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ABSTRACT

Data integration aims to integrate data in different sources
and provide users with a unified view. However, data in-
tegration cannot be completely addressed by purely auto-
mated methods. We propose a hybrid human-machine data
integration framework that harnesses human ability to ad-
dress this problem, and apply it initially to the problem of
entity matching. The framework first uses rule-based algo-
rithms to identify possible matching pairs and then utilizes
the crowd to refine these candidate pairs in order to com-
pute actual matching pairs. In the first step, we propose
similarity-based rules and knowledge-based rules to obtain
some candidate matching pairs, and develop effective algo-
rithms to learn these rules based on some given positive and
negative examples. We build a distributed in-memory sys-
tem DIMA to efficiently apply these rules. In the second step,
we propose a selection-inference-refine framework that uses
the crowd to verify the candidate pairs. We first select some
“beneficial” tasks to ask the crowd and then use transitivity
and partial order to infer the answers of unasked tasks based
on the crowdsourcing results of the asked tasks. Next we re-
fine the inferred answers with high uncertainty due to the
disagreement from the crowd. We develop a crowd-powered
database system CDB and deploy it on real crowdsourcing
platforms. CDB allows users to utilize a SQL-like language for
processing crowd-based queries. Lastly, we provide emerg-
ing challenges in human-in-the-loop data integration.

1. INTRODUCTION

In big data era, data are full of errors and inconsistencies
and bring many difficulties in data analysis. As reported in
a New York Times article, 80% time of a typical data science
project is to clean and integrate the data, while the remain-
ing 20% is actual data analysiﬂ Thus data science pipeline
should include data acquisition, data extraction, data clean-
ing, data integration, data analytics and data visualization.

Thttp://www.nytimes.com,/2014,/08/18 /technology /for-big-
data-scientists-hurdle-to-insights-is-janitor-work.html
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Data integration is an important step to integrate data in
different sources and provide users with a unified view. How-
ever, data integration cannot be completely addressed by
purely automated methods [35]. Therefore, it is demanding
to develop effective techniques and systems to serve the data
integration problem.

We propose a hybrid human-machine data integration me-
thod that harnesses human ability to address the data in-
tegration problem [60} 69} 34], and apply it initially to the
problem of entity matching, which, given two sets of records,
aims to identify the pairs of records that refer to the same
entity. For example, we want to find the products from Ama-
zon and eBay that refer to the same entity. We also want to
find the publications from DBLP and Google scholar that
refer to the same entity. Our framework first uses rule-based
algorithms to identify possible matching pairs as candidates
and then utilizes the crowd (also called workers) to refine
the candidate pairs so as to identify actual matching pairs.

The first step aims to design effective algorithms to ef-
ficiently identify candidate matching pairs. We propose
rule-based methods to obtain the candidate matching pairs,
where a pair of records is a candidate if the two records
satisfy a rule. For example, consider the product integra-
tion problem. A possible rule is if two products have similar
name and similar model, then they may refer to the same
entity. There are three challenges in this step. Firstly, it
is challenging to generate high-quality rules. Existing tech-
niques use string similarity functions (e.g., edit distance,
Jaccard) to define the similarity. For example, two product
names are similar if their edit distance is smaller than a given
threshold (e.g., 2). However, these functions neglect the
knowledge behind the data. We propose to use knowledge
bases, e.g., Freebase and Yago, to quantify the knowledge-
aware similarity [57} 23] |56], and our rule can support both
string similarity and knowledge-aware similarity. We de-
velop effective algorithms to learn these rules based on some
given positive and negative examples. Secondly, it is rather
inefficient to apply these rules, because it is prohibitively ex-
pensive to enumerate every pair of records. To address this
problem, we propose a signature-based method such that
if two records refer to the same entity, they must share a
common signature. We utilize the signatures to generate
the candidates, develop efficient techniques to select high-
quality signatures, and propose an algorithm to minimize
the number of selected signatures. Thirdly, it is challenging
to build a distributed system to support rule-based entity
matching. We build a distributed in-memory system DIMA
to learn and apply these rules and seamlessly integrate our



techniques into Spark SQL [60]. To balance the workload,
we propose selectable signatures, which can be adaptively
selected based on the workload. Based on selectable signa-
tures, we build global and local indexes, and devise efficient
algorithms and cost-based query optimization techniques.
Moreover, besides entity matching, our system can support
most of similarity-based operations, e.g., similarity selection,
similarity join, and top-k similarity selection and join.

The second step verifies the candidates by utilizing the
crowd to identify the actual matching pairs. The big chal-
lenge of using the crowd to address the data integration
problem is to save monetary cost, improve the quality and
reduce the latency. We propose a selection-inference-refine
framework to balance the cost, latency and quality. We
first select some “beneficial” tasks to ask the crowd, and
then infer the answers of unasked tasks based on the crowd
results of the asked tasks. Next we refine the inferred an-
swers with high uncertainty due to the disagreement from
different workers. We propose to use the transitivity and
partial order to reduce the cost [68]. For example, given
three records 7, s,t. If we get the answers from the crowd
that, r = s (refer to the same entity) and s = t, then we
can infer r = ¢ and thus the pair (r,t¢) does not need to
be asked. We iteratively select pairs without answers to
ask and use the transitivity to infer the answers of unasked
pairs, until we get the answers of all pairs. We devise effec-
tive algorithms to judiciously select pairs to ask in order to
minimize the number of asked pairs. To reduce the latency,
we devise a parallel algorithm to ask the tasks in parallel.
To control the quality, we propose an online task assign-
ment and truth inference framework to improve the quality.
The truth inference module builds task model and worker
model, and infers the truth of each task based on workers’
answers. The adaptive task-assignment module on-the-fly
estimates accuracies of a worker by evaluating her perfor-
mance on the completed tasks, and assigns the worker with
the tasks she is well acquainted with. To further reduce the
monetary cost and improve the quality, we propose to use
partial order to do inference |7]. We develop a crowdsourcing
database system CDB [31], which provides declarative pro-
gramming interfaces and allows users to utilize a SQL-like
language for posing queries that involve crowdsourced op-
erations, and encapsulates the complexities of interacting
with the crowd. CDB has fundamental advantages compared
with existing crowdsourcing database systems. Firstly, in
order to optimize a query, existing systems often adopt the
traditional query-tree model to select an optimized table-
level join order. However, the query-tree model provides a
coarse-grained optimization, which generates the same or-
der for different joined records and limits the optimization
potential that different joined records should be optimized
by different orders. CDB employs a graph-based query model
that provides more fine-grained query optimization. Sec-
ondly, existing systems focus on optimizing the monetary
cost. CDB adopts a unified framework to perform the multi-
goal optimization based on the graph model to optimize
cost, quality and latency. We have deployed CDB on real
crowdsourcing platforms. Our systems and source codes are
available at https://github.com/TsinghuaDatabaseGroup.

Finally, we provide emerging challenges in human-in-the-
loop data integration, including entity matching on unstruc-
tured data, data integration on complex data (e.g., graphs
and spatial data), and fine-grained human involvement.
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2. HYBRID HUMAN-MACHINE ENTITY
MATCHING FRAMEWORK

2.1 Problem Definition

Consider two relations R and S. R has x attributes a1, a2,

-, az and m records 71,72, ,Tm. S has y attributes
bi,b2,- - ,by and n records s1, s2,- - - , Sn. The entity match-
ing problem aims to find all record pairs (7, s;) € RX S such
that r; and s; refer to the same entity.

