
Explaining and Querying Knowledge Graphs by
Relatedness

Valeria Fionda
University of Calabria
Via Pietro Bucci 30/B

Rend (CS), Italy

fionda@mat.unical.it

Giuseppe Pirrò
ICAR-CNR

Via Pietro Bucci 41/C
Rend (CS), Italy

pirro@icar.cnr.it

ABSTRACT
We demonstrate RECAP, a tool that explains relatedness
between entities in Knowledge Graphs (KGs) and imple-
ments a query by relatedness paradigm that allows to re-
trieve entities related to those in input. One of the peculiar-
ities of RECAP is that it does not require any data prepro-
cessing and can combine knowledge from multiple KGs. The
underlying algorithmic techniques are reduced to the execu-
tion of SPARQL queries plus some local refinement. This
makes the tool readily available on a large variety of KGs
accessible via SPARQL endpoints. To show the general ap-
plicability of the tool, we will cover a set of use cases drawn
from a variety of knowledge domains (e.g., biology, movies,
co-authorship networks) and report on the concrete usage of
RECAP in the SENSE4US FP7 project. We will underline
the technical aspects of the system and give details on its
implementation. The target audience of the demo includes
both researchers and practitioners and aims at reporting on
the benefits of RECAP in practical knowledge discovery ap-
plications.

1. INTRODUCTION
There is an increasing amount of structured knowledge

available on the Web. Projects like Linked Open Data (LOD)
aim at creating a global infrastructure for the publishing
and interlinking of knowledge on the Web. One peculiar-
ity of LOD is the usage of W3C standards like RDF and
SPARQL for the representation and querying of structured
data, respectively. On the other hand, also major search
engines are now backed up by structured knowledge in the
form of Knowledge Graphs (KGs). The Google’s KG and
Microsoft Satori are just a few examples. While sharing
many commonalities from the data representation point of
view (both use triples), the two approaches are radically dif-
ferent in terms of query capabilities. LOD datasets can be
queried via SPARQL, an expressive query language, while
Google’s KG and the like are typically accessible only via
keywords. In the first case, users require knowledge of the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

SPARQL query language while in the second case, the lack
of a query language makes it difficult to precisely express
what one is looking for. One peculiarity of KGs underlying
Google and other search engines is that they also suggest
entities related to the entity in input. As an example, when
searching for for D. Knuth, Google suggests L. Lamport as
a related entity. Nevertheless, neither an explanation is pro-
vided about why a pair of entities is related nor any support
is given in terms of capabilities to infer a query that can
be used to capture further related results. This feature is
especially useful when the user knows a pair of entities in
the results but has no clear idea (or expertise) about how to
write a query that captures all the results. To make easier
the availability of structured knowledge even to novice users,
the research community came up with different techniques.
Examples are: exemplar queries [6, 7, 8] based on the idea
that it is enough for users to provide even a single exemplar
result to automatically infer the desired answer set, query
learning approaches [2] that feature interactive join specifi-
cation supports with minimal interactions, and reverse en-
gineering of queries [3] where the goal is to learn queries
given a set of tuple in the results. Other approaches [4, 9]
specifically focus on providing relatedness explanations.

In this demo we demonstrate a novel approach that com-
bine relatedness explanations and querying capabilities called
RECAP [11, 12]. The user inputs a pair of entities and the
system produces different types of explanations that capture
the essence of their relatedness according to different aspects
(e.g., path diversity, informativeness). The usage of multiple
KGs offers a more comprehensive relatedness perspective as
compared to the single KG case (see e.g., Fig. 2). Explana-
tions form the basis for the automatic construction of queries
that can be used to retrieve entities related to those in input
via a query by relatedness paradigm. One peculiarity of RE-
CAP is the possibility to work with any existing KG without
data preprocessing. Because of this design choice, the algo-
rithmic techniques are reduced to the execution of a set of
queries plus some local refinement. We will focus on an im-
plementation of RECAP using the SPARQL query language
for RDF data, which makes the tool readily available on a
variety of KGs accessible via SPARQL endpoints.

