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ABSTRACT

Personalized PageRank (PPR) computation is a fundamental oper-
ation in web search, social networks, and graph analysis. Given a
graph G, a source s, and a target t, the PPR query 7 (s, t) returns the
probability that a random walk on G starting from s terminates at
t. Unlike global PageRank which can be effectively pre-computed
and materialized, the PPR result depends on both the source and the
target, rendering results materialization infeasible for large graphs.
Existing indexing techniques have rather limited effectiveness; in
fact, the current state-of-the-art solution, BiPPR, answers individ-
ual PPR queries without pre-computation or indexing, and yet it
outperforms all previous index-based solutions.

Motivated by this, we propose HubPPR, an effective indexing
scheme for PPR computation with controllable tradeoffs for ac-
curacy, query time, and memory consumption. The main idea is
to pre-compute and index auxiliary information for selected hub
nodes that are often involved in PPR processing. Going one step
further, we extend HubPPR to answer top-k PPR queries, which
returns the k£ nodes with the highest PPR values with respect to
a source s, among a given set 1" of target nodes. Extensive ex-
periments demonstrate that compared to the current best solution
BiPPR, HubPPR achieves up to 10x and 220x speedup for PPR
and top-k PPR processing, respectively, with moderate memory
consumption. Notably, with a single commodity server, HubPPR
answers a top-k PPR query in seconds on graphs with billions of
edges, with high accuracy and strong result quality guarantees.

1. INTRODUCTION

Personalized PageRank (PPR) [25] is a fundamental metric that
measures the relative importance of nodes in a graph from a par-
ticular user’s point of view. For instance, search engines use PPR
to rank web pages for a user with known preferences [25]. Mi-
croblogging sites such as Twitter use PPR to suggest to a user other
accounts that s/he might want to follow [18]. Additionally, PPR
can be used for predicting and recommending links in a social net-
work [7], and analyzing the relationship between different nodes
on large graph data such as protein networks [19].
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Specifically, given a graph G, a source node s, and a target node
t, the PPR 7 (s, t) of ¢ with respect to s is defined as the probabil-
ity that a random walk on G starting from s terminates at ¢. For
example, on a social networking site where nodes correspond to
user profiles, (s, t) measures the importance of user ¢ from user
s’s perspective; hence, if 7(s, t) is high and s and ¢ are not already
connected, the social networking site might want to recommend ¢
to s. Another important variant is top-k PPR, in which there are
a set T' of target nodes, and the goal is to identify nodes among T°
with the highest PPR values with respect to s. This can be applied,
for example, to the selection of the top web documents among those
retrieved through a keyword query [21].

As we explain in Section 2, exact PPR computation incurs enor-
mous costs for large graphs; hence, the majority of existing work
focuses on approximate PPR computation. Meanwhile, since the
PPR result depends on both the source and target nodes, it is pro-
hibitively expensive to materialize the results of all possible PPR
queries for a large graph. Accelerating PPR processing through
indexing is also a major challenge, and the effectiveness of previ-
ous indices has been shown to be rather limited [10, 11]. In fact,
the current state-of-the-art solution for PPR processing is BiPPR
[21], which answers each PPR query individually without any pre-
computation or indexing. It is mentioned in [21] that BiPPR could
benefit from materialization of partial results. However, as we ex-
plain in Section 2.2, doing so is not practical for large graphs due
to colossal space consumption.

Regarding top-k PPR processing, existing methods are either not
scalable, or fail to provide formal guarantees on result quality. Fur-
ther, as we describe in Section 2, similar to the case of PPR compu-
tation, for the top-k PPR query, an adaptation of BiPPR remains the
state of the art, which processes queries on the fly without indices.
In other words, to our knowledge no effective indexing scheme
exists for top-k PPR processing that can accelerate or outperform
BiPPR without sacrificing the query accuracy.

Motivated by this, we propose HubPPR, an effective index-
based solution for PPR and top-k PPR processing. Particularly for
top-k PPR, HubPPR contains a novel processing framework that
achieves rigorous guarantees on result quality; at the same time, it
is faster and more scalable than BiPPR even without using an in-
dex. HubPPR further accelerates PPR and top-k PPR through an
elastic hub index (EHI) that (i) adapts well to the amount of avail-
able memory and (ii) can be built by multiple machines in parallel.
These features render HubPPR a good fit for modern cloud com-
puting environments.

The EHI contains pre-computed aggregate random walk results
from a selected set of hub nodes which are likely to be involved
in PPR computations. Figure 1 shows an example graph with two



Figure 1: Example of a hub node and random walks

random walk trajectories, one from node s; to ¢1, and another from
s2 to t2. Node h appears in both trajectories. As we elaborate later,
if we select h as a hub, precompute and index random walk des-
tinations starting from h in the forward oracle of the EHI, then,
random walks, e.g., the two starting from s; and sz, can terminate
as soon as they reach h, and HubPPR determines their final desti-
nations using the forward oracle. Similarly, the EHI also contains
a more sophisticated backward oracle storing additional aggregate
information about the hubs. To build an effective index with lim-
ited memory space, HubPPR addresses several important technical
challenges, including choosing the hubs, storing and compressing
their associated aggregates, and ensuring that the guarantees on re-
sult quality are satisfied.

Extensive experiments using real data demonstrate that with
moderate memory consumption, HubPPR achieves up to 10x (resp.
220x) reduction in query time for approximate PPR (resp. top-k
PPR) processing compared to the current best method BiPPR. No-
tably, using a single commodity server, HubPPR answers an ap-
proximate top-k PPR query in seconds on a billion-edge graph,
with high result quality.

2. PRELIMINARIES

Section 2.1 provides the necessary background on PPR and top-k
PPR. Section 2.2 presents our main competitor BiPPR, the current
state-of-the-art approach to PPR and top-k PPR processing. Table
1 lists the notations that will be frequently used in the paper.

2.1 Problem Definition

Personalized PageRank. Given a graph G = (V, E) where V
(resp. E) is the set of nodes (resp. edges) in GG, a source node
s € V,atarget node t € V, and a probability «, the personal-
ized PageRank (PPR) 7 (s, t) of t with respect to s is defined as the
probability that a random walk on G from s terminates at ¢. Ac-
cordingly, the PPR values for all nodes in the graph sum up to 1.
In particular, in each step of the random walk, let v be the current
node; with probability «, the random walk terminates at v; with
probability 1 — «, it picks an out edge (v, w) € E of v uniformly
at random and follows this edge to reach node w. The random walk
eventually terminates at a node in V', which we call the destination
of the walk.

The exact PPR values for all nodes in G with respect to a par-
ticular source node s can be computed by the power iterations
method described in the original paper on PPR [25], which re-
mains the basis of modern exact PPR processing methods [23]. In
a nutshell, power iterations can be understood as solving a matrix
equation. Specifically, let n denote the number of nodes in G, and
A € {0,1}™*™ be the adjacency matrix of G. We define a diago-
nal matrix D € R™*™ in which each element on its main diagonal
corresponds to a node v, and its value is the out degree of v. Then,
we have the following equation:

ms=a-es+(1—a) ms-D A 1)

where e is the identity vector of s, and 75 is the PPR vector for
node s that stores PPR of all nodes in V' with respect to s. Solving
the above equation involves multiplying matrices of size n by n,
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Table 1: Frequently used notations.

Notation | Description

G=(V, E)| Input graph, its node set and edge set

n,m The number of nodes and edges in G, respectively

w(s,t) Exact result of a PPR query with source s and target ¢

« Probability for a random walk to terminate at each step

0,€,pf Parameters for the result quality guarantee of an ap-
proximate PPR algorithm, described in Definition 1

r(v,t) The residue of v during backward search from ¢

7 (v,t) | The reserve of v during backward search from ¢

Tmazx Residue threshold for backward propagation

F,B Forward and backward oracles, respectively

w Number of random walks during forward search

which takes O(n°) time, where the current lowest value for con-
stant ¢ is ¢ ~ 2.37 [16]. This is immensely expensive for large
graphs. Another issue is that storing the adjacency matrix A takes
O(n?) space, which is prohibitively expensive for a graph with
a large number of nodes. Although there exist solutions for rep-
resenting A as a sparse matrix, e.g., [15], such methods increase
the cost of matrix multiplication, exacerbating the problem of high
query costs. Finally, since there are O(n?) possible PPR queries
with different source/target nodes, materializing the results for all
of them is clearly infeasible for large graphs.

Approximate PPR. Due to the high costs for computing the ex-
act PPR, most existing work focuses on approximate PPR com-
putation with result accuracy guarantees. It has been shown that
when the PPR value is small, it is difficult to obtain an approxima-
tion bound on accuracy [21,22]. Meanwhile, large PPR results are
usually more important in many applications such as search result
ranking [25] and link prediction [7]. Hence, existing work focuses
on providing accuracy guarantees for PPR results that are not too
small. A popular definition for approximate PPR is as follows.

