources of estimation errors that can cause substan-
tially under- or overestimations of the join result size [15,
20, 34]. This instability has inspired several researchers
to investigate more sophisticated methods for estimating
join result sizes. These methods can be broadly catego-
rized into two classes: While base table models dynamically
combine the information from individual estimators, joint
models directly model the value distribution for preselected
joins. Joint models usually produce more accurate estimates
but are less flexible and harder to maintain than base table
models.

2.2 Sampling-based Join Estimation
Sampling is a powerful tool to estimate selectivities for

both individual and joined query results. Creating and main-
taining a random sample from database tables is a well-
understood topic [37], and we can directly produce estimates
from base table samples by evaluating the actual query on
them [11, 26]. However, joining base table samples has one
major drawback: While it is an unbiased estimator to the
selectivity, its variance is very high for small sample sizes
due to missing join partners in the sample. While this prob-
lem can be mitigated using non-uniform methods like end-
biased [7] or correlated sampling [36], the created samples
are targeted to predefined joins. Another possibility is to
build a joint model by sampling directly from the result of a
particular join. Sampling from a join result, and maintain-
ing said sample under updates, deletions and insertions, are
well-understood problems, and can be done e�ciently in the
presence of join indexes [5, 26]. Such a join sample generally
produces better estimates and requires smaller sample sizes
compared to evaluating the query based on base table sam-
ples [11, 21]. Leis. et. al. showed that estimates computed
from join samples significantly improve plan quality [21].

(a) Points in database.

(b) Sampled points.

(c) Kernels.

(d) Estimator.

Figure 1: A Kernel Density Estimator approximates the
underlying distribution of a given dataset (a) by picking a
random sample of data points from the set (b), centering
local probability distributions (kernels) around the sampled
points (c), and averaging those local distributions (d).

However, join samples are limited to queries that use the
exact same join from which the sample was drawn.

2.3 The AGMS Sketch
The AGMS sketch is a probabilistic data structure to es-

timate the join size between two data streams [1]. Given a
data stream A = [v1, v3, v2, . . .], every distinct value v

i

is as-
sociated with a uniform random variable X

i

œ {0, 1}. When-
ever the value v

i

is encountered in stream A the counter
sk (A) is incremented by the value of X

i

. Given a sketch
sk (B) constructed from the stream B with the same set
of random variables, an estimate for the join cardinality
|A ÛÙ B| is given by sk (A) · sk (B). While a single set of
AGMS sketches does not provide reliable results, the vari-
ance of the estimator reduces by a factor n when the esti-
mates provided by n pairs of sketches are averaged. The
AGMS sketch can be extended to multiple joins. It also ex-
tends to selections by representing them as a join with all
values matching the selection predicate [36].

3. BANDWIDTH-OPTIMIZED KDE
Kernel Density Estimation (KDE) is a data-driven, non-

parametric method to estimate a probability density func-
tion from a data sample [31]. We illustrate the principle
idea behind a KDE-based estimator in Figure 1: Based on
a sample (Figure 1(b)) drawn from a table (Figure 1(a)),
KDE places local probability density functions, the so-called
kernels, around the sample points (Figure 1(c)). The proba-
bility density function for the overall data is then estimated
by summing and averaging over those kernels (Figure 1(d)).
Formally, based on a data sample S =

)
t̨ (1), . . . , t̨ (s)* of

2086

(a) Bandwidth too small. (b) Bandwidth too large.

Figure 2: Tuning the bandwidth is crucial for the estima-
tion quality of KDE. If the bandwidth is too small (a), the
estimator overfits the sample. If it is too large (b), all local
information is lost.

size s from a d-dimensional dataset, multivariate KDE de-
fines an estimator p̂ (x̨) : Rd æ R that assigns a probability
density to each point x̨ œ Rd:

p̂ (x̨) = 1
s

sÿ

i=1

p̂(i)(x̨)

= 1
s · |H|

sÿ

i=1

K
!
H≠1 #

t̨ (i) ≠ x̨
$"

(2)

In this equation, p̂(i)(x̨) denotes the local probability con-
tribution coming from sample point t̨ (i). The function K
is the kernel function, which defines the shape of the local
probability distributions. In theory, there is a large number
of possible choices for K, as any symmetric probability dis-
tribution is valid. However, in practice, the kernel function
itself has only a minuscule impact on estimation quality [31],
and it is typically chosen based on other desired properties.
In our case, we will be using the Gaussian Kernel, a Stan-
dard Normal Distribution, since it simplifies the required
derivations. The parameter H is the so-called bandwidth
matrix, which controls the spread of the local probability
distributions. Figure 2 illustrates the e�ects of setting this
parameter for the estimator from Figure 1: If the band-
width is chosen too small (Figure 2 (a)), the estimator is
not smooth enough, resulting in a very spiky distribution
that overfits the sample. On the other hand, if the band-
width is chosen too large (Figure 2 (b)), the estimator is
smoothed too strongly, losing much of the local informa-
tion and underfitting the actual distribution. Accordingly,
choosing the right bandwidth value is essential to achieve
good estimation quality with KDE [12, 31].

In prior work [12], we demonstrated how to derive a selec-
tivity estimator for multidimensional range queries based on
KDE. We also demonstrated how to select this estimator’s
bandwidth parameter by numerically minimizing the esti-
mation error. For this, we plugged the gradient of KDE’s
estimation error with respect to its bandwidth into an o�-
the-shelf numerical solver. We then continuously fed this
solver with training data obtained from user queries that
we collected on-the-fly. This query-driven tuning mech-
anism allowed us to outperform the accuracy of state-of-
the-art multidimensional histograms such as GenHist [10]
or STHoles [4], while still o�ering the flexibility and main-
tainability of a sample-based method. Furthermore, we ex-

plained how our estimator is e�ciently evaluated and main-
tained on GPUs [12, 17] and, thus, identified an interest-
ing use case for GPUs in relational databases besides actual
query execution [2, 13].

4. KDE-BASED JOIN ESTIMATION
We will now discuss how to compute the result size of equi-

join queries from KDE models. In particular, we introduce
two basic strategies: A joint model that works by building a
KDE estimator from a sample directly drawn from the join
result, and a base table model that works by dynamically
combining multiple base table KDE models. By combining
base table models, we e�ectively join their estimated dis-
tributions and avoid the problem of empty join results for
naive sample evaluation.

4.1 Estimating from a Join Sample
The straight-forward method to estimate joins based on

KDE is to build the model from a sample that we drew
directly from the join result. Sampling data directly from
a join result is well-understood and can be e�ciently im-
plemented [26]. Since KDE is inherently sample-based, this
method allows us to build a KDE-based join estimator with-
out having to change a single line of code of the base table
model. The advantages and disadvantages of this approach
are identical to näıve sample evaluation: While we expect
the joint model to produce very accurate estimates [11], it
is less flexible than any method that combines base table
KDE models. In fact, while the latter model can provide
selectivity estimates for any arbitrary equijoin, the former
requires us to construct and maintain joint models for all
potential joins in the query workload.

