
QIRANA Demonstration: Real Time Scalable Query Pricing

Shaleen Deep
University of

Wisconsin-Madison
Madison, USA

shaleen@cs.wisc.edu

Paraschos Koutris
University of

Wisconsin-Madison
Madison, USA

paris@cs.wisc.edu

Yash Bidasaria
University of

Wisconsin-Madison
Madison, USA

bidasaria@wisc.edu

ABSTRACT
The last decade has seen a deluge in data collection and
dissemination across a broad range of areas. This phenom-
ena has led to creation of online data markets where entities
engage in sale and purchase of data. In this scenario, the
key challenge for the data market platform is to ensure that
it allows real time, scalable, arbitrage-free pricing of user
queries. At the same time, the platform needs to flexible
enough for sellers in order to customize the setup of the
data to be sold. In this paper, we describe the demonstra-
tion of Qirana, a light weight framework that implements
query-based pricing at scale. The framework acts as a layer
between the end users (buyers and sellers) and the database.
Qirana’s demonstration features that we highlight are: (i)
allows sellers to choose from a variety of pricing functions
based on their requirements and incorporates price points
as a guide for query pricing; (ii) helps the seller set param-
eters by mocking workloads; (iii) buyers engage with the
platform by directly asking queries and track their budget
per dataset; .We demonstrate the tunable parameters of our
framework over a real-world dataset, illustrating the promise
of our approach.

1. INTRODUCTION
Businesses, entities (both private and public) and even

individuals are increasingly becoming data-driven. Cloud
based data democratization has allowed data, which was
once siloed, to be accessible, tradable and actionable at the
click of a button. This unprecedented demand for acquiring
data for analysis has created a growing need for data bro-
kers in the digital space. Several online data markets have
emerged as a key platform to facilitate exchange of data - Mi-
crosoft Azure DataMarket [10], InfoChimps [2], Socrata [8]
are primary examples. For the datasets to be vendible, data
markets need to define pricing schemes for each dataset.
However, most pricing schemes used in practice are not
flexible; they typically allow users to either buy the en-
tire dataset or in predefined large chunks. Such schemes

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

are problematic for buyers, since they are interested in pur-
chasing more fine-grained queries over multiple sources [7].
Pricing mechanisms that offer buyers full freedom to chose
which query to purchase are called query-based pricing. A
more serious limitation of query-based pricing schemes used
in practice (such as usage based pricing or flat fee per query)
is that they can lead to inconsistent pricing. A clever buyer
could exploit such a mechanism to obtain some data at no
cost. Previous work has studied this problem from both
theoretical [3, 5, 6, 1] and practical [3, 4, 9] point of view.
The key principle identified in these work is arbitrage; i.e
it should not be possible for a buyer to acquire the desired
query for a cheaper price. Several practical frameworks have
been designed using this principle. The QueryMarket [3, 4]
prototype used this idea to price relational queries by ex-
pressing them as an ILP program with constraints as price
points set by the seller for certain queries. More recent work
in [9], considers a simple provenance based pricing scheme
of tuples that contribute to the output.

The solutions proposed above for pricing all have some
limitations. QueryMarket does not allow grouping and ag-
gregations queries. Moreover, even simple join queries do
not scale well in the system: for instance, join query over
relation with 1000 tuples takes about one minute. Prove-
nance based pricing in [9] also does not allow boolean and
aggregate queries. This scheme is also prone to arbitrage
attacks. To the best of our knowledge, there is no existing
query-based pricing framework that can price a wide spec-
trum of SQL queries in real time, while providing formal
guarantees about arbitrage freeness.