DEFINITION 1. Given a PPR query 7(s,t), a result threshold
0, an approximation ratio €, and a probability o, an approximate
PPR algorithm guarantees that when m(s,t) > 0§, with probability
at least 1 — py, we have:

Iﬁ'(&t) - W(S,t)| <e- 77(57 t): (2)

where 7t (s, t) is the output of the approximate PPR algorithm. [

A common choice for § is O(1/n), where n is the number of
nodes in the graph. The intuition is that if every node has the same
PPR value, then this value is 1 /n, since the PPR values for all nodes
sum up to 1; hence, by setting 6 to O(1/n), the approximation
bound focuses on nodes with above-average PPR values.

Top-k PPR. As mentioned in Section 1, top-k PPR concerns the
selection of k£ nodes with the highest PPR values among a given set
T of target nodes. As shown in [21], finding the exact answer to
a top-k query also incurs high costs, especially when the target set
T contains numerous nodes, e.g., web pages matching a popular
keyword. Meanwhile, materializing all possible top-k PPR results
is inapplicable, since the result depends on the target set 1", whose
number can be exponential. Unlike the case for PPR queries, to
our knowledge no existing work provides any formal guarantee on
result quality for top-k PPR processing. In Section 4, we formally
define the problem of approximate top-k PPR, and present an effi-
cient solution with rigorous guarantees on result quality.

2.2 BiPPR

BiPPR [21] processes a PPR query through a bi-directional
search on the input graph. First, BiPPR performs a backward search
using a backward propagation algorithm originally described in [3].
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Figure 2: Example of backward search.

Then, it performs forward searches based on Monte Carlo simula-
tions [24]. Finally, it combines the results for both search direc-
tions, and estimates the PPR result. In the following, we explain
the forward and backward search of BiPPR, the combination of the
results, the extension to top-k PPR queries, as well as the possibil-
ity of accelerating BiPPR through materializing search results.

Forward search. The forward search performs w random walks
starting from the source node s. Let h, be the number of random
walks that terminate at each node v € V. Then, the forward search
estimates the PPR 7¢(s,v) = h,/w. According to properties of
Monte Carlo simulations [24], (s, v) is an unbiased estimate of

the exact PPR 7 (s, t). Meanwhile, using the Chernoff bound [24],

we can prove that 7 satisfies Inequality 2 when w > 310?#,

where 6, €, py are result threshold, the approximation ratio and
failure probability, respectively, as in Definition 1. Note that when
d = O(1/n) (as explained in Section 2), the number of random

walks is O(%), which is costly for large graphs.

Backward search. The backward search in BiPPR starts from the
target node t and propagates information along the reverse direction
of the edges. The search iteratively updates two properties for each
node v: its residue r(v,t), and reserve 7 (v,¢) [3]. The former
represents information to be propagated to other nodes, and the lat-
ter denotes the estimated PPR value of target ¢ with respect to node
v. The search starts from the state in which (i) every node in the
graph has zero reserve, (ii) every node, except for the target node
t, has zero residue as well and (iii) t has a residue of r(¢,t) = 1.
In each iteration, residues are propagated between nodes and con-
verted to reserves. The goal is to eventually deplete the residue
for every node, i.e., r(v,t) = 0 for all v € V, at which point the
search completes. It has been proven that if we follow the propaga-
tion rules in [3] that will be explained shortly, then after the search
finishes, the reserve for each node v equals the exact PPR of ¢ with
respect to v, i.e., 7 (v,t) = m(v,t) [3]. BiPPR does not complete
the backward search, which is expensive; instead, it sets a maxi-
mum residue 7,42, and terminates the search as soon as every node
v satisfies 7(v,t) < Tmae [21]. Next we clarify the residue prop-
agation and conversion rules. For each iteration of the backward
search, for every v € V with sufficient residue r(v,t) > Tmae,
BiPPR converts « portion of the residue to its reserve, i.e., 7 (v,t)
is incremented by « - r(v, t). Then, the remaining residue is prop-
agated along the reverse direction of in-edges of v. In particular,
for each edge (u,v) € E, let dou:(u) be the out degree of node u;
BiPPR increments its residue r(u, t) by % After finish-
ing the propagation along all in-edges of v, BiPPR sets r(v, t) to
zero. In case v does not have any in-edge, BiPPR will not propa-
gate information and directly set (v, t) to zero. We demonstrate
how the backward search works with the following example.

EXAMPLE 1. Consider graph G in Figure 2(a). Assume that
t is the target node, « = 0.2, and ryqz = 0.18. The backward
search starts with ¢ with r(¢,¢) = 1, and r(v,t) = 0 for every
remaining node v. We illustrate the non-zero residues alongside
the corresponding nodes, and we list the reserve of each node in
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the table below each figure.

In the first iteration (i.e., Figure 2(b)), ¢ has residue r(¢,t) >
Tmaz- Therefore, it converts a - Tmax(t, ) to its reserve, i.e.,
w*(t, t) = 0.2. Afterwards, it propagates the remaining residue
to its in-neighbors, i.e., v1 and v2. As v has two out-neighbors,
r(v1,t) is incremented by 0.8/2 = 0.4. Similarly, r(v2,t) is in-
cremented by 0.2. Afterwards, as v; has residue larger than 7,42,
it converts 0.2 * 0.4 = 0.08 residue to its reserve. It then propa-
gates the remaining residue to its only in-neighbor (i.e., v3), which
increases r(vs, t) to 0.32. Similary, as v2 also has residue larger
than 7maz, it converts 0.2 portion of its residue to its reserve, and
then propagates the remaining residue to its in-neighbors. The re-
sults after the two propagations are shown in Figure 2(c).

Observe that vs still has residue larger than rp,q.. As v3 has
no in-neighbors, it simply increments its reserve by 0.32 * 0.2 =
0.064, and sets its residue r(vs, t) = 0. At this stage, every node v
has r(v,t) < rmasz. Hence, the backward propagation terminates.
Figure 2(d) shows the final results. O

Combining forward and backward search results. As men-
tioned earlier, BiPPR first performs a backward search with residue
threshold 7 4., Which obtains the reserve 7 (v,t) and residue
7(v,t) < T'mag for each node v. Regarding 7™ (v, t) and 7(v, t), it
is proven in [21] that the following equation holds.

m(s,t) =7 '(s,t) + Z v m(s,v) - r(v,t). 3)
Based on Equation 3, BiPPR answers the PPR query using the
following equation.

#(s,t) =7 '(s,t) + ZUEV 75 (s,0) - (v, b).

It is proven in [21] that (i) BiPPR satisfies Definition 1 with
w = O (log(1/ps) - "max/€>/5) random walks during the for-
ward search, and (ii) if the target node ¢ is chosen uniformly at
random, then the average running time of the backward search is
O( ), where n and m are the number of nodes and number

of edges in the graph, respectively'. By combing the costs of both
the forward search and backward search, the average query time

of BiPPR is O (

“

narmax

m Tmax
narmaz aeg?s

ommends setting 7'y,qz t0 4/ #%, which leads to an average

time complexity of O ( ﬁ)

Materialization of search results. Ref. [21] mentions that BiPPR
could be accelerated by pre-computing and materializing the bi-
directional search results. Specifically, for forward search, BiPPR
could simply materialize the final destinations of the w random
walks for each node v € V. The space consumption, however,

is O (5 /7% log i) As § = O(1/n), the space complexity is
hence O (31 /mlog ﬁ), which is impractical for large graphs.

Regarding backward search, BiPPR could perform a backward
search starting from each node ¢ during pre-processing, and mate-
rialize the residues and reserves of all nodes. According to [21],

log #) Lofgren et al. [21] rec-

1
ae

'The worst-case running time of the backward search is ©(n).



the total space consumption is O (

) = (

O(1/n), the space complexity is O

D)
e )

Top-k PPR processing. Observe that BiPPR can also be applied
to top-k PPR in a straightforward manner: given a target set 7', we
can employ forward and backward searches to estimate the PPR
score of each node in 7', and return the k nodes with the highest
scores. This approach, however, is rather inefficient as it requires
performing |T'| PPR queries. To improve efficiency, Lofgren et
al. [21] consider the restricted case when 7’ is selected from a small
number of possible choices, and propose preprocessing techniques
leveraging the knowledge of 7" to accelerate queries. Nevertheless,
those techniques are inapplicable when 7' is arbitrary and is given
only at query time. Therefore, efficient processing of top-k PPR
queries for arbitrary target set 7" remains a challenging problem.

