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ABSTRACT

Large-scale, highly-interconnected networks pervade snai-
ety and the natural world around us, including the World Wide
Web, social networks, knowledge graphs, genome and dienti
databases, medical and government records. The massieeoca
graph data often surpasses the available computation arapst
resources. Besides, users get overwhelmed by the dauaskg t
of understanding and using such graphs due to their sheemeol
and complexity. Hence, there is a critical need to summédaizge
graphs into concise forms that can be more easily visuglized
cessed, and managed. Graph summarization has indeedeattrac
a lot of interests from various research communities, swschoa
ciology, physics, chemistry, bioinformatics, and compusigience.
Different ways of summarizing graphs have been inventetiattea
often complementary to each other. In this tutorial, we uksc
algorithmic advances on graph summarization in the cordéxt
both classical (e.g., static graphs) and emerging (e.gamyjc and
stream graphs) applications. We emphasize the curreriengabk
and highlight some future research directions.

1. INTRODUCTION

Graph data management and mining has become a hot topic in
the database research community in recent years, infludrycen
growth of knowledge bases and varieties of networks on thie, We
as well as with the improvements in technology that has reduh
untapped sources of information. Querying and reasoniagtabe
interconnections between entities in a graph dataset eatdein-
teresting and deep insights into a variety of phenomena.edery
due to sheer volume, complexity, and temporal charadiesjsh
starting point to analyze these graphs is often a concisesepta-
tion (i.e., summary) that helps to understand these datasewell
as to formulate queries in a meaningful way.

A summary is a concise representation (either losslessssy)o
of the original graph, whose objectives can greatly vaxy., écom
reducing the number of bits needed for encoding the origjreghh
[4, 5], to more complex database-style operations that sanimam
graphs where the resolution could be scaled-up or scabed-do
interactively [10, 47]. With the advent of dynamic graphgan
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streams, there is a demand for analyzing the time-evolviog-p
erties of such graphs, and once again graph synopsis cotistru
has found increasing interests [45, 54].

Graph summarization is beneficial to a wide range of applica-
tions as follows.

e Interactive and Exploratory Analysis. Knowledge graphs
are complex with many attributes on nodes and edges, hence
an important task is to summarize these graphs by grouping
nodes and edges that share similar structures and contents
for better understanding and query formulation [10,47]. In
protein interaction networks, summarization at multige-r
olutions provides high level views of its functional landpe
and brings the opportunity to investigate higher level arga
zation and modularity [40].

e Processing in Modern Hardware. In order to process fast
streaming data, a growing number of applications relies on
devices such as network interface cards, routers, switches
cell processors, FPGAs, and GPUs [39]; and usually these
devices have very small on-chip memory. Therefore, effi-
cient processing of rapid and massive graph stream data in
specialized hardware requires creation of a succinct synop
sis, e.g.GSketch [54] andGMatrix [21, 22].

e Approximate Query Processing. Query processing over
graph summaries can significantly improve the efficiency, of
ten at the cost of tolerable errors. Examples include reacha
bility and pattern matching queries [16]. The summary size,
in fact, can be varied to trade-off between accuracy and effi-
ciency [54].

e Visualization. Due to large size of social networks, RDFs,
webgraphs, and biological datasets, it is difficult to vieaga
them in a meaningful way. To overcome the visual complex-
ity of very large networks, a semantic abstraction is often
necessary [43].

e Data-driven Visual Graph Query I nterface Construction.
Graph queries are more intuitive to draw than to compose
them in textual format. Consequently, visual query inter-
faces (a.k.a&u1) that can enable an end user to draw a graph
query interactively have gained increasing attention ceng¢
times. Recently, graph summarization is exploited to gener
ate content of suclkeul automatically from the underlying
graph dataset [53].

e Distributed Graph Systems. Large amount of graph data
shuffling and access over networks is a concern for dis-
tributed graph systems. In this context, building an effec-
tive graph summary, e.g., based on the locality of data acces
[18], is often critical. GBASE [20], which is a distributed



graph system and follows the principle of matrix-based oper
ations, developed a novel block compression method to effi-
ciently store homogeneous regions of graphs. This leads up

to 50x less storage and faster running time.