4.2 Combining Base Table Models
Let us now derive the estimation formula for computing

join estimates from individual base table models. In order
to simplify this derivation, let us first consider the case of
predicting the result size of a two-way equijoin query with
local predicates: Q = ‡

c1 (R1) ÛÙ
R1.A1=R2.A1 ‡

c2 (R2). We
will later generalize this to the case of multiple joins. For
each individual join key ‹, we can express the number of
result tuples produced for that key as:

--‡ (R1)
R1.A1=‹·c1

-- ·
--‡ (R2)

R2.A1=‹·c2

-- =
|R1| · p1 (R1.A1 = ‹ · c1) · |R2| · p2 (R2.A1 = ‹ · c2) (3)

In this equation, the function p
i

(c) denotes the exact base
table selectivity for a predicate c on table R

i

. We can now
define the join selectivity J (Q) = |Q|/|R1|·|R2| by summing
Equation (3) over all keys ‹ œ A, where A is the join domain,
which is the set of distinct join keys. Note that A can be
reduced to a subset of the distinct keys in the join columns
due to local table predicates:

J (Q) =
ÿ

‹œA

p1 (A1 = ‹ · c1) · p2 (A1 = ‹ · c2) (4)

We replace p1 and p2 by our base table estimators p̂1 and
p̂2, and arrive at the join selectivity estimator Ĵ (Q):

Ĵ (Q) =
ÿ

‹œA

p̂1 (A1 = ‹ · c1) · p̂2 (A1 = ‹ · c2) (5)

2087

Substituting the definition of a KDE estimator from Equa-
tion (2), we find that both estimators are evaluated and
their results are multiplied. By distributivity, we can com-
pute and multiply the individual contributions for all combi-
nations of sample points in their respective samples S1 and
S2, and sum over the products.

Ĵ (Q) = 1
s1 · s2

ÿ

‹œA

AA
s1ÿ

i=1

p̂
(i)
1 (A1 = ‹ · c1)

B

A
s2ÿ

j=1

p̂
(j)
2 (A1 = ‹ · c2)

BB

= 1
s1 · s2

ÿ

‹œA

s1,s2ÿ

i=1
j=1

p̂
(i)
1 (A1 = ‹ · c1) · p̂

(j)
2 (A1 = ‹ · c2)

(6)

Assuming that the kernel functions used by our KDE mod-
els are product kernels [31], the following identity holds:
p̂(i) (A1 = ‹ · c) = p̂(i) (A1 = ‹) · p̂(i) (c). Substituting this
into Equation (6) allows us to isolate the join-specific parts
of the computation:

Ĵ (Q) = 1
s1 · s2

ÿ

‹œA

s1,s2ÿ

i=1
j=1

p̂
(i)
1 (c1) · p̂

(i)
1 (A1 = ‹)

· p̂
(j)
2 (c2) · p̂

(j)
2 (A1 = ‹)

= 1
s1 · s2

s1,s2ÿ

i=1
j=1

p̂
(i)
1 (c1) · p̂

(j)
2 (c2)

·
A

ÿ

‹œA

p̂
(i)
1 (A1 = ‹) · p̂

(j)
2 (A1 = ‹)

B

¸ ˚˙ ˝
Ĵ

i,j

(7)

We refer to Ĵ
i,j

as the cross contribution. Naively computing
the cross contribution in a selectivity estimation scenario is
infeasible, as the join key domain A is potentially huge and
generally unknown at query optimization time. Instead, we
have to exploit properties of the kernels to avoid explicitly
summing over the entire join domain. Equation (8) — which
is derived in Appendix A —, provides a closed-form approx-
imation to the cross contribution for a Gaussian kernel on
integer attributes. The Gaussian kernel is a common choice
for KDE-based estimators and is the one used in our exper-
imental evaluation.

Ĵ
i,j

¥ N
t

(i)
1 ,(”

2
1+”

2
2)

1
t
(j)
2

2
(8)

In this equation, N
µ,‡

2 denotes the probability density func-
tion for a standard normal distribution with mean µ and
variance ‡2, t

(i)
1 denotes the i-th sample point from R1.A1,

and ”1 denotes the join estimator bandwidth for R1.

4.3 Extending to Multiple Joins
In order to generalize our approach to multiple joins, we

need to introduce the notion of equivalence classes. For
two tables R

i

and R
j

that join on the attributes R
i

.A
l

Algorithm 1: Combining base table KDE models
1 # 1) Apply sample pruning:

2 S1 = S1 \
Ó

t
(i)
1 œ S1

---p(i)
1 (c1) < ◊

Ô

3 S2 = S2 \
Ó

t
(i)
2 œ S2

---p(i)
2 (c2) < ◊

Ô

4
5 # 2) Sort S2 by the join key:

6 S2 = sort(S2,S2.A1)

7
8 # 3) Apply Cross Pruning and estimate selectivity:

9 for i in {1, ..., s1}:

10 j = binarySearch

1
t
(i)
1 ≠ maxdi� (”1, ”2) , S2

2

11 while

---t(i)
1 ≠ t

(j)
2

--- Æ maxdi� (”1, ”2) · j Æ s2:

12 ˆJ = compute

ˆJ
1

t
(i)
1 , t

(j)
2 , ”1, ”2

2

13 e += p̂
(i)
1 · ˆJ · p̂

(j)
2

14 return

e/s1·s2

and R
j

.A
m

, we consider the pair of attributes equivalent
R

i

.A
l

≥ R
j

.A
m

. Note that, by definition, this equivalence
also holds transitively. We denote the equivalence class for
a given attribute R

j

.A
m

by � (R
j

.A
m

). Each equivalence
class contains a set of attributes that have to be equal for
all tuples in the join result. Based on this definition, we can
now discuss how the cross contribution can be generalized to
equivalence classes containing more than two relations, and
how we can compute the join selectivity for an arbitrary
number of equivalence classes.