There are two main challenges in entity matching. First,
it is not easy to evaluate whether two records refer to the
same entity. Second, it is expensive to check every record
pair. To address these two challenges, we propose a hybrid
human-machine framework. We first use the rules to gener-
ate the candidate pairs and then utilize the crowd to verify
the candidate pairs. The first step aims to devise algorithms
to automatically prune a large number of dissimilar pairs.
As the first step may generate false positives, the second
step focuses on utilizing the crowd to refine the candidates
in order to remove the false positives.

2.2 Rule Definition

Consider attribute a in R and attribute b in .S, and record
r € R and record s € S. Let r[a](resp. s[b]) denote the cell
value of r(resp. s) on attribute a (resp. b). We use similarity
functions to quantify the similarity of r[a] and s[b].

Set-Based Similarity. It tokenizes records as sets of to-
kens (or g-gramg”)) and computes the similarity based on the
sets, e.g., Overlap, Jaccard, Cosine, DICE. We take Jaccard
as an example, and our method can be easily extended to
support other set-based similarities. The Jaccard similarity
between r and s is Jac(r,s) = }:Dj,
are the overlap and union of r and s respectively by tokeniz-
ing r and s as two sets of tokens. Two values are similar
w.r.t. Jaccard if their Jaccard similarity is not smaller than
a threshold 7. For example, the Jaccard similarity between
{VLDB, 2017} and {VLDB, 2016} is 1/3.

where r Vs and rUs

Character-Based Similarity. It transforms a record to
the other based on character transformations and computes
the similarity/ distanc by the number of character trans-
formations. The well-known character-based similarity func-
tion is edit distance, which transforms a record to the other
by three atomic operations, deletion, insertion and substi-
tution, and takes the minimum number of edit operations
as the edit distance. Two values are similar w.r.t. edit dis-
tance if their edit distance is not larger than a threshold 7.
For example, the edit distance between SIGMOD and SIGMD
is ED(SIGMOD, SIGMD) = 1.

Knowledge-Based Similarity. A knowledge hierarchy
can be modeled as a tree structure and how to support
the directed acyclic graph (DAG) structure can be found
in [56]. Given two values r[a], s[b], we first find the tree
nodes that exactly match the two values. Here we assume
that each value matches a single tree node and how to sup-
port the case that each value matches multiple tree nodes
is discussed in [56|. If the context is clear, we also use r[a]
and s[b] to denote the corresponding matched nodes. Let
LCA,[q],s) denote their lowest common ancestor (i.e., the

2A substring with length g is called a g-gram.
3Note that similarity and distance can be transformed to
each other.
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Figure 1: Hybrid Human-Machine Framework.

common ancestor of the two nodes and any of its descen-
dant will not be a common ancestor of the two nodes), and
d,[q) denote the depth of node r[a] (the depth of the root is
0). Intuitively, the larger dy[q],sp] = dLCAr[a].s[b] is, the more
similar two values are. Thus the knowledge-aware similarity

between r[a] and s[b] is defined as KS(r[a], s[b]) %.

Based on the similarity functions, we define attribute-level
matching rules.

DEFINITION 1 (ATTRIBUTE-LEVEL MATCHING RULE).
An attribute-level matching rule is a quadruple A(a,b, f,7),
where a,b are attributes, f is a similarity function, and T is
a threshold. rla] and s[b] are considered to be the same, if
f(rla], s[b]) > 7 for similarity functions (or f(rla],s[b]) < T
for distance functions).

An attribute-level matching rule includes two attributes,
a similarity function and a threshold. Two cell values are
similar if they satisfy an attribute-level matching rule. For
example, in Figure (Model, Product, ED, 2) is an attribute-
level rule. Note that two records refer to the same entity if
they have similar cell values on multiple attributes. Thus
we define record-level matching rules.

DEFINITION 2 (RECORD-LEVEL MATCHING RULE). A
record-level matching rule is a set of attribute-level matching
rules, denoted by ¢ = N\;_, Ai. A record pair (r,s) satisfies
the record-matching rule v, if (r,s) satisfies every attribute-
level matching rule A; € 1.

For example, in Figure|l] (Model,Product,ED,2) A (Name,
Type, ED, 2) is an attribute-level matching rule. We can use
record-level matching rules to deduce whether two records
refer to the same entity. However, in most cases users do
not know how to select the attributes, how to choose the
similarly functions, and how to determine the appropriate
thresholds. Thus we need to automatically learn the rules
and we will discuss the rule generation in Section

2.3 Hybrid Human-Machine Framework

Our hybrid human-machine framework contains the fol-
lowing two steps.

Rule-based Candidate Generation. Given a set of rules
W, it identifies the record pairs that satisfy a rule ¢ € U. A
straightforward method enumerates every record pair and
every rule, and checks whether the record pair satisfies a
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rule. If yes, we take the pair as a candidate; otherwise we
prune the pair. Obviously this method is rather expensive
as it requires to enumerate every record pair. For example,
if there are 1 million records, it is prohibitively expensive to
enumerate every pair. To address this issue, we propose an
effective signature-based method in Section

Crowd-based Refinement. Given a set of candidates, it
aims to identify the candidate pair that actually refers to
the same entity by utilizing the crowd. A straightforward
method enumerates every candidate pair (r, s) and asks the
crowd to check whether r and s refer to the same entity. If
yes, we take the pair as an answer; otherwise we prune the
pair. Obviously it incurs high monetary cost if we ask every
candidate pair. We propose effective techniques to reduce
the cost in Section [l

3.RULE-BASED CANDIDATE GENERATION

We first discuss how to generate the rules and then pro-
pose a signature-based algorithm to efficiently apply these
rules. Lastly, we introduce our system DIMA.

3.1 Rule Generation

Give a set of examples, denoted by F, including posi-
tive examples, e.g., which records are known to be the same
entity, denoted by M, and negative examples, e.g., which
records are known to be not the same entity, denoted by N,
we use these given examples to generate the rules. Obvi-
ously M UN = FE and M NN = (). The examples can be
provided by experts or the crowd (also called workers).

Next we discuss how to evaluate the quality of a rule set
V. Given a rule ¢ € U, let M¢, denote the set of record
pairs that satisfy . Let My = Ud)e\l, M¢ be the set of

record pairs that satisfy W. Ideally, we hope that My is
exactly equal to M. However, in reality My may contain
negative examples. To evaluate the quality of ¥, we focus on
a general case of objective functions F (¥, M, N): the larger
| My N M|, the larger f (¥, M, N); the smaller |[Mg NN, the
larger F (¥, M, N). Many functions belong to this general
class. For example, the well-know F-measure function in
information retrieval is a general objective function ﬁ,
P r

[ Mg M| ia _ |MgnM]|
TTTanM | TIilann] 8 the precision, and r = ]

is the recall. Users can tune the weights of precision or recall
to select their preferences: preferring to recall or precision.

where p =



Now we can formalize the rule generation problem.

