
Mind the Gap: Bridging Multi-Domain Query Workloads
with EmptyHeaded

Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré
Stanford University

{caberger,lamb,kunle,chrismre}@stanford.edu

ABSTRACT
Executing domain specific workloads from a relational data
warehouse is an increasingly popular task. Unfortunately,
classic relational database management systems (RDBMS)
are suboptimal in many domains (e.g., graph and linear al-
gebra queries), and it is challenging to transfer data from an
RDBMS to a domain specific toolkit in an efficient manner.
This demonstration showcases the EmptyHeaded engine: an
interactive query processing engine that leverages a novel
query architecture to support efficient execution in multiple
domains. To enable a unified design, the EmptyHeaded ar-
chitecture is built around recent theoretical advancements
in join processing and automated in-query data transfor-
mations. This demonstration highlights the strengths and
weaknesses of this novel type of query processing architec-
ture while showcasing its flexibility in multiple domains. In
particular, attendees will use EmptyHeaded’s Jupyter note-
book front-end to interactively learn the theoretical advan-
tages of this new (and largely unknown) approach and di-
rectly observe its performance impact in multiple domains.

1. INTRODUCTION
An increasing diversity of data has created the need for

relational database management systems (RDBMS) that are
efficient in multiple domains or integrate easily with domain
specific analytics toolkits (like R or Scikit-learn). For ex-
ample, an RDMBS might contain relations that represent
a social network, a knowledge graph, a standard business
intelligence data source, or feature vectors to be fed to a
machine learning model. To analyze this data efficiently,
conventional wisdom suggests that external toolkits should
be used to augment an RDMBS. Unfortunately, it is not
always clear which external toolkits should be used under
what conditions. Even worse, integrating an external toolkit
with a RDBMS adds complexity to the overall query sub-
system and requires costly data transformations.

In this demonstration we showcase the EmptyHeaded en-
gine: an interactive query processing engine that uses a sin-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

gle, novel query processing architecture to efficiently unify
execution in multiple domains. EmptyHeaded provides a
Jupyter notebook front-end that enables users to issue stan-
dard SQL queries or compose pipelines which mix SQL
queries and machine learning algorithms. To process SQL
queries, EmptyHeaded uses generalized hypertree decompo-
sitions (GHD) [3] to select a query plan [6] and a worst-
case optimal join algorithm [4] to execute a query plan.
Combined, these novel components of the EmptyHeaded ar-
chitecture provide a stronger theoretical runtime guarantee
than almost all other join processing engines [1]. To process
mixed SQL and machine learning queries, EmptyHeaded
combines its SQL (GHD-based) query plans and machine
learning algorithms into a single pipeline—enabling Emp-
tyHeaded to fuse computations and optimize feature engi-
neering transformations across phases. EmptyHeaded en-
ables users to interact with this novel query subsystem by
inspecting both optimized and unoptimized query plans and
by directly observing their runtime differences.

This work highlights the theoretical benefits and sys-
tems optimizations fundamental to the EmptyHeaded de-
sign, which are difficult to understand without a demon-
stration. In particular, attendees will interactively learn the
novel components of the EmptyHeaded query architecture
that enable it to be efficient on queries in the graph, business
intelligence, and machine learning domains.

• Graph Processing: We have shown that the Empty-
Headed engine can translate theoretical advantages to
runtime advantages on join queries in the graph and
RDF domains [1, 2]. As such, we provide the first in-
teractive tutorial of worst-case optimal join algorithms
and GHDs in this part of the demonstration. We show
first-hand that the theoretical advantage of our tech-
niques translates to runtime advantages by providing
attendees with the ability to select, visualize, and ex-
ecute either (1) an optimized GHD-based query plan
or (2) an unoptimized query plan which uses only the
worst-case optimal join algorithm. In conjunction, we
describe the theoretical advantages of optimized GHD-
based query plans and show they provide up to a 3000x
runtime improvement on graph pattern queries over
real graph datasets.