First, we consider the case of joins consisting of a single
equivalence class � (R1.A1) containing n relations. Since all
join attributes are in the same equivalence class, we can still
sum over the shared join domain A. Assuming that each
joined table R

i

has a kernel density estimator model p̂
i

, we
define the generalized cross contribution Ĵ

o1,...,o

n

that needs
to be computed for the cross product between all samples:

Ĵ
o1,...,o

n

=
ÿ

‹œA

kŸ

i=1

p̂
(o

i

)
i

(A1 = ‹) (9)

Appendix A provides a closed-form approximation for the
generalized cross contribution of a Gaussian kernel. Now,
since the kernels for each dimension are independent, the
final formula to compute the join selectivity for n equiva-
lence classes �1, . . . , �

k

over a total of n relations can be
computed by multiplying their respective generalized cross
contributions J

i

(omitting the sample o�sets for readability)
with the contributions for the local predicates c

j

:

Ĵ (Q) = 1r
n

i=1 s
i

s1,...,s

nÿ

i1=1,...,i

n

=1

nŸ

j=1

p̂
(i

j

)
j

(c
j

)
kŸ

j=1

Ĵ
j

(10)

5. EFFICIENTLY JOINING KDE MODELS
In the previous section, we derived the theoretical foun-

dation for computing join selectivities from base table mod-
els. We now discuss how we can e�ciently evaluate them
in practice. Our estimator receives the relational query
Q = ‡

c1 (R1) ÛÙ
R1.A1=R2.A1 ‡

c2 (R2), as well as two KDE
estimators with their respective base table samples S1, S2
and bandwidth vectors ”̨1, ”̨2. Based on Equation (7), we

2088

know that computing the join selectivity requires us to com-
pute the cross contributions Ĵ

i,j

for all s1 · s2 pairs from the
cross product of S1 and S2, incurring quadratic complexity.
Accordingly, a näıve implementation would severely limit
the scalability and applicability of our approach. In order
to reduce the number of required computations, we now in-
troduce two pruning techniques: Sample Pruning and Cross
Pruning. Algorithm 1 illustrates these methods and the gen-
eral selectivity estimation procedure.

5.1 Sample Pruning
If the local contribution for a particular sample tuple is

su�ciently small, the contribution of every derived tuple
from the cross product will be negligible. Thus, we can
omit this sample point in all following computations, which
we call Sample Pruning (Lines 2 – 3). Similar to pushing
down selections in query execution plans, we can reduce the
number of input tuples that have to be considered in the
more expensive computation of the cross contributions. We
chose the threshold as the inverse of the cross product size
◊ = 1

r1·r2
, as this limits the overall error to the join cardi-

nality estimate to at most one tuple.

5.2 Cross Pruning
Next, we compute the cross contributions (Line 10), mul-

tiply them with their corresponding local contributions and
sum them up to compute the join selectivity (Line 11). In
this part of the algorithm, we apply Cross Pruning to re-
duce the computational load: As the Gaussian kernel applies
smoothing by distance, its intuitive that the cross contri-
bution for two sample points becomes negligible when the
distance between the two points is very large. Again choos-
ing the maximum tolerable error to be 1

r1·r2
, the maximum

tolerable distance between two sample values is:

1
r1 · r2

> N
t

i

1,”

2
1+”

2
2
(tj

2)

≈∆ 1
r1 · r2

>
1

2fi (”2
1 + ”2

2)
exp

A
≠1

2

!
ti

1 ≠ tj

2
"2

(”2
1 + ”2

2)

B

≈∆
--ti

1 ≠ tj

2
-- >

ı̂ıÙ≠2 · ln

A
2fi (”2

1 + ”2
2)

r1 · r2

B
(”2

1 + ”2
2)

(11)

To exploit this property, we first sort S2 on the join at-
tribute (Line 5). Next, instead of iterating over the cross
product, the algorithm considers only tuples that are su�-
ciently close to each other by iterating over all tuples from
S1 (Line 7) and finding the first qualifying tuple from S2
via binary search (Line 8). The function maxdi� computes
the maximum distance according to Equation (11). Finally,
we iterate over all qualifying tuples from S2 (Line 9 – 11),
compute the cross contribution Ĵ (Line 10) and iteratively
compute the join selectivity (Line 11).

Sample pruning and cross pruning can significantly re-
duce the number of computations required to compute an
estimate, in particular when the join and selections are very
selective. Sorting, if necessary, can be done in O (s2 log s2),
pruning and computing the local contributions can be done
in a single pass over each sample [12]. We have to compute
s1 binary searches, each requiring at most log (s2) accesses

to S2. The actual number of elements traversed in the inner
while-loop is data-dependent. In the degenerate case of a
join that is close to a cross product, we still need to traverse
S2 for every tuple in S1, and the complexity of the overall
algorithm remains O (s1 · s2). However, in the optimal case,
we only have to check a handful of tuples from S1, which
yields O (s1logs2). We argue that the degenerate case does
rarely appear in real-world data and provide experimental
evaluation on real-world data in Section 7.4.

5.3 Extending to Multiple Joins
Generalizing this algorithm to multiple joins requires only

a few modifications. In particular, we have to apply sample
pruning to all base table samples. We pick a left-deep join
order and sort the samples for the right hand side of all join
operators based on their join attribute. This way, we ensure
that we need to sort at most j ≠ 1 samples for a total of
j joins. As we only allow bandwidth values such that the
function values of the cross contribution never exceeds one,
we can handle the joins by subsequent binary searches and
apply cross pruning for each of them.

6. BANDWIDTH OPTIMIZATION
In prior work [12], we demonstrated that query-driven

bandwidth optimization is crucial to the estimation qual-
ity of KDE-based selectivity estimators. During query ex-
ecution, we observe the true selectivity of operators, which
allows us to numerically optimize the bandwidth based on
the estimation error. Since we cannot use sample or cross
pruning to speed up the gradient computations for base table
KDEs — a negligible contribution to the estimate does not
imply a negligible contribution to the gradient —, we instead
rely on a derivative-free, bound-constrained optimization al-
gorithm. In particular, we use constrained optimization by
linear approximation (COBYLA) [27] from nlopt [16]. We
use the same algorithm for KDE over join samples.

We optimize the bandwidth based on the multiplicative
error, which, given the true selectivity c and an estimate ĉ,
is defined as:

m (c, ĉ) = max (c, ĉ)
min (c, ĉ) (12)

If the estimate is larger than the actual selectivity, the
multiplicative error is equivalent to the relative error, other-
wise it is the inverse of the relative error. Thus, the smallest
multiplicative error is 1.0 and over- and underestimations
are equally penalized. The multiplicative error is the error
metric of choice for cardinality estimation, as it minimizes
error propagation in query plans and correlates directly with
plan quality [25]. By optimizing for this error function, we
ensure that the optimization translates to improved query
plans.

Given a set of representative queries Q1, . . . , Q
n

, we then
optimize the bandwidth vectors for all tables ”̨1, . . . , ”̨

m

for
the geometric mean over the estimation error:

arg min
˛

”1,...,

˛

”

m

A
nŸ

i=0

m
!
J (Q

i

) , Ĵ (Q
i

)
"
B 1

n

(13)

Note that the estimate Ĵ depends on the bandwidth vec-
tors ”̨1, . . . , ”̨

m

. We can only optimize the bandwidth for at-
tributes that are actually covered in the queries Q1, . . . , Q

n

.

2089

We suggest collecting query feedback for all base table fil-
ters and subsequent join operators in a query plan. This
only requires keeping track of intermediate results, which
can be done with very little overhead. The optimization
process can then be executed periodically or triggered by a
database command. Note that bandwidth optimization does
not block the KDE models and, thus, optimization and es-
timation can be interleaved.