DEFINITION 3 (RULE GENERATION). Given two relatio-
ns R, S, a set of positive examples M, a set of negative exam-
ples N, and a set of similarity functions F', find a set of rules
U to maximize a pre-defined objective function F (¥, M, N).

Note that the rule generation problem is NP-hard, which
can be proved by a reduction from the maximum-coverage
problem [69]. A brute-force method enumerates all possible
record-level matching rule sets and selects the set that maxi-
mizes f (¥, M, N). Note that each record-level rule contains
multiple attribute-level matching rules, and each attribute-
level rule contains two attributes, a similarity function and
a threshold. We can enumerate the attributes and similar-
ity functions, but we cannot enumerate the threshold as the
threshold is infinite. Fortunately, we do not need to consider
all possible thresholds, and instead we only need to consider
a limited number of thresholds, as discussed below.

From Infinite Thresholds to Finite Thresholds. Con-
sider two attribute-level rules A1 (a, b, f, 71) and A2(a, b, f, 2).
Without loss of generality, suppose 71 < 2. Obviously the
set of examplAes that satisfy A2 is a subset of that of A1, that
is, Mx, € My, (where M) denotes the record pairs that
satisfy A). If there is no positive example in My, — My,,
for any record-level matching rules that contain A1, we will
not use the rule \; since they cannot get a better objective
value than the rule A2. In other words, for A(a,b, f,7), we
can only consider the threshold in f(r[a], s[b]) for a posi-
tive example (r,s) € M [|69]. Thus we can only consider a
limited number of thresholds. Note that different similar-
ity functions and thresholds have redundancy. For example,
a threshold 71 has no higher objective function value than
another threshold 72 > 71, we can only keep 72. We devise
efficient techniques to eliminate the redundancy.

Greedy Algorithm. Based on the similarity functions and
a finite set of thresholds, we propose a greedy algorithm to
identify the rules. We first evaluate the quality (the objec-
tive function value) of each possible rule based on the exam-
ple set E, and then pick the rule with the highest quality.
Next we update the example set £ by removing the exam-
ples that satisfy the selected rule. The algorithm terminates
when there is no example in FE.

3.2 Signature-Based Method for Applying Rules
3.2.1 Algorithm Overview

Indexing. Consider a set of rules ¥. Given a rule ¢ € ¥,
for each attribute-level rule A = (a, b, f,7) € ¥, we build an
index £* for table R. For each record r in R, we generate
a set of indexing signature iSig(r) for values r[a]. For
each indexing signature g € iSig(r), we build an inverted
list £> (g), which keeps a list of records whose signature set
w.r.t. A contains g.

Filtering. Given a rule ¢, for each record s € S, we gener-
ate a set of probing signature pSig*(s) w.r.t. A € 1 and s[b].
For each probing signature g € pSig*(s), the records on in-
verted list £*(g) are candidates of s, denoted by C*(s). If a
records r is similar to s, they must satisfy every attribute-
level matching rule A € 9, thus we can get a candidate set
Cw(s) = ﬁ)\gwck(s).

Verification. For each candidate pair (r, s), we verify whether
they satisfy a rule v as follows. Consider arule A = (a,b, f,7) €

1, we compute f(r[a], s[b]). If (r[a], s[b]) is not similar w.r.t.
function f and threshold 7, r and s are pruned.

3.2.2 Signature-based Filtering

We discuss how to generate signatures for different sim-
ilarity functions. The basic idea is that we partition two
values into disjoint segments, such that if two values are
similar, they must share a common segment based on the
pigeonhole principle. Formally, given an attribute-level rule
A = (a,b, f,7), next we discuss how to generate signatures
for a given similarity function f.

f is Overlap. Two values v = r[a] and v = s[b] are similar,
if they share at least 7 tokens. We partition v and v’ into
6 = max(|v|, |v'|) — 7 + 1 disjoint segments based on a same
partition strategy: if a token is partitioned into the i-th
segment, it will be assigned into this segment for all the data.
The partition with this property is called a homomorphism
partition. To get a homomorphism partition, we can use a
hash based method. For each token e € v, we put it to the
((hash(e) mod 6) + 1)-th segment where hash(e) maps a
token e to an integer. Thus any token will be partitioned
into the same segment. However, this method may introduce
a skewed problem: some segments have many tokens while
some segments have few tokens [15]. To address this issue,
we can use the token frequency to get a good partition [15].
Then based on the pigeonhole principle, if v and v’ are
similar, they must share a same segment. Thus the indexing
signature set of v is the set of segments of v. The probing
signature set of v is also the set of segments of v'.

f is Edit Distance. Two values v = r[a] and v’ = s[b] are
similar if their edit distance is not larger than 7. Given a
value v = rla], we partition it into 7 + 1 disjoint segments,
and the length of each segment is not smaller than oneﬂ For
example, consider v="“sigmod”. Suppose 7 = 2. We have
multiple ways to partition v into 7 + 1 = 3 segments, such
as {“si”,“gm” ,“0d”}. To achieve high pruning power, each
segment should have nearly the same length. To achieve this

goal, the first |v|%(7 4+ 1) segments have length of [T‘i‘l],

=)

Consider another value v' = s[b]. If v' has no substring
that matches a segment of v, v’ cannot be similar to v based
on the pigeonhole principle. In other words, if v’ is similar
to v, v/ must contain a substring matching a segment of
v. For example, consider v'=%“sgmd”. It has a substring gm
matching a segment of v. Thus they could be similar.

The indexing signature set of v is the set of segments of v.
To find the similar values of v, we need to consider the val-
ues with length between |v'| — 7 and |v’| + 7. Thus for each
length I € [|[v'|—T, |v'|47], we generate the probing signature
set of v, which is the set of substrings of v’ with length of
]—%‘_1-\ or \_%HL and use each probing signature to compute
candidates based on the index. We propose effective tech-
niques to minimize the number of probing signatures [33].

and other segments have length of |

f is Jaccard. Two values v = r[a] and v’ = s[b] are similar
if their Jaccard similarity is not smaller than 7. We partition
each value to several disjoint segments such that two values
are similar only if they share a common segment. To achieve
this goal, we need to decide (1) the number of partitions and
(2) how to partition the tokens into different segments.

4The length of string v(|v|) should be larger than 7, i.e., |[v| > 7+ 1.
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If Jac(v,v") > 7, we have 1 — IZSZ} <l-7,lvUv —ovn
V| < (1 =-7)oud| < ETwno'| < 7|, Thus if o' is
similar to v, they should have no more than =7 |v| mismatch
tokens. Let n-(v) = [ 2= |v|] + 1. We partition v into 1, (v)
disjoint segments. We also partition v’ into . (v) disjoint
segments. If they have no common segments, then they
have at least 7, (v) mismatch tokens and thus they cannot
be similar. Note that we also need to use a homomorphism
partition strategy to generate the segments.