In this demonstration, we highlight the features and capa-
bilities of our pricing framework called Qirana. Qirana’s
design takes into account the following requirements: (i)
it allows the data seller to choose from several provably
arbitrage-free pricing functions, (ii) it is applicable to a
large class of SQL queries (Selection-Projection-Join queries
plus aggregations), and (iii) it ensures that buyers are not
charged twice for the information they have already pur-
chased, i.e the pricing is history aware. Qirana offers fur-
ther advantages: (i) it is efficient in using resources (small
CPU and memory overhead), (ii) it is easy to deploy on top
of any DBMS without modifying the database internals, (iii)
it generates prices of queries in real time.

Contributions. The goal of the demonstration is to pro-
vide a comprehensive description of Qirana for various us-
age scenarios over real-world datasets. In particular:

1949

 DB

Support set generator module

Weight assignment module

Pricing module
Q

p(Q,D)

Price points

Buyer Broker Seller

Figure 1: Qirana architecture.

• We demonstrate how Qirana helps sellers to set up
the dataset they want to sell. In particular, sellers
can specify schema information (such instance domain,
cardinality constraints and other public information
about the database) in order to capture the infor-
mation content of a query. Additionally, the seller
can specify price points for selection and projection
queries to make the value of different parts of data
non-uniform.

• We show how the seller can tune parameters over a
supplied workload in order to improve prices assigned
for ad-hoc queries.

• We develop an interface for buyers where they can is-
sue queries over a dataset. Buyers can enter their bud-
get per dataset and track their purchases over time.

Outline. Section 2 describes the system functionality and
technical implementation details. We present the demon-
stration scenarios in Section 3.

2. SYSTEM OVERVIEW
In this section, we describe an overview of Qirana’s func-

tionality and architecture. We consider a general setting
where a data seller (Bob) wants to sell a database D which
has a fixed schema R = (R1, . . . , Rk). A data buyer (Alice)
can purchase information from the dataset by issuing SQL
queries in the form of a query bundle Q = (Q1, . . . , Qn),
which is a vector of queries. We use I to denote the set
of all possible databases that conform to public knowledge
(such as domain constraints, relation cardinalities, schema,
functional dependencies) known to Alice. D is hosted on a
data platform owned by a data broker (Dave).

2.1 Pricing Guarantees
In this section, we describe Qirana’s key features with

the help of a running example over the database in Figure 2.

Arbitrage Freeness. The main goal of any query-based
pricing scheme is to ensure that there are no arbitrage oppor-
tunities based on the prices assigned to queries. Suppose Al-
ice asks the following query: Q1 = SELECT count(*) FROM

User WHERE gender = ’f’ and the price assigned to query
is $7. Next, Alice asks Q2 = SELECT gender, count(*)

FROM User GROUP BY gender. Now, if the system prices Q2

as $5, then there exists an arbitrage opportunity because
Alice can get the information of Q1 from Q2 at a cheaper
price. We call such an arbitrage opportunity information
arbitrage. The data seller can avoid information arbitrage
by ensuring that p(Q1) ≤ p(Q2).

The next arbitrage condition we want to avoid is known
as bundle arbitrage. Consider Q3 = SELECT AVG(age) FROM

uid name gender age
1 John m 25
2 Alice f 13
3 Bob m 45
4 Anna f 19

Figure 2: User table for running example

User and Q4 = SELECT SUM(age) FROM User in our run-
ning example. Bundle arbitrage states that it should not
be possible to acquire output of a query (Q3) by combin-
ing output of other queries (Q4 and Q2). In other words,
it should not be the case that combining information from
multiple queries is cheaper than asking the query directly.
Qirana uses provably arbitrage-free pricing functions that
ensure that there are no inconsistencies in prices assigned to
queries.

History Aware. In the context of a data market, Alice may
want to issue multiple queries Q1, . . . , Qk over time, some
which may contain repeated information. A pricing scheme
is called history-aware if the whole sequence of the queries
will be priced as a bundle rather than individually. For
example, consider the query Q5 = SELECT COUNT(*) FROM

User WHERE gender = ’m’. Note that this query overlaps
with the information from query Q2. Therefore, if Alice has
already purchased Q2, then system should take into account
Alice’s query purchase history. In such a history-aware sce-
nario, Q5 should be free.