7. EVALUATION
In this section, we present the experimental evaluation of

our KDE-based join estimators in terms of estimation qual-
ity and execution time. All experiments can be reproduced
using the code and datasets from our public repository2.

7.1 Experimental Setup
We will now describe the datasets, workloads, and esti-

mators that were used for our experiments.

7.1.1 Compared Estimators

We compared the following estimators:

Postgres: Our first baseline estimator uses the EXPLAIN
feature of vanilla Postgres 9.6. Postgres uses the clas-
sical join estimation formula, relying on the indepen-
dence assumption and 1D statistics (frequent values,
histograms, and number of distinct values).

Table Sample (TS): Our second baseline estimator, which
implements näıve sample evaluation based on uniform
samples from the base tables.

Join Sample (JS): The final baseline estimator, which im-
plements näıve sample evaluation based on a single
uniform sample from the join result.

Correlated Sample (CS): A sampling-based estimator op-
erating on biased samples constructed by using a com-
mon hash function on join attributes [36]. By corre-
lating the samples on the join attribute, the problem
of empty join results due to independence is avoided.
Compared to other biased sampling algorithms, it does
not require prior knowledge of the data distribution.

AGMS: We implemented the AGMS sketch with extensions to
filter conditions as proposed in [36]. Random variables
were generated by the EH3 hashing scheme which was
shown to be favorable in terms of hash size and gener-
ation e�ciency [29].

JS+KDE: Our KDE estimator based on a join sample, as de-
scribed in Section 4.1.

TS+KDE: Our base KDE estimator based on table samples,
as described in Section 5.

Note that we specifically evaluated against estimators that
are comparable in terms of model construction and sup-
ported estimation operations (join subject to conjunctive
base table predicates). In particular, all compared estima-
tors can be constructed in a single pass over the data and
can be maintained under updates.

All KDE models use bandwidth vectors optimized for the
geometric mean of the multiplicative error on a set of 100
training queries.
2
https://goo.gl/RejjVk

7.1.2 Evaluated Datasets

We conducted our experiments based on the following
datasets that cover both synthetic and real-world examples:

SN (Shifted Normal): Synthetic dataset consisting of 100k
tuples drawn from normal distributions N

µ1,�, N
µ2,�,

and N
µ3,�. Values were rounded to the closest integer

to simulate a discrete dataset. The covariance matrix
� was chosen as (1200 1100

1100 1200). The means were chosen as
µ1 = (500 700)T , µ2 = (600 700)T and µ3 = (700 700)T .
Thus, all attributes are dense and highly correlated.

IMDb: Real-world dataset based on data from the Internet
Movie Database3, which we obtained using the python
package IMDbPY4 . Our queries use the tables title

(3.5m tuples), movie keyword (6m), cast info (50m),
company name (300k), and movie companies (4m).

DMV: Real-world dataset based on data from a Department
of Motor Vehicles [14, 24]. The dataset contains in-
formation on cars, their owners and accidents in six
relations containing 23 columns. The relations con-
tain between 269 and 430k tuples.

We used dictionary encoding to transform all string at-
tributes into integers.

7.1.3 Query Workload

Every workload in our evaluation is defined by a prepared
query statement and a workload strategy (Uniform, Dis-
tinct). The prepared statement contains up to three joins as
well as selections with conjunctive range and equality pred-
icates. The left hand side of thes selection predicates is a
base table attribute, while the right hand side is a param-
eter. We used the following algorithm to generate actual
queries from the prepared statement based on the chosen
workload strategy:

1. We compute the full join in the prepared statement,
while ignoring the selections, and project on the non-
join-attributes in the prepared statement.

2. We select a tuple t from the join result based on the
specified workload strategy: (Uniform) We select a
tuple from the join result with uniform probability.
(Distinct) We eliminate duplicates from the join result
and draw a tuple with uniform probability.

3. For attributes subject to equality predicates, the values
on the previously drawn tuple t become the selection
parameters. For an attribute A with range predicates,
we need to provide an upper and a lower bound. We
retrieve the minimum value min

A

and maximum value
max

A

after applying the equality predicates. Defining
the value of attribute A on the tuple t as t.A, we select
the upper bound as u

A

= [T.A+(max
A

≠T.A)·rand()]
and the lower bound as l

A

= [T.A ≠ (T.A ≠ min
A

) ·
rand()]. The function rand returns a random real
value in [0, 1).

3
http://www.imdb.com/interfaces

4
http://imdbpy.sourceforge.net

2090

The uniform strategy follows the distribution in the join re-
sult and therefore favors queries with higher selectivities.
As the distinct strategy disregards the distribution of tuples
in the join result, it favors queries with lower selectivities.
Intuitively, a learning estimator should be more e�ective on
the uniform workload as the queries focus on strongly rep-
resented regions. The distinct workload is harder to learn,
as the estimator has to fit the entire dataset.

7.2 Estimation Quality
In the first set of experiments, we compared the accu-

racy of all estimators to get a feeling how our KDE-based
join estimators stack up against the state of the art. For
these experiments, the size of base table samples was fixed
to one percent, join samples and number of AGMS sketches
were chosen to match the memory required by the base ta-
ble samples. While the sample sizes for correlated samples
vary inherently, we chose the sampling threshold to meet
the target size in expectation. The actual experiment then
consisted of optimizing the bandwidth of our KDE-based
models on 100 training queries, followed by measuring the
multiplicative estimation error for all estimators on another
100 queries from the selected workload. We ran this experi-
ment for di�erent query patterns over the dataset and both
workloads, repeating it 20 times for each combination.

7.2.1 SN Dataset

Figure 3 illustrates the results of this experiment for the
SN dataset. SN Q1 joins the tables generated with µ1 and
µ2 on their first attribute. The remaining two attributes
are subject to range selections. Methods based on uniform
base table or join samples clearly outperform the other esti-
mators on this workload by more than 60% in terms of the
median estimation error. KDE on base tables provides a
small improvement of up to 15% over plain base table sam-
ple evaluation, while join samples with and without KDE
both provide close to perfect estimates. Correlated samples
provide the worst estimates for this query and are o� by
one order of magnitude. As the join is not a PK-FK join
and the join attributes are skewed, the problem tackled by
correlated samples does not arise.

SN Q2 adds the table generated with µ3 to the join and
introduces an additional range predicate to the query. Like
for SN Q1, join sample-based estimators produce close to
perfect estimates. This is not surprising, as the complexity
introduced by the additional join is handled in the sampling
process. TS+KDE is clearly superior to all other base table
estimators and provides a better median estimation error
by a factor of 4 compared to Postgres. In contrast, table
samples, AGMS and correlated samples are heavily a�ected
by the additional joins and yield estimates that are o� by
up to seven orders of magnitude.

7.2.2 DMV Dataset

Figure 4 illustrates the results of this experiment for the
DMV dataset. We evaluate three query patterns over the
four main tables of the datasets. DMV Q1 consists of a sin-
gle join and four base table selections (two range predicate,
two equality predicates). DMV Q2 and DMV Q3 succes-
sively add an additional join. Furthermore, they add two
range selections and one equality selection, respectively.