The indexing signature set of v is the set of segments of
v. To find the similar values of v’, we need to consider the
values with length between |v’|T and @ For each length
I € [|v'|r, %], we generate the probing signature set of v',
which is the set of segments of v’ by length I, and use the
probing signatures to find candidates using the index.

v’

f is Knolwedge-Aware Similarity. We can generate
the signatures similar to Jaccard and more details are re-
ferred to [56]. Given a value v (v'), we can generate a
set s, (sy) of nodes from the root to the corresponding
tree node on the knowledge hierarchy. Then if the knowl-
edge similarity between v and v’ is not smaller than 7,

we have — 2505y 5 KS(r[a], s[b]) = 2drja)slb] s o Tf
sypUs) +syNsh = ? - dr[a]“"ds[b] = .
’
Jac(sy, sy,) = 2”82}’ 7, we can prune this pair. Thus we

can transform the knowledge similarity to Jaccard and use

the techniques of Jaccard to generate the signatures.
Based on the signatures and index, we can efficiently iden-

tify the candidates and do not need to enumerate every pair.

3.2.3  Verification Techniques

For overlap, Jaccard and knowledge-aware similarity, it
takes O(|v|+ [v']) to verify a candidate pair for an attribute-
level matching rule. For edit distance it is O(7 min(|v|, |v'])).
For a record-level matching rule, it may contain multiple
attributes, and we need to decide a good verification order,
because if a pair is pruned based on an attribute, then other
attributes do not need to be verified. Thus we compute
the verification cost and pruning power for each attribute-
level matching rule (i.e., the probability of non-matching
on this attribute such that we do not need to check other
attributes). Then we can get the benefit of verifying an
attribute-level matching rule, which is the ratio of the prun-
ing power to the cost. Next given a record-level matching
rule, we verify its attribute-level rules following this order.

3.3 DIMA System

We build a distributed in-memory system DIMA to effi-
ciently apply the rules El

3.3.1 Overview

Extended SQL. We extend SQL and define simSQL by
adding an operation to support entity matching.

Entity Matching (Similarity Join). Users utilize the follow-
ing simSQL query to find the records in tables 71 and T
where T7’s column S is similar to 75’s column R w.r.t. a
similarity function f and threshold 7.
SELECT * FROM Ty SIMJOIN Tb ON f(71.S,T>.R) > T
Besides this operation, simSQL also supports similarity se-
lection and top-k similarity selection and join.

®https://github.com/TsinghuaDatabaseGroup/DIMA

Similarity Selection. Users utilize the following simSQL query
to find records in table 7" whose column S is similar to query
q w.r.t. a similarity function f and threshold 7.

SELECT * FROM T WHERE f(T.S,q) > 7

Top-k Similarity Selection. Users utilize the following simSQL
query to find k records in table T" whose column S has the
largest similarity to query ¢ w.r.t. a similarity function f
and integer k.

SELECT * FROM T WHERE KNN(f,T.S, ¢, k)

Top-k Similarity Join. Users utilize the following simSQL
query to find k records in tables 77 and 7% with the largest
similarity on table T1’s column S and table T’s column R
w.r.t. a similarity function f and integer k.

SELECT * FROM 77 SIMJOIN 7% ON KNN(f,T1.5,T».R, k)

DataFrame. In addition to simSQL, users can also perform
these operations over DataFrame objects using a domain-
specific language similar to data frames in R. We also extend
Spark’s DataFrame API to support the above operations
similar to the aforementioned extended simSQL.

Index. Users can also create index to support these oper-

ations. Our system supports both global indexes and local

indexes (the details will be discussed later). Users can utilize

the following simSQL query to create indexes on the column

S of table T using our segment-based indexing scheme.
CREATE Index ON T.S USE SEGINDEX.

Query Processing. We utilize the above signature-based
index to process the similarity queries. For selection, we
utilize the global index to prune irrelevant partitions and
send the query request to relevant partitions. In each local
partition, we utilize the local index to compute the local
results. For join query, we utilize the global index to make
the similar pairs in the same partition and this can avoid ex-
pensive data transmission. In each partition, we utilize local
index to compute local answers. For top-k, we progressively
generate the signatures and use the signatures to compute
top-k pairs, avoiding to generate all the signatures.

Query Optimization. A SQL query may contain multiple
operations, and it is important to estimate the cost of each
operation and thus the query engine can utilize the cost to
select a query plan, e.g., join order. Since Spark SQL has
the cost model for exact selection and join, we focus on es-
timating the cost for similarity join and search. If there are
multiple join predicates, we also need to estimate the result
size. In our system, we adopt cost-based model to opti-
mize a SQL query. Dima extends the Catalyst optimizer of
Spark SQL and introduces a cost-based optimization (CBO)
module to optimize the approximation queries. The CBO
module leverages the (global and local) index to optimize
complex simSQL queries with multiple operations.

Dima Workflow. Next we give the query processing work-
flow of Dima. Given a simSQL query or a DataFrame object,
Dima first constructs a tree model by the simSQL parser or a
DataFrame object by the DataFrame API. Then Dima builds
a logical plan using Catalyst rules. Next, the logical opti-
mizer applies standard rule-based optimization to optimize
the logical plan. Based on the logical plan, Dima applies
cost-based optimizations based on signature-based indexes
and statistics to generate the most efficient physical plan.
Dima supports analytical jobs on various data sources such
as CVS, JSON and Parquet.
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3.3.2 Indexing

To improve the performance in distributed environments,
we propose a selectable signature that provides multiple sig-
nature options and we can judiciously select the signatures
to balance the workload.

(1) Selectable Signatures

Basic Idea. Given a value v = r[a] and a value v' = s[b],
we generate two types of indexing signature set for v, iSig™
and iSig~, and two types of probing signature set for v’,
pSig™ and pSig~, where iSig™ and pSig™’ are segment and
probing signatures as discussed in Section iSig™ (resp.
pSig™) is generated from iSig" (resp. pSig") by deleting a
token for set-based similarity (or a character for character-
based similarity). If iSig™ NpSig™ = @), we can deduce that
v and v’ have at least 1 mismatched token (or character). If
iSigTNpsigt = P & iSigtNpSig™ = 0 & iSig™ NpSigh =
(), we can infer that v and v’ have at least 2 mismatched to-
kens (or characters). We can utilize either of the two prop-
erties to do pruning and thus we can select a better way to
reduce the cost. Moreover, in distributed computing we can
select a better way to balance the workload. The details on
how to generate the signatures are referred to [14} 33].

Signature Selection. We have two options in selecting the
probing signatures.

(1) Selecting the segment signature iSig"™ and pSig™. If
there is no matching segment signature in the i-th segment, v
and v’ have at least 1 mismatched token on the i-th segment.
(2) Selecting the deletion signature iSig~ and pSig~. If
there is no matching segment signature and no matching
deletion signature in the i-th segment, v and v’ have at least
2 mismatched tokens on the i-th segment.

Suppose we select p probing segment signatures and ¢
probing deletion signatures of v’ such that p + 2¢ > 64,1v/,
where 0),,|,/) = 7+1 for edit distance and 8}, |,/| = Ll;T
1 for Jaccard. If there is no matching on the selected signa-
tures, v and v’ have at least 0)v],]o) mismatched tokens, then
v and v’ cannot be similar. Based on this property, we can
select different signatures (segment or deletion signatures)
for similarity operations to balance the workload |14}, |33].

(2) Distributed Indexing

Given a table R, we build a global index and a local index
offline. Then given an online query, we select the prob-
ing signatures, utilize the global index to locate the parti-
tions that contain the query’s probing signatures, and send
the probing signature to such partitions. The executor that
monitors such partitions does a local search to compute the
local results.