3. HUBPPR

Similar to BiPPR described in Section 2.2, HubPPR performs
forward and backward searches, and combines their results to an-
swer a PPR query. The main distinction of HubPPR is that it
performs forward (resp. backward) search with the help of a pre-
computed index structure called the forward oracle (resp. backward
oracle). To facilitate fast processing of PPR queries, we assume
that the index resides in main memory, which has limited capacity.
This section focuses on the HubPPR algorithm; the data structures
for forward and backward oracles are described later in Section 5.
In the following, Sections 3.1 and 3.2 describe index-based for-
ward and backward searches in HubPPR, respectively. Section 3.3
presents the complete HubPPR algorithm, proves its correctness,
and analyzes its time complexity.

3.1 Forward Search

We first focus on the forward search. Recall from Section 2.2 that
the forward search performs a number of random walks. HubPPR
accelerates a random walk based on its memorylessness property,
stated as follows.

LEMMA 1 (MEMORYLESSNESS OF A RANDOM WALK). Let
v € V be any node reachable from the source node s, and B,
denote the event that a random walk P starting from s reaches v.
Then, for any node t, Pr|P terminates att | By| = (v, t). O
Our forward oracle is motivated by Lemma 1, defined as follows.

DEFINITION 2 (FORWARD ORACLE). A forward oracle F is
a data structure that for any input node v € V, F either returns
NULL, or the destination node w € V' of a random walk starting
Jfrom s that reaches v. O

Note that in the above definition, it is possible that F returns
different results for different probes with the same input node v,
which correspond to different random walk destinations. Given a
forward oracle F, HubPPR accelerates the forward search as fol-
lows. When performing a random walk during forward search,
whenever HubPPR reaches a node v, it probes F with v. If F
returns NULL, HubPPR continues the random walk. Otherwise,
i.e., F returns a node w, HubPPR terminates the random walk and
returns w as its destination.

When § =

which is also infeasible for large graphs.

TN 0 =

EXAMPLE 2. Assume that we perform a forward search from
node s2 in Figure 1, and the sequence of nodes to be traversed in the
random walk is sz, w1, uz2, h, us, w4, t2 (as illustrated in the dashed
line in Figure 1). Then, the forward search first probes F with ss.
If F returns NULL, the forward search would continue the random
walk from s2 and jumps to w1, after which it probes F with wus.
If F still returns NULL, the forward search jumps from uz to h,
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and probes F with h. Assume that F returns ¢;. Then, the random
walk terminates immediately and returns ¢; as the destination. [J

Challenges in designing /. There are three main requirements
in the design of F. First, 7 must be effective in reducing random
walk costs; in particular, it should minimize NULL responses. Sec-
ond, F should be space efficient as it resides in memory. Third, 7
should also be fime efficient in responding to probes; in particular,
JF must process each probe in constant time (in order not to increase
the time complexity of forward search), and the constant must be
small (in order not to defeat the purpose of indexing).

A naive solution is to materialize w random walk destinations
for each node, which incurs prohibitive memory consumption, as
explained in Section 2.2. To conserve space, we can store random
walks destinations selectively, and in a compressed format. On the
other hand, selective storage may compromise indexing efficiency,
and compression may lead to probing overhead. What should we
materialize to best utilize the available memory? Besides, how
should we store this information to minimize space consumption
within acceptable probing overhead? These are the main challenges
addressed by our elastic hub index, detailed in Section 5.1.

3.2 Backward Search

Next, we clarify the backward search in HubPPR. Effective in-
dexing for the backward search is much more challenging than
for forward search, for two reasons. First, unlike random walks,
back propagations are stateful, i.e., each node v is associated with
a residue 7 (v, t). The effects of each propagation, i.e., modifica-
tions to v’s reserve value and to the residues of neighboring nodes,
depend on the value of r(v, t). In particular, when r(v, t) < rmaz,
node v does not perform backward propagation at all. Second, un-
like a random walk that has only one result (i.e., its destination), a
backward propagation can potentially affect all nodes in the graph.

HubPPR accelerates backward search by pre-computing results
for fractional backward propagations (FBPs). An FBP is per-
formed using the backward propagation algorithm described in
Section 2.2, with one modification: in the initial step, an FBP
can assign an arbitrary residue 7 < 1 to any node v € V. Let
FBP(u, ) denote the FBP with initial residue 7 assigned to node
u. For each node v € V, let r(v,u, 7) (resp. 7 (v, u, 7)) denote
the final residue (resp. reserve) after F'BP(u,7) terminates. The
following lemma describes how pre-computed fractional backward
propagation results can be utilized in backward search.

LEMMA 2. Suppose that, given a node u and an initial residue
T, the results of a fractional backward propagation F BP(u,T)
consist of final residue r(v,u, T) and reserve 7 (v, u, T) for each
node v € V. If at any point during a backward search from target
node t, u’s residue (u,t) satisfies Tmaz < 7(u,t) < T, then, re-
cursively propagating u’s residue is equivalent to (i) setting residue
r(u,t) to M - r(u,u, T), and (ii) for each node v # wu, incre-
menting residue r(v,t) by @ (v, u,T), and reserve 7 (v, t)
by @ S (v, u, 7). O

PROOF SKETCH. From the definition of backward search, if an
unit information is propagated from wu, then eventually 7 (s, u) is
propagated to node s. By scaling it with 7, it can be derived that,
if 7 information is propagated from w, eventually 7 - 7(s,u) is
propagated to s. As a result, we have the following equation.

1 1
o (S,U,T)-‘r; . Zﬂ'(v,u)w(v,uﬂ').

veV

m(s,u) =

Then by applying Equation 3 with the current residue and reserve
states, and replacing 7 (s, u) with the above equation, we obtain the
desired results in Lemma 2. []



Based on Lemma 2, we define the backward oracle as follows.

DEFINITION 3 (BACKWARD ORACLE). A backward oracle
B is a data structure such that for any input node v € V and
its current residue 17(u,t) > Tmasz, B either returns NULL, or
(i) an initial residue T > r(u,t), and (ii) results of FBP(u, ),
ie, r(v,u,7) and (v, u,T) for each node v € V with either
r(v,u,7) > 0or 7 (v,u,7) > 0. O
Given a backward oracle B, HubPPR accelerates backward search
as follows. When the search needs to propagate a node u’s residue
r(u,t), HubPPR probes B with pair (u,r(u,t)). If B returns
NULL, HubPPR executes the propagation as usual. Otherwise,
HubPPR skips the propagation of node u and all subsequent steps,
and directly updates each node’s residue and reserve by Lemma 2.

EXAMPLE 3. Consider the backward search in Figure 2. The
search starts from ¢, and probes the backward oracle B with (¢, 1).
If B returns NULL, then the search propagates 0.4 and 0.2 informa-
tion to vy and vg, respectively. Afterwards, r(v1,t) becomes 0.4.
Assume that the next backward search starts from vy, and it probes
BB with (v1,0.4). Suppose that B returns 0.5 for 7, 7 (vs, v1, 7) =
0.08, r(vs,v1,7) = 0, ! (v1,v1,7) = 0.1, and the residue and
reserve for all other nodes are zero. Then, by Lemma 2, we can di-
rectly derive that 7 (vs, t) = 0+ 2:2.0.08 = 0.064, 7(vs, t) = 0,
and 77 (v1,t) = 22.0.1 = 0.08. Afterwards, the search continues
backward propagations until all residue are less than 7,4 -

O

Challenges in designing B. Similar to the case of F, 3 needs to
be effective in reducing backward propagation costs, and efficient
in terms of both space and time. Compare to F, 3 is more compli-
cated since each probe contains not only a node but also a residue
value, which drastically increases the space of possible probes. Fur-
ther, in order for B to respond to a probe with a non-NULL value,
it must contain the corresponding residue and reserve values as in
Definition 3, possibly for all nodes in the graph. Hence, it is a chal-
lenge to design any non-trivial 5 within limited memory space.
Furthermore, the overhead of probing B and updating residue
and reserve values using Lemma 2 should not exceed the cost of
performing the corresponding backward propagation. This is not
always true for all B outputs. For instance, if r(u,t) is small and
B returns a much larger 7, the corresponding FBP results may in-
volve considerably more nodes than the actual backward propaga-
tion from u. These challenges are addressed later in Section 5.3.

3.3 Complete Algorithm and Analysis

Algorithm 1 demonstrates the pseudo-code of our HubPPR al-
gorithm for approximate PPR computation. The algorithm takes
as input a forward oracle F and a backward oracle 13, and uses
them during forward (lines 9-16) and backward searches (lines 1-
8) respectively. Specifically, HubPPR utilizes B to prune backward
propagation operations (line 8), and F to terminate a random walk
early (line 16). Note that the oracles do not contain complete in-
formation and can return NULL for certain probes, in which case
HubPPR proceeds as in BiPPR. The following theorems establish
the correctness and time complexity of HubPPR algorithm.