We observe that TS+KDE is superior to the other base
table estimators and outperforms them by at least one order

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

SN Q1 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

SN Q1 (Distinct)

1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06
1e+07
1e+08

Postg
res

AGMS

Ta
ble

Sam
ple

(TS)

Corre
lat

ed
 Sam

ple

Jo
in Sam

ple
(JS

)

TS+K
DE

JS
+K

DE

SN Q2 (Uniform)

1e+00
1e+01
1e+02
1e+03
1e+04
1e+05
1e+06
1e+07
1e+08

Postg
res

AGMS

Ta
ble

Sam
ple

(TS)

Corre
lat

ed
 Sam

ple

Jo
in Sam

ple
(JS

)

TS+K
DE

JS
+K

DE

SN Q2 (Distinct)

Figure 3: Estimation quality, SN dataset. The y-axis
shows the multiplicative estimation error.

of magnitude in terms of the median estimation error in
all experiments. Only Join Sample and JS+KDE perform
better by up to a factor of four. While these estimators are
very close in terms of the median estimation error, JS+KDE
improves the estimation errors above the median for IMDb
Q2 and Q3.

For DMV Q1, correlated sampling outperforms Table Sam-
ple by more than an order of magnitude. However, for DMV
Q2 and Q3, Postgres, Table Sample and Correlated Sample
perform very similar.

The AGMS sketch scales poorly with the introduced se-
lections and performs worse than the other estimators in
this experiment. Its median estimation error compared to
Postgres is worse by two orders of magnitude - and the
upper whisker and box boundary even extend beyond the
plot boundaries. Given that the estimator variance for the
AGMS sketch is proportional to the size of the cross product
and selections are handled by joining with additional virtual
tables [36], this behavior is expected.

7.2.3 IMDb Dataset

Figure 5 illustrates the results of this experiment for the
IMDb dataset. IMDb Q1 joins two tables subject to one
range and two equality predicates. IMDb Q2 and Q3 add
an additional join and equality predicate respectively.

Join sample and JS+KDE provide close to perfect esti-
mates for almost all experiments. IMDb Q3 with the dis-
tinct workload is the only exception to this: While both
estimators have comparable median errors, JS+KDE shows
a much better error distribution above the median as the
upper box boundary and whisker improved by one and two
orders of magnitude respectively.

TS+KDE provides the best estimates among the base ta-
ble estimators. We see drastic improvements of an order of
magnitude over correlated samples and the AGMS sketch.
Compared to Table Sample, we observe drastic improve-
ments of more than an order of magnitude for IMDBb Q2
(Distinct), Q3 (Uniform), and Q3 (Distinct) — for all other
experiments the estimates are comparable. Postgres estima-

2091

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05
DMV Q1 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05
DMV Q1 (Distinct)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

DMV Q2 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

DMV Q2 (Distinct)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Postg
res

AGMS

Ta
ble

Sam
ple

(TS)

Corre
lat

ed
 Sam

ple

Jo
in Sam

ple
(JS

)

TS+K
DE

JS
+K

DE

DMV Q3 (Uniform)

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

Postg
res

AGMS

Ta
ble

Sam
ple

(TS)

Corre
lat

ed
 Sam

ple

Jo
in Sam

ple
(JS

)

TS+K
DE

JS
+K

DE

DMV Q3 (Distinct)

Figure 4: Estimation quality, DMV dataset. The y-axis
shows the multiplicative estimation error.

tion errors predominantly lie between one and ten, which
is very competitive - especially for Q2 and Q3. However,
TS+KDE still provides an improvement between factors of
two and four for IMDb Q1 and Q2. For IMDb Q3, the
provided estimates are comparable.

7.2.4 Discussion

Based on the results of our experiments, we can make the
following general observations:

1. KDE-based join estimators generally perform better
than the AGMS sketch and traditional estimators that
rely on the independence assumption and 1D statistics.

2. KDE-based join estimators never perform significantly
worse than their näıve sample evaluation counterparts
or correlated sampling, but usually improve the esti-
mates significantly.

7.3 Quality Impact of Model Size
In our second experiment, we investigate how the rela-

tionship between the di�erent estimators changes with the
model size. For this, we ran our previous experiments while
increasing the sample ratio — and accordingly the other
model sizes — by factors of two from 0.001 to 0.128. We
report the geometric mean error for DMV Q1 (Uniform), as
a representative for estimates on a single join, and DMV Q3
(Uniform), as a representative for multiple joins.

Figure 6 illustrate the results of this experiment for DMV
Q1 with the uniform workload. There are few noteworthy
observations. First, KDE-based estimators are a signifi-
cant improvement over näıve sample evaluation for small

�����

�����

�����
���	
� ��
������

�����

�����

�����
���	
� ���
������

�����

�����

�����

�����

�����

�����

����	

��
 �� ���������

�����

�����

�����

�����

�����

�����

����	

��
 �� ����������

�����
�����
�����
�����
�����
�����
����	
����

�����

��
���
���

�	

�

�

���
�

��
��
���
�

��
���
�
�
��
�

��
��

��
��
�

��
��
���
�

��
��
��

��
��
��

�
�� �� ���������

�����
�����
�����
�����
�����
�����
����	
����

�����

��
���
���

�	

�

�

���
�

��
��
���
�

��
���
�
�
��
�

��
��

��
��
�

��
��
���
�

��
��
��

��
��
��

�
�� �� ����������

Figure 5: Estimation quality, IMDb dataset. The y-axis
shows the multiplicative estimation error.

sampling fractions. This is clearly visible for TS+KDE: A
sampling fraction of 0.001 is not su�cient for näıve eval-
uation of base table samples, as the join between the two
samples is likely to be empty causing estimation errors of
three orders of magnitude and more. Adding a KDE model
improves the estimation error by more than two orders of
magnitude, which outperforms Postgres by a factor of two.
While correlated samples tackle the same problem and bring
substantial improvements over näıve base table samples for
smaller sample sizes, KDE models are still clearly superior.
Furthermore, we see JS+KDE bringing a 50% improvement
over join sample evaluation for a sample size of 0.001.

Second, KDE-based estimators never perform significantly
worse than Table Sample. While correlated samples bring
improvements of an order of magnitude and more for small
sample sizes, they converge slower to exact estimates. This
causes an intersection point, after which Table Sample yields
a smaller estimation error. This is consistent with our obser-
vations in Section 7.2, which showed that correlated samples
are not always preferable to uniform table samples. As sam-
ple evaluation is in the parameter space of KDE-based esti-
mators, their estimation error converges with their sample
evaluation pendant for larger model sizes.

Figure 7 illustrates the results of this scaling experiment
for DMV Q3 with the uniform workload, which adds two
more joins to the query. The key observation is that larger
sample sizes are required for the base table estimators to
clearly outperform Postgres by 10% or more. TS+KDE
provides better estimates at sample size 0.008, correlated
samples need twice as many points. A clear improvement
for table samples is only visible at a sample size of 0.128.