Offline Indexing. Note that different queries may have dif-
ferent thresholds and we require to support queries with any
choice of threshold. To achieve this goal, we utilize a thresh-
old bound to generate the index. For example, the threshold
bound for Jaccard is the smallest threshold for all queries
that the system can support, e.g., 0.6. Using this threshold
bound, we can select the indexing segment/deletion signa-
tures and build a local indezx. In addition, we also keep the
frequency table of each signature to keep each signature’s fre-
quency and build a global index that keeps a mapping from
the signature to partitions that contain this signature.

Local Index. Next we shuffle the indexing signatures such
that (1) each signature and its inverted list of records that
contain this signature are shuffled to one and only one par-
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tition, i.e., the same signature will be in the same parti-
tion and (2) the same partition may contain multiple sig-
natures and their corresponding records. For each parti-
tion, we construct an IndexRDD Z7* for indexing signatures
in this partition. Each IndexRDD I contains several sig-
natures and the corresponding records, which includes two
parts. The first part is a hash-map which keeps the mapping
from a signature g to two lists of records: £*[g] keeps the
records whose indexing segment signatures contain g and
L7 [g] keeps the records whose indexing deletion signatures
contain g. The second part is all the records in this RDD,
ie, D; = UgEIZzL‘[g]. Note that the records are stored in

the data list D; and £ [g] and £ [g] only keep a list of
pointers to the data list D;.

Global Index. For each signature, we keep the mapping
from the signature to the partitions that contain this signa-
ture. We maintain a global function P that maps a signature
g to a partition p, i.e., P(g) = p. Note that the global index
is rather small and can be stored in each partition.

3.3.3 Query Processing

Similarity Selection. Given an online query, Dima uti-
lizes the proposed indexes to support similarity search op-
eration in three steps. (1) It first conducts a global search
by utilizing the frequency tables to select the probing signa-
tures. Specifically, we propose an optimal signature selec-
tion method to achieve a balance-aware selection by using a
dynamic-programing algorithm. (2) For each selected prob-
ing signature, it utilizes the global hash function to com-
pute the partition that contains the signature and sends the
search request to the corresponding partition. (3) Each par-
tition exploits a local search to retrieve the inverted lists of
probing signatures and verify the records on the inverted
lists to get local answers. Finally, it returns local answers.

Similarity Join. To join two tables R, S, a straightfor-
ward approach is to first build the index for R, then take
each record in S as a query and invoke the search algorithm
to compute its results. However, it is rather expensive for
the driver, because it is costly to select signatures for huge
number of queries. To address this issue, we propose an al-
gorithm for similarity join consisting of four steps. (1) It
generates signatures and builds the segment index for one
table. (2) Then it selects probing signatures for each length
l. Since it is expensive to utilize the dynamic-programming
algorithm to compute the optimal signatures, we propose a
greedy algorithm to efficiently compute the high-quality sig-
natures. (3) For each selected signature it builds the probe
index for the other table. Since the matched probing and
indexing signatures are in the same executor, it can avoid
data transmission among different partitions. (4) It com-
putes the local join results in each executor based on the
segment index and probe index, and the master collects the
results from different local executors.

Top-k Selection. For similarity selection, we use a given
threshold to generate segments and deletions as signatures.
Top-k selection, however, has no threshold. To address this
problem, we propose a progressive method to compute top-
k results. We first generate a signature, use the signature
to generate some candidates and put k best candidates in
a priority queue. We use 7 to denote the minimal similar-
ity among the candidates in the priority queue. Then we
estimate an upper bound ub for other unseen records. If



Tr > ub, we can guarantee that the candidates in the queue
are the final results and the algorithm can terminate. If
T, < ub, we generate next signatures, compute candidates
and update the priority queue and 7. We aim to first iden-
tify the candidates with the largest similarity and add them
into the queue in order to get a larger 7. To achieve this
goal, we first split value v into two segments, and take the
first one as the first signature. Then we recursively split
the second segment of v into two sub-segments and take the
first sub-segment as the second signature. Given a query v,
we use the same method to generate its first signature g;.
We utilize the global index to get the relevant partitions.
For each relevant partition, we use the local inverted index
to get candidates L[g1] and send top-k local candidates to
the server. The server collects all the local candidates, puts
them into the priority queue and computes 7. Based on the
first segment, we can also estimate an upper bound of the
similarities of other records to the query. Since other records
do not share the same first signature with v’, they have at
least one mismatch token with v’. Based on this idea, we can
estimate an upper bound ub. When we use more signatures,
we can get a tighter ub and early terminate if 7, > ub.

Top-k Join. We still progressively generate the signatures.
We first generate the first signatures of the two tables and
use zip-partition to shuffle the same signature into the same
partition. In each partition, we compute the candidates.
Then the server collects all the candidates, puts the candi-
date into the priority queue and computes 7. Next for each
record, we decide whether to generate its second segments
or not based on the upper bound ub. If 7, > ub, we do not
need to generate its signatures; otherwise, we generate its
second signature. If we do not need to generate the next
signatures for all records, the algorithm terminates.

4. CROWD-BASED REFINEMENT

Given a set of candidate pairs, we utilize the crowd to
check whether the two records in each pair refer to the same
entity. To avoid enumerating every candidate pair, we pro-
pose a selection-inference-refine framework.

Task Selection. We first select a set of “beneficial” tasks,
where the “beneficial” means that if we ask these tasks, we
can reduce the monetary cost based on result inference. We
then ask the crowd to answer these selected tasks.

Result Inference. Based on the results of asked tasks, we
can infer the answers of unasked tasks. Thus we can reduce
the monetary cost by result inference.

Answer Refinement. If the crowd answers are not cor-
rect (e.g., answers given by malicious workers), the inferred
results may not be correct. Thus the inference may sacri-
fice the quality. To address this issue, we need to refine the
answers with high uncertainty that different workers give
conflict answers.

4.1 Transitivity-Based Method

We propose to use the transitivity to do result inference [68].
For example, if r = s (r and s refer to the same entity) and
s =t, we can deduce that r =¢. If r = s and s # ¢, we can
deduce that r # t. In both of the two cases, we do not need
to ask the task of (r,t), and thus can reduce the monetary
cost. However given s # ¢ and r # t, we cannot deduce
whether r and s refer to the same entity. Thus the order of
asking tasks is very important.
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In our method we first select some tasks to ask, where a
task is a pair of records and asks the crowd to check whether
the two records refer to the same entity. Then based on the
answers of the asked tasks, we use the transitivity to infer
the answers of some unasked tasks. If there are some tasks
without answers (neither asked to the crowd nor inferred by
the transitivity), we need to repeat the first two steps (task
selection and result inference). In this framework, we aim
to address the following problems.

Minimizing the monetary cost. We want to minimize
the number of asked tasks. We prove that the optimal order
is to first ask the matching pair and then non-matching pair.
However before asking the crowd, we do not know which are
matching pairs and which are not. Fortunately, we can use
the similarity to estimate the matching probability. The
larger the similarity between two records is, the larger the
probability of the two records referring to the same entity is.
Thus we should first ask the pairs with larger probabilities.
However this method involves high latency, because it needs
to wait for the answers of the asked tasks from the crowd to
infer the answers of unasked tasks. Next we discuss how to
reduce the latency.