THEOREM 1 (CORRECTNESS OF HUBPPR). Given a result
threshold &, an approximation ratio €, and a failure probability py,

: _ /__m-e2§ _ Tmaz 1
with Tmazxr = Wsl/pf) and w = O (ﬁ log E), HubPPR
O

is an approximate algorithm for PPR queries.

PROOF. Lemma 1 (resp. Lemma 2) shows that the forward
(resp. backward) search with the forward (resp. backward) oracle
provides identical results as the forward (resp. backward) search in
BiPPR. Therefore, given the same parameter setting, HubPPR and
BiPPR provide the same approximation guarantee. []
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Algorithm 1: HubPPR

input : s, t, graph G, F and B
output: w(s,t)

1 Initialize residue r(t,t) to 1 and (v, t) to O for all node v # t;
2 Initialize reserve 77 (v, t) to 0 for all v in G,
3 while Ju satisfying r(u, t) > Tmaz do
4 Prob B with (u, r(u, t));
5 if B returns NULL then
6 L Perform backward propagation for u;
7 else
8 Update the residue and reserve for each node v in G
| according to Lemma 2;
9 fori=1towdo
10 Start a new random walk P at node s;
11 while P does not terminate do
12 Probe F with the current node of P;
13 if F returns NULL then
14 L Perform one step of random walk on P;
15 else
16 L Terminate P at the destination node returned by F;
17 Combine backward (lines 1-8) and forward search (lines 9-16) results

to answer the PPR query with Equation 4;

THEOREM 2 (TIME COMPLEXITY OF HUBPPR). Suppose
that each probe of F takes constant time, and the time complexity
of probing B does not exceed that of performing the corresponding
backward propagation. Then, HubPPR answers an approximate

PPR query in O (i O

@E
PROOF. Note that HubPPR improves over BiPPR with the use
of the forward and backward oracles, neither of which increases its
time complexity. As our index could be arbitrary small, in the worst
case the amortized time complexity is the same as BiPPR. Hence,
the time complexity of HubPPR is the same as that of BiPPR. [

For Theorem 2 to hold, the forward and backward oracles must sat-
isfy the corresponding requirements in the theorem. This is realized
in our elastic hub index, clarified in Section 5.

4. TOP-K PERSONALIZED PAGERANK

This section focuses on approximate top-k PPR queries. Given
a source node s and a target node set T, let ¢ be the node with the
i-th (k > 7 > 1) highest exact PPR value from s. We aim to com-
pute an ordered sequence of k nodes ¢1,t, ..., tx, and their esti-
mated PPR values 7 (s,t1), (s, t2),...,7(s,tx) such that when
m(s,t;) > ¢, with probability at least 1 — py, the following in-
equalities hold:

|7 (s,t:) — (s, t:)| < €/2-7(s,ts),
|7(s,t:) — w(s,t])| < e-7(s, t]).

m

1 . .
= log E) amortized time.

®)
(6)

Note that the first inequality ensures the accuracy of the estimated
PPR values; the second guarantees the quality of the top-k nodes.

4.1 Overview

As mentioned in Section 2, a naive approach to answer an ap-
proximate top-k PPR query is to (i) perform one approximate PPR
query for each node in 7', and then (ii) return the k£ nodes with
the largest approximate PPR. However, this incurs significant over-
heads, due to the large number of approximate PPR queries per-
formed. To address this issue, we propose an iterative approach for
top-k queries, such that each iteration (i) eliminates some nodes in
T that cannot be top-k results, and (ii) refines the PPR values of
the remaining nodes before feeding them to the next iterations. In



other words, we pay relatively small processing costs on the nodes
that are not top-k results, which helps improve query efficiency.
Specifically, for each node t in the target set 7', we maintain a
lower bound LB(t) and an upper bound U B(t) of its PPR. Let
#(s,t) = (LB(t) + UB(t))/2. We have the following lemma’:

LEMMA 3. If (1 + €) - LB(t;) > UB(t;), then w(s,t;) and

7 (s, t;) satisfy that:
(1—¢€/2) -7(s,t;) < @(s,ti) < (1+¢€/2) - 7(s,t:),
(L= ) m(s,8) < m(s,t0) < (1+€) - 7(s, ),

)
®)

where t; is the node with the i-th largest PPR lower bound, and t;
is the node with the i-th largest exact PPR value. O

In other words, if (1 + €) - LB(t;) > UB(t;) holds for every
i € [1, k], then we can return the k nodes in 7" with the largest PPR
lower bounds, and their estimations 7 (s, ¢;) as the answer of the
approximate top-k PPR query.

4.2 Algorithm

Recall that our top-k method runs in an iterative manner. In a
nutshell, the ¢-th iteration of this method consists of three phases:

e Forward phase. This phase performs forward searches from
the source node s using 2° random walks.

Backward phase. This phase performs backward searches
from selected nodes in 7, such that 7,4, value for each se-
lected node is half of its value in the (¢ — 1)-th iteration.
In other words, it increases the accuracy of the backward
searches for the selected nodes.

Bound estimation. This phase updates the PPR lower and up-
per bounds of all target nodes, and decides whether the algo-
rithm should terminate, based on Lemma 3.

Algorithm 2 shows the pseudo-code of our approximate top-k PPR
query algorithm. Initially, the number of random walks is set to 1,
and 7rp,qo for each target ¢ in 7" is set to 1 (Line 1). Afterwards, the
algorithm initializes the costs f. (resp. b.) for the forward (resp.
backward) phase to 0 (Line 2), where the forward (resp. backward)
cost is defined as the total number of jumps during the random
walks (resp. the total number of residue / reserve updates in the
backward phase). Then, the two costs are updated in each iteration,
and the algorithm alternates between the forward and backward
phases in a manner that balances their costs, which is important
to preserve the time complexity as will be shown in Theorem 3.

A list C' is maintained to include the nodes ¢’ that are candidates
for the top-k answers, and is initialized to include all nodes (Line
3). In each iteration, it eliminates the nodes that will not be the
top-k answers, i.e., UB(t") < LB(tx) (Line 18). This strategy it-
eratively eliminates the nodes that are not top-k answers, and saves
the query time. Lines 6-9 of Algorithm 2 demonstrate the back-
ward phase in an iteration. It repeatedly selects the node ¢ from C'
such that the gap ratio between its lower bound and upper bound is
minimum (Line 6), i.e., the node that has the most loose bound in
C. Then, it halves the 7,4, value. Let 44 (t, ) denote the 7rmas
value of node ¢ in the i-th iteration. It then continues the backward
propagation from ¢ until the residue for all nodes are smaller than
Tmaz(t, 1), and updates the backward cost b.. The backward phase
continues until the backward cost b, is no smaller than the forward
cost f.. When the backward phase finishes, the forward phase then
generates 2° random walks and updates the forward cost f. (Lines
10-11). Finally, it derives the lower and upper bounds for each
node in T" (Lines 12-17). The details of how to derive the bounds
are more involved, and we elaborate on it in Section 4.3.

2 All the omitted proofs can be found in our technical report [1].
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Algorithm 2: Approximate top-k query algorithm (s, T")

Input: source s, target set T’
Output: k nodes with the highest k PPR score in T'

1 Letw < 1, rmax(t,0) < 1forallt € T
2 forward cost f. < 0, backward cost b. < 0O;
3 initialize the candidate list C to include all nodes in T';
4 fori=1toocodo
5 while f. > b. do
6 Select a candidate node ¢ from C' such that LB(t) /U B(t) is
the minimum among all nodes in 7T7;
7 Tmagz (t, 1) < max(rmaz(t,7 — 1)/2, "maz);
8 Continue the backward propagation until the reserve of each
node t’ is smaller than 7maz (t',4);
9 be < be + b, where b’ denotes the backward cost;
10 Generate w; = 2* random walk from s ;
11 Let f,, be the cost for the w; random walks, fe < fc + fuw;
12 Compute LB(t), UB(t) for each t in C using Lemma 5;
13 Let t; be the node with the j-th largest LB in C';
14 if LB(tj) - (1+¢€) > UB(t;)forall j € [1,k] then
15 L return the k nodes in decreasing order of LB(t);
16 | ifVEET w; > ez log(2- k/pf) ATmaz(t) < Fmaz
then
17 L return k random nodes;
18 Eliminate the nodes ¢’ from C such that UB(¢') < LB(t);

The above description does not consider the forward oracle F
and backward oracle 3. When F and 3 are present, it uses them
similarly as in Algorithm 1: the forward search exploits JF to accel-
erate random walks; the backward search uses pre-computed FBPs
to reduce search costs. We omit the details for brevity.

