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ABSTRACT
Current tools for exploratory data analysis (EDA) require users
to manually select data attributes, statistical computations and
visual encodings. This can be daunting for large-scale, com-
plex data. We introduce Foresight, a system that helps the
user rapidly discover visual insights from large high-dimensional
datasets. Formally, an “insight” is a strong manifestation of a
statistical property of the data, e.g., high correlation between
two attributes, high skewness or concentration about the mean
of a single attribute, a strong clustering of values, and so on. For
each insight type, Foresight initially presents visualizations of
the top k instances in the data, based on an appropriate ranking
metric. The user can then look at “nearby” insights by issuing
“insight queries” containing constraints on insight strengths and
data attributes. Thus the user can directly explore the space
of insights, rather than the space of data dimensions and visual
encodings as in other visual recommender systems. Foresight
also provides “global” views of insight space to help orient the
user and ensure a thorough exploration process. Furthermore,
Foresight facilitates interactive exploration of large datasets
through fast, approximate sketching.

1. INTRODUCTION
Exploratory data analysis (EDA) is a fundamental approach

for understanding and reasoning about a dataset in which an-
alysts essentially run mental experiments, asking questions and
(re)forming and testing hypotheses. To this end, analysts derive
insights from the data by iteratively computing and visual-
izing correlations, outliers, empirical distribution and density
functions, clusters, and so on.
EDA Challenges: Although the capabilities of EDA tools con-
tinue to improve, most tools often require the user to manually
select among data attributes, decide which statistical compu-
tations to apply, and specify mappings between visual encoding
variables and either the raw data or the computational sum-
maries. This task can be daunting for large datasets having mil-
lions of data items and hundreds or thousands of data attributes
per item, especially for typical users who have limited time and
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limited skills in statistics and data visualization. Even experi-
enced analysts face cognitive barriers in this setting. As discussed
in [8, 10], limitations on our working memory can cause large
complex data to be overwhelming regardless of expertise, and
our tendency to fit evidence to existing expectations and schemas
of thought make it hard to explore insights in an unbiased and
rigorous manner. Thus people typically fail both to focus on the
most pertinent evidence and to attend sufficiently to the discon-
firmation of hypotheses [7]. Time pressures and data overload
work against the analyst’s ability to rigorously follow effective
methods for generating, managing, and evaluating hypotheses.
Foresight: We attack this problem by introducing Foresight,
a system that facilitates rapid discovery of visual insights from
large, high-dimensional datasets. Foresight enables users to
jump-start the exploration process from automatically recom-
mended visualizations, and then gives them increasing control
over the exploration process as familiarity with the data increases.
The resulting efficiency in insight generation can save users time
and dramatically improve their productivity, thereby expanding
the depth and breadth of generated hypotheses. Our approach,
in which insights are recommended according to objective crite-
ria, also helps the analyst focus more attention on evidence that
is highly diagnostic for, or disconfirming to, current hypotheses.
Exploring Insight Space: The key idea is to focus directly on
exploring the space of insights rather than the usual space of data
dimensions and visual encodings, as in recent visualization recom-
mendation systems (e.g., [9, 12]). We build on ideas from prior re-
search and commercial systems on automated and intelligent an-
alytics (e.g., [1, 2, 11]). Examples of insights include a high linear
correlation between attributes x and y, high concentration about
the mean of x-values, the presence of extreme x-value outliers, a
strong clustering of (x,y)-values according to z-values, and so on.
Associated with each class of insight are one or more strength
metrics that allow ranking—e.g., the Pearson correlation coeffi-
cient to measure the strength of a linear correlation—as well as
one or more visualization methods. As discussed in Section 2,
the metrics impose a structure on insights that can be leveraged
for exploration via insight queries. Given an unfamiliar, complex
dataset, the user can select one or more preliminary insights to
investigate; in this first, open-ended stage of exploration, Fore-
sight visualizes the strongest examples of each insight. Using an
iterative procedure, the user can dive deeper into an insight class
during a second level of exploration by adding constraints on the
data attributes considered or on the values of the strength met-
ric. Finally, each insight can optionally support a third level of
exploration by providing an overview visualization to help orient
the user and ensure that the exploration process is thorough.
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Sketching: We use approximation techniques to achieve inter-
active performance for insight queries. Specifically, the dataset
is preprocessed to compute sketches, samples, and indexes that
will support fast approximate insight querying. Importantly, we
exploit the composability of certain types of sketches to answer
a broad range of insight queries.

