
Adaptive Statistics in Oracle 12c
Sunil

Chakkappen
*

Suratna
Budalakoti

†

Ramarajan
Krishnamachari

*

Satyanarayana R
Valluri

*

Alan
Wood

†

Mohamed
Zait

*

*Oracle Corp., †Oracle Labs

400 Oracle Parkway, Redwood Shores, CA 94065, USA
{sunil.chakkappen, suratna.budalakoti, ramarajan.krishnamachari, satya.valluri, alan.wood, mohamed.zait}@oracle.com

ABSTRACT

Database Management Systems (DBMS) continue to be the

foundation of mission critical applications, both OLTP and

Analytics. They provide a safe, reliable and efficient platform to

store and retrieve data. SQL is the lingua franca of the database

world. A database developer writes a SQL statement to specify

data sources and express the desired result and the DBMS will

figure out the most efficient way to implement it. The query

optimizer is the component in a DBMS responsible for finding the

best execution plan for a given SQL statement based on statistics,

access structures, location, and format. At the center of a query

optimizer is a cost model that consumes the above information

and helps the optimizer make decisions related to query

transformations, join order, join methods, access paths, and data

movement.

The final execution plan produced by the query optimizer depends

on the quality of information used by the cost model, as well as

the sophistication of the cost model. In addition to statistics about

the data, the cost model also relies on statistics generated

internally for intermediate results, e.g. size of the output of a join

operation. This paper presents the problems caused by incorrect

statistics of intermediate results, survey the existing solutions and

present our solution introduced in Oracle 12c. The solution

includes validating the generated statistics using table data and via

the automatic creation of auxiliary statistics structures. We limit

the overhead of the additional work by confining their use to cases

where it matters the most, caching the computed statistics, and

using table samples. The statistics management is automated. We

demonstrate the benefits of our approach based on experiments

using two SQL workloads, a benchmark that uses data from the

Internal Movie Data Base (IMDB) and a real customer workload.

1. INTRODUCTION
Database query processing refers to the process of compiling and

executing SQL statements within a Database Management System

(DBMS). The process consists of the SQL Compiler taking a SQL

statement text with optional bind variables as input and producing

an execution plan. The execution process (performed by the SQL

Execution component) takes the execution plan and returns the

result of the execution. An execution plan contains the detailed

steps necessary to execute the SQL statement. These steps are

expressed as a set of database operators that consumes and

produces rows. The processing order and implementation of the

operators are decided by the query optimizer, using a combination

of query transformations and physical optimization techniques.

 Figure 1 illustrates the lifecycle of a SQL statement inside the

SQL compiler. A SQL statement goes through the Parser,

Semantic Analysis (SA), and Type-Check (TC) first before

reaching the optimizer. The Oracle optimizer performs a

combination of logical and physical optimization techniques [1]

and is composed of three parts:

Dictionary

Parser, SA,

TC, …

Query

Transformer

Plan

Generator

Code

Generator

Cost

Estimator

Cursor

Cache

C1 CnC2

SQL

Execution

SQL Compiler

SQL

statement
User or DB

Application

1

2

a) The Query Transformer (QT) is responsible for selecting the

best combination of transformations. Subquery unnesting

and view merging are some examples of Query

transformations.

b) Plan Generator (PG) selects best access paths, join methods,

and join orders. The QT calls the PG for every candidate set

of transformations and retains the one that yields the lowest

cost.

c) The PG calls the Cost Estimator (CE) for every alternative

access path, join method, and join order and keeps the one

that has the lowest cost.

The Code Generator (CG) stores the optimizer decisions into a

structure called a cursor. All cursors are stored in a shared

memory area of the database server called the Cursor Cache (CC).

The goal of caching cursors in the cursor cache is to avoid

compiling the same SQL statement every time it is executed by

using the cached cursor for subsequent executions of the same

statement. The Dictionary contains the database metadata

(definitions of tables, indexes, views, constraints, etc) as well as

object and system statistics. When processing a SQL statement,

the SQL compiler components accesses the Dictionary for

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 12

Copyright 2017 VLDB Endowment 2150-8097/17/08.

Figure 1. Architecture of SQL Engine

.

1813

information about the objects referenced in the statement, e.g. the

optimizer reads the statistics about a column referenced in the

WHERE clause. At run-time, the cursor corresponding to a SQL

statement is identified based on several criteria, such as the SQL

text, the compilation environment, and authentication rules. If a

matching cursor is found then it is used to execute the statement,

otherwise the SQL compiler builds a new one. Several cursors

may exist for the same SQL text, e.g. if the same SQL text is

submitted by two users that have different authentication rules.