4.3 Bound Estimation

Next we clarify how we derive the PPR lower bound LB(t) and
upper bound U B(t) for each node ¢t € T'. Let 7;(s,t) denote the
estimated PPR score using Equation 4 given j random walks. Let
X; =7j(s,t)—m(s,t),and M; = X1+ X2 - - -+ X;. To analyze
X and M, one challenge is that the existence of X ; means that the
error is not sufficiently small with fewer than j random walks; in
other words, X; is not independent of X ; _;, meaning that concen-
tration inequalities that require independence of variables cannot
be applied. Our derivation is based on martingales [28]:

DEFINITION 4 (MARTINGALE). A sequence of random vari-
ables Y1,Y,Y3,--+ is a martingale iff E[|Y;|]] < +oo and
E[Y}‘YLYQW" 7}/]'—1] :]E[Y—J—l] g

Clearly, E[M;] = E[X;] = 0, since the new sampled random walk
is independent from all previous sampled random walks (although
the decision of whether to generate the j-th random walk depends
on Xl, X27 A ,Xj_l), we have E[MJ | Ml, MQ, ce ,Mj_ﬂ
E[M;_1]. Then, M1, Ma,--- ,Mj,--- ,is a sequence of martin-
gale. Lemma 4 shows an important property of martingales:

LEMMA 4 ([12]). Let Y1,Y2,Ys - be a martingale, such
that for any i (1 < i < w), we have |Y; — Yi—1] < a; + A, and
VarlY; | Y1, Yz, -+ ,Yi_1] < o}. Then,

Next, we demonstrate how to make a connection from our problem
to Lemma 4. Let 2, be the total number of random walks sampled
in the first ¢ iterations. Then, our goal is to derive the lower and
upper bounds for each node in 7" in the i-th iteration. Denote the
Tmaz Value for target ¢ in the i-th iteration as rmaz (¢, 7). Then, in
the ¢-th iteration, we set A = Tyq0(t,4). To set aj, we consider
in which iteration X; is sampled. Let X; (j € (Q7_1,Q]) be a

p— A2
20y, (03 +aZ)+A-2/3)

Pr[|Ys, — E[Y.]| > A] < exp (



sample in the 7'-iteration, we then set a; = Timaz(t,3’) — A. With
this setting, it can be guaranteed that |M; — M;_1| < a; + A.
Meanwhile, for M; (j € (Qi_1,Q4]), where i’ denotes that X; is
sampled in the #'-th iteration, we also have the following equation:

Var[M; | M1, Ma,--+ ,M;_1] < Tmaz(tai/)2/4-

Then, for each j € (Qr_1,Qy/], we set 05 = Tmaa(t,4')?/4. Let
b=>25, (07 + a3). Applying Lemma 4, we have Lemma 5.

LEMMA 5. Letp} = and

pf
2T Tog(nZ-a 1T’

2
A= \/(% lnp’}) +2b-Inp} — %lnp}.
Then, with 1 — p} probability, in the i-th iteration, we have
max{0, Mo, — A} < 7(s,t) - Q; < min{l, Mo, + A\}.
Based on Lemma 5, we set LB(t) = max(0, Mo, — \)/€; and

UB(t) = min(1, Ma, + \)/€, which are correct bounds for
m(s,t) with at least 1 — p} probability.

4.4 Approximation Guarantee

As shown in Algorithm 2, we calculate LB(t) and U B(t) mul-
tiple times, and we need to guarantee that all the calculated bounds
are correct so as to provide the approximate answer. The following
corollary demonstrates the probability that all the LB (resp. UB)
bounds in Algorithm 2 are correct.

COROLLARY 1. When Algorithm 2 terminates, the probability
that PPR bounds for all target nodes are correct is at least 1—py /2.

Given all correct bounds, it requires that Algorithm 2 terminates at
Line 15 instead of Line 17 to guarantee the approximation. Lemma
6 shows the probability that Algorithm 2 terminates at Line 15.

LEMMA 6. Algorithm 2 terminates at Line 15 with at least 1 —
py /2 probability.

Combining Lemma 3, Lemma 6, and Corollary 1, we have the fol-
lowing theorem for the approximation guarantee and the average
time complexity for our top-k PPR query algorithm.

THEOREM 3. Algorithm 2 returns k nodes t1,t2,- - , tg, such
that Equations 5 and 6 hold for all t; (i € [1,k]) whose PPR
w(s,t;) > 0 with at least 1 — py probability, and has an average

L
a-e

m-

running time of O ( (ST‘ log %), when the nodes inT" are

n

chosen uniformly at random.

PROOF SKETCH. Based on Lemma 6 and Corollary 1, it can
be verified that the returned nodes satisfy the approximation with
probability at least 1 — py. Meanwhile, the amortized time com-
plexity of the algorithm can be bounded based on (i) the num-
ber of random walks in the worst case and (ii) the amortized cost

0] (M) for performing backward search from |T'| nodes. [

n-d-a

5. ELASTIC HUB INDEX

The elastic hub index (EHI) resides in main memory, and can be
utilized with any amount of available memory space. It contains
both a forward oracle and a backward oracle, whose functionalities
and requirements are explained in Section 3. This section details
the EHI design that fulfills the requirements.

5.1 Forward Oracle

The forward oracle F contains pre-computed random walk desti-
nations for a selected set H y of nodes, which we call forward hubs.
For each forward hub h € Hy, F contains ¢t = w destinations of
random walks starting from node v, denoted as F(h). Note that w
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is the maximum number of destinations to store at each hub, which
ensures that a random walk reaching the hub can immediately ter-
minate. As will be shown in Section 5.2, forward hubs added ear-
lier to the index are expected to have higher pruning power than
later ones. Therefore, intuitively earlier hubs should be allocated
more destinations than later ones, and the current design of always
allocating the maximum number of destinations is based on this
observation. When probed with a non-hub node v ¢ Hy, F al-
ways returns NULL; otherwise, i.e., when probed with a hub node
h € Hy, F returns a different destination in F (k) for each such
probe. Note that F can respond to probes with h at most p times;
after that, F returns NULL for any further probes with h.

Next we focus on the data structure for 7(h). As mentioned in
Section 3.1, storing F(h) as a list wastes space due to duplicates.
One may wonder whether we can compress this list into a multi-
set, in which each entry is a pair (v, ¢,) consisting of a destination
v and a counter ¢, recording the number of times that v appears in
F(h). However, this approach cannot guarantee constant time for
each probe, and the detailed explanation can be found in [1].

Observe that the forward oracle F can respond to the probes to a
hub h asynchronously, i.e., it can first acknowledge that its response
is not NULL, update the number k of probes that should respond
for h, and then return the nodes after the forward search finishes.

Given the above observation, our high level idea is that, for each
hub h, F(h) stores the destinations in several disjoint multi-sets
S ={F1,F>,---,F;,---}; given an arbitrary number k of probes
to h, we can directly find j multi-sets Fy, F3,--- Fj € S, such that
|F{UF; - -UF}j| = k, and return the k destinations. The following
gives an example of how our solution works.

EXAMPLE 4. Assume that we have 9 out of w random walks
that probe h1 € Hjy. Instead of responding to each probe directly,
it records the number of probes to hi until the forward search
finishes. Next, assume that the random walk destinations stored
for hy are {vi,v1,v1, v1,v1,v1,01,01,03,03,V3,03}. Then,
we divide the destinations into four disjoint multi-sets based on
their sampling order: Fi = {(v1,1)}, F» = {(v1,2)}, F3 =
{(U174)}7 Fy= {(Ulv 1), (U374)}'

It is easy to verified that |F5 U Fy| = 9. As a result, F directly
returns the 9 destinations in a batch, i.e., {(v1,5), (vs,4)}. O

Next we clarify how we divide F(hy) into disjoint multi-sets.
The solution should guarantee that for an arbitrary k, we can always
find some different multi-sets in S such that the size of their merged
result is k. To achieve this, we propose to divide F(hy) into u =
1 + |log, 1] multi-sets S = {F1, F»,---, Fy,}, where the i-th
multi-set F; contains 2°~! nodes for 1 < 4 < w, and the last multi-
set I, contains the remaining p + 1 — 2“~* nodes. Regarding S,
we have the following lemma.

LEMMA 7. Forany k < p, we can find a set C' C S, such that
Zpiec/ |F;| = k, and return the k destinations with O(k) cost. O

Lemma 7 guarantees that the disjoint multi-set based forward ora-
cle satisfies Condition 1 in Theorem 2, which is the key to preserve
the time complexity of HubPPR. Moreover, the disjoint multi-set
based solution saves up to 99.7% of the space over list based so-
lution on the tested datasets, which demonstrates the effectiveness
of the disjoint multi-set solution. For the interest of space, we omit
results that evaluate the compression effectiveness of our proposed
scheme and refer interested readers to our technical report [1].