Overall, Foresight contributes (i) a novel framework of insights,
insight metrics, insight visualizations and insight classes, (ii)
sketch composition for fast approximate computation of insight
metrics and visualizations, and (iii) an exploration engine for
recommending and selecting insights that satisfy user-specified
constraints on strength and data attributes.

2. INSIGHTS
Here we first describe the basic concepts of queries on insight

space and then introduce the specific insights used in Foresight.

2.1 Querying Insight Space
The input data to Foresight is a matrix An×d, where each

row represents one of n data items and each column represents
one of the d attributes of an item. In this work, we assume the
data has been pre-cleaned. In general, the insights provided by
Foresight might reveal additional, more subtle data problems
that require further cleaning, e.g., a strong correlation that
makes no real-world sense.

We define an insight as a strong manifestation of a distri-
butional property of the data, such as strong correlation, tight
clustering, low dispersion, and so on. We focus throughout on
insights involving the marginal distribution of one, two, or three
attributes (Figure 1).

We require that each insight have one or more associated
insight metrics that can be used to rank n-tuples of attributes
based on the strength of the property that defines the insight.
Similarly, each insight must have one or more associated data
visualizations. Corresponding to each insight is an insight class
that comprises all feature tuples whose joint distributions are
compatible with the insight’s associated metrics and visualiza-
tions. For example, given a data set with attributes a1,a2,...,an,
the insight class corresponding to the insight I= “high linear
correlation” would contain all pairs (ai,aj) with i<j such that
ai and aj are both real-valued attributes. Finally, an insight
may optionally have one or more associated overview visualiza-
tions that display the values of the insight metric over all tuples
in the insight class. The global visualization for the insight I
above, for example, is a heat map where the x and y coordinates
correspond to the different attribute indices and the color and
size of the circle centered at (x,y) encode the Pearson correlation
coefficient (Figure 2).

A basic insight query returns the visualizations for the highest-
ranked feature tuples according to the insight metric selected,
e.g., the attribute pairs with the highest correlations. In general,
one or more of the attributes might be fixed, e.g., instead of
ranking the highest correlations over all (x,y) attribute pairs,
we can fix x= x̄ and rank correlations only over pairs of the
form (x̄,y), i.e., searching for the attributes most correlated with
x̄. Insight queries may also have constraints or filters on the
strength metric, e.g., we might want to rank only correlated
attribute pairs whose correlation coefficient falls in the range
[0.5,0.8] because we want to filter out trivially very high cor-
relations. In future work, queries will also allow inclusion of
constraints involving metadata about attributes, e.g., to search
for attributes that represent currency or dates.

As can be seen, our framework imposes some structure on
the space of insights that can be exploited during search. Two
insights can be considered “similar” if their metric scores are
similar or if the sets of fixed attributes are similar. At any point
during the EDA process, the user can step back and look at the
overview visualization of an insight (Figure 2). This helps ensure
that, in analogy with gradient descent, the EDA process does
not get inadvertently “trapped” in some local “neighborhood”
of attribute tuples. This capability is particularly important in
cases where many attribute tuples have similarly high insight-
metric scores, so that the particular set visualized for the user is
somewhat arbitrary. Section 4 illustrates the insight-navigation
process in a concrete scenario.