All the factors that affect the execution plan, such as whether a

certain optimization is enabled by the user running the SQL

statement, are used in the algorithm used to match a cursor from

the CC.

The execution plan generated for the SQL statement is just one of

the many alternative execution plans considered by the query

optimizer. The query optimizer selects the execution plan with the

lowest cost. Cost is a proxy for performance; the lower the cost,

the better the performance (e.g. response time) of the query is

expected to be. The cost model used by the query optimizer

considers the IO, CPU and network utilization of executing the

query. The cost model relies on object statistics (e.g. number of

rows, number of blocks, and distribution of column values) and

system statistics (e.g. IO bandwidth of the storage subsystem).

The quality of the final execution plan produced by the query

optimizer depends on the quality of the information used by the

cost model and the cost model itself. In the following sections we

focus on one important input to the cost model, cardinality.

1.1 Effect of Cardinality on Plan Generation
Plan Generator (PG) is responsible for evaluating various access

paths, join methods, and join orders and choosing the plan with

the lowest cost. This section describes the PG module and the

important role cardinality estimate plays in picking the most

efficient plan. Consider the following query, Q1 that retrieves the

amount of all ‘Y Box Games’ products under the ‘Electronics’

category sold in California.

Q1:

SELECT prod_name, sum(amount_sold) amount_sold
FROM products p, customers c, sales s
WHERE p.prod_category = 'Electronics'
 AND p.prod_subcategory = 'Y Box Games'
 AND p.prod_id = s.prod_id
 AND c.cust_state_province = 'CA'
 AND c.cust_id = s.cust_id
GROUP BY prod_name;

1.1.1 Access Path Selection
PG considers different access path for the tables in a query, e.g.

some of the access paths considered for products table are

 Full Table Scan – Reads all rows in the table and produces

rows that qualify for the specified filter condition.

 Index scan – It is used to limit access to rows in the table that

qualify for the condition on the index key columns. Filters on

non-index columns can be used to further filter rows once

they are accessed. In the above example, PG evaluates using

an index scan on an index defined with key prod_category

or key prod_subcategory.

The access path with the least cost is selected. The cost is greatly

dependent on the cardinality produced after applying the

predicate(s). For example, if the number of rows produced with

predicate p.prod_subcategory = ‘Y Box Games’ is very

small compared to the total number of rows, using Index Scan on

prod_subcategory is more efficient that using Full Table Scan.

1.1.2 Join order Selection
PG explores different join orders and chooses the join order with

the least cost. For query Q1, the following join orders are possible

- (C->P->S), (C->S->P), (S->C->P), (S->P->C), (P->S->C), (P-

>C->S), where the letters correspond to the aliases of the tables

used in the query. The number of rows of each of the tables and

intermediate joins is an important input in computing the cost of

the join orders. If C and P are joined first (a Cartesian product),

the intermediate size, and the resulting cost, will be high,

compared to joining P and S first.

Note that given a join between N tables, there are at most N!

possible join permutations. Large values of N can cause an

exhaustive optimization to be prohibitive. PG employs several

heuristics to cut down the optimization time.

1.1.3 Join Method Selection
PG also selects the most efficient join method for every join order

based on the cost of feasible join methods. For example, tables P

and S can be joined using Nested Loop Join or Hash Join. Their

cost depends on the cardinalities of both inputs to the join.

Typically, Nested Loop join is the cheapest option if the left input

produces a low number of rows.

1.1.4 Query Transformations
The Query Transformer (QT) module transforms SQL statements

into a semantically equivalent form if the newly transformed form

is cheaper than the original form. For example, the query Q1 can

be transformed into query Q2 as follows.

Q2:

SELECT vw_gbc_3.item_3 prod_name,
 sum(vw_gbc_3.item_2) amount_sold
FROM sh.customers c,
 (SELECT s.cust_id item_1,
 sum(s.amount_sold) item_2,
 p.prod_name item_3
 FROM sh.sales s, sh.products p
 WHERE p.prod_id = s.prod_id
 AND p.prod_subcategory = 'Y Box Games'
 AND p.prod_category = 'Electronics'
 GROUP BY s.cust_id, p.prod_name) vw_gbc_3
WHERE c.cust_state_province='CA'
 AND c.cust_id=vw_gbc_3.item_1
GROUP BY vw_gbc_3.item_3;

In this transformation, the group-by is placed before the join to

the Customers table. In general, the transformed plan will be more

efficient than the original plan if performing a group-by earlier

reduces the number of rows that joins with the Customers table.