2092

JS+KDE provides better estimation errors than join sam-
ple evaluation for sample sizes 0.001 to 0.004 by a factor
between 1.5 and 2.

These experiments confirm that bandwidth-optimized KDE
models can significantly improve the estimates computed
from samples. Furthermore, the measured estimates were
never significantly worse than the estimates provided by
Postgres, but are usually much better depending on the sam-
ple size and the workload.

�����

�����

�����

�����

�����

����� ����� ����� ����	 ����
 ����� ���
� ����	

��
��
��
�
�
�	

��
	�

�

��
�
��
��
�

��
��� ���� ��������� �� ���� ����� �����

����� ��
��� ����
���� ��
��� ����

��������� ��
���

!"#�
���$%&
���$%&

'���(���

Figure 6: Estimation quality on DMV Q1 (Uniform) with
growing sample sizes.

�����

�����

�����

�����

�����

�����

����	

����

����� ����� ����� ����� ����	 ����� ���	� �����

��
��
��
�
�
�	

��
	�

�

��
�
��
��
�

�����
��� ��������� �� ���� �����
����

�����
����� ��
�
����
����� ��
�

 �!!�����"
�����

#$%

�
�&'(
�
�&'(

)���*!��

Figure 7: Estimation quality on DMV Q3 (Uniform) with
growing sample sizes.

7.4 Performance Evaluation
In our final series of experiments, we evaluated the run-

time scalability of our estimators for increasing sample sizes.

7.4.1 Setup

As demonstrated in our prior publication, KDE models
are very well suited to be accelerated by graphics cards [12].
Accordingly, we implemented all estimators as GPU pro-
grams using custom OpenCL kernels and GPU primitives
as provided by the Boost.Compute framework5. Näıve sam-
ple evaluation on the join sample was implemented as a
straight-forward table scan, evaluation on the table samples
was implemented by applying the local filter predicates on
the sample, followed by performing a binary search join. Ac-
cordingly, both näıve estimators perform basically the same
5www.boost.org/libs/compute

operations as our KDE estimators, but with less computa-
tional overhead and most aggressive pruning.

The experiment was conducted on a custom server with
an AMD Opteron 6376 processor, a NVIDIA GeForce GTX
980 graphics card and 64 GB of DDR3 memory. The server
was running Ubuntu Linux 16.04.1 with kernel 4.4.0. The
GPU was controlled by NVIDIAs 367.57 driver.

We performed our experiments on the IMDb dataset as
it is the largest of our evaluated datasets. We repeated the
previous experiment for two queries over the IMDb dataset
while reporting the average runtime in milliseconds instead
of the estimation error.

7.4.2 IMDb Q1 (Uniform)

Figure 8 shows the results for query IMDb Q1 using the
uniform workload. The first observation is that the run-
time for all sample-based estimators barely increases up to
a sample size of 0.016. For the AGMS sketch we observe
the same e�ect for sample sizes of 0.001 and 0.002 This is
caused by the overheads introduced by the OpenCL frame-
work, OpenCL kernel execution and memory transfer domi-
nating the runtime, which is 1.5ms for table sample estima-
tors, 0.4ms for join sample estimators and 0.1ms for AGMS.

Once the actual computation dominates execution times,
we see the expected linear increase in the runtime of both
AGMS (0.04) and JS+KDE (0.064). As join sample evalu-
ation only requires computationally cheap comparisons and
increment operations for every tuple, the framework over-
head dominates throughout the experiment.

The runtime for table sample, TS+KDE and correlated
sample is very close throughout the experiment within a
10% margin. This shows the e�ectiveness of our pruning
techniques: While computing the cross contribution is com-
putationally expensive, our pruning techniques reduce the
number of computations to a degree that they do not dom-
inate the estimation time in this experiment.

7.4.3 IMDb Q3 (Uniform)

In order to show the performance of our estimator for mul-
tiple joins, we repeated the experiment for IMDb Q3 which
adds two joins and additional base table predicates. The
results are shown in Figure 9. Again, we observe that for
smaller sample sizes, the framework overhead dominates the
execution time. However, it is slightly larger for base table
models, which is due to the additional number of involved
tables. For AGMS and JS+KDE, the execution time in-
creases roughly linear for sample sizes of 0.008 and larger.
For Join Sample, the overhead dominates for all sample sizes
and the execution time does not increase.

For sample sizes from 0.001 to 0.004, we see that the
estimation time for TS+KDE, TS and Correlated Sample
barely increase. TS+KDE adds an overhead of at most 50%
to naive samples. From a sample size of 0.032 onwards,
TS+KDE imposes a larger overhead and grows roughly lin-
early, while table and correlated samples increase sublin-
early. The additional overhead imposed by KDE over Table
Sample is within an order of magnitude. Only for the largest
sample size of 0.128, we can observe a substantial overhead
of two orders of magnitude.

Our pruning techniques are very e�ective for this query,
as the runtime complexity without our pruning techniques
would be quartic in the sample size.

2093

�����

�����

�����

����� ����� ����� ����	 ����
 ����� ���
� ����	

��
��
��
�
��
�	

��
��
��

�
	

�
	

�

�
���� ���� ����
���� �� �
�� �
��� �����

�
��� �
���� ����
���� �
���� ����

�� ��
��! �
����
"#$�

���%&'
���%&'

Figure 8: Estimation time on IMDb Q1 (Uniform) with
growing sample sizes.

�����

�����

�����

�����

�����

�����

�	��� �	��� �	��� �	��
 �	��� �	��� �	��� �	��

��
��
��
�
��
�	

��
��
��

�
	

�
	

�

�
���� ���� ����
���� �� �
�� �
��� �����

�
��� �
���� ����
���� �
���� ����

�� ��
��! �
����
"#$�

���%&'
���%&'

Figure 9: Estimation time on IMDb Q3 (Uniform) with
growing sample sizes.

8. CONCLUSION & FUTURE WORK
In this paper, we introduced a novel way to estimate join

selectivities based on bandwidth-optimized Kernel Density
Estimators. Existing models su�er from at least one of the
following drawbacks: They (1) provide inaccurate estimates,
(2) are expensive to construct, (3) are restricted to a single
type of query, or (4) are expensive or impossible to maintain
under changing data.

Our approach uses KDE models, which are constructed
from base table or join samples, and provides an estimate
to its underlying distribution. They apply smoothing to
the sample distribution by placing probability density func-
tions on all sample points, averaging over them to compute
the final estimate. The degree of smoothing is controlled
by a hyper-parameter, the so-called bandwidth. Selecting
this bandwidth parameter is essential for the estimation
quality and can be done by performing numerical optimiza-
tion over query-feedback, either based on base table or join
queries. KDE combines the flexibility and maintainability of
a sample-based method, with the quality of state-of-the-art
selectivity estimators.

