
Automating Data Citation in CiteDB

Abdussalam Alawini, Susan B. Davidson, Wei Hu, and Yinjun Wu
Dept. Computer and Information Science

University of Pennsylvania

{alawini, susan, huwei, wuyinjun}@seas.upenn.edu

ABSTRACT
An increasing amount of information is being collected in
structured, evolving, curated databases, driving the ques-
tion of how information extracted from such datasets via
queries should be cited. While several databases say how
data should be cited for web-page views of the database,
they leave it to users to manually construct the citations.
Furthermore, they do not say how data extracted by queries
other than web-page views – general queries – should be
cited. This demo shows how citations can be specified for a
small set of views of the database, and used to automatically
generate citations for general queries against the database.

1. INTRODUCTION
Data citation is of growing concern for owners of curated,

on-line scientific databases. Since much of the content is
contributed by members of the community and curated by
experts, there is growing recognition that the data extracted
by a query should recognize the efforts of the individuals (au-
thors) involved in creating the dataset. Owners may there-
fore want a citation to data extracted from their database
by a query to include snippets of information about the au-
thors, identifying features of the data extracted, the query
used to extract the data, the database version, and so on.

Currently, several databases describe (in English) what ci-
tations should look like for data displayed as web page views
of the database (e.g. the Reactome Pathway database 1 and
eagle-i 2), but few databases generate the citation automat-
ically. A notable exception to this is the IUPHAR/BPS
Guide to Pharmacology 3 (GtoPdb), in which the citations
for web-page views of the database are hard-coded in the

1http://www.reactome.org/pages/documentation/citing-
reactome-publications/
2https://www.eagle-i.net/get-involved/for-
researchers/citing-an-eagle-i-resource/
3http://www.guidetopharmacology.org/

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

web page results. However, none provide a citation for gen-
eral queries over the database, i.e. those which do not cor-
respond to web page views of the database.

This problem is especially hard because, unlike traditional
publications which have a fixed granularity to which cita-
tions can be attached (e.g. a paper in a conference proceed-
ings, or chapter in a book), the granularity of data varies
when retrieved by a query over a database. Since there are
a potentially infinite number of queries, each accessing and
generating different subsets of the database, it is impossible
to explicitly attach a citation to every possible result set
and/or query.

CiteDB addresses the problem of generating citations to
general queries over a relational database by allowing owners
to specify citations for views of the database which repre-
sent frequent queries (e.g. web page views), and uses these
citation views to automatically construct citations for data
returned by general queries. It does so by determining which
view tuples contributed to the result, and combining their
associated citations to form a citation for the query result.
The manner in which citations are combined are policies
specified by the owner.
Demonstration. We will demonstrate CiteDB on GtoPdb,
a relational database that contains expertly curated infor-
mation about drugs in clinical use and some experimental
drugs, together with information on the cellular targets of
the drugs and their mechanisms of action in the body. Cur-
rently, GtoPdb generates citations to a subset of the possible
queries against the underlying relational database, i.e. those
corresponding to web-page views of the data. We will show
how these citations can be 1) separately specified by the
database administrator (DBA) rather than being embedded
in web-page code, and 2) used to automatically construct
citations to general queries against the database. Further-
more, we will show how users can browse the citations at-
tached to tuples or subsets of tuples within a query result.

Participants will be invited to construct general queries
against GtoPdb through a QBE-like interface, and view
query results along with the citation. They may also specify
additional citation views for GtoPdb.
Related work. Core principles [7, 8] and standards [5]
have been proposed for data citation. A prototype citation
system for relational databases is described in [9], which
returns a stable identifier along with the query result and
ensures recoverability of data as of the query time.

The idea of a rule-based citation system to provide cita-
tions that include snippets of information for hierarchically
structured data sources was first proposed in [4]. This was

1881

extended in [3] with a notion of views defining citable units,
and applied to the eagle-i resource discovery dataset in [2].
The notion of citations as fine-grained annotations was in-
troduced in [6], and forms the basis for this demo.

2. TECHNICAL BACKGROUND
Throughout this discussion, we will use GtoPdb as the

example. In GtoPdb users view information through a hi-
erarchy of web pages: The top level divides information by
families of drug targets that reflect typical pharmacological
thinking; lower levels divide the families into sub-families
and so on down to individual drug targets and drugs. The
content of a particular family “landing” page is curated by
a committee of experts; a family may also have a “detailed
introduction page” which is written by a set of contribu-
tors, who are not necessarily the same as the committee of
experts for the family.

The citations for these views of the database, which are
parameterized by the family id, therefore vary: the citation
for GtoPdb as a whole is a traditional paper written by
the database owners, a citation to a family page includes
the committee members who curated the content, and a
citation to a family detailed introduction page includes the
contributors who wrote the content.