RECAP may attract attention from a broad type of au-
dience. This includes people that are aware of some kind of
relationship between entities but need to have a more pre-
cise account of why these are related while at the same time
having the possibility to discover new entities that share a
similar relatedness perspective. Returning to our previous
example, with RECAP one can discover that one of the per-

1913

spectives that relate D. Knuth and L. Lamport is that both
won both the IEEE J. von Neumann medal and the Turing
Award. RECAP’s query by explanation approach allows to
discover that also T. Hoare and K. Nygaard and J. Hopcroft
and M. Stonebraker share the same relatedness perspective.
The usefulness of RECAP is also witnessed by the fact that
it is currently used in the SENSE4US FP7 project1, which
aims at creating a toolkit to support information gather-
ing, analysis and policy modeling. Here, relatedness expla-
nations provided by RECAP are useful to investigate and
show to the user topic connectivity2, thus enabling to find
out previously unknown relevant information, understand
how it is of relevance, and navigate it.

This demonstration is about showing the functionalities
of RECAP both from the relatedness explanation and query
by relatedness perspective with particular emphasis on how
RECAP can be concretely used in knowledge discovery tasks.

2. SYSTEM DESCRIPTION
RECAP has been implemented in Java. It leverages the

Jena3 framework to handle RDF data and JavaFX4 for the
GUI, which allows the tool to be accessible across different
platforms. The architecture of RECAP is shown in Fig. 2.
In this demo we focus on KGs encoded in the RDF data
format and accessed via a SPARQL endpoint. Nevertheless,
our approach is generic enough to capture data in other
graph data formats. Working with SPARQL on top of RDF
KGs makes it flexible the access and combination of data
from different knowledge domains. In our context, an entity
of interest is a node of the graph identified by a IRI.

Path
BuilderK

SPARQL
 Endpoint….

Parallel
queries

Knowledge
Graph

Explanation
Builder

ws

Target
entity

Source
entity

wt
Max

distance

Ge

n1
n4

n3
p1

p3

p4

p2
ws

wt

p4

Output

Input

AQuery
Endpoint

Output

(w1,w2)
(w3,w4)

Ranked Entities

Explanation

…..

Knowledge
Base

KG
Query
Engine

Figure 1: The RECAP architecture.

[Path Builder] A user information request is expressed as
a pair of entities plus a maximal distance. To help users
in precisely identifying the entities in one or more KGs, the
system loads a short structured description of the entities
(see Fig. 3). The first step of the evaluation of an informa-
tion need consists in retrieving paths interlinking the speci-
fied entities by issuing a set of (automatically constructed)
SPARQL queries to one or more endpoints. Parallelizing

1http://www.sense4us.eu
2A module of the SENSE4US toolkit extracts topics from
policy documents.
3http://jena.apache.org
4http://docs.oracle.com/javafx

this aspect via multi-threading guarantees reasonable run-
ning times (see Pirrò [11] for further details about the per-
formance evaluation of this approach).

[Explanation Builder] Paths interlinking entities form the
basis to generate different kinds of query explanations. One
immediate type of explanation is the merge of all retrieved
paths. However, this kind of explanation becomes quickly
unreadable as the number of intermediate entities involved
can be very large. To cope with this issue, RECAP allows
to flexibly chose the set of paths that will form an expla-
nation. At the core of this idea there are different types of
path ranking strategies. In the demo we will focus on the
following ranking strategies [11]:

• Informativeness: it is estimated by investigating RDF
predicates in a path via the notion of Predicate Fre-
quency Inverse Triple Frequency [10].

• Pattern informativeness: a path pattern generalizes a
path by replacing nodes with variables. Pattern in-
formativeness is computed by counting the number of
paths sharing a certain path pattern.

• Diversity : it takes into account the variety of predi-
cates in a set of paths; diversity guarantees to rank
high paths that contain rare predicates.

The user can use one or more path ranking strategies to
build an explanation thus controlling the amount of infor-
mation displayed. Table 1 gives an overview of the types of
explanations available in RECAP.

Table 1: Types of explanations.
Meaning

E∪ Merge all of paths without any pruning
Eπ
m Merge the top-m most informative paths

Eπ
m Merge paths belonging to the top-m most infor-

mative path patterns

Eδ Merge pairs of paths whose value of diversity falls
in [max, (max − r)] where max is the max di-
versity value over all pairs of paths and r is a %
value.