We evaluated the quality of our approach using queries
on both synthetic and real-world datasets. We found that
KDEs provide significantly better join estimates than tradi-
tional methods in case one of the underlying assumptions is
violated. Compared to näıve sample evaluation, our models
can provide significantly improved results for relatively small

sample sizes, while still converging to the same accuracy for
larger samples. In practice, we suggest to maintain base ta-
ble KDE models for all tables in a database as they usually
provide better estimates for supported operators and data
types (numeric attributes, dictionary encoded attributes).
Joint KDE models can be added manually, when additional
accuracy is required for particular joins.

In order to conclude the paper, we now present and discuss
selected topics that we believe to be interesting directions for
future work in the field of KDE-based selectivity estimation:

Investigating Di�erent Kernel Functions: As using the
Gaussian kernel requires evaluating the error and ex-
ponential function, it is computationally intensive. In-
vestigating alternative kernel functions could lead to
a more e�cient evaluation, while still providing simi-
lar results. In particular, one could extend our ideas to
the Cauchy or Epanechnikov kernel, which are cheaper
to evaluate.

Generalization to Theta Joins: Since KDE models pro-
vide a probabilistic model for the join frequency distri-
bution of a table, they could also be used to estimate
the selectivity for the more general class of theta joins.
In particular, we would have to derive closed-form es-
timation formulae by solving Equation 14 for di�erent
integral bounds and identify how to e�ciently imple-
ment those. While this is surely not trivially possible
for every join predicate, we think that extending sup-
port for certain classes of general theta joins, like band
joins (R1.L Æ R2.A Æ R1.U) or simple inequality joins
(R2.x Æ R1.l), would be possible and interesting.

KDE on runtime samples: Recent work showed promis-
ing results for uniform join samples created at esti-
mation time in in-memory databases [21]. It would
be an interesting research direction to investigate how
the bandwidth of KDE models could be selected in
systems without materialized samples.

Acknowledgment
The work has received funding from the European Union’s
Horizon2020 Research & Innovation Program under grant
agreement 671500 (project ’SAGE’) and from the German
Ministry for Education and Research as Berlin Big Data
Center BBDC (funding mark 01IS14013A).

9. REFERENCES
[1] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy.

Tracking join and self-join sizes in limited storage. In
PODS, pages 10–20, 1999.

[2] S. Breß, H. Funke, and J. Teubner. Robust query
processing in co-processor-accelerated databases. In
SIGMOD, pages 1891–1906, 2016.

[3] P. Bromiley. Products and convolutions of gaussian
probability density functions. 2003.
http://www.tina-vision.net, Internal Report.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: a
multidimensional workload-aware histogram. In
SIGMOD Record, volume 30, pages 211–222, 2001.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. On
random sampling over joins. In SIGMOD, pages
263–274, June 1999.

2094

[6] S. Christodoulakis. Implications of certain
assumptions in database performance evauation.
TODS, 9(2):163–186, 1984.

[7] C. Estan and J. Naughton. End-biased samples for
join cardinality estimation. In ICDE, page 20, 2006.

[8] S. Ganguly, P. Gibbons, Y. Matias, and
A. Silberschatz. Bifocal sampling for skew-resistant
join size estimation. In SIGMOD Record, volume 25,
pages 271–281, 1996.

[9] L. Getoor, B. Taskar, and D. Koller. Selectivity
estimation using probabilistic models. SIGMOD
Record, 30(2):461–472, May 2001.

[10] D. Gunopulos, G. Kollios, J. Tsotras, and
C. Domeniconi. Selectivity estimators for
multidimensional range queries over real attributes.
VLDB Journal, 14(2):137–154, 2005.

[11] P. Haas, J. Naughton, and A. Swami. On the relative
cost of sampling for join selectivity estimation. In
PODS, pages 14–24, 1994.

[12] M. Heimel, M. Kiefer, and V. Markl. Self-tuning,
gpu-accelerated kernel density models for
multidimensional selectivity estimation. In SIGMOD,
pages 1477–1492, 2015.

[13] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720,
2013.

[14] I. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of
correlations and soft functional dependencies. In
SIGMOD, pages 647–658, 2004.

[15] Y. Ioannidis and S. Christodoulakis. On the
propagation of errors in the size of join results. In
SIGMOD, pages 268–277, 1991.

[16] S. G. Johnson. The NLopt nonlinear-optimization
package. http://ab-initio.mit.edu/nlopt.

[17] M. Kiefer, M. Heimel, and V. Markl. Demonstrating
transfer-e�cient sample maintenance on graphics
cards. In EDBT, pages 513–516, 2015.

[18] P.-A. Larson, W. Lehner, J. Zhou, and P. Zabback.
Cardinality estimation using sample views with
quality assurance. In SIGMOD, pages 175–186, 2007.

[19] H. Lee, R. Ng, and K. Shim. Similarity join size
estimation using locality sensitive hashing. PVLDB,
4(6):338–349, 2011.

[20] V. Leis, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[21] V. Leis, B. Radke, A. Gubichev, A. Kemper, and
T. Neumann. Cardinality estimation done right:
Index-based join sampling. In CIDR, 2017.

[22] G. Lohman. Is query optimization a “solved”
problem? SIGMOD Blog, April 2014.

[23] V. Markl, P. Haas, M. Kutsch, N. Megiddo,
U. Srivastava, and T. Tran. Consistent selectivity
estimation via maximum entropy. PVLDB,
16(1):55–76, 2007.

[24] V. Markl, V. Raman, D. Simmen, G. Lohman,
H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. In
SIGMOD, pages 659–670, 2004.

[25] G. Moerkotte, T. Neumann, and G. Steidl. Preventing
bad plans by bounding the impact of cardinality
estimation errors. VLDB, 2(1):982–993, 2009.

[26] F. Olken. Random sampling from databases. PhD
thesis, University of California at Berkeley, 1993.

[27] M. Powell. A direct search optimization method that
models the objective and constraint functions by
linear interpolation. In Advances in Optimization and
Numerical Analysis, pages 51–67, 1994.

[28] N. Reddy and J. Haritsa. Analyzing plan diagrams of
database query optimizers. In PVLDB, pages
1228–1239, 2005.

[29] F. Rusu. Sketches for aggregate estimations over data
streams. PhD thesis, University of Florida, 2009.

[30] F. Rusu and A. Dobra. Sketches for size of join
estimation. TODS, 33(3):15:1–15:46, Sept. 2008.

[31] D. Scott. Multivariate Density Estimation - Theory,
Practice, and Visualization. John Wiley & Sons, 2nd
edition, 2015.

[32] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational
database management system. In SIGMOD, pages
23–34, 1979.

[33] M. Stillger, G. Lohman, V. Markl, and M. Kandil.
LEO - db2’s learning optimizer. In PVLDB, pages
19–28, 2001.