The (simplified) GtoPdb schema we will use is, where keys
are underlined:

Family(FID, FName, Type)
FamilyIntro(FID, Text)
Person(PID, PName, Affiliation)
FC(FID, PID), FID references Family,

PID references Person
FIC (FID, PID), FID references FamilyIntro,

PID references Person

We now describe our model and implementation.

2.1 Model
We start with a set of view definitions and citation queries,

that are specified by the database owner. Each citation
query is associated with a citation function, which takes the
output of the citation query as input, and outputs a citation
in some appropriate format (e.g. human readable, BibTex,
RIS or XML).

Internally, the view definition and citation query are Con-
junctive Queries (see [1] for an overview) that are optionally
parameterized by one or more variables. A parameterized
view creates a set of views, one for each possible choice of
parameters. The number of such views is therefore instance-
dependent.

For example, the following (parameterized) view creates
a separate view instance for each tuple in Family:
λ FID. V1(FID,FName,Type):- Family(FID,FNname,Type)

Each view is associated with one or more citation queries.
To ensure that the citation is the same across all tuples in
the view, the parameters of the citation query must be a
subset of the distinguished variables of the view definition.

For example, the following citation query retrieves the
names of all committee members for a given FID and can be
associated with V1,:

λ FID. C1(PN):- FC(FID,PID), Person(PID,PN,A)

We could also associate a citation query with no parameters
to V1, for example, a citation for the traditional reference
paper for GtoPdb as a whole.

To give a semantics for citations for general queries, we use
the following intuition: If a view tuple can be used to create
a tuple in the query result, then the result tuple carries the
view tuple’s citation annotation. We formalize this next.4

We assume that all queries (including view definitions)
use fresh variables in every position; any local constraints on
variables (i.e. those involving a single variable) and global
constraints (i.e. those involving more than one variable) are
expressed as non-relational subgoals of a query.

Definition 2.1. Query Extension Given a query

Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

where condition(Q) are the non-relational subgoals, let
X̄ ′ = ∪mi=1X̄i. Then the extension of Q, Qext, is

Qext(X̄
′) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

Since a view definition is also a query, we use the same
notion for Vext.

Definition 2.2. View Mapping Given a view defini-
tion V and query Q

V(Ȳ) : −A1(Ȳ1), A2(Ȳ2), . . . , Ak(Ȳk), condition(V)
Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

a view mapping M from V to Q is a tuple (h, φ) in which:

• h is a homomorphism which maps each relational sub-
goal Ai in V to a relational subgoal Bj in Q with the
same relation name.

• φ are the variable mappings from Ȳ ′ = ∪ki=1Ȳi to X̄ ′ =
∪mi=1X̄i induced by h

A subgoal Bj of Q is covered iff h(Ai) = Bj for some i.

A view may be in zero or more view mappings for a given
query. Since each view is associated with a citation (denoted
Cite(V)), we can use this to cite subgoals of Q that are
covered by M (denoted Cite(M)).

Definition 2.3. Valid View Mapping Given a database
instance D, a view mapping M = (h, φ) of V is valid for a
tuple t ∈ Qext(D) iff:

• The projection of t on the variables that are mapped in
Qext under the mapping φ is a tuple in Vext(D):
Πφ(Ȳ ′)t ∈ Vext(D)

• There exists at least one variable y ∈ Ȳ such that
φ(y) is either a distinguished variable or appears in
condition(Q).

Given a set of views V, a query Q and a database instance
D, we can build a set of valid view mappingsM(t) for each
tuple t ∈ Qext(D) according to Definitions 2.2 and 2.3. We
then combine different view mappings from M(t) to create
a covering set of views for t.

Definition 2.4. Covering set Let C ⊆ M(t) be a set
of valid view mappings.Then C is a covering set of view
mappings for t iff

4This semantics is slightly different from that in [6].

1882

Table 1: Sample table for base relation Family
Family id name Type view vector

58 n1 gpcr V1,V4(‘gpcr’)
59 n2 gpcr V1, V4(‘gpcr’)
60 n3 lgic V1,V4(‘lgic’)
61 n4 vgic V1,V2,V4(‘vgic’)
62 n5 vgic V1,V2, V4(‘vgic’)

Table 2: Sample table for base relation FamilyIntro

Family id Text view vector
58 tx1 V3(58),V4()
60 tx2 V3(60),V4()
61 tx3 V3(61),V4()
62 tx4 V3(62),V4()

• No V ∈ M(t) − C can be added to C to cover more
subgoals of Q; and

• No V ∈ C can be removed from C and cover the same
subgoals of Q.