Minimizing both monetary cost and latency. We use
the number of rounds to model the latency. In each round,
we ask some tasks. After getting the answers of these tasks,
we do inference using the transitivity and select the tasks
to ask in the next round. Thus we aim to minimize the
number of rounds but without asking more tasks than the
above method. In other words, we aim to ask the maximum
number of tasks in each round, where each task cannot be
inferred based on the answers of other tasks. To this end,
we model the tasks as a graph, where nodes are records
and edges are candidate record pairs. Following the order
sorted by the candidate probability, we select the maximum
spanning tree of the graph in each round and ask the edges
on the tree in parallel.

Improving the quality. Due to the openness of crowd-
sourcing, the crowd workers may yield low-quality or even
noisy answers. Thus it is important to control the quality
in crowdsourcing. To address this problem, most of existing
crowdsourcing studies employ a redundancy-based strategy,
which assigns each task to multiple workers and then ag-
gregates the answers given by different workers to infer the
correct answer (called truth) of each task. A fundamental
problem is Truth Inference, which decides how to effectively
infer the truth for each task by aggregating the answers from
multiple workers. Another important problem is Task As-
signment, which judiciously assigns each task to appropriate
workers. Task assignment aims to assign tasks to appropri-
ate workers and truth inference attempts to infer the quality
of workers and the truth of tasks simultaneously.

Truth Inference System EI. We develop a truth inference
system in crowdsourcing [81]. Our system implements most
of existing truth inference algorithms (e.g., |11], [74], [10],
3. 23, 62, 61,67, B B3, [, 27, (39, B9, (1)
and users do not need to write truth inference algorithms
on their own. Given a set of tasks and a set of answers
for these tasks, our system can automatically suggest ap-
propriate inference algorithms for users. For different types
of tasks, our system can judiciously suggest best inference
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algorithms and infer the high-quality answers of each task.
In addition, our system can automatically infer the quality
of workers that answer these tasks. If users iteratively pub-
lish tasks to crowdsourcing platforms, they can eliminate
low-quality workers based on the inferred worker quality.

Online Task Assignment Systenﬂ Existing studies as-
sume that workers have the same quality on different tasks.
However we find that in practice many tasks are domain
specific, and workers are usually good at tasks in domains
they are familiar with but provide low-quality answers in
unfamiliar domains. To address this problem, we propose
a domain-aware task assignment method |17, [82|, which as-
signs tasks to appropriate workers who are familiar with the
domains of the tasks. We develop an online task assign-
ment system. When a worker requests for tasks, our system
on-the-fly selects k tasks to the worker. We have deployed
our system on top of Amazon Mechanical Turk, which can
automatically compute the worker quality and judiciously
assign tasks to appropriate workers. Thus users do not need
to write codes to interact with the underlying crowdsourc-
ing platforms, and they can use our systems for both task
assignment and truth inference.

4.2 Partial-Order-Based Approach

The transitivity-based approach has several limitations.
Firstly, the transitivity may not hold for some entities. Sec-
ondly, it still involves large cost for some datasets, espe-
cially if there are only few records satisfying the transitivity.
Thirdly, it works well on self-join, e.g., R = S but it cannot
significantly reduce the cost for R-S join. To address these
limitations, we propose a partial-order-based method [7].

Partial Order. We define a partial order on candidate
record pairs. Given two pairs p;; = (ri,s;) and pyjy =
(ris,s;), we define pi; = pyjr, if (ri,s;) has no smaller
similarities than (r;,s;;) on every attribute. We define
Dij > Dirjrs if pij = pirjr and (74, s5) has larger similarities
on at least one attribute than (r;/, s;/).

We model the candidate pairs as a graph G based on the
partial order, where each vertex is a candidate pair. Given
two pairs p;; and pyj/, if pi; > pysj7, there is a directed edge
from pi; to pyrj.

Graph Coloring. Each vertex in G has two possibilities:
(1) they refer to the same entity and we color it GREEN
(matching); (2) they refer to different entities and we color
it RED (non-matching). Initially each vertex is uncolored.
Our goal is to utilize the crowd to color all vertices. A
straightforward method is to take the record pair on each
vertex as a task and ask workers to answer the task, i.e.
whether the two records in the pair refer to the same entity.
If a worker thinks that the two records refer to the same
entity, the worker returns Yes; No otherwise. For each pair,
to tolerate the noisy results from workers, we assign it to
multiple workers, say 5. Based on the workers’ results, we
get a voted answer on each vertex. If majority workers vote
Yes, we color it GREEN; otherwise we color it RED.
Obviously this method is rather expensive as there are
many vertices on the graph. To address this issue, we pro-
pose an effective coloring framework to reduce the number
of tasks. It first computes the partial orders between pairs
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and constructs a graph. Then it selects an uncolored vertex
pi; and asks workers to answer Yes or No on the vertex,

(1) If majority workers vote Yes, we not only color p;; GREEN,
but also color all of its ancestors GREEN. In other words, for
Dirjr > Dij, we also take r;; and s;, as the same entity. This
is because p;/;» has larger similarity on every attribute than
pij, and since r; and s; refer to the same entity (denoted by
r; = sj), we deduce that r;y = s;/.

(2) If majority workers vote No, we not only color p;; RED,
but also color all of its descendants RED. In other words, for
pij = pirj, we also take 7y and s;: as different entities. This
is because p;s;» has smaller similarity on every attribute than
pij, and since r; and s; refer to different entities (denoted
by r; # s;), we deduce that r;; # s;/.

If all the vertices have been colored, the algorithm termi-
nates; otherwise, it selects an uncolored vertex and repeats
the above steps. Obviously, this method can reduce the cost
as we can avoid asking many unnecessary vertices.

There are several challenges in this algorithm.

(1) Graph Construction. As there are large numbers
of pairs, how to efficiently construct the graph? Can we
reduce the graph size so as to reduce the number of tasks?
We propose a range-search-tree to address this problem [7].

(2) Task Selection. How to select the minimum number
of vertices to ask in order to color all vertices? We propose
an expectation based method [7].

(3) Error Tolerant. The coloring strategy and the workers
may introduce errors. So how to tolerate the errors? We
propose to not to color a vertex if the confidence of the
vertex color is low (e.g., there is a tie between Yes and No
answers) and infer its answer based on other vertices. This
strategy can reduce the inference error [7].