2.2 System Architecture
Qirana is implemented in Python. We implement our

framework on top of MySQL, but it can be deployed over
any relational database that supports stored procedures (such
as Sql Server or postgres). The system architecture is
depicted in Figure 1.

Support Set. From the point of view of the buyer (Alice),
there initially exists a set of possible databases I, which cap-
tures the common knowledge about the data. Whenever
Alice issues a query Q over the database D , she learns more
information, and can safely remove from I any database D
such that Q(D) 6= Q(D), thereby shrinking the number of
possible databases. The price assigned to Q can then be
formulated as a function of how much I shrinks. It turns
out that pricing functions of that form that satisfy specific
mathematical properties are arbitrage free [1].

Since I can be exponentially large (or possibly infinite),
keeping track of the all possible instances is infeasible. In-
stead, Qirana looks only at a carefully chosen small subset
of I (which we call the support set S) that approximates
query prices well. The support set is generated by choosing
databases in the neighborhood of D : a database D is in the
neighborhood of D if it differs in at most two attributes w.r.t
D . Our approach generates a support set by sampling uni-
formly at random from neighboring databases. We consider
two ways to create neighboring databases: (i) changing one
or two attributes of a tuple with a different value in the
domain: these are called row updates, (ii) exchanging the
attribute values of two different tuples: these are known as
swap updates. Note that we do not change the cardinality
of the relation as this may be publicly known.

Example 2.1. Consider the User relation in our running
example. The following row update modifies the gender value
of the tuple with key 1 to f to create a neighboring instance of

1950

Table 1: Pricing function in Qirana with their proper-
ties. wi is the weight assigned to each Di ∈ S for coverage
function. For shannon entropy and q-entropy,

∑
i wi = 1

and wB =
∑

i:Di∈B wi for B ∈ PQ where PQ is partition

induced by equivalence class D ∼ D′ : Q(D) = Q(D′)

Pricing
Function Formula

Price
Points

weighted
coverage pwc(Q,D) =

∑
i:Q(Di)6=Q(D) wi 3

uniform
entropy

gain pueg(Q,D) = log|{D∈S|Q(D)6=Q1(D)}|
log|S| 7

shannon
entropy pH(Q,D) = −

∑
B∈PQ

wB logwB 7

q-entropy pT (Q,D) =
∑

B∈PQ
wB · (1− wB) 7

D: UPDATE User SET gender = ’f’ WHERE uid = 1. Note
that the new database instance differs in only one attribute.
Similarly, a query modifying age = 19 for the tuple with
key 1 and age = 25 for the tuple with key 4 constitutes a
swap update. In this case, the neighboring database differs
in exactly two attributes as compared to D.

In order to create neighboring database instances, we also
need to know the domain of the attributes. Qirana lets
the seller optionally specify the domain for each attribute
in the schema. If domain is not specified, we use the active
domain. Observe that neighboring database also have the
advantage that in order to represent such a database D, we
do not need to store all of D. Instead, we can represent it
implicitly through an update query that, when applied on
the underlying database D , will result in producing D.

Pricing Functions. Table 1 shows the pricing functions
available in Qirana. The right choice of pricing function
depends on seller requirements. For example, if the seller
wants to incorporate price points, then only the weighted
coverage function supports that.