Note that for each tuple t there may be a set of covering
sets, {C1, ..., Ck}. In each Ci = {M1,M2, . . . ,Ml}, the
citation views are jointly used (denoted *) to construct a
citation for t: the citation Cite(Ci) for t is Cite(M1) ∗ · · · ∗
Cite(Ml). The citations from each Ci are then alternately
used (denoted +R) to construct a citation for t: Cite(t) =
Cite(C1) +R · · ·+R Cite(Cp).

The result of Q is obtained by projecting Qext over Q’s
distinguished variables: Q(D) = ΠSQext(D). Thus a tuple
t ∈ Q(D) may be derived from multiple tuples in Qext(D).
The annotations from all derivations of t are therefore com-
bined to form a citation for t using the abstract operator +,
indicating alternate derivations. To create the citation for
the query result, the annotations of all tuples in the result
are combined using the abstract operator Agg. The abstract
operators *, +R, + and Agg are policies to be specified by
the database owner, and could be union, the “best” in some
ordering over view mappings, or some form of join.

2.2 Implementation
The implementation starts by expanding the schema of

each relation with a view vector column, which identifies
all views in which a tuple potentially participates. Thus
when a view V : −BV is added to the database schema,
V is added to the view vector of each tuple t occurring in
each relation R ∈ BV such that t satisfies local predicates for
R. Any global predicates comparing variables from different
relations (e.g. joins) will be checked at query time.

For example, suppose we had the following views:

V1(FName) :- Family(FID, FName, Type)

V2(Type) :- Family(FID, FName, Type), FID>60

λFID.V3(FID,Text) :- FamilyIntro(FID, Text)

λType.V4(Type) :- Family(FID1,FName,Type),

FamilyIntro(FID2,Text), FID1 = FID2

Expanded sample instances for Family and FamilyIntro

are shown in Tables 1-2. Note that for each parameterized
view, we add all parameter values local to the tuple to the
view id. View parameters that are not local to the tuple
are left unspecified. For example, when annotating tuples

Table 3: Final query result
Ty Cite(t)

gpcr Cite(V4(‘gpcr’))
lgic Cite(V4(‘lgic’))

vgic
(Cite(V2)* Cite(V3(61)) +R Cite(V4(‘vgic’)))

+ (Cite(V2)* Cite(V3(62)) +R Cite(V4(‘vgic’)))

in FamilyIntro with V 4, a placeholder is added for the pa-
rameter Type since it comes from Family.

When a query Q : −BQ is submitted, we first remove
views with no view mappings. The query Q is then extended
to include 1) all head variables of Q and the lambda vari-
ables under all the possible view mappings; 2) the view vec-
tors of every base relation occurring in BQ; and 3) columns
representing the truth value of every local and global pred-
icate under every possible view mappings (details omitted).
The extended query, called Qext1, is then executed over the
database instance D as an SQL query which calculates the
truth value of local and global predicates, yielding an in-
stance Qext1(D) over which the first phase of citation rea-
soning occurs.

In this phase, the valid view mappings for each view vector
for each tuple t ∈ Qext1(D) are first calculated. A multi-
relation view mapping is valid iff all global predicates un-
der this mapping evaluate to true. We will remove view
vectors without any valid view mappings. Covering sets of
view mappings for t are then calculated by picking one view
mapping from each remaining view vector and combining
them using *. Different covering sets are combined using
+R. The output of this phase is a relation Qext2(D) with
an additional column containing Cite(t).

To improve performance, Qext1(D) can be grouped into
sets of tuples satisfying the same local and global predicates.
Reasoning can then be performed for one tuple in the group,
and the result applied to other tuples in the group. This
results in considerable performance gains.

The next phase projects Qext2(D) over the distinguished
variables of Q, and calculates the + (alternate use) deriva-
tions of valid citations: For each {t1, ..., tk} ⊆ Qext2(D)
that contain the same values for distinguished variables in
Q, construct the + of their valid citations. The result of
this phase will be the query result of Q, augmented with
an additional column containing the valid citations for each
tuple.

For example, consider the following query:

Q(Ty):- Family(F1,N,Ty), FamilyIntro(F2,Tx), F1 = F2

There is no valid view mapping for V 1 since the second con-
dition in Definition 2.3 cannot be satisfied. Any view whose
body contains a relation other than Family or FamilyIntro
would also be removed (there are none in our example).

The result of executing phases 1 and 2 over Q is shown
in Table 3. The citation for the query result is constructed
using the Agg of citations for each tuple in the result. For
each Cite(t) in Q(D) as well as the aggregation results, we
extract snippets of information using the associated citation
views and apply the specified policies for *, +, +R and Agg
to generate the final citation.