4.3 Crowd-Powered System

We develop a crowd-powered database system CDB that
supports crowd-based query optimizationﬁ, CDB provides
declarative programming interfaces and allows requesters
to use a SQL-like language for posing queries that involve
crowdsourced operations. On the other hand, CDB leverages
the crowd-powered operations to encapsulate the complex-
ities of interacting with the crowd. CDB has fundamental
differences from existing systems. First, existing systems
adopt a query-tree model, which aims at selecting an op-
timized table-level join order to optimize a query. How-
ever, the tree model provides a coarse-grained optimization,
which generates the same order for different joined records
and limits the optimization potential that different joined
record should be optimized by different orders. To address
this problem, CDB employs a graph-based query model that
provides more fine-grained query optimization. Given a CQL
query, CDB builds a graph based on the query and the data.
This graph model has the advantage of making the fine-
grained record-level optimization applicable. Second, most
of the existing systems (i.e., CrowdDB [20], Qurk [43], and
Deco [46]) only focus on optimizing monetary cost, and they
adopt the majority voting strategy for quality control, and
do not consider to model the latency control. CDB adopts
a unified framework to perform the multi-goal optimiza-
tion based on the graph model. (i) For cost control, our
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goal is to minimize the number of tasks to find all the an-
swers. We prove that this problem is NP-hard and propose
an expectation-based method to select tasks. (ii) For la-
tency control, we adopt the round-based model which aims
to reduce the number of rounds for interacting with crowd-
sourcing platforms. We identify the most “beneficial” tasks
which can be used to prune other tasks, and ask such tasks in
parallel to reduce the latency. (iii) We optimize the quality
by devising quality-control strategies (i.e., truth inference
and task assignment) for different types of tasks, i.e., single-
choice, multi-choice, fill-in-blank and collection tasks. We
have implemented our system and deployed it on Amazon
Mechanical Turk (AMT), CrowdFlower and ChinaCrowd.
Users can utilize our system to support entity matching and
any other crowd-based queries.
Next we introduce the components of our system CDB.

Declarative Query Language. We extend SQL by adding
crowd-powered operations and propose crowd SQL (CQL).
CQL contains both data definition language (DDL) and data
manipulation language (DML). A requester can use CQL DDL
to define her data by asking the crowd to collect or fill the
data, or use CQL DML to manipulate the data based on
crowdsourced operations, e.g., crowdsourced selection, join,
top-k, and grouping.

Graph Query Model. A requester can submit her tasks
and collect the answers using relational tables. To provide a
fine-grained optimization on the relational data, we define a
graph-based query model. Given a CQL query, we construct a
graph, where each vertex is a record of a table in the CQL and
each edge connects two records based on the join/selection
predicates in the CQL. We utilize the graph model to provide
the record-level optimization.

Query Optimization. Query optimization includes cost
control, latency control and quality control. (i) Cost control
aims to optimize the monetary cost by reducing the numbers
of tasks to ask the crowd. We formulate the task selection
problem using the graph model, prove that this problem
is NP-hard, and propose effective expectation-based algo-
rithms to reduce the cost. (i) Latency control focuses on
reducing the latency. We utilize the number of rounds to
model the latency and aim to reduce the number of rounds.
To reduce the cost, we need to utilize the answers of some
asked tasks to infer those of the unasked tasks, and the in-
ference will lead to more rounds. Thus there is a tradeoff
between cost and latency. Our goal is to simultaneously
ask the tasks that cannot be inferred by others in the same
round. (427) Quality control is to improve the quality, which
includes two main components: truth inference and task as-
signment. Task assignment assigns each task to multiple
workers and truth inference infers task answers based on
the results from multiple assigned workers. We propose a
holistic framework for task assignment and truth inference
for different types of tasks.

Crowd UI Designer. Our system supports four types
of Uls. (1) Fill-in-the-blank task: it asks the crowd to fill
missing information, e.g., the affiliation of a professor. (2)
Collection task: it asks the crowd to collect new informa-
tion, e.g., the top-100 universities. (3) Single-choice task:
it asks the crowd to select a single answer from multiple
choices, e.g, selecting the country of a university from 100
given countries. (4) Multiple-choice task: it asks the crowd

2014

to select multiple answers from multiple choices, e.g., select-
ing the research topics of a professor from 20 given topics.
Another goal is to automatically publish the tasks to crowd-
sourcing platforms. We have deployed our system on top of
AMT, ChinaCrowd and CrowdFlower. There is a main dif-
ference between AMT/ChinaCrowd and CrowdFlower. In
CrowdFlower, it does not allow a requester to control the
task assignment while AMT/ChinaCrowd have a develop-
ment model in which the requester can control the task as-
signment. Thus in AMT/ChinaCrowd, we utilize the devel-
opment model and enable the online tasks assignment.

MetaData & Statistics. We maintain three types of
metadata. (1) Task. We utilize relational tables to maintain
tasks, where there may exist empty columns which need to
be crowdsourced. (2) Worker. We maintain worker’s qual-
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs vari-
ous interfaces and interacts with underlying crowdsourcing
platforms. It periodically pulls the answers from the crowd-
sourcing platforms in order to evaluate worker’s quality, and
when a worker requests tasks, it returns beneficial tasks.
Result Collection reports the results to the requester.

S. RELATED WORK

There are many studies on data integration from different
perspectives, e.g., schema matching [49, |40, |5, [80], entity
matching |21} 50, 8} |16}, |30} |58]. In this work, we focus on
entity matching and we briefly classify existing studies into
the following categories.

Human-in-the-loop Entity Matching. Doan et al de-
velop two entity matching systems Magellan [30] and Cor-
leone/Falcon [21}50L 8, |16} 36]. The former focuses on gener-
ating rules from the crowd and applying the rules efficiently,
and builds a system situated within the PyData eco-system.
The latter aims to build a cloud-based entity-matching ser-
vice without requiring developer in the loop. Different from
them, our system has two steps: rule-based pruning and
crowd-based refinement, and both of the two steps involve
human in the loop to improve the quality of entity matching.

Crowd-based Entity Matching. Many studies utilize
the crowd for entity matching to improve the quality. An
important problem is to design tasks for workers. A straight-
forward method is to generate pair-comparison-based tasks,
where each task is a pair of records and asks workers to
check whether the two records refer to the same entity. This
method may generate a large number of tasks. To address
this problem, the clustering-based tasks are proposed [42,
65], where each task is a group of records and asks work-
ers to classify the records into different clusters such that
records in the same cluster refer to the same entity and



records in different clusters refer to different entities. As the
clustering-based method does not need to enumerate every
pair, it can reduce the monetary cost. Wang et al. |65] pro-
pose a similarity-based method, which computes the simi-
larity of record pairs and prunes the pairs with small sim-
ilarities. As this method can prune many dissimilar pairs
without sacrificing the quality of final answers, most of ex-
isting studies use this technique to reduce the cost. Wang
et al. [70] propose a correlation-clustering method. It first
prunes dissimilar pairs with small similarities, and then se-
lects some pairs to ask and divides the records into a set of
clusters based on the workers’ results of these asked pairs.
Finally, it refines the clusters by selecting more pairs to ask,
checking whether their answers are consistent with the ini-
tial clusters, and adjusting the clusters based on the incon-
sistencies. This method improves the accuracy at the ex-
pense of huge monetary costs. Whang et al. [72] propose
a probabilistic model to select high-quality tasks. Verroios
et al. |64] improve the model by tolerating workers’ errors.
Gokhale et al. [21] study the crowdsourced record linkage
problem, which focuses on linking records from two tables.

Blocking-based Method. There are also some blocking-
based method |73} 59, 53|, which partitions the records into
different groups based on “keys”. Then they only consider
the records in the same group and prune the records in dif-
ferent groups. This method can significantly improve the
performance since it does not need to enumerate every pair.
However, it is hard to generate high-quality blocking strate-
gies and they may involve false negatives.