For customizability, weighted coverage pricing function
allows seller to incorporate price points as a set of pairs
(Qj , pj): this specifies that for any pricing function p that
we compute, it must be that p(Qj , D) = pj . For instance,
the Bob in our running example can specify that the price of
the relation User must be 70 using the price point (Q1, 70),
where Q1 = SELECT * FROM User. The seller can also pro-
vide more fine-grained specifications about the pricing func-
tion, for example by pricing the attribute Car.age higher
(with the price point (SELECT uid, age FROM User, 50)),
or by specifying (SELECT * FROM User WHERE ID = 4, 30).
We set weights for each database in S according to the fol-
lowing entropy maximization (EM) program. A valid so-
lution to this problem guarantees that the price points are
satisfied.

maximize −
|S|∑
i=1

wi · log(wi)

subject to
∑
Di∈S

wi = P∑
i:Qj(Di)6=Qj(D)

wi = pj , j = 1, . . . , k

wi ≥ 0, i = 1, ..., |S|
The first constraint encodes the fact that price of the

whole dataset is P . The second constraint makes sure that

the price points are satisfied. Intuitively, the objective max-
imizes the entropy of the weights, since under the presence
of no additional information, we want to make the weights
as uniform as possible (i.e. every part of the data equally
valuable).

Price Computation. Given a pricing function and sup-
port set, we compute the price of a query Q as follows. For
all instances D in S, we check if Q(D) 6= Q(D). Based
on the pricing function, we use this information to calcu-
late the weighted sum(for coverage function and entropy
gain) or the entropy(Shannon entropy and q-entropy). Note
that we have to run the query as many times as the size of
the support set. The key observation is that to overcome
this bottleneck, we only need to check whether the update
has modified the query output, and not actually run the
query. In Qirana, we use a combination of static analysis
and batching techniques to speed up the pricing process.

3. DEMONSTRATION SCENARIOS
The goal of the demonstration is to showcase the atten-

dees Qirana’s ease-of-use and interaction between all par-
ties involved. Attendees play the role of Bob and Alice.
The demonstration consists of three parts. First, we present
dataset seller’s (Bob) setup: this includes the dataset load-
ing process, specifying domain information and price points,
and selecting the pricing function. Second, we show how Bob
can tune the support size and specify domain information it-
eratively to capture the information content better. Bob can
run mock query workloads during the setup phase to see if
the prices generated based on which he can choose to change
the setup to tune the query prices. Third, we show Alice’s
account setup: buyers subscribe to datasets they wish to
explore and issue SQL queries. For every query Q, Alice
can view the query output and gets charged the correspond-
ing price p(Q,D). Alice can also view her query purchase
history visually and also see her savings with respect to a
history-oblivious pricing scheme.

Setup Details. To demonstrate how Qirana behaves on
real-world datasets, we use the US car crash dataset from
Microsoft Azure DataMarket [10]. This dataset contains in-
formation about people involved in car accidents in 2011.
It has 71, 115 tuples in a single relation with 14 attributes.
This relation is loaded in MySql after some minimal clean-
ing (missing values for numeric attributes in were replaced
with the smallest value found in the corresponding attributes).
We consider the following queries that Alice might ask.

Q1
c(u):SELECT state , COUNT (*) FROM crash

WHERE Fatalities_in_crash > u GROUP BY

State;

Q2
c(~u, v) : SELECT ~u FROM crash WHERE

Atmospheric_condition = v;

Q3
c(u, v) : SELECT * FROM crash WHERE State =

u AND Gender = v;

Our demonstration captures 3 different scenarios:

1. Tuning parameters for dataset sale. In the first sce-
nario, attendees will interact with Qirana as Bob by select-
ing the corresponding option (see figure 3b). Qirana loads
the crash dataset as .sql file supplied by Bob. Once the

1951

(a) Buyer view (b) Seller view

Figure 3: Qirana demonstration scenarios

relations are loaded in the database, attendees can option-
ally specify the following information: (i) For each attribute,
specify the domain information and the type. For instance,
Age can only take values between 20 and 80. If the domain is
blank, the the active domain of the attribute is used. Next,
attendees can pick one of the four pricing functions from
Table 1. If the pricing function chosen is weighted cover-
age, then price points of the form (Qj , pj) can be optionally
entered. In practice, we restrict Qj to be selections or pro-
jections. For the demonstration, we set price of Q1

c as $10
and Q2

c as $0 following which, the framework automatically
generates support set S and solves the EM program.