5.2 Selection of Forward Hubs

We model the forward hub selection problem as an optimization
problem: Given a space constraint L ¢, the goal is to maximize the
expected number of skipped random walk jumps with F during



Algorithm 3: Forward Hub Selection

Algorithm 4: Backward Oracle Construction

Input: Graph G, probabilityc, the number of forward hubs «
Output: The set of forward hub H ¢

1 H f 0;
2 Generate w’ = % random walks;
3 For each node v, compute the total number of saved hops B(v) by v.
4 do
5 Select a node v with highest B(v) score and add it into H y;
6 for each random walk W' that visits v do
7 Let /(W) denote the number of visited nodes in W;
8 Let ¢(v) denote the position that v first appears in W
9 for each distinct vertex win W do
10 if c(u) < c¢(v) then
11 | B(u) « B(u) — (I(W) —c(v));
12 else
13 | B(u) < B(u) — ((W) — c(u));
14 | Update W by removing the nodes after the c(v)-th position;
15 while |[F| < Ly;

the forward search. This problem, however, is difficult to be solve
exactly, since the number of possible random walks can be expo-
nential to graph size. Therefore, we use a sampling-based greedy
algorithm to select the forward hubs, as shown in Algorithm 3.
Initially, we sample w’ = M random walks and record
the total number B(v) of jumps that can be saved by node v if v
is selected as a forward hub (Lines 2-3). In particular, for each
random walk W with length {(1V), let c(v) be the first position
that v appears in W. The number of saved random walk jumps
on W is then [(W) — ¢(v) by node v. As a result, we increment
B(v) by (W) — ¢(v) for random walk W. After B(v) is initiated
for each node v, Algorithm 3 iteratively selects the node that has
the maximum B(v) as a forward hub (Line 5). When a node is
selected in an iteration, the number of saved jumps for other nodes
are changed, and hence needs to be updated as shown in Lines 7-
14. For each random walk W that visits v, it updates the number of
saved jumps for other visited nodes as follows. If u appears earlier
than v in W, then B(u) is decreased by (W) — c(v). Otherwise,
B(u) is decreased by [(W) — c(u). Afterwards, the random walk
W is truncated by removing all nodes from the ¢(v)-th position in
W . Finally, if the index size does not exceed L, it enters into the
next iteration and repeats until no more forward hubs can be added.

5.3 Backward Oracle

As described in Section 3.2, the backward oracle B answers
probes with both a node w and a residue r(u, t), and it returns ei-
ther NULL, or an initial residue 7 and the results of F BP(u, 7). In
the backward oracle, we select a set Hy, of backward hubs, and for
each hub h € H; we store the results of multiple FBPs originating
from h with different initial residue 7 which we call snapshots.

We first focus on how to determine the snapshots for a given
backward hub h. Since we need to materialize results of an FBP for
each snapshot, the number of stored snapshots should be minimized
to save space. On the other hand, having too few snapshots may
violate the probe efficiency requirement. As described in Section
3.2, if the returned 7 is much larger than A’s residue 7 (h, t), using
B might lead to a high cost since it involves numerous nodes. To
tackle these issues, the proposed index construction algorithm (i)
builds multiple snapshots for each i € Hy; and (ii) guarantees that
the index size is at most twice of that of a single snapshot.

Algorithm 4 shows the pseudo-code for selecting different initial
residue values for each h € Hy. Initially, a backward propagation
with initial residue 7 = 1 is performed from h (Lines 2 and 4). We
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Input: H, the set of backward hubs
Output: Backward Oracle B
for each node h in Hy, do
Let7T < 1;
while 7 > 7,4, do
Perform FBP(h,T);
Let S(h, ) denote the snapshot of FBP(h, T);
Let S(h, ') denote the last added snapshot in B(h);
if |S(h, 7)| < |S(hy, 7)|/2 then
| Add S(h,T) into B(hy);

else
L Ignore this snapshot;

Let T < 7/2;

return B

store the snapshot into B(h) and record the size of the snapshot.
Afterwards, we proceed an FBP from h with initial residue 0.5, and
check if the size of the snapshot is larger than half of the snapshot
S(h,1)’s size. If so, we discard the former snapshot. Otherwise,
we add it to B(h) and record its size (Lines 4-10). We repeatedly
set the initial residue 7 to half of that in the previous iteration (Line
11), until the initial residue falls below 7,4, (Line 3).

Because the size of a stored snapshot for h is always no more
than half the size of the previous stored snapshot, the total size of
all stored snapshots is no larger than twice of the size of the first
snapshot, i.e., S(h,1). Finally, we establish the time efficiency of
the proposed backward oracle through the following lemma:

LEMMA 8 (BACKWARD ORACLE COMPLEXITY). Given a
backward oracle B returned by Algorithm 4, it is guaranteed that
the amortized cost of the backward search using B is O(

m )
n-armaz’’

5.4 Selection of Backward Hubs

Given a pre-defined space threshold Ly, the goal for the back-
ward hub selection is to minimize the expected backward search
cost with B. Given a randomly selected target node ¢, denote X as
the number of saved backward costs by applying a snapshot of node
h, and Y the size of the chosen h’s snapshot. Then, the goal is to
maximize the benefit to cost ratio, i.e., E[X,]/E[Y,]. However, it
is rather challenging to derive E[X,] efficiently since for different
nodes or residues, the saved backward costs are different. As an
alternative, we apply a heuristic approach based on the following
observations: (i) the more message that has been propagated from
v, the higher the probability it is to reduce the backward cost, and
(ii) the larger the average snapshot size B(v) is for a node v, the
more backward cost can be saved by applying v’s snapshot. Our
heuristic then uses E[M,] - E[Y}] to indicate the expected pruning
efficiency E[X,] for node v, where E[M,] is the expected size of
the propagated message to v for a randomly chosen target node.
Then, E[X,]/E[Ys] can be estimated as E[M,], which can be ef-
ficiently approximated with Monte-Carlo methods. Algorithm 5
shows the pseudo-code for how we select the backward hubs.

Firstly, the total propagated message (v) for each node v is
initialized to zero (Line 1). Next, w ending nodes are randomly
selected, and backward propagation are started from these nodes.
The size I’ (v) of the propagated message from each node v is then
recorded for the w backward propagations (Line 3). Afterwards,
I(v) is updated for each node by adding I’ (v) into it (Lines 4-5).
The node v with the highest I(v) score is repeatedly selected as the
hub, and snapshots for v are generated (Lines 7-8). Finally, the al-
gorithm terminates when the size of the backward oracle exceeds
the pre-defined threshold L; (Line 9).



Algorithm 5: Backward Hub Selection

Input: Graph G, probability o

Output: the set Hy, of backward hubs
1 l(v) < Oforallv € V;
2 fori =1t wdo
3 Randomly select a node u as the target; do the backward search
from wu; record the propagated message I’ (v) from each node v;
4 for each v in V do

5 | 1(v) < I(v) +1'(v);
6 do
7 Select the node v with highest [(v) score; invoke Algorithm 4

Lines 2-11 to generate snapshots for node v, and add v into Hy;
8 Create an entry B3(v) and add the generated snapshots into B(v);
9 while |B| < Ly;

5.5 Elastic Adjustment

EHI has the nice property that its size can be dynamically ad-
justed by shrinking or expanding the oracles. Next, we explain
how EHI can be dynamically adjusted.

First, note that EHI in HubPPR can be constructed incrementally
upon an existing one. To explain, we can first calculate a total order
for the nodes to indicate its importance in forward (resp. backward)
search using the sampling based approach as shown in Sections 5.2
(resp. 5.4). Afterwards, the index can be constructed incrementally
based on these two total orders. For example, when we have an
EHI with 5x space ratio, and we want to construct an EHI with
10x space ratio, it does not need to construct the new index from
scratch. Given the 5x space HubPPR index constructed based on
the two total orders, assuming that the last forward (resp. backward)
hub in the index has a total order 7 (resp. 7), then we can reuse the
5x space HubPPR index, and start constructing the forward oracle
(resp. backward oracle) from the node whose total order is ¢ + 1
(resp. 7 + 1), and increase the index size until the newly added
index reaches 5x space, adding up to 10x space in total.

Besides, to shrink the index, we could simply stop loading the
index when it reaches the specified memory capacity. For example,
given an EHI with 5x graph size, and one wants to use only 4x-
graph-size memory, then, we can load the index hub by hub, and
stop loading the index when it reaches the space threshold.