2.2 Foresight’s Insight Classes
Foresight is designed to be an extensible system where a data

scientist can “plug in” new insight classes along with their corre-
sponding ranking measures and visualizations. We now briefly
describe some of the specific insights supported by Foresight.
Denote by B and C the sets of attribute columns in A that
contain numeric and categorical values. Foresight supports a
variety of distinct visual insights, each with a preferred ranking
metric and visualization method. Denote by b=(b1,...,bn)>∈B
a numeric column with mean µb and standard deviation σb, and
by c= (c1,...,cn)> ∈C a categorical column. For each insight,
the ranking metric is italicized.
1. Dispersion: Very high or low dispersion of data val-
ues around a population mean is measured by the variance
σ2(b)=n−1∑n

i (bi−µb) and is visualized via a histogram.
2. Skew: Skewness is a measure of asymmetry in a univari-
ate distribution. It is measured by the standardized skewness
coefficient γ1(b) = n−1∑n

i (bi−µb)
3/σ3

b and visualized via a
histogram.
3. Heavy Tails: Heavy-tailedness is the propensity of a dis-
tribution towards extreme values. It is measured by kurtosis
Kurt(b)=n−1∑n

i (bi−µb)
4/σ4

b and visualized via a histogram.
4. Outliers: The presence and significance of extreme outliers
is measured by applying a user-configurable outlier-detection
algorithm—see, e.g., [3]—and computing the average standard-
ized distance of the outliers from the mean, where standardized
distance is measured in standard deviations. Outliers are visu-
alized using box-and-whisker plots.
5. Heterogeneous Frequencies: For a categorical column c
(or a discrete numerical column b), high heterogeneity in fre-
quencies implies that a few values (“heavy hitters”) are highly
frequent while others are not. For a configurable parameter k,
heterogeneity strength is measured by RelFreq(k,c), the total
relative frequency of the k most frequent elements in c. This
insight is visualized via a Pareto chart.
6. Linear Relationship: The strength of a linear relationship
between two columns x,y ∈ B is measured using the mag-
nitude of the Pearson correlation coefficient |ρ(x,y)|, where
ρ(x,y) =

∑n
i=1(xi−µx)(yi−µy)/(σxσy) and visualized via a

scatter plot with the best-fit line superimposed.
Additional Insights: Other insights include multimodality,
nonlinear monotonic relationships, general statistical dependen-
cies, and segmentation. Details are suppressed due to lack of
space.

3. SKETCHING
We use sketching [5] to speed up the computation of insight

metrics. Some insight metrics are fast and easy to compute,
e.g., skewness and kurtosis can both be computed for numeric
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Figure 1: Each carousel in the Foresight UI corresponds to a distinct class of insight. Visualizations within a carousel are ranked
by the insight’s ranking metric with the strongest insights displayed first. In this screenshot, we show 3 of the 12 insight classes
supported by Foresight, namely correlations, outliers, and heavy tails.

columns in a single pass by maintaining and combining a few
running sums. For the remaining metrics, sketches—lossy com-
pressed representations of the data—are crucial in order to
preprocess the data in a reasonable amount of time. Foresight
integrates and composes a variety of sketching and sampling
techniques from the literature, namely quantile sketch, entropy
sketch, frequent items sketch, random hyperplane sketch, and
random projection sketch; see, e.g., [5]. As an illustration, we
describe the use of the random hyperplane sketch [4] in Foresight
for approximating a Pearson correlation coefficient ρ.

To create the sketch, we first generate k distinct random
vectors r1,...,rk, where k�n and each ri is n-dimensional with
components drawn independently from the one-dimensional
standard normal distribution. For each ri, define a function φi by

φi(b)=

{
0 if b̃·ri<0;

1 if b̃·ri≥0

for b∈ B, where x̃ denotes the “centered” version of column
x obtained by subtracting µx from each component. Then
the sketch for a specific column b is the random bit-vector(
φ1(b),...,φk(b)

)
, which we write as φ(b). For n-dimensional

vectors x,y ∈ B, set δj = 1 if xj 6= yj and δj = 0 otherwise
(1≤j≤n), and define the Hamming distance between x and y
byH(x,y)=

∑n
j=1δj. As shown in [4], the quantity cos(πHxy/k),

where Hxy =H
(
φ(x),φ(y)

)
, is an unbiased estimator of the cor-

relation coefficient ρ(x,y).
The bit-vector sketch consumes |B|k bits of memory for the

entire dataset and can be computed in a single pass of the data
in time O(|B|nk). Furthermore, computing the estimated corre-
lation coefficient between every pair of features takes O(|B|2k)
time as opposed to O(|B|2n) time. Setting k to a value that is
O(log2n) guarantees high accuracy while significantly reducing
the time complexity of ranking and searching for correlation
coefficients.