2. Fine tuning setup parameters. In order to help Bob
choose support set size, Qirana can run a mock workload
supplied by Bob to display the prices. Based on the prices,
Bob can adjust the support set size. For this part of the
demonstration, attendees will be able to see how we spec-
ify a query workload to the system and change the support
size. This also demonstrates a trade-off between the prices
assigned and the support set size. As the support set size
increases, the prices capture information content of a query
better. Attendees will be able to change the size and iter-
atively observe better prices for the mock query workload.
Based on this step, Bob may even choose to add more price
points for queries that are not assigned prices to his liking.
Note that setting price points and fine tuning support size
is a one-time setup per dataset being sold. The framework
parameters remain fixed once buyers issue queries over the
dataset.

3. Issuing queries for purchasing data. Next, the at-
tendees assume the role of Alice and get a chance to purchase
data. Qirana lets buyers track their budget per dataset
by monitoring how much has been spent per query. This
is especially important for low budget entities such as sci-
entists and lay users who cannot afford to buy the entire
dataset. For this usage scenario, we allow parameterized
versions on Q1

c , Q
2
c and Q3

c to experiment with different
variants of queries. We issue Q1

c with an appropriate argu-
ment to Qirana which executes the query over the database
and displays the query price along with the output. Next,
we issue another query SELECT COUNT(State) FROM crash.
Note that this query provides some information that is al-
ready known to buyer from Q1

c . Therefore, full price is not
charged for this query showing the history-aware pricing na-
ture of our framework. Similarly, we can issue Q2

c and Q3
c

with appropriately chosen input to see how the framework

assigns prices. For this part of the demonstration, the at-
tendees will be able to set different values for the parame-
terized queries to create a complex workload with different
predicates and selectivities that can be priced interactively.
By choosing the input arguments appropriately, attendees
will also be able to observe history-aware pricing for ad-hoc
queries. They will also be able to view the purchase his-
tory visually per query (graph in figure 3a). Additionally,
Qirana also shows the savings with respect to a history
oblivious pricing scheme.

4. CONCLUSION
We demonstrate Qirana, a light weight framework that

implements arbitrage free query-based pricing. We show
how buyers can engage with the framework and ask queries
while tracking their budget. Qirana allows sellers to choose
from a list of pricing functions according to their require-
ments. In order to customize the prices, we show how seller
can specify price points by valuing different parts of the
database independently. We demonstrate the ease-of-use
and effectiveness of our framework on use-cases presented
on real-world datasets.

5. REFERENCES
[1] S. Deep and P. Koutris. The design of arbitrage-free

data pricing schemes. In Proceedings of ICDT, 2017.

[2] Infochimps. infochimps.com.

[3] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Query-based data pricing. In PODS,
pages 167–178. ACM, 2012.

[4] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe,
and D. Suciu. Querymarket demonstration: Pricing for
online data markets. PVLDB, 5(12):1962–1965, 2012.

[5] C. Li and G. Miklau. Pricing aggregate queries in a
data marketplace. In WebDB, 2012.

[6] B. Lin and D. Kifer. On arbitrage-free pricing for
general data queries. PVLDB, 7(9):757–768, 2014.

[7] A. Muschalle, F. Stahl, A. Löser, and G. Vossen.
Pricing approaches for data markets. In International
Workshop on Business Intelligence for the Real-Time
Enterprise, pages 129–144. Springer, 2012.

[8] Socrata. socrata.com.

[9] P. Upadhyaya, M. Balazinska, and D. Suciu.
Price-optimal querying with data apis. In PVLDB,
2016.

[10] Windows Azure Marketplace.
www.datamarket.azure.com.

1952

infochimps.com
socrata.com
www.datamarket.azure.com

	Introduction
	System Overview
	Pricing Guarantees
	System Architecture

	Demonstration Scenarios
	Conclusion
	References