• Business Intelligence: Unfortunately, worst-case
optimal joins and GHDs do not always provide a theo-
retical advantage, and are not a direct match for most
standard business intelligence queries. Even so, we
show that EmptyHeaded can achieve competitive per-

1849

pipeline.SQL("""CREATE TABLE feature_table AS (
SELECT is_republican,
county,
precinct,
sex_code AS sex,
race_code AS race,
ethnic_code AS ethnicity,
birth_age AS age

FROM precinct_votes, ncvoter
WHERE ncvoter.vtd_desc=precinct_votes.precinct
AND ncvoter.county_desc=precinct_votes.county
AND ncvoter.status_cd='A');""")

pipeline.logistic_regression.train(
train="feature_table",
target="is_republican",
model="voter_classification”)

input output

February 25, 2017

In [4]: print db.getRelation("feature_table")

Out[4]: age county ethnicity is republican precinct race sex

0 29 ALAMACE NL 0 ROSE W M

1 65 ALAMACE NL 1 GIDD W F

In []: import pandas as pd

pd.DataFrame(columns=["age","county","ethnicity","is_republican","precinct","race","sex"],data=[[29,"ALAMACE","NL",0,"ROSE","W","M"],[65,"ALAMACE","NL",1,"GIDD","W","F"]])

1

Figure 1: Example Jupyter notebook interaction (input and
output) with the EmptyHeaded engine. The input is a Emp-
tyHeaded pipeline consisting of a SQL query followed by the
training of a logistic regression model. The output of each
stage (the SQL stage is shown here) can be returned as a
Pandas DataFrame.

formance1 on such workloads by adding two classic
database optimizations to its GHD-based query com-
piler: (1) pushing down selections and (2) join order-
ing. In this part of the demonstration attendees will
visually inspect these query optimizations in Empty-
Headed. They will also experience the effect of these
optimization choices on the end-to-end query execu-
tion time. More precisely, the attendees will experi-
ence up to a 2x performance difference due to pushing
down selections and up to a 5x performance difference
for various join orders.

• Machine Learning: A common task for an analyst
is to issue a query over relational data which filters re-
lations via selections and de-normalizes relations via
joins to produce a single feature set to train a machine
learning model [7]. Unfortunately, most modern solu-
tions require an analyst to transfer the data from the
RDMBS, and perform some feature engineering tasks
prior to training the model. EmptyHeaded is designed
to eliminate some of the complexity in these pipelines
by automatically fusing data transformations, such as
the encoding of categorical variables, into the query.
In this part of the demonstration attendees will expe-
rience the performance and complexity difference be-
tween running such a pipeline entirely inside Empty-
Headed, versus Pandas and Scikit-learn. Attendees
will see how feature engineering steps are eliminated
in EmptyHeaded and how an end-to-end workload can
be an order of magnitude faster in EmptyHeaded than
Pandas and Scikit-learn.

1EmptyHeaded has been benchmarked on TPC-H queries
1,3,5,6,8 at scale factors 1 and 100 and performed at worst
35% off the best-of-breed HyPer (v0.5.0) database engine on
a single machine with a total of 56 cores on four Intel Xeon
E7-4850 v3 CPUs.

(…)
pipeline.logistic_regression(…) Query4

Compiler
GHD

Code4
Generation

Query4
Execution

Trie

C++

DataFrame

pipeline.SQL(…)
pipeline.logistic_regression(…)

Code4
Generation DataFrame

Query4
Compiler

Query4
ExecutionGHD C++ Trie

Figure 2: System overview of the EmptyHeaded engine.

By the end of this demonstration attendees will under-
stand the tradeoffs, optimizations, and theoretical guaran-
tees necessary to design a query processing architecture that
uses worst-case optimal joins and GHDs. Throughout the
demonstration attendees will interact directly with the Emp-
tyHeaded engine to gain a deeper understanding its archi-
tecture and observe its flexibility in multiple domains.

2. SYSTEM OVERVIEW
We briefly overview the input and output, query execu-

tion, and pipeline architecture of the EmptyHeaded engine.

System Input and Output. The EmptyHeaded engine ac-
cepts data from a Pandas DataFrame or from a comma sep-
arated value (CSV) file on disk. Queries are returned to
the user in the form of a Pandas DataFrame. The Empty-
Headed engine accepts queries written in SQL and supports
conjunctive queries with selections and aggregations. Addi-
tionally, EmptyHeaded enables users to compose pipelines
that combine both SQL and machine learning stages (see
Figure 1).