Initial experiments (without parallelism) showed >90% ac-
curacy and 3x−4x speedup in preprocessing, with interactive
speeds during exploration.

4. DEMONSTRATION

4.1 Usage Scenario
We now describe how an analyst uses Foresight to explore a

dataset containing wellbeing indicators for the OECD member
countries. This dataset contains 25 distinct attributes (indi-
cators) about 35 countries and is included in our demo as an
illustration and for ease of comprehension. Foresight is intended
to facilitate interactive exploration of datasets with data items of
the order of 100K and attributes that number in the hundreds.
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Figure 2: Each insight class can have an optional overview visu-
alization of all the insights in the class. This overview displays
all the pairwise attribute correlations as a heatmap with the
size and intensity of circles denoting the strength of correlations.

The analyst loads the OECD dataset in Foresight and eye-
balls various insights displayed in the carousels corresponding
to each insight class (Figure 1). She notes instantly that the in-
dicators Working Long Hours and Time Devoted To Leisure

have a strong negative correlation, since this is one of the
top-ranked correlation insights recommended by Foresight. En-
couraged by this quick discovery, she brings this insight into
focus by clicking on it. Foresight updates its recommendations
by choosing a subset of insights within the neighborhood of
the focused insight. The analyst explores the newly recom-
mended correlations through multiple ranking metrics such as
Pearson correlation coefficient and Spearman rank correlation
and is surprised to learn that Time Devoted To Leisure has
no correlation with Self Reported Health.

Intrigued with this lack of correlation, she checks the uni-
variate distributional insight classes. The recommendations
within these classes, which have already been updated based on
the previous selections, show that Time Devoted To Leisure

has a Normal distribution while Self Reported Health has
a left-skewed distribution. Having gained greater familiarity
with the OECD dataset, our analyst wonders about the factors
that affect Self Reported Health. She clicks on the distri-
bution of Self Reported Health, adding this as one of the
focal insights. Foresight recommends a new set of correlated
attributes and she finds that Life Satisfaction and Self

Reported Health are highly correlated.
Satisfied with her preliminary discoveries (and armed with

deeper questions about OECD countries than before), our an-
alyst saves the current Foresight state to revisit later and to
share with her colleagues.

4.2 Demo Datasets
Our demonstration will feature the following two datasets in

addition to the OECD dataset described above.

Parkinson: Parkinson’s Disease (PD) is a progressive neurode-
generative disorder affecting nearly a million people in the US
alone. Our second use case applies Foresight to gain insights
into a dataset of PD patients with measured clinical descriptors
characterizing the disease progression [6]. The dataset has 2K
rows and 50 columns and is collected under the Parkinson’s
Progression Markers Initiative (PPMI).
IMBD: Our third use case explores a dataset with 5000 movies
(rows) and 28 features (columns). The features range from the
director name to the IMBD score for each movie. Questions
that Foresight users will be able to explore are: What factors
correlate highly with a film’s profitability? How are critical
responses and commercial success interrelated?

5. CONCLUSION
We introduce a novel approach to visualization recommenda-

tion via the notion of insights. Our approach uses recommenda-
tions to guide users in exploring unfamiliar large and complex
datasets, and gradually gives them more and more control over
the exploration process. Using sketching and indexing methods,
our demo system can currently handle datasets with large num-
bers of rows and moderate numbers of columns. Future work will
improve the scalability with respect to columns by incorporating
parallel search methods that speed up insight queries.
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