
Exploring big volume sensor data with Vroom

Oscar Moll
MIT

orm@csail.mit.edu

Aaron Zalewski
MIT

azalews@mit.edu

Sudeep Pillai
MIT

spillai@csail.mit.edu
Sam Madden

MIT
madden@csail.mit.edu

Michael Stonebraker
MIT

stonebraker@csail.mit.edu

Vijay Gadepally
MIT

vijayg@ll.mit.edu

ABSTRACT
State of the art sensors within a single autonomous vehicle
(AV) can produce video and LIDAR data at rates greater
than 30 GB/hour. Unsurprisingly, even small AV research
teams can accumulate tens of terabytes of sensor data from
multiple trips and multiple vehicles. AV practitioners would
like to extract information about specific locations or specific
situations for further study, but are often unable to. Queries
over AV sensor data are different from generic analytics or
spatial queries because they demand reasoning about fields
of view as well as heavy computation to extract features
from scenes. In this article and demo we present Vroom, a
system for ad-hoc queries over AV sensor databases. Vroom
combines domain specific properties of AV datasets with
selective indexing and multi-query optimization to address
challenges posed by AV sensor data.

1. INTRODUCTION
Autonomous vehicles (AVs) are equipped with a suite of

sensors including multiple high-resolution cameras, lidar and
GPS [7, 6, 4]. Timestamped readings from each of these
instruments are logged on every trip. Table 1 profiles an ex-
ample AV sensor log from an MIT robotics group. The table
shows an aggregate data rate in the order of 10 MBps, with
the dominant data rates coming from video frames and point
clouds1 Table 1 also shows that the remaining sensors add
up to about 100 KBps, or 1% of the volume. This compara-
tively low data rate should not be confused with low value,
however, as these lower throughput sensors effectively label
the dataset with valuable metadata. For example, the con-
troller area network (CAN) bus logs events in critical vehicle
subsystems such as braking and steering wheel movements.
Additionally, the inertial measurement unit (IMU) compass

1The exact data rates depend on the compression used.
Some datasets use video compression, others use frame level
compression only, and yet other datasets such as [7] prefer
lossless image formats for research purposes.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

and GPS together establish a coordinate system and orien-
tation for the rest of the data.

While the primary goal of instrumenting these vehicles
today is real-time navigation and collision avoidance, there
are a number of natural queries on these sensor logs that
have value to users beyond the real-time use cases. For
example:

Q1 Compute basic statistics on recent trips such as data
rates by sensor and location coverage.

Q2 Retrieve all forward-facing video frames of the corner
of Vassar and Main St. in Cambridge, MA., ordered
clockwise.

Q3 Retrieve lidar and video readings for all cameras in the
vehicle, for intervals when any vehicle camera frame
shows a bicycle. Group the data by trip, and order it
by timestamp within each trip.

Q4 Retrieve all sensor readings in the minute leading up to
an interesting event, such as a possible near miss. e.g.,
where a vehicle’s CAN bus records a sudden brake or
sharp steer, group the readings by trip and order them
by timestamp within each trip.

These queries can be useful steps towards building 3D
maps (query Q2) [1], preparing labeled training or testing
sets for new perception algorithms (queries Q4 and Q3),
and their usefulness can extend beyond the autonomous ve-
hicle navigation and control space.

Unfortunately, existing open source data collection tools
today, such as ROS [10], only enable AV researchers to run
a few tasks directly on the data files, such as replaying trip
data or extracting readings from specific sensors. These
tools often operate at the level of a single trip. More complex
tasks over the data are solved with custom programs tied to
the specific physical data format. As a result, queries such as
the ones above are either cumbersome to write, prohibitively
slow or both. AV researchers and other users would bene-
fit from storing and querying this data via a database-like
interface.

Previous work [8] has shown that relational databases can
help manage AV datasets. However, there are several do-
main specific challenges that make traditional relational en-
gines insufficient out of the box:

• Computational intensity of UDFs: State of the art con-
volutional neural networks (CNNs) for object classi-
fication on a single image often require in the order

1973



Table 1: Profile of a 30 GB sensor log of a 40 min trip (13 MBps)

Sensor Type Frequency Data rate Data type

Lidar 10 Hz 8 MBps Point cloud
Lower-res Lidar (x4) 55 Hz 1 MBps Point cloud

Lower-res Camera (x4) 20 Hz 4 MBps JPEG frames
High-res Camera 4 Hz 1 MBps JPEG frames

CAN bus 900 Hz 50 KBps Custom struct
IMU 50 Hz 30 KBps Custom struct

Compass 100 Hz 10 KBps Custom struct
GPS 6 Hz < 1 KBps Custom struct

of 10 GFLOPs, and operate on roughly 200 KB im-
ages[11]. Today’s 10 TFLOPS GPUs[9] and 200 MBps
HDDs [13] have a similar compute-to-bandwidth ratio.
Hence, for these UDFs, roughly one HDD can deliver
enough data to saturate one GPU. The computational
intensity of iterative algorithms over trajectory data [2]
and over point clouds [12] is also higher than that of
typical database workloads. Because of this shift in
workload characteristics, queries over AV data can be
heavily compute bound.