[34] A. Swami and K. Schiefer. On the estimation of join
result sizes. In EDBT, pages 287–300, 1994.

[35] K. Tzoumas, A. Deshpande, and C. Jensen.
Lightweight graphical models for selectivity estimation
without independence assumptions. VLDB,
4(11):852–863, 2011.

[36] D. Vengerov, A. Menck, M. Zait, and S. Chakkappen.
Join size estimation subject to filter conditions.
PVLDB, 8(12):1530–1541, 2015.

[37] J. Vitter. Random sampling with a reservoir. TOMS,
11(1):37–57, 1985.

APPENDIX
A. GAUSSIAN CROSS CONTRIBUTION

The Gaussian kernel is a common choice for a continuous
kernel in KDE. It is a Normal distribution N

s,”

2 (x) centered
on the sample point s and using the bandwidth ” as its stan-
dard deviation. In order to compute discretized probability
estimates for a integer join key ‹ from this continuous ker-
nel, we simply integrate it over the interval [‹ ≠ 0.5, ‹ + 0.5],
leaving us with the discretized Gaussian kernel. We assume
that join attributes are not subject to selections (A = Z)
and lift this assumption in Appendix B.

A.1 Cross Contribution
Substituting the discretized Gaussian kernel into Equa-

tion 7, yields the cross contribution for the Gaussian kernel:

Ĵ
i,j

=
ÿ

‹œZ

⁄
‹+0.5

‹≠0.5
N

t

(i)
1 ,”

2
1

(x) dx ·
⁄

‹+0.5

‹≠0.5
N

t

(j)
2 ,”

2
2

(x) dx

(14)

Equation (14) does not have a closed-form solution that
would allow us to e�ciently compute it without summing
over all ‹ œ A. However, for probability densities f (x), g (x)

2095

0

0.005

0.01

0.015

0.02

0.025

�6 �4 �2 0 2 4 6 8 10

N1,16(v) · N3,4(v)
R v+0.5
v�0.5 N1,16(x)dx ·

R v+0.5
v�0.5 N3,4(x)

Figure 10: Approximating the cross contribution for the
Gaussian kernel by the multiply-then-integrate approach

with values smaller or equal to one, we can approximates
‹+0.5

‹≠0.5 f (x) dx
s

‹+0.5
‹≠0.5 g (x) dx ¥ s

‹+0.5
‹≠0.5 f (x) g (x) dx. We

illustrate this approximation in Figure 10, showing that in
this case the results for first integrating then multiplying are
very similar to first multiplying then integrating.

Substituting this approximation into Equation (14) gives
us an approximate closed-form solution:

Ĵ
i,j

¥
ÿ

‹œZ

⁄
‹+0.5

‹≠0.5
N

t

(i)
1 ,”

2
1

· N
t

(j)
2 ,”

2
2
dx

=
⁄ +Œ

≠Œ
N

t

(i)
1 ,”

2
1

(x) · N
t

(j)
2 ,”

2
2

(x) dx

= N
t

(i)
1 ,(”

2
1+”

2
2)

1
t
(j)
2

2 ⁄ +Œ

≠Œ
N

t

Õ
,”

Õ (x)

= N
t

(i)
1 ,(”

2
1+”

2
2)

1
t
(j)
2

2

(15)

The last transformation requires some explanation: The
product N1,2 = N1 · N2 of two Normal probability density
functions is itself a scaled Normal probability density func-
tion [3]. Its location tÕ and scale ”Õ are functions over the
parameters of the individual densities. Since we integrate
over the full domain, this factor integrates to one, leaving
only the scaling factor, which is again given by a Normal
density function that depends on the mean and bandwidth
parameters of the original functions [3].

Equation (15) does not hold for densities with function
values larger than one. In particular, when the bandwidth
of one of the two Gaussian functions is below (2fi)≠ 1

2 ¥ 0.4,
the error increases drastically. However, since for this value
only 1.3% of the probability mass of a Gaussian is located
outside of [µ ≠ 0.5, µ + 0.5], the estimator is still able to fall
back close to sample evaluation.

A.2 Generalized Cross Contribution
Plugging the discretized Gaussian kernel into Equation (9),

we arrive at:

Ĵ
o1,...,o

n

=
ÿ

‹œZ

nŸ

i=1

⁄
‹+0.5

‹≠0.5
N

t

(o

i

)
i

,”

2
i

(x) dx (16)

Similar to the single join case, we can plug in the approxima-
tion

r
i

s
v+0.5

v≠0.5 p
i

(x)dx ¥ s
v+0.5

v≠0.5
r

i

p
i

(x)dx. The product
of k normal densities can be rewritten as a normal density
and a scale factor that does not depend on the integrand [3].

Ĵ
o1,...,o

n

=
⁄ Œ

≠Œ

nŸ

i=1

N
t

(o

i

)
i

,”

2
i

(x) dx

=S1...n

·
⁄ Œ

≠Œ
N

t1...n

,”

2
1...n

(x)dx

=S1...n

(17)

Since we integrate over the entire domain, the normal den-
sity integrates to one, which leaves us with the scale factor
S1...n

only. The scale factor S1...n

is given by:

S1...n

=

Ú
”

2
1...nr
n

i=1
”

2
i

(2fi)(n≠1)/2 exp

Q

ca≠1
2

Q

ca
nÿ

i=1

1
t
(o

i

)
i

22

”2
i

≠ t2
1...n

”2
1...n

R

db

R

db

(18)

Finally, the quantities ”2
1...n

and t1...n

can be computed from
the individual means and variances of each normal density:

”2
1...n

=

A
nÿ

i=1

1
”2

i

B≠1

t1...n

=”2
1...n

nÿ

i=1

t
(o

i

)
i

”2
i

(19)

B. SELECTIONS ON JOIN ATTRIBUTES
The assumption that join attributes are not subject to

selections can be lifted. In general, selections on the join at-
tributes allow us to apply sample pruning for join attributes
as well which potentially reduces the number of tuples that
we have to consider in the cross pruning step.

Range selections require adjusting the equations for the
cross contribution. If a range selection l Æ A Æ u is applied
to a join attribute, the normal density function in Equation
17 has to be considered:

Ĵ
o1,...,o

n

=S1...n

·
⁄

u

l

N
t1...n

,”

2
1...n

(x)dx (20)

However, we do not have to adjust the maximum distance
inequality (Equation 11) in cross pruning. As the addition-
ally introduced factor

s
u

l

N
t

Õ
,”

Õ (x) is smaller or equal than
one, the given inequality remains intact even in case of range
predicates on the join attribute.

Point selections are a special case of range selections. As
a join attribute subject to a point selection reduces the es-
timate computation to multiplying estimates for a single se-
lection per table, treating them di�erently simplifies the re-
quired computations: Point selections allow us to handle the
joins for an entire equivalence class by local predicates. Fur-
thermore, every table with all join attributes being subject
to point selections, can even be excluded entirely from the
sum over the cross product of all samples.

2096