6. OTHER RELATED WORK

PageRank and Personalized PageRank are first introduced by
Page et al. [25]. The former measures the global importance of a
node in the graph, and the latter measures the importance of a node
with respect to another node. Both problems have been extensively
studied. We focus on the Personalized PageRank, and refer readers
to [9] for detailed surveys on PageRank.

In [25], Page et al. propose the power iterations approach to cal-
culate the exact PPR vector with respect to a source node s using
Equation 1, where the PPR vector includes the PPR values for all
v € V with respect to s. As explained in Section 2.2, this methods
involves matrix operations on the adjacency matrix, which incurs
high space and time costs for large graphs. Subsequently, a branch
of research work focuses on developing algorithms to efficiently
compute PPR vectors [10, 11, 13, 15, 20, 23, 29]. Jeh et al. [20]
propose the backward search solution as discussed in Section 2.2,
which is further optimized in [4, 13]. Berkhin [10], Chakrabarti
[11], and Zhu et al. [29] propose to (i) pre-compte the PPR vectors
for some selected hub nodes, and then (ii) use the pre-computed
results to answer PPR queries. However, Berkhin’s method is lim-
ited to the case when the source is a distribution where all non-hub
nodes have zero probabilities; Chakrabarti’s and Zhu et al.’s tech-
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niques are based on variants of power iterations [25] for PPR com-
putation, and, thus, inherit its inefficiency for large graphs. Fuji-
wara et al. [15] propose to pre-compute a QR decomposition of the
adjacency matrix A (see Section 2), and then utilize the results to
accelerate PPR queries; nonetheless, the method incurs prohibitive
preprocessing costs on million-node graphs. Later, Maehara et
al. [23] present a method that (i) decomposes the input graph into
a core part and several tree-like structures, and then (ii) exploits
the decomposition to speed up the computation of exact PPR vec-
tors. Shin et al. [27] propose BEAR to reorder the adjacency matrix
of the input graph GG to obtain several easy-to-invert sparse sub-
matrices. The sub-matrices are then stored as the index, and used
to improve PPR query processing. This approach incurs prohibitive
space consumption, and they further propose BEAR-Approx to re-
duce the index size by dropping values that are less than a dropout
threshold v in the sub-matrices and setting them to zero. Neverthe-
less, as will be shown in our experiment, BEAR-Approx still incurs
prohibitive preprocessing costs, and is not scalable to large graphs.

In addition, the random walk based definition of PPR inspires a
line of research work [8,13,21,22,26] that utilizes the Monte-Carlo
approach to derive approximate PPR results. In particular, Bahmani
et al. [7] and Sarma et al. [26] investigate the acceleration of the
Monte-Carlo approach in distributed environments. Fogaras et al.
[13] presents a technique that pre-computes compressed random
walks for PPR query processing, but the large space consumption
of the technique renders it applicable only on small graphs. Lofgren
et al. propose FastPPR [22], which significantly outperforms the
Monte-Carlo method in terms of query time. FastPPR, in turn, is
subsumed by BiPPR [21] in terms of query efficiency.

There also exists a line of research work [6,8, 14,15,17,21] that
investigates top-k PPR queries. Nevertheless, almost all existing
methods require that the target set 7' = V/, i.e., the set of all nodes
in the input graph. The only algorithm that supports arbitrary 7'
is BiPPR. In the next section, we show that HubPPR significantly
outperforms BiPPR through extensive experimental results.

7. EXPERIMENTS
7.1 Experimental Settings

All the experiments are tested on a Linux machine with an Intel
Xeon 2.4GHz CPU and 256GB RAM. We repeat each experiment
5 times and report the average results.

Datasets. We use 7 real datasets in our evaluations, contain-
ing all 6 datasets used in [21,22]. Among them, DBLP, Pokec,
LiveJournal (abbreviated as LJ), Orkut, and Twitter are social net-
works, whereas UKWeb is a web graph. Besides these, we use one
more web graph: Web-Stanford (denoted as Web-St), adopted from
SNAP [2]. Table 2 summarizes the statistics of the 7 datasets.

Query sets. We first describe how we generate the query set for
PPR queries. For each dataset, we generate 1000 queries with
source and target chosen uniformly at random. For top-k PPR
queries, there are 12 query sets. The first 5 query sets have k = 16,
and varying |7’ values: 100, 200, 400, 800, 1600. The remaining
7 query sets have a common target set size of 400, and varying k
values: 1, 2, 4, 8, 16, 32, 64. For each query set, we generate 100
queries, with target nodes chosen uniformly with replacement.

Parameter Setting. Following previous work [21,22], we set o to
0.2, py to 1/n, and 6 to 1/n. We evaluate the impact of € and the
EHI index size to our HubPPR and find that e = 0.5 leads to a good
balance between query accuracy and query performance. For bre-
ity, we omit the results and refer interested readers to our full tech-
nical report [1]. Besides, as we show later in Section 7.4, when the



Table 2: Datasets. (X = 103, M = 10°, B = 10°)

Name n m Type Linking Site
DBLP 613.6K 2.0M | undirected www.dblp.com
Web-St | 281.9K 2.3M directed www.stanford.edu
Pokec 1.6M 30.6M directed pokec.azet.sk

L] 4.8M 69.0M directed | www.livejournal.com
Orkut 3.1M | 117.2M | undirected www.orkut.com
Twitter 41.7M 1.5B directed twitter.com
UkWeb | 105.9M 3.7B directed —

index size of HubPPR is 5x the graph size, it strikes a good trade-
off between the space consumption and query efficiency. Hence, in
the rest of our experiments, we set ¢ = 0.5 and the index size of
HubPPR to 5x the graph size. For other competitors, we use their
default settings in case they include additional parameters.

Methods. For the PPR query, we compare HubPPR against BiPPR
[21], FastPPR [22], and a baseline Monte-Carlo approach [5]. For
indexing methods, we include a version for BiPPR (denoted as
BiPPR-I) that pre-computes and materializes forward and back-
ward phases for all nodes. All of the above methods are imple-
mented in C++, and compiled with full optimizations. Moreover,
we compare HubPPR against the state-of-the-art index-based solu-
tion BEAR-Approx [27] with dropout threshold ~ (ref. Section 6)
set to 1/n. Note that (i) unlike other methods, BEAR-Approx pro-
vides no formal guarantee on the accuracy of its results; (ii) BEAR-
Approx computes the PPR vector from a source node s, while other
competitors except for the Monte-Carlo approach computes the
PPR score from a source s to a target t. We obtained the binary ex-
ecutables of BEAR-Approx from the authors, which is implemented
with C++ and Matlab, and compiled with full optimizations. As we
will see, HubPPR significantly outperforms Bear-Approx in terms
of index size, query accuracy, query time, and preprocessing time.
Among these results, the comparisons on index size and query ac-
curacy are more important due to the fact that Bear-Approx is par-
tially implemented with Matlab.

For the top-k PPR query, we evaluate two versions of the pro-
posed top-k PPR algorithm described in Section 4: one without any
index, dubbed as TM (top-k martingale), and the other leverages
the HubPPR indexing framework, dubbed as TM-Hub. For com-
petitors, we compare with BEAR-Approx [27] and the top-k£ PPR
algorithm by Lofgren et al. [21], denoted as BiPPR-Baseline. In
addition, we compare with a solution that leverages their BiPPR al-
gorithm with our HubPPR indexing framework, dubbed as BiPPR-
Hub. We also inspect the accuracy of all methods in comparison.
In particular, we report the average recall® for each query set with
different k£ values and target sizes.

7.2 PPR Query Efficiency

This section focuses on PPR processing. Table 3 demonstrates
the PPR query performance of all solutions on the query set, where
MC, FP, BEAR-A, and BI are short for Monte-Carlo, FastPPR,
BEAR-Approx and BiPPR-I algorithms, respectively.

We first inspect the results for index-based approaches, i.e.,
HubPPR, BiPPR-I and BEAR-Approx. Besides query time, we fur-
ther report their preprocessing costs in Table 4. Both BiPPR-I and
BEAR-Approx consume an enormous amount of space, and, thus,
are only feasible on the smaller DBLP and Web-St datasets un-
der 256GB memory capacity. With the complete materialization of
forward and backward search results, BiPPR-I achieves the highest
query efficiency among all methods. However, the increased per-
formance comes with prohibitive preprocessing costs as shown in

3The precision and recall are the same for top-k PPR queries.