Query Execution. The EmptyHeaded engine translates
each SQL query to a GHD [3], which is a directed acyclic
graph (DAG) that represents a query plan for the worst-case
optimal join algorithm. The theoretical benefits of GHDs
extend beyond the benefits of the worst-case optimal join
algorithm [6]. To select a GHD-based query plan (or GHD)
EmptyHeaded uses a brute-force search to find the query
plan (GHD) with the tightest theoretical guarantees. After
a query plan (GHD) is selected, the generic worst-case op-
timal join algorithm [4] is used, at each node in the DAG,
to generate C++ code for the query. As we show in this
demonstration, EmptyHeaded uses simple heuristics to de-
termine the order attributes are processed in the worst-case
optimal join algorithm (and therefore the order in which
attributes are emitted during code generation). Next, the
emitted code is executed over the input relations (stored as
tries) and it produces a single output relation (again stored
as a trie). An overview of this process is shown in Figure 2.

Pipeline Architecture. The EmptyHeaded engine supports
a pipeline architecture which, similar to Spark ML Pipelines
[5], enables users to mix SQL and machine learning work-
loads in a single pipeline. The goal of EmptyHeaded
pipelines is to enable optimizations across workloads that
combine SQL and machine learning operations. To simplify
such optimizations, all pipeline stages in EmptyHeaded use a
single trie-based data storage model. This storage model, al-
though designed for the worst-case optimal join algorithm, is
versatile enough to provide high-performance on other com-
mon tasks. EmptyHeaded pipelines currently support fusion
of one-hot encoding in pipelines containing SQL queries and
a logistic regression or collaborative filtering learning algo-

1850

Node	0:
Relations:	
R,S,T

Node	1:
Relations:	
A,B,C

Node	2:
Relations:	

U

GHD	Visualization

Barbell Execution 2

May 21, 2017

In [1]: ghd = GHD.fromSQL("""

SELECT COUNT(*)

FROM Edge as R, Edge as S, Edge as T,

Edge as A, Edge as B, Edge as C, Edge as U

WHERE R.dst=S.src and S.dst=T.dst and T.src=R.src

and R.src=U.src and A.dst=B.src and B.dst=C.dst

and A.src=C.src and U.dst=A.src""").optimize()

print ghd.num_nodes

3

In [2]: print {"node0":ghd.node(0).relations,"node1":ghd.node(1).relations,

"node2":ghd.node(2).relations}

{’node1’: [’A’, ’B’, ’C’], ’node0’: [’R’, ’S’, ’T’], ’node2’: [’U’]}

In [3]: ghd.node(1).force_attribute_order(’A.src’,’B.src’,’B.dst’)

db.execute(ghd)

TIME[GHD NODE 0]: 0.142s

TIME[GHD NODE 1]: 0.311s

TIME[GHD NODE 2]: 0.032s

TIME[TOP DOWN]: 0.0s

In []:

1

Figure 3: Screenshot of an EmptyHeaded Jupyter notebook
which shows a user entering the Barbell query and inspect-
ing its GHD. The screenshot also shows how users can force
a specific attribute order for the worst-case optimal join al-
gorithm. An image of the GHD for the Barbell query, which
is embedded in our Jupyter notebook tutorial, is shown be-
low the screenshot of the EmptyHeaded interface.

rithm. We are adding support for more machine learning
algorithms and the fusion of other feature engineering tasks
(such as bucketization and feature crosses).

3. DEMONSTRATED FEATURES
Our demonstration of EmptyHeaded is composed of

queries in three domains: (1) graph processing queries where
the theoretical advantages of worst-case optimal joins and
GHDs are exercised, (2) business intelligence queries where
the classic database optimizations of join ordering and push-
ing down selections are exercised, and (3) mixed analytics
queries which exercise the EmptyHeaded pipeline architec-
ture. Our demonstration will focus on a single query in each
domain (described next), but will also contain additional
queries for attendees to experiment within each domain.

3.1 Graph Processing
Our first demonstration query is a graph pattern query

that includes an interactive introduction to the theoretical
advantages of worst-case optimal joins and GHDs.