1883

Citation Views

Policies

Tuple-Level
Citation Reasoner

Citation
Generator

define

define

User

Query Builder
UI

applicable
policies

Views associated
with result tuples

Data
(result set)

Citation

Tuple
Annotator

GtoPdb DB

citation

annotations

citation
snippets

Data
(result set)

DBA

c
ita

tio
n

q
u
e
rie

s

Figure 1: CiteDB Framework

3. SYSTEM OVERVIEW
CiteDB is implemented in Java 8, and its backend storage

is embedded in the GtoPdb database (PostgresSQL). An
overview of CiteDB is shown in Figure 1. The DBA first
specifies citation views and policies for how they are to be
used in constructing citations for general queries such as
joint- and alternates-use policies. Next, the tuple annotator
annotates the tuples of each base relation with the views
in which they may appear. These annotations are used to
construct a citation for the result set of a general query.

When a user submits a query Q through the query builder
UI, a QBE-like graphical user interface, CiteDB translates
Q into Datalog. The query is analyzed by the citation rea-
soner, which translates Qext1 into SQL for evaluation, con-
structs and evaluates Qext2 based on the result of Qext1, and
constructs the valid view combinations for each result tuple.
Citation queries for the chosen views are then executed in
the GtoPdb database to retrieve the appropriate snippets of
information, and the information combined using the speci-
fied *, + and +R policies. The citation is then returned to
the user along with the data.

Query Builder UI. CiteDB has two types of query builder
interfaces, which are implemented using the Java SWING
library. First, a user interface, which enables a user to 1)
construct and execute a general query, and 2) generate a
citation for its result set. Second, a DBA interface, which
allows the database owner to define frequent database views
along with their corresponding citation views.

4. DEMONSTRATION
For the demo, we connected CiteDB to the GtoPdb database

to extend its functionality by allowing users to submit gen-
eral queries and have them cited. Attendees will be invited
to use CiteDB to construct queries and submit them to
GtoPdb, and view citations for the returned results via Cit-
eDB’s UI. We will also demonstrate how DBAs can use the
administrator console to create view and citation queries.

We will first illustate the use of CiteDB and its UI by
showing users how to create queries and generate citations
for them. Next, we will invite the audience to try CiteDB’s
query builder interface by creating new queries. Then, users
can examine the results of their queries and click “Generate
Citations” to automatically construct the result citation (as
shown in Figure 2).

To highlight the capabilities of the tuple-level citation ap-
proach in CiteDB, we will show users how valid view com-
binations are associated with a single row, a subset of the
rows or the whole result set. This made possible by the

Figure 2: Query Builder

tuple-level annotations that are used to determine how to
cite a query results at various levels of granularity.

Finally, to help our audience better understand the tuple-
level citation approach of CiteDB, we will demonstrate how
database owners can manage view and citation queries via
the administrator console of CiteDB.
Acknowledgments. This work has been partially funded
by NSF IIS 1302212, NSF ACI 1547360, and NIH 3-U01-
EB-020954-02S1.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] A. Alawini, L. Chen, S. B. Davidson, N. Portilho, and
G. Silvello. Automating data citation: the eagle-i
experience. In JCDL, 2017.

[3] P. Buneman, S. B. Davidson, and J. Frew. Why data
citation is a computational problem. Communications
of the ACM (CACM), 59(9):50–57, 2016.

[4] P. Buneman and G. Silvello. A Rule-Based Citation
System for Structured and Evolving Datasets. IEEE
Data Eng. Bull., 33(3):33–41, 2010.

[5] DataCite. DataCite metadata schema for the
publication and citation of research data.
http://schema.datacite.org/meta/kernel-3/doc/

DataCite-MetadataKernel_v3.1.pdf (accessed Nov
2016), October 2014.

[6] S. B. Davidson, D. Deutsch, T. Milo, and G. Silvello. A
model for fine-grained data citation. In CIDR 2017, 8th
Biennial Conference on Innovative Data Systems
Research, Online Proceedings, 2017.

[7] FORCE-11. Data Citation Synthesis Group: Joint
Declaration of Data Citation Principles. FORCE11,
San Diego, CA, USA, 2014.

[8] C.-I. T. G. on Data Citation Standards and Practices.
Out of Cite, Out of Mind: The Current State of
Practice, Policy, and Technology for the Citation of
Data, volume 12. September 2013.

[9] S. Pröll and A. Rauber. Scalable data citation in
dynamic, large databases: Model and reference
implementation. In Proc. of the 2013 IEEE
International Conference on Big Data, pages 307–312,
2013.

1884

