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ABSTRACT
While we are already used to see more than 1,000 cores
within a single machine, the next processing platforms for
database engines will be heterogeneous with built-in GPU-
style processors as well as specialized FPGAs or chips with
domain-specific instruction sets. Moreover, the traditional
volatile as well as the upcoming non-volatile RAM with
capacities in the 100s of TBytes per machine will provide
great opportunities for storage engines but also call for rad-
ical changes on the architecture of such systems. Finally,
the emergence of economically affordable, high-speed/low-
latency interconnects as a basis for rack-scale computing is
questioning long-standing folklore algorithmic assumptions
but will certainly play an important role in the big picture of
building modern data management platforms. In this talk,
we will try to classify and review existing approaches from
a performance, robustness, as well as energy efficiency per-
spective and pinpoint interesting starting points for further
research activities.

1. INTRODUCTION
Traditional database system design is based on hardware

assumptions that were valid 30 years back. Conceptually,
that includes a working area with CPU and associated (tran-
sient) DRAM plus some sort of stable storage (disk) and net-
working capabilities to communicate with remote engines.
In order to hide the low bandwidth and high latency as
much as possible, the database system explicitly requires
control over the individual interactions with these “external
devices”. A decade back, main-memory centric approaches
changed the data hierarchy by emphasizing cache-awareness
of algorithms and data structures, optimizing the relation-
ship between CPU (i.e. CPU caches) and DRAM. By rely-
ing on large (and expensive) main memory capacities, main-
memory centric approaches overcome many limitations, but
still assume the traditional hardware model with disk IO
for logging and an explicit network protocol for distributed
query processing.
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Figure 1: Change of the HW Design Space

However, especially with the advent of rack-scale com-
puting platforms, the design space of the underlying hard-
ware environment has changed dramatically in multiple di-
rections. For example, non-volatile RAM (NVRAM) allows
direct access on stable storage in a byte-addressable man-
ner, blurring the separation of the (transient) working copy
and the (persistent) state of the database. In the same way,
techniques like RDMA cause to blur the boundaries of indi-
vidual nodes by allowing direct access to the main memory
of other nodes in a cluster.

Moreover, significant progress has been made with respect
to processing units. After the wave of multi-cores currently
resulting in machines with more than 1,000 general purpose
cores (e.g. HPE SGI UV300), we will be faced with poten-
tially wildly heterogeneous computing units specialized on
individual tasks. On the GPU side, we currently see – on
the one hand – a move towards more standardized mem-
ory models as a step towards general programing models
(e.g. current NVIDIA Volta [1]) going hand-in-hand with
extremely efficient communication paths (e.g. NVLink). On
the other hand, we have APUs – GPU and regular CPU
on the same die – as tightly connected system overcoming
PCI-bus induced data transfer limitations. Within the do-
main of FPGAs – a platform considered extremely beneficial
for compute-intensive applications but highly neglected for
data-intensive systems – we already have boards providing
the programmable logic area in combination with multiple
ARM cores to allow offloading of complex algorithmic snip-
pets (e.g. [2]). We also see tightly integrated systems such
as those within the Intel-Altera Heterogeneous Architecture
Research Platform Program (HARP), consisting of a regular
XEON CPU with an FPGA on the same die.

The plethora of opportunities is finally extended by inte-
grating domain-specific instruction sets into regular proces-
sors in order to exploit the “Dark Silicon” effect (e.g. [3])
so far mostly dominated by text and image processing sce-
narios. Considering all these developments in the hardware
sector, the overall question has to be asked:
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(a) Caching Policies for NVRAM (b) Severe NUMA effects (c) Data Movement in NUMA Machines

Figure 2: Opportunities and Impact of Modern Hardware Developments

How Disruptive is Modern Hardware for DB
System Design?
Instead of providing a comprehensive answer to this ques-
tion, let us give two examples of how modern hardware may
have an impact on the design of database data structures
and algorithms.

Example 1: Revisiting Buffer Management
The advent of non-volatile RAM has the potential to revolu-
tionize the way storage systems are designed to provide effi-
cient access and consistency at the same time [4]. A very ob-
vious way of using NVRAM is to treat it as a super fast disk
by defining a file system (like tmpfs) over NVRAM regions
and bypassing the OS page cache, e.g. using Direct Access
(DAX) support in ext4fs in Linux, and running the database
system as it is. Since storage engines usually implement
their own caching strategy, the system might interestingly
get slower compared to operating directly on NVRAM and
completely ignoring the existence of an intermediate cache.
In contrast to a traditional cache behavior with a “Hit”
(DRAM) or “Miss” (HDD/SSD/...), NVM can be directly
accessed by the CPU and therefore add a new dimension to
replacement strategies: “Miss-Without-Transfer”, which is
significantly cheaper than a regular “Miss” (including a read
and a write). Figure 2a shows the results of a micro bench-
mark running a search on 4k blocks assuming 4x the latency
of NVRAM compared to regular DRAM. The right bar in
figure 2a shows the runtime using a regular LRU strategy.
In this setting, a “Miss” is 2x more expensive than executing
the binary search directly in NVRAM without copying the
data into lower latency DRAM before accessing. Obviously,
hierarchical memory scenarios in NUMA environments or
configurations with memory regions accessible via RDMA
increase the complexity even more.

Example 2: Overcoming NUMA Effects
Large machines are based on local memory attached to in-
dividual processors which again are connected by an intra-
machine network (e.g. Intel QPI) resulting in a NUMA-
style memory model. Although a global and cache-coherent
virtual memory is provided for the individual applications,
significant communication overhead within a single machine
may result in severe overall performance impact. As can be
seen in figure 2b for a HPE SGI UV2000, such NUMA ef-
fects may result in severe bandwidth and latency penalties,
if data access is “remote”, e.g. ends up in the memory of a
processor “at the other end” of the machine. While preserv-

ing data locality is a well-studied problem, modern hardware
may bring in an additional dimension for a cost-based data
placement decision: For example, the HPE SGI-series pro-
vides an ASIC (HARP) to connect individual processors,
maintaining cache coherency and providing a common ad-
dress space across different processors. Additionally, the
HARP employs a Global Reference Unit (GRU) facilitating
a proprietary API to accelerate and thereby offload memory
operations. Unfortunately, as can be seen in figure 2c, the
use of the GRU internal gru_bcopy() mechanism to transfer
memory chunks asynchronously and outside of the proces-
sor requires a decision regarding the traditional memcpy()-
approach with respect to data chunk size, communication
path, latency optimization goal, and/or regarding the abil-
ity to use the freed-up processor capacity for other jobs.

2. SUMMARY AND CONCLUSIONS
While these examples do not reflect all of the opportu-

nities and challenges of modern hardware components and
platforms, they may serve to spark the discussion on “how
disruptive is modern hardware for DB system de-
sign”. Within the talk, we will therefore specifically discuss
approaches already exploiting modern hardware capabilities
from an academic research as well as commercial application
point of view. For some cases, simply throwing an existing
system on top of new hardware and expecting it to run faster
can lead to disappointment.
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