Example 3.1. Attendees will run a query which finds all
pairs of triangles connected by a path of length one. We call
this the Barbell query. Attendees will experiment with this
query on several real graph datasets, with the default being
a Facebook social network graph. The Barbell query pattern
is shown next.

R.src
T.src
U.src

R.dst
S.src

S.dst
T.dst

A.src
C.src
U.dst

A.dst
B.src

B.dst
C.dst

R

T

S
U

A

C

B

Warm Up: Worst-Case Optimal Joins. As an introduc-
tion to the EmptyHeaded engine, attendees will run the pop-
ular triangle counting query, whose pattern is contained in
the Barbell query. Attendees will use a Jupyter notebook
tutorial that highlights the asymptotic difference between
pair-wise (O(N2)) and worst-case optimal (O(N3/2)) join
engines on this query. Thus, for the first time, attendees
will have the opportunity to experience the effect of worst-
case optimal joins in a practical analysis scenario.

Query Plans: GHDs. Next, attendees will experiment
with the Barbell query using the interface presented in Fig-
ure 3. Attendees be able to execute two different query
plans for the Barbell query: (1) a query plan which uses
only the worst-case optimal join algorithm and (2) a query
plan which uses the GHD-based query plan shown in Fig-
ure 3. Attendees will learn that the GHD-based query plan
has a worst-case running time of O(N3/2 +out) where out
is the size of the output, whereas the query plan that uses
only the worst-case optimal join algorithm has a bound of
Ω(N3). Attendees will experience this asymptotic differ-
ence translating to a large empirical difference (>3000x) by
running the aggregation version of Barbell query shown in
Figure 3 on both query plans.

3.2 Business Intelligence
The second part of the demonstration uses a standard

business intelligence query, where worst-case optimal joins
and GHDs are not theoretically superior2 to traditional pair-
wise approaches. As such, to process these queries effi-
ciently it is necessary to add classic database optimizations,
like pushing down selections and different join orders, to
the EmptyHeaded query architecture. In this part of the
demonstration attendees will learn how these optimizations
are added to the GHD-based query plans in EmptyHeaded,
and again experience their impact on overall query runtime.

Example 3.2. Attendees will run TPC-H query 5 at scale
factor 1, which is a standard business intelligence benchmark
query. A GHD for this query is shown in Figure 4.

Pushing Down Selections. Processing selection con-
straints as early as possible in the query plan is a classic
optimization for business intelligence queries. While it is
standard that traditional query optimizers push these selec-
tion constraints down as far as possible in the query plan,
it is not obvious how to add such optimizations to a GHD-
based query compiler. In this part of the demonstration,
attendees will learn how EmptyHeaded pushes down selec-
tions by adding additional nodes to its GHD-based query
2Most business intelligence queries are acyclic joins and/or
have selection constraints that restrict the size of the output.

1851

Node%0:
Nation(nationkey,regionkey)
Region(regionkey)

Node%1:
Orders(orderkey,custkey)
Customer(nationkey,custkey)
Supply(nationkey,suppkey)
Lineitem(orderkey,suppkey)

Node%1:
Nation(nationkey,regionkey)
Region(regionkey)

Node%3:
Orders(orderkey,custkey)
Customer(nationkey,custkey)
Supply(nationkey,suppkey)
Lineitem(orderkey,suppkey)

Node%0:
Region(regionkey,r_name=“ASIA”)

Node%2:
Orders(orderkey,custkey,

orderdate <=….)

Figure 4: Optimized GHD for TPC-H Query 5 where selec-
tions are pushed down. The unoptimized GHD, w/o pushing
down selections, contains only nodes 1 and 3.

plans. In particular the GHD for TPC-H query 5 (see Fig-
ure 4) will be investigated and discussed. The attendees will
inspect the optimized and unoptimized query plans for this
query and observe up to a 2x performance difference.

Attribute Order. An important component of the worst-
case optimal join algorithm is the order in which attributes
are processed. In this part of the demonstration users will
experience the effect of different attribute orders when exe-
cuting only GHD node 3 of TPC-H query 5 (see Figure 4),
which is where over 98% of the total query runtime occurs.
The attendees will force different attribute orders here and
learn the heuristics (loop independent intersections and par-
allelization hints) EmptyHeaded uses to select its attribute
order. While forcing different attribute orders, attendees
will be able to experience up to a 5x runtime difference be-
tween their best and worst possible choices.