While graph summarization is an active area of research avith
wide variety of applications, a limited effort has been dedoto
survey the research developed [9, 24, 26, 29, 48], and thug &fs
often targeted specific subproblems (e.g., interactive4&JLand
mining-based [9] graph summarization), or specific sulasfe.g.,
static networks [29]). This tutorial gives a comprehengiteoduc-
tion to the topic of graph summarization, discussing stateeart
in the industry and in the academic world. A brief overviewtod
scope of the tutorial is as follows.

e Graph summarization categories. We classify and review
different categories of graph summarization techniquas th

have been proposed in the literature. In this context, we als
highlight a number of evaluation metrics used to measure the

quality of various categories of summary.
e Summarizingstatic graphs:. We cover various strategies for

summarizing graphs that are assumed to be static (i.e., they

do not evolve with time).
e Summarizing dynamic and stream graphs: With the

prevalence of large-scale dynamic graphs and streams, ther
is an increasing demand to effectively summarize them. In

this part, we review efforts in this direction.
e Futureresearch directions: Finally, we discuss open prob-

lems on the topic of graph summarization and providing pos-

sible directions for future work.

Target Audience and Prerequisites. This tutorial is intended to
benefit researchers, system designers, and developers fimagad
area of graphs querying, mining, and storage that includenbiu

limited to RDF query, Web search, Ontology and Semantic Web,

linked data, streams, social/information networks, geopmand
machine learning. This tutorial does not require any intdep
knowledge on complex graph algorithms and summary teclesiqu

What We Shall Not Cover in this Tutorial. We shall not discuss
various other related graph analytics problems such asl|samnp
sparsification, community detection, graph embeddingstehing,
partitioning, and dense subgraph mining.

2. TUTORIAL OUTLINE

Our presentation follows a top-down approach, startingnfro
motivation for summarizing graphs, proceeding to categoof
graph summarization, static and dynamic graph summaoizati
techniques, and concluding with future research direstiarthis
arena. Table 1 shows the key papers discussed in this futoria

2.1 Categoriesof Graph Summary

Graph summarization techniques can be classified into aever

ways based on their objectives and characteristics of theifsp
algorithms employed.

Lossless vs. Lossy Summarization. In lossless compression, one
can exactly recover the original graph from the summary. t@n t
contrary, for lossy compression, we may not fully recoverahig-
inal graph; however, such techniques often result in a betten-
pression ratio.

Non-overlapping vs. Overlapping. In overlapping summaries,

Table 1:Representative papers

Summarization Category | Papers
Aggregation-based (static graph$)[10, 34, 38,47]
Attribute-based (static graphs) [40,53]
Dynamic graphs [41,42,46]
Stream graphs [22,45,54]

with many highly overlapping components could be less fiviai
and more complicated than their non-overlapping countespa

Summary for Different Graph Categories. The goal of homoge-
neous graphs summarization is to summarize the topologyrire-
tion. In case of heterogenous graphs, nodes and edges kavsedi
types and several attributes; therefore, the summarizhtippens
at both structural and semantic levels by consideringicgighips
across attributes and types.

Summarization Techniques.

e Aggregation-basedechniques create a summary with super-
nodes and super-edges, and are useful in understanding and
visualizing complex graphs, as well as in efficient storage a
query processing.

e Attribute-basedtechniques create a summary that lever-
age both topology as well as attributes associated with
nodes/edges of the graph to generate a high-level summary
of the underlying graphs.

e Compressionmethods aim at reducing the space required for
encoding the original graph, primarily based on the stmadtu
information.

e Application-orientedsummarization techniques aim for effi-
cient query answering over summary graphs, often with theo-
retical approximation guarantees.

Evaluation Metrics.

e Space requirementCommonly used metrics are as follows:
Reduction of graph size in number of nodes and edges, total
data size in bytes, number of nonempty blocks in the graph
adjacency matrix, bits per edge.

e Efficiency.This is measured by the time required for summa-
rization (i.e., pre-processing time) and query processing
on the summaries (i.e., on-line efficiency).

e Accuracy. Reconstruction errors, entropy, quality of answers
(e.g., degree, centrality, connectivity), etc.

e Interestingness.Visualization quality, user study, diversity,
coverage, Conciseness.

2.2 Summarizing Static Graphs

We emphasize on four different summarization techniques fo
static graphs.

Aggregation-based Summary. Notable techniques under this cat-
egory are pattern mining and community based summarizgtion
OLAP [10,55], set-based aggregation using locality sensitashh
ing [23], super-node and edge-correction [34], super-nade
reconstruction-error [27,38BNAP [47,52], and distributed graph
summarization [30], among many others. In this tutorial,shall
discuss [10, 34, 38,47]. The main idea of [34] is to merge lsimi
nodes into a super-node, then add a super-edge betweengam su
nodes conditionally, as well as keep edge-corrections ppat
lossless summarization. As opposed to this, [38] mergegasim
nodes into a super-node, together with a theoreticallyaed re-

a node may belong to multiple summarized components, adding construction error. Clearly, these techniques are switflstruc-

more flexibility to summarization techniques; however, mmary
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tural summarization over homogeneous graphs o8MAP [47]



and OLAP [10], on the other hand, allow interactive summariza-
tion at various resolutions over heterogeneous networks.