• Big volumes: At 10 MBps per car, even small orga-
nizations with fleets of a hundred cars will produce
terabytes of data per hour. Archived data will be cor-
respondingly larger. For ad-hoc querying over archived
data to be feasible at all, the system needs to provide
throughput orders of magnitude higher than real time.

• Many features of interest: obstacles such as bicycles,
pedestrians and other cars are of interest to AV re-
searchers. More generally, other features of the en-
vironment are often requested such as empty park-
ing spaces, emergency vehicles, license plates, illegally
parked cars, etc. Also, researchers are interested in
variations in driving behavior, say when passing through
deserts or corn fields or in the presence of a traffic jam.
As a result, we expect to have to keep track of hun-
dreds of features.

• Interface and storage issues: the datatypes of the read-
ings are heterogeneous, as are the tools needed to ac-
cess and operate on them efficiently. Point cloud data
from lidar for example is different from trajectory data
as well as images. In addition, querying this data may
require expressing geometric predicates. For example,
query Q2 specifies a point of interest and retrieves
video segments that look toward the location. The
desired result does not include footage from nearby
cameras facing the opposite way, only that of nearby
cameras facing into the location of interest. The user
needs to be able to express this.

The Vroom architecture incorporates multiple strategies to
address the aforementioned challenges.

• Sophisticated feature precomputation and indexing: ex-
pensive feature extraction or object recognition filters
do not need to run on every frame in a video captured
at tens of frames per second. After all, how far can
a bicycle move in a second? Feature recognition and
indexing can use feature-specific sampling to cut down

on the processing and index storage requirements. Like
other data skipping techniques this tactic provides the
illusion of higher than real time throughput. Besides
sampling, we are also using selective indexing. Based
on a query log of past requests we attempt to learn
which features justify the cost of indexing. For ex-
ample, attributes such as location correlate with the
kinds of predicates being searched for: query activ-
ity on cornfields in Massachusetts does not justify the
cost of indexing for cornfields in Massachusetts. In
summary, features can be optionally precomputed and
selectively indexed in both space and time.

• Synthesizing cheap predicates: Because UDF predi-
cates on images such as CNNs are computationally
costly and grow with the amount of data, it pays to
account for both predicate cost as well and selectivity,
and push cheap selective predicates closer to the scan.
Using domain specific constraints we can go further,
and better leverage predicate migration: in many do-
mains we can synthesize semantically-redundant but
cheap predicates. For example, Lidar sensors have a
known limited range and location within the vehicle.
Hence, a known sphere bounds all laser scan points
within an interval. Similarly, image processing algo-
rithms such as the Viola-Jones face detector apply fil-
ters in a sequence such that early cheap filters remove
most of the work for later more expensive filters.[14].

• Memoizing: Often times intermediate results are small
compared to the raw data used to generate them. For
example object detection may output a few bound-
ing boxes from of a frame, and point clouds can be
represented using much less information than the raw
points. In the case of object detection CNNs, for exam-
ple, it almost always pays to preserve these interme-
diate results because the bandwidth and space costs
of writing them back are small compared to the the
space, bandwidth use and compute costs over the raw
data. Any future queries over overlapping segments of
data can reuse already computed results reducing both
bandwidth and compute uses.

• Storage clustering: Depending on the workload, it will
be profitable to store time-series trip data clustered by
vehicle identifier, clustered by spatial location, or clus-
tered by time. As with indexing, storage organization
can be selective and workload driven.

• Multi-query optimization: In the worst case, queries
to data which is not indexed will require a sequential

1974



search, which will take hours to days, and must be
done via batch processes. We assemble such queries
and run a cyclic scan to solve them in parallel. This
optimization helps especially in the bandwidth bound
cases, but also can help on the compute side if there
is any overlap there as well.

• A polystore data model: There is no single data model
or storage system that can accommodate all AV data
types. This suggests the need for a polystore data
model [3].