Eπ,δ Merge the results of Eπ
m and Eδ

Eπ,δ Merge the results of Eπ
m and Eδ

P Set of all paths (without merge)

[KG Query Engine] Explanations capture the essence of
relatedness between a pair of entities. RECAP leverages ex-
planations to learn SPARQL queries that can be used to find
other pairs of entities similar to those in input. The tool
considers three different approaches for learning SPARQL
queries: (i) edge-isomorphic, where nodes in an explanation
are replaced by variables while keeping the same join struc-
ture; (ii) onto-relaxed queries obtained from edge-isomorphic
queries by substituting a subset of predicates with more
general ones (taken from the ontology); (iii) edge-relaxed
queries obtained from edge-isomorphic queries by substitut-
ing a subset of predicates with variables. Predicates to be
relaxed can be either indicated by the user or automatically
selected on the basis of predicates’ informativeness. The
last component of the query engine involves the ranking of
results. RECAP at the moment implements two different
strategies; one based on Pagerank and the other based on
the Katz index [5] introduced to estimate the relatedness of
actors in a social network.

1914

(d)

(e)

(a)

(f)

Node/edge

 information

Refining
explanations

Filter by Predicate

Node
Information

Adjust view

(c)
Explanation
visualization

(b)

(m)

Execution info

Query by Relatedness SettingsExplain RelatednessStart

Figure 2: The Relatedness Explanation perspective.

3. RUNNING EXAMPLE
The goal of the demonstration is to cover a variety of

examples rather than focusing on a single one. We will
specifically stimulate the audience to pose examples from
disparate knowledge domains; one starting point to pick
datasets could be the LOD cloud [1] that at the moment
collect thousands of SPARQL endpoints ranging from biol-
ogy to movies. One peculiarity of RECAP is that differently
from related research it does not require any data prepro-
cessing thus being able to work with fresh data.

We have developed a main running example that will serve
as a basis to explain the ideas underlying our framework.
The example is on the domain of movies and involves the
pair of entities F. Lang and T. von Harbou. The users in-
puts this pair to RECAP as shown in Fig. 3. The main GUI
of the RECAP tool is shown in Fig. 3. The auto completion
function in Fig. 3 (a) enables to find the correct entities of
interest thanks to a short structured description provided
for each entity. The interface also enables to chose the max-
imum path distance to be considered, as shown in Fig. 3 (b).

(a)

(b)

Figure 3: The RECAP main GUI.

When the user clicks on the Explain Relatedness button,
the tool shows the progress of the execution. At this point
the tool can produce different types of explanations, possibly
combining knowledge from multiple KGs. An example of ex-
planation is shown in Fig. 2 (c). This explanation combines
information from Freebase and DBpedia. The explanation
includes the top-20 most informative paths (out of 240) at
max. distance 2 for the pair F. Lang T. von Harbou.

The interface provides statistics about the explanation
building process such as number of paths and execution time
Fig. 2 (m). When clicking on a node in an explanation, the
user can visualize structured information about such node
as shown in Fig. 2 (f). When clicking on an edge, infor-
mation about the edge will be also visualized as shown in
Fig. 2 (a). The visualization can be adjusted via the panel in
Fig. 2 (b). Part (e) in Fig. 2 allows to filter an explanation
according to certain types of predicates. In the previous ex-
ample, the combination of Freebase and DBpedia allowed to
refine knowledge about Die Nibelungen series by providing
information about the episode titled Kriemhild’s Revenge,
co-written by F. Lang and T. von Harbou.

The interface shown in Fig. 4 handles the query by ex-
planation functionalities. Fig. 4 (a) shows path patterns,
that is, paths where nodes are replaced by variables; the in-
stances associated to each pattern are listed at the bottom
of Fig. 4 (a) and visually displayed in Fig. 4 (b). The system
suggests different types of SPARQL queries as described in
Section 2. Fig. 4 part (c) and (d) show an example of edge-
isomorphic query. The query can be (manually) refined and
then executed to find other pairs of entities. The top-5 pairs
of entities found, and ranked by their popularity, are show in
Fig. 4 (l). As an example, the pair (Gale Ann Hurd, James
Cameron) share the same relatedness perspective as F. Lang
T. von Harbou shown in Fig. 4 (b): J. Cameron was married
to G. A. Hurd, he wrote the movie The Terminator where
L. Hamilton (also married to J. Cameron) starred.