Attribute-based. Nodes and edges of many real-world networks
are annotated with attributes. Thus, it is important to @w®rsnot
only topology, but also semantics of the node and edge atib
in order to generate meaningful summaries. To this end, \a# sh
discus=USE [40], a functional summarization technique for pro-
tein interaction networks. We shall present its role in cozhpnd-
ing high-level functional relationships in disease-rethPPI net-
works such as Alzheimer’s disease network. We shall alsgepite
topology and attribute-based summarization of a largesctitin

of small graphs (e.g., chemical compounds) and its apfsican
constructing data-driven visual graph query interfac&$.[5

Compression. Due to the prevalence of large-scale social net-
works and web graphs, their compression techniques has&eec
much attention. Boldi and Vigna [5] showed that web graples ar
compressible down to almost two bits per edge. Chiericlestti
al. [12] extended the framework using shingle orderingeiadtof
lexicographical ordering of web pages, in order to tackleiao
networks. Finding an order of nodes, which captures theuveg
larity” of the network, is indeed a challenging problem. Wee-
cently, Boldi et al. [4] introduced a layered label propéyatal-
gorithm for reordering very large graphs. Other interegtirorks
include [6, 13,19, 25, 37].

Application-Oriented Summary. These are graph summariza-
tion techniques for efficient query answering and patternimgi,
such as reachability, shortest path, and pattern matchieges
[16, 49, 56], keyword search [51], distributed graph corapiah
[20], graph mining [8, 14, 33], eigenvector centrality [2Aigh-
borhood query [32], information cascade and influentialendis-
covery [35, 36, 44], etc.

2.3 Summarizing Dynamic Graphs
and Streams

The sources of networked data have increased dramatiaatly d
to advances in devices and networking technologies, ietef
things (loT). Examples span smart phones and sensors t@emer
applications that capture user actions such as edits tonuis
and source code modifications. This results in temporaltgrap

which can be viewed as graphs that change over time. With the

prevalence of large-scale dynamic graphs and streame ithen
increasing demand to effectively summarize them.

Summary for Dynamic Graphs. Shah et. al. developetime-
Crunch [42] for constructing concise summaries of large, real-
world dynamic graphs in order to better understand theiretnd
lying behavior. In particular, they employed the MDL (Mirim
Description Length) principle to appropriately descrilbeghs over
time using a lexicon of temporal phrases which describe teaip
connectivity patternDiffNet [41] was designed specifically for bi-
ological networks with the goal to automatically constradtigh-
quality differential summary of two snapshots epistatic miniar-
ray profile (E-MAP) networks [3] under contrasting environmen-
tal conditions. This enables us to understand functionadutes
that are differentially effected by the DNA-damaging agefsa-
louchidou et. al. extended the idea of graph summarizatibm w
reconstruction error from the domain of static graphs toreesef
dynamic graphs, via an approach, calleshsor Streaming [46].
We shall discuss [41, 42, 46] during the presentation.

Summary for Graph Streams. Due to the availability of massive

streams, the problem of graph stream synopsis construbfisn
found increasing interest, e.g., spanners, sparsifietssketches

constructed in one pass (or, a limited number of passes)tbeer
stream, and must be updated incrementally with every inegmi
item in the streamgSketch [54] was proposed to estimate edge
frequencies. The method in [15] constructs synopsis of lgrap
streams for estimating the degree distributions of nodasnehod

in [17] constructs synopsis structures that are usefulfercase of
distance-based computations. Ahn et. al. [1,2] studiepigs&etch
for answering structural queries such as connectivity,immuim-
cost spanning tree, maximum weighted matching, and subgrap
pattern matching. Very recently, more advanced graph kkstc
were proposed iMCM [45] and GMatrix [21, 22], addressing a
combination of structural and frequency estimation queriie this
tutorial, we shall discuss [22, 45, 54], and illustrate htwyt esti-
mate statistics combining both structure and frequency.

24 TheRoad Ahead

Lastly, we expose potential research issues and futuretigins
in summarizing big graphs, such as:

e Summarizing networks with additional information, e.g3; u
certainty, spatial and textual data, multi-layer and ravikeiv
networks.

e Advanced applications, e.g., brain networks alignment,
database schema matching and entity resolution, documents
and activity summarization, latent and deep node reprasent
tions learned from the context encoded in the graph [50]; find
ing similarities and differences across a set of large ggaph

3. HISTORY OF THE TUTORIAL

To the best of our knowledge, this tutorial has not been prtese
in any major database or data mining conference.
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