Our demo will allow users to interact with a Vroom proto-
type and visualize results for queries Q2, Q3 and Q4 against
a real AV dataset, side by side with an external source like
Google Street View to verify the functionality. Section 2 de-
tails the system components. We explain our demo in more
detail in Section 3.

2. SYSTEM
There are three main components to the system: the in-

terface, the storage engines and the query processor.

2.1 Query interface
Vroom Exposes a SQL interface over a set of tables, allow-

ing columns with variant or nested types. For querying, the
system offers a version of SQL adapted for this data model.
For example, we use the following tables to represent the
most basic elements necessary to query the data.

• Raw data table Each sensor reading is a row on
this table. It’s schema is (reading id, timestamp,

sensor id, sensor reading). Because sensor read-
ing types are sensor dependent, we allow variant types.

• Sensor metadata table Each sensor has metadata
such as range and field of view attributes. Schema:
(sensor id, sensor info). Sensor metadata is sen-
sor dependent, so we allow variant types.

• Vehicle configuration table Each vehicle has a pre-
cisely specified sensor configuration. This allows us to
know which cameras face out of the driver’s seat and
which out of the passenger’s seat. This information is
fully specified by an offset and orientation with respect
to the vehicle. It’s schema is (vehicle id, sensor

id, offset, orientation)

• Trip table. Information about trip metadata. It’s
schema (trip id, vehicle id, start, ...).

We can calculate basic stats on recently collected data as
follows (Q1):

select sensor_id, sensor_type

sum(byte_size(sensor_reading)) as data_volume,

data_volume/trip_duration as data_rate,

count(*)/trip_duration as frequency

from raw_data

where time.now - trip_start < 6 days

group by trip_id, sensor_id

order by trip_id, data_rate desc

Q2 Retrieve video frames facing the corner of Vassar and
Main St. in Cambridge, MA., ordered clockwise.

let vassar_and_main =

lat_lon_height(42.3628,-71.0915,7) in

select sensor_reading from raw_data where

sensor_reading.type in (VideoFrame) and

let sensor_pose =

pose_estimate(sensor_id, timestamp) in

distance(sensor_pose,

vassar_and_main) < 20 and

angle(sensor_pose.x_axis,

line(sensor_pose, vassar_and_main)) < 30

order by

angle(line(sensor_pose, std.east),

line(sensor_pose, vassar_and_main))

Q3 Make a list of trip intervals where a camera in the
vehicle frame shows a bicycle. Group the data by trip, and
order it by timestamp within each trip.

let bike_segments =

select trip_id,

timestamp - 5 as t_start,

timestamp + 5 as t_end

from raw_data

where sensor_reading.type in (VideoFrame) and

bike_detection_udf(sensor_reading) > 0.9

in

select distinct timestamp,

trip_id, sensor_reading

from raw_data, bike_segments

where

sensor_reading.type (PointCloud, Video) and

raw_data.trip_id = bike_segments.trip_id and

raw_data.timestamp between (t_start, t_end) and

order by trip_id, timestamp

There are a few important aspects to note the queries
above: users control the meanings of ambiguous notions like
‘near’, ‘facing’, as well as acceptable synchronization toler-
ances between sensor readings. The user also retains control
over the classifiers they wish to use, and the confidence level
they allow. If the bicycle feature is precomputed and in-
dexed, then the query executor will convert a portion of
query Q3 to an indexed lookup. Functions to express ge-
ometric concepts such as distance, lines, angles, and pose
estimation are built-ins. Put together, the functions and
builtin tables help the query processor recognize feasible op-
timization opportunities.

2.2 Query processor
When a query arrives to the query processor, the engine

makes an execution plan and applies a few optimization
passes to improve it and then runs it over several more gen-
eral purpose storage engines. Here is a brief description of
how different queries get mapped to a desirable execution
plan:

For Query Q1, a per trip aggregate triggers checks for
existing per-trip memoized computations. Old trips that
have memoized before match here, and the execution plan
now specifies reading from this memoized data source.

Query Q2 explicitly uses geometric builtins referring to
sensor points of view, this cues the query processor to rec-
ognize the geometric predicates involved and bound which
parts of trip trajectories to skip completely look at. We
leverage existing trajectory indexing work for storage.

1975



Figure 1: The user interacts with our system via a combina-
tion of an Rviz visualization for sensor playback and a web
based GUI for query input.

Query Q3 exemplifies a case where we expect processor to
apply skipping techniques. The interval bound (timestamp

- 5, timestamp + 5) we have chosen around the event of
interest tells the optimizer it can prioritize looking at frames
recorded at timestamp - 10 or timestamp + 10 . If there
are any hits there, then there is no need to run the UDF on
any frames in the interval (timestamp - 10, timestamp) .