Table 3: Query performance (ms). (K = 103, M = 10°)
MC FP | BiPPR | HubPPR | BEARA | BI
DBLP 11.5K 82.8 19.7 3.1 0.8K | 0.1
Web-St 6.1K | 0.2K 37.0 8.1 0.1K | 04
Pokec 0.IM | 0.7K 26.9 4.2 - -
LJ 0.5M 1.0K 59.8 9.1 - -
Orkut 0.4M 1.4K 0.4K 30.8 - -
Twitter 25M | 0.1M 21.5K 3.3K - -
UKWeb 22M | 0.IM 259K 3.5K - -
Table 4: Preprocessing costs. (K = 103, M = 10°)
Preprocessing time (sec) Index size
Datasets — PR T BEAR-A | BI | HubPPR | BEARA | BI
DBLP 0.2K 99.4K 8.4K 92.1MB 7.5GB | 3.2GB
Web-St 0.1K 0.2K | 12.7K 51.9MB 0.1GB | 6.5GB
Pokec 0.8K - - 0.7GB - -
L 1.9K - - 1.5GB - -
Orkut 6.5K - - 4.7GB - -
Twitter 41.1K - - 29.8GB - -
UKWeb 62.7K - - 77.0GB - -
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Table 4, which renders it inapplicable for large graphs. As BEAR-
Approx preprocesses the index by constructing sparse sub-matrices,
its index size and preprocessing time highly depend on the topology
of the input graph. For example, on the DBLP and Web-St datasets,
the index size of BEAR-Approx is 400x and 10x the original graph,
respectively. Meanwhile, the preprocessing time on the DBLP and
‘Web-St datasets are over 24 hours and around 200 seconds, respec-
tively. Compared to HubPPR, BEAR-Approx consumes over 80x
(resp. 2x) space, and yet 250x (resp. 10x) higher query time on
DBLP (resp. Web-St). Further, even on the largest dataset UKWeb
with 3.7 billion edges, the preprocessing time of HubPPR is less
than 24 hours on a single machine, which can be further reduced
through parallel computation.

Among all the other methods, HubPPR is the most efficient one
on all of the tested datasets. In particular, HubPPR is 6 to 10
times faster than BiPPR with only 5x additional space consump-
tion, which demonstrates the efficiency of our HubPPR index. In
addition, both HubPPR and BiPPR are at least one order of magni-
tude faster than FastPPR and the Monte-Carlo approach, which is
consistent with the experimental result in [21].

In summary, HubPPR achieves a good balance between the
query efficiency and preprocessing costs, which renders it a pre-
ferred choice for PPR queries within practical memory capacity.

7.3 Top-k Query Efficiency and Accuracy

Next we focus on top-k PPR processing. For brevity, we only
show the results on four representative datasets: DBLP, Pokec,
Orkut, and UKWeb. Note that BEAR-Approx is only feasible on
DBLP under 256GB memory capacity among the four datasets.

Figure 3 shows the query efficiency with varying target set size.
As we can observe, when |T| increases, the query latency of TM,
TM-Hub, BiPPR-Baseline, and BiPPR-Hub all increases. Note that
TM and TM-Hub are less sensitive to the size of T than BiPPR-
Baseline and BiPPR-Hub. For example, on the Orkut dataset, when
|T'| increases from 100 to 1600, the query latency increases by
around 5x for TM and TM-Hub. In contrast, the query time of
BiPPR-Baseline and BiPPR-Hub increases by around 20x. This
is due to our advanced approximate top-k PPR query algorithm,
which iteratively refines the top-k nodes by pruning target nodes
that are less likely to be the top-k results. Specifically, TM-Hub is
up to 220x faster than BiPPR-Baseline, and up to 80x faster than
BiPPR-Hub. For example, on the Pokec dataset, when |T'| = 800,
TM-Hub improves over BiPPR-Baseline and BiPPR-Hub by 150x
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Figure 6: Top-k PPR query accuracy: varying k.

and 50x, respectively. Even without any index, TM is still up to
90x faster than BiPPR-Baseline and 50x faster than BiPPR-Hub.
In addition, on UKWeb dataset, which includes 3.7 billion edges,
TM-Hub can answer the top-k PPR query with only 6 seconds when
|T'| = 800, which shows the efficiency and scalability of our top-
k PPR query algorithm and index scheme. Besides, with HubPPR
indexing scheme, the query efficiency of both TM-Hub and BiPPR-
Hub are improved several times over their non-index counterparts,
which demonstrates the effectiveness of HubPPR indexing.

For query accuracy, TM, TM-Hub, BiPPR-Baseline, and BiPPR-
Hub all show similarly high recall on the four datasets. This is
expected, since (i) our algorithms provide formal and controllable
guarantees over the result quality of the top-k PPR query, (ii)
BiPPR-Baseline also provides approximation guarantee for each
PPR value with respect to the source node and any target node in 7',
making the selected k£ nodes of comparably high quality, and (iii)
the HubPPR indexing framework does not affect result accuracy.

Next, we compare TM and TM-Hub against BEAR-Approx. Note
that the query time of BEAR-Approx is not affected by the target
size |T'| since it directly computes the PPR vector for the source
node regardless of the targets. Consequently, BEAR-Approx incurs
unnecessarily hight costs for a small target set size. For example,
when |T'| is 100, TM and TM-Hub are about 160x and 350x faster
than BEAR-Approx, respectively. Despite the fact that the query
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performance of BEAR-Approx is not affected by the target size |T'|,
the accuracy of BEAR-Approx algorithm drops significantly with
the increase of |T'|. In particular, when |7'| increases to 1600, the
recall drops to 0.35, producing far less accurate query answer than
the other four methods. Note that BEAR-Approx is only feasible for
the DBLP dataset due to its high indexing costs.

Figure 5 shows the evaluation results on top-k PPR query effi-
ciency with varying values of k. Observe that TM and TM-Hub
estimate the top-k PPR queries in an adaptive manner: when k is
smaller, both TM and TM-Hub incur lower query overhead. This
behavior is desirable in many real-world applications such as web
search. In contrast, the costs for BiPPR-Baseline when k = 1 and
k = 64 are the same, which indicates that it incurs a large amount
of unnecessary computations for £ = 1 to derive the top-k PPR
queries. The same is true for BiPPR-Hub and BEAR-Approx. Fig-
ure 6 reports the recall for all methods with varying values of k. As
expected, TM, TM-Hub, BiPPR-Baseline, and BiPPR-Hub again
demonstrate similarly high recall, i.e., over 95% on the majority of
datasets when k reaches 8. In contrast, the recall of BEAR-Approx
drops with decreasing k, and its recall can be as low as around 20%.

In summary, TM and TM-Hub achieves high query efficiency
for top-k PPR queries without sacrificing query accuracy, and are
adaptive to the choice of k. Their query latency is less sensitive
compared to BiPPR-Baseline with varying target set size.
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7.4 Tuning Parameters

This section examines the impact of index size on the query ef-
ficiency of HubPPR. The results are shown in Figure 7, where the
z-axis is the ratio of the index size to the input graph size, which
we call the space ratio. Note that some of the results for Twitter
and UKWeb are missing due to limited memory capacity (256GB)
of our testing machine. As we can observe, the query efficiency
of HubPPR increases with its index size. This is expected, since a
larger index can accommodate more hubs, which is more likely to
reduce the cost for both forward search and backward search. The
improvement of the query efficiency is more pronounced when the
space ratio increases from 1 to 5. For example, on the Web-St
dataset, the query efficiency is improved by 10x when the space
ratio increases from 1 to 5. On the other hand, the query efficiency
grows slowly with the space ratio when the latter becomes larger.
In particular, when the space ratio increases from 5 to 80, i.e, 16x
index size, the query performance improves by only around 8x.

To explain, our forward oracle (resp. backward oracle) iteratively
includes the hub that is (estimated to be) the most effective in re-
ducing the cost of random walks (resp. backward propagations). As
more hubs are included in the index, the marginal benefit in terms
of query cost reduction gradually diminishes, since each newly
added hub is expected to be less effective in cutting query costs
than the ones already selected by the index. We set our index size
to 5x of the input graph size, which strikes a good tradeoff between
the query efficiency and space consumption as shown in Figure 7.

8. CONCLUSION

This paper presents HubPPR, an efficient indexing scheme for
approximate PPR queries. Our indexing framework includes both
a forward oracle and a backward oracle which increase the effi-
ciency of random walks and the efficiency of the backward propa-
gation, respectively. Meanwhile, we further study the approximate
top-k PPR queries, and present an iterative approach that gradually
refines the approximation guarantee for the top-k nodes, and with
bounded time returns the desired results. As future work, we plan
to investigate (i) how to devise forward oracle that also considers
graph skewness, e.g., allocating different numbers of destinations
to different forward hubs; (ii) how to build indices to efficiently
process PPR and top-k PPR queries on dynamic graphs; (iii) how
to devise effective indices to improve the PPR vector computation
for large graphs without compromising query accuracy.
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