1915

g

(l)

dbp:Edgard_Rice_Buroughs dbp:Florence_Gilbert
dbp:Stanley_Donen dbp:Jeanne_Coyne
dbp:Ezzel_Dine_Zulficar dbp:Faten_Hamama
dbp:Vidhu_Vinod_Chopra dbp:Renu_Saluja

dbpo:spouse

dbpo:starring

dbpo:spouse

dbpo:w
riter

(k)

(d)

dbp:Gale_Anne_Hurd dbp:James_Cameron

dbpo:spouse

dbpo:starring

dbpo:spouse

dbpo:w
riter

dbp:Thea_von_Harbou

dbp:Fritz_Lang

dbp:Die_Nibelungen

dbp:Rudolf_Klein-Rogge

(h)(g)

Path instances

Path patterns

Suggested query

Query Results

Query by Relatedness SettingsExplain RelatednessStart

(a) (b)

(c) (e)

Figure 4: The Query by Relatedness Perspective.

4. DEMONSTRATION SCENARIO
The demo will start by providing a very brief overview

about the notion of query explanation, also linking this idea
to Google’s KG. Then, we will run a set of examples and
comment on the results by leveraging the RECAP GUI. In
particular, the input will be provided as shown in Fig. 3.
Then, for each example, we will show the different kinds
of explanations that can be built. This part of the demo
will focus on the second tab of the RECAP GUI shown in
Fig. 2. We will pick specific examples having small and
large explanations and underline the following aspects: (i)
filtering explanations is a necessary step when the size of
the explanation starts to grow; (ii) each type of explanation
has pros and cons. Then, we will show how explanations
can be used to build SPARQL queries that allow to retrieve
other pairs of entities. This part of the demo will focus on
the third tab of the GUI shown in Fig. 4. We will underline
the following aspects: (i) types of queries that can be built
from explanations; (ii) how to refine the suggested queries.

After introducing the functioning of the tool, we will let
the audience have the opportunity to both pick their own
examples and execute them. We will stress the fact that the
tool can work with any SPARQL endpoint, without the need
to preprocess data. To involve a broader audience we will
make available, besides the standalone version of the tool,
also a Web based interface so that anybody can experience
with the tool from his/her own laptop.

4.1 Demonstration goals
The main goal of the demonstration is to introduce both

the explanation and query by explanation approach. The
desideratum is that, by practically experiencing with the
RECAP tool, the audience will realize its potentiality in
terms of knowledge discovery capabilities from a variety of
KGs. Attention will also be paid to stress the fact that
existing search engines equipped with KGs offer very limited
querying and explanation capabilities. The flexibility of the
tool to work with any KG and combine knowledge from
multiple KGs will also be underlined. Another goal that
we set is to stimulate new research on this topic. This will

possibly happen by discussing the technical challenges and
the design choice that we made to solve them. The idea is to
underline the pros and cons of our approach with particular
emphasis on the following aspects: (i) balance between path
length and running time; (ii) motivate the design choice to
work on top of KGs and access them only via endpoints.

5. REFERENCES
[1] LOD Cloud http://lod-cloud.net.

[2] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
Join Query Inference with JIM. PVLDB,
7(13):1541–1544, 2014.

[3] G. Diaz, M. Arenas, and M. Benedikt. SPARQLByE:
Querying RDF Data by Example. PVLDB,
9(13):1533–1536, 2016.

[4] Fang, Lujun and Sarma, Anish Das and Yu, Cong and
Bohannon, Philip. REX: Explaining Relationships
between Entity Pairs. VLDB, 5(3):241–252, 2011.

[5] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[6] S. Metzger, R. Schenkel, and M. Sydow. QBEES:
query-by-example Entity Search in semantic
Knowledge Graphs based on Maximal Aspects,
Diversity-awareness and Relaxation. JIIS, pages 1–34.

[7] D. Mottin, M. Lissandrini, Y. Velegrakis, and
T. Palpanas. Searching with XQ: the Exemplar Query
Search Engine. In SIGMOD, pages 901–904, 2014.

[8] D. Mottin, M. Lissandrini, Y. Velegrakis, and
T. Palpanas. Exemplar Queries: a New Way of
Searching. VLDB Journal, 25(6):741–765, 2016.

[9] N. Nakashole, G. Weikum, and F. Suchanek.
Discovering and Exploring Relations on the Web.
VLDB, 5(12):1982–1985, 2012.

[10] G. Pirrò. REWOrD: Semantic Relatedness in the Web
of Data. In AAAI, pages 129–135, 2012.

[11] G. Pirrò. Explaining and Suggesting Relatedness in
Knowledge Graphs. In ISWC, pages 622–639, 2015.

[12] G. Pirrò and A. Cuzzocrea. RECAP: Building
Relatedness Explanations on the Web. In WWW,
pages 235–238, 2016.

1916