For query batching, after the plan has gone through op-
timization passes we can establish if a full scan is required.
If so, the query gets queued up. At that point, a new query
plan is recomputed for all queries. Queries in the waiting
batch are scheduled to run when the current long running
batch finishes.

2.3 Storage engine
We make use of open source tools from the AV commu-

nity for specialized operations such as noise filtering algo-
rithms for trajectory data[10], as well as TensorFlow and
open source object detection algorithms. Our demonstration
prototype is implemented by combining a relational engine
for metadata storage and file system based blob manage-
ment. A python layer exposes a SQL-like query interface to
the programmer.

3. DEMONSTRATION
We use a 200+ GB MIT AV dataset comprised of multiple

trips from different vehicles, with the sensors shown in Table
1. The user will be able to with the database via both the
Rviz data visualizer[10] and a web GUI, with the ability to
vary query parameters such as the location, object of interest
(e.g., car, person, bike), etc.

3.1 Applications/Queries
In our demonstration, we will allow users to run queries

Q1, Q2, Q3 and Q4 from the introduction on the MIT AV
data corpus, and allow them to change query parameters.
We show a number of useful data visualizations generated
from the query results. We let users verify the results by
comparing results with existing references such as Google
Street View.

4. CONCLUSION AND FUTURE WORK
Vroom is a system that addresses AV data challenges of

interface, volume, computational intensity by providing a
declarative SQL-like interface, and by employing a query
engine that applies domain specific optimizations suitable

for AV sensor data, as well as leveraging existing database
techniques that are especially appropriate for this domain.
The demonstration shows that Vroom can express impor-
tant operations over AV sensor data as declarative queries.
The queries we demo are both useful to AV researchers and
challenging to implement otherwise.

We expect more types of storage engines to be necessary in
the future, for example array specific storage to manage ar-
rays of decompressed image data and point clouds, to enable
and enable querying these data sources at finer granularity.

5. REFERENCES
[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon,

B. Curless, S. M. Seitz, and R. Szeliski. Building rome
in a day. Commun. ACM, 54(10):105–112, Oct. 2011.

[2] S. Agarwal, K. Mierle, and Others. Ceres solver.
http://ceres-solver.org.

[3] V. Gadepally, P. Chen, J. Duggan, A. Elmore,
B. Haynes, J. Kepner, S. Madden, T. Mattson, and
M. Stonebraker. The bigdawg polystore system and
architecture. In High Performance Extreme
Computing Conference (HPEC), 2016 IEEE, pages
1–6. IEEE, 2016.

[4] V. Gadepally, A. Krishnamurthy, and U. Ozguner. A
framework for estimating driver decisions near
intersections. IEEE Transactions on Intelligent
Transportation Systems, 15(2):637–646, 2014.

[5] J. M. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’93, pages 267–276, New York, NY, USA,
1993. ACM.

[6] A. S. Huang, M. Antone, E. Olson, L. Fletcher,
D. Moore, S. Teller, and J. Leonard. A high-rate,
heterogeneous data set from the darpa urban
challenge. Int. J. Rob. Res., 29(13):1595–1601, Nov.
2010.

[7] W. Maddern, G. Pascoe, C. Linegar, and P. Newman.
1 year, 1000 km: The oxford robotcar dataset. The
International Journal of Robotics Research, 2016.

[8] P. Nelson, C. Linegar, and P. Newman. Building,
Curating, and Querying Large-scale Data Repositories
for Field Robotics Applications. In International
Conference on Field and Service Robotics (FSR),
Toronto, ON, Canada, June 2015.

[9] NVIDIA. Gp100 pascal whitepaper. [link].

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an
open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5,
2009.

[11] J. Redmon and A. Farhadi. YOLO9000: better, faster,
stronger. CoRR, abs/1612.08242, 2016.

[12] R. B. Rusu and S. Cousins. 3d is here: Point cloud
library (pcl). In 2011 IEEE International Conference
on Robotics and Automation, pages 1–4, May 2011.

[13] Seagate. Enterprise capacity 3.5” hard drives
(factsheet). [link].

[14] P. Viola and M. J. Jones. Robust real-time face
detection. Int. J. Comput. Vision, 57(2):137–154, May
2004.

1976

http://ceres-solver.org
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf#page=11
http://www.seagate.com/www-content/datasheets/pdfs/ent-cap-3-5-hdd-data-sheetDS1882-3-1610US-en_US.pdf#page=2

	Introduction
	System
	Query interface
	Query processor
	Storage engine

	Demonstration
	Applications/Queries

	Conclusion and Future Work
	References