3.3 Machine Learning
The final portion of this demonstration uses a workload

that is composed of two phases: (1) a SQL phase and (2)
a machine learning phase. Attendees will learn how to use
EmptyHeaded pipelines in this part of the demonstration
and will directly compare the performance and verbosity of
completing this pipeline in EmptyHeaded versus the popular
Pandas and Scikit-learn toolkits.

Example 3.3. Attendees will be presented with a real
dataset of voter information from North Carolina which con-
tains two relations: (1) one containing information about
individual voters (7,503,555 rows) and (2) one containing
information about voting precincts in North Carolina (2,751
rows). Attendees will use logistic regression to train a ma-
chine learning model that predicts voters’ preferences based
on features in these relations. To accomplish this, the rela-
tions must be filtered for valid training data (active voters),
and joined to create a single feature set to train the model.
The high-level flow of this pipeline is illustrated in Figure 5.

Attendees will experience the following optimizations in
EmptyHeaded when experimenting with this pipeline:

• Feature Engineering: By compiling and executing
this pipeline in a single engine, EmptyHeaded can re-
move verbose, but trivial, feature engineering tasks
from the user—in this case one-hot encoding. Atten-
dees will compose this pipeline in EmptyHeaded using
only two statements and compare this to the 20+ lines

a b b c a b c

R S σa=“active”-(R-⨝ S)--

Encode

ModelFeatures(f1,…fn)Table

Train

Figure 5: Example data flow for a pipeline containing a
SQL stage followed by a machine learning stage. One-hot
encoding is needed for featurization between stages.

36.7

87.8

17.6

142.1

6.5

87.8

17.6

111.9

0.06 2.8
9.2 12

0

50

100

150

sql encoding training total

Ti
m
e	

(s
)

Pandas/Scikit-­‐learn
MonetDB/Scikit-­‐learn
EmptyHeaded

Figure 6: Performance of engines on the mixed SQL and ma-
chine learning workload used in the final part of this demon-
stration. MonetDB Jun2016-SP2 release is benchmarked,
and logistic regression is trained for 5 fixed iterations in all
engines. Run on a single machine with a total of 56 cores
on four Intel Xeon E7-4850 v3 CPUs.

of Python needed to complete this same pipeline in
Pandas and Scikit-learn.

• Data Transformations: Having knowledge of the
entire pipeline, EmptyHeaded can skip materializing
the table in the workflow shown in Figure 5 and in-
stead only materialize the final feature matrix for the
machine learning model. Here attendees will learn how
EmptyHeaded fuses data transformations to optimize
materializations across pipeline stages.

In a side-by-side comparison, attendees will observe up
to an order of magnitude better performance (see Figure 6)
when executing this pipeline in EmptyHeaded versus Pandas
and Scikit-learn.

Acknowledgments: We gratefully acknowledge the sup-
port of the Defense Advanced Research Projects Agency
(DARPA) XDATA Program under No. FA8750-12-2-0335,
the National Science Foundation (NSF) CAREER Award
under No. IIS-1353606, the Office of Naval Research (ONR)
under awards No. N000141210041 and No. N000141310129,
the Sloan Research Fellowship, and the Moore Foundation.

4. REFERENCES
[1] C. Aberger et al. Emptyheaded: A relational engine for graph

processing. SIGMOD ’16, pages 431–446.

[2] C. Aberger et al. Old techniques for new join algorithms: A case
study in rdf processing. ICDE Workshops ’16, pages 97–102.

[3] G. Gottlob et al. Hypertree decompositions: Structure,
algorithms, and applications. Graph-theoretic concepts in
computer science, pages 1–15, 2005.

[4] H. Q. Ngo et al. Worst-case optimal join algorithms. PODS ’12,
pages 37–48.

[5] M. Armbrust et al. Spark sql: Relational data processing in
spark. SIGMOD ’15, pages 1383–1394.

[6] M. Joglekar et al. Aggregations over generalized hypertree
decompositions. PODS ’16.

[7] A. Kumar. To join or not to join?: Thinking twice about joins
before feature selection. SIGMOD ’16, pages 19–34.

1852