Similarity Join. There have been many studies on simi-
larity joins |4} |77, 2} (67} |76, |66} |13} |63} 52]. Jiang et al. |26,
19 119, |25 132, |12] conduct a comprehensive experimental
study on similarity joins. Existing studies usually employ
a signature-based framework, which generates some signa-
tures for each record such that two records are similar if they
share at least one common signature. There are two effective
signatures, prefix filtering [4, |77, |67, |75} |67] and segment-
based filtering [33| |14]. The former sorts the elements and
selects several infrequent elements as signatures such that if
two records do not share a common signature, they cannot
be similar. The latter partitions each record into different
segments and takes the segments as signatures such that if
two records are similar they must share a common signature.
In addition, some work [55 [24] [79] |6] focus on probabilistic
techniques for set-based similarity joins. However, they can-
not find the exact answer and need to tune parameters which
are tedious and less effective [4]. There are some works on
supporting similarity join using Map-Reduce framework [63,
441 63| |1, |12} 13]. Vernica et al. [63] utilize the prefix filter-
ing to support set-based similarity functions. Metwally et
al. [44] propose a 2-stage algorithm for sets, multi-sets and
vectors. Afrati et al. |1] optimize the map, reduce and com-
munication cost. However, it is rather expensive to transmit
long strings using a single MapReduce stage. Kim et al. [29)
address the top-k similarity join problem using MapReduce.
Deng et al [13] address the similarity joins with edit-distance
constraints on MapReduce using the segment-based index.

Crowdsourcing Systems & Operators. Recently there
are many studies to develop crowdsourcing database sys-
tems, such as CrowdDB [20], Qurk [43], Deco [47|, and
CrowdOP [18|. For achieving high crowdsourcing query pro-
cessing performance, the systems focus on optimizing cost
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(cheap), latency (fast) and quality (good). Moreover, there
are also some crowdsourcing techniques that focus on de-
signing individual crowdsourced operators, including crowd-
sourced selection |45 [54) 78], join |68l |7], top-k/sort [9], ag-
gregation [41} 22|, and collect |61} |48]. Li et al.|35] give a
survey on crowdsourced data management.

6. CHALLENGES AND OPPTUNITIES
6.1 Entity Matching on Unstructured Data

Most of existing studies focus on entity matching on struc-
tured data, where the attributes are well aligned. How-
ever in real applications, the data are not well structured,
e.g., a product name at Amazon “Apple MacBook Pro 13.3-
Inch Laptop black Multi-Touch Bar/Core i5/8GB/256GB
MLH12CH/A OS X El Capitan”. The similarity join meth-
ods cannot work well because different tokens should have
different importance and it is hard to compute accurate sim-
ilarities. The blocking-based method cannot find appropri-
ate blocking strategies. The crowd-based method involves
huge monetary cost. Thus it calls for new methods for entity
matching on unstructured data.

6.2 Knowledge From Human

Existing works utilize the human to provide the answers
of tasks (e.g., whether two records refer to the same entity)
but cannot use the knowledge behind the answers, e.g., why
these two records refer to the same entity, why the other
two records do not refer to the same entity, which informa-
tion plays an important role in the decision. Thus if we
can detect the knowledge from the human, then we can use
the knowledge to optimize data integration. This is similar
to knowledge bases, which obtain the knowledge (entities,
concepts, relations) from the big data. However for data
integration, we need to obtain more “deep” knowledge, e.g.,
rules, decision factors, etc.

6.3 Fine-Grained Human Involvement

Existing techniques usually resort to experts to generate
the high-quality rules, and utilize the crowd to verify the
candidate pairs, which are easy to check. However, the ex-
pert and crowd have different skilled domains, capability
and price requirement. Moreover the tasks also have diverse
domains and should be assigned to qualified workers. Thus
we need to prioritize the expert and crowd based on their
quality, skilled field, and provide more fine-grained human
ability scheduling to save the monetary cost and improve
the quality.

6.4 Entity Matching on Complex Data

There are more and more complex data, such as social
data, trajectory data, and spatial data. Existing techniques
cannot efficiently and effectively handle such complex data.
For example, given two social networks, e.g., Facebook and
Twitter, if we can correlate the users from the two networks,
we can obtain more complete profiles for users, e.g., user
preferences, friends, and hobbies. There are many challenges
that arise in this problem. The first is how to determine
whether two users refer to the same entity, which is rather
hard for graph data. The second is to efficiently link the
users across graphs. As existing graph data are rather large
(for example there are more than a billion users in Face-
book), it is fairly important to devise efficient algorithms to
achieve high performance. Take trajectories as an example.



Uber generates more and more trajectories by running vehi-
cles. However the trajectories generated from different cars
are not consistent due to the measurement and sampling
errors. It is important to integrate the trajectories from
different vehicles. However it is rather challenging to inte-
grate them because the trajectories are more complicated
and have high dimensions, e.g., time, speed, and location.
It calls for new techniques and systems for complex data.

6.5 Machine Learning for Data Integration

Machine learning techniques have been widely used in
many areas, e.g., computer vision, machine translation, na-
tional language processing. We can try to use machine learn-
ing techniques to benefit the data integration problem. For
example, we can use deep learning and embedding tech-
niques to find candidate pairs. We can also use active learn-
ing techniques to reduce the monetary cost. There are two
big challenges in using machine learning techniques. The
first is to find a large training data to feed the machine
learning algorithms. The second is to design new machine
learning models for data integration.

6.6 Other Problems in Data Integration

Besides entity matching, there are many other problems
in data integration, e.g., schema matching. Schema match-
ing aims to find correspondences between two schemas. It is
hard to automatically find the correspondences because dif-
ferent schemas have different semantics. Note it is also hard
for the crowd to label the correspondences based on the col-
umn name, because the name may have multiple represen-
tations, e.g., country, location, region, and the crowd may
have no domain knowledge to correctly label the schemas
they are not familiar with. Thus it requires to use the in-
stances (cell values in the table) to help the crowd to better
understand the data. However it is not user-friendly (and
unnecessary) to show all the instances to the crowd. Thus
the challenging problems include (1) how to design crowd
tasks for schema matching and (2) how to assign the tasks
to appropriate workers.

7. CONCLUSION

In this paper, we propose a hybrid human-machine data
integration framework that harnesses human ability to ad-
dress the data integration problem. We apply it initially to
the entity-matching problem. We first use similarity-based
rules to identify possible matching pairs and then utilize
the crowd to compute actual matching pairs by refining
these candidate pairs. In the machine step, we define the
rules based on similarity functions and develop effective al-
gorithms to learn rules based on positive and negative ex-
amples. We build a distributed in-memory system DIMA to
efficiently apply these rules. In the crowd step, we propose a
selection-inference-refine framework that uses the crowd to
verify the candidate pairs. We first select beneficial tasks to
ask the crowd, and then use transitivity and partial order
to infer the answers of unasked tasks based on the crowd
results of the asked tasks. Next we refine the inferred an-
swers with low confidence to improve the quality. We also
study how to reduce the latency by asking the questions
in parallel. We develop a crowd-powered database system
CDB that provides a SQL-like language for processing crowd-
based queries. Lastly, we provide emerging challenges in
human-in-the-loop data integration.
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