The query transformation layer calls PG to get the cost for both

forms of the statement and chooses the one with the least cost [1].

The group-by cardinality is a major factor in determining the cost

of these plans. Therefore, the quality of the cardinality estimate is

important for selecting the optimal transformations.

Besides the above major four decisions, the plan generator also

makes decisions that depend on the cardinality of the intermediate

results. For example, if the SQL statements executes in parallel,

the query optimizer decides how the data is reshuffled between

1814

processes that perform adjacent steps of the execution plan.

Incorrect cardinality estimates can lead to selecting the wrong

reshuffling method, which in turn negatively affect the

performance of the SQL statement.

It is evident from the above discussion, that improving the

accuracy of the cardinality estimation will greatly improve the

ability of the plan generator to select the most efficient plan.

1.2 Cardinality Estimation errors
Estimating the number of rows is one of the thorniest subjects in

query optimization. It is the Achilles heel of every query

optimizer. The formula used to estimate cardinality based on

predicates easily breaks when the predicates involve skewed

columns, expressions on columns, or complex predicates

connected using AND/OR operators. Over time, sophisticated

statistics have been added to account for skew (histograms) and

correlation (extended statistics [13]). However, pre-computed

statistics have limitations that cannot be ignored. For example, in

the Oracle database, extended statistics are limited to equality

predicates. Furthermore, there will always be query expressions

that cannot be represented as first class statistics and that will not

be available during the optimization of the SQL statement.

Consider the example query Q1 mentioned in section 1.1. Figure

2 shows the execution plan with estimated and actual cardinality

for query Q1.

The cardinality estimate for access to the products table (line 6) is

under estimated by a factor of 8. The cardinality for this operation

takes into consideration the predicates applied at line 6 and 7, i.e.

prod_subcategory = 'Y Box Games' AND prod_category =

'Electronics'. The underestimation is due to the strong correlation

between the columns involved in these two predicates. Cost

estimator estimates the cardinality based on statistics available on

these columns individually as if they are independent which leads

to incorrect estimates. The mis-estimate at line 6 cascades to

operations higher up in the plan, e.g. 5, 4. Such mis-estimates can

cause the Plan Generator to pick a suboptimal plan.

1.3 Contributions
In this paper, we discuss our approach towards improving the

quality of statistics used during query optimization. It includes

automatic creation of auxiliary statistics structures (called

extended statistics) based on workload analysis and validation of

optimizer statistics (including that of intermediate results) using

actual table data. We mitigate the cost of accessing table data

using the following techniques:

 Adaptive sampling. When accessing table data to validate

optimizer statistics we use sampling. We may read several

samples in case earlier samples fail a quality metric.

Furthermore, the statistics derived from the samples are

cached for later reuse and are automatically refreshed when

table’s data change.

 SQL Plan Directives (SPD). They are used to limit reading

table data for the purpose of validating optimizer statistics, to

cases where it matters the most. The latter is implemented by

comparing the statistics estimated by the optimizer to the

actual values seen during query execution. If there is a

significant difference between estimates and actual statistics,

then we create an SPD. The optimizer relies on SPDs to

decide whether to validate statistics by accessing table data.

In addition, SPDs are the basis for identifying extended

statistics (e.g. column group statistics) as part of a separate

statistics gathering process. Extended statistics will reduce

the reliance on reading data for validating optimizer

statistics. SPDs are generic database objects that are designed

to store other information that can improve the quality of

execution plans.

SPDs are created while executing statements and subsequent

queries use them. There can be cases where only a partial set

of directives are available for a query, especially in the ramp

up stage of an application. For example, a subset of join

orders will have directives and optimizer will have the

correct estimate for only those join orders. This may create a

bias on costs for some join orders and can lead to a

suboptimal plan. To avoid this, SQL Plan Management

techniques mentioned in [23] can be used.

The organization of the rest of the paper is as follows. Section 2

presents the related work and contributions. Section 3 discusses

the techniques proposed in this paper. Experimental results are

presented section 4 and finally section 5 concludes the paper.

2. RELATED WORK
Several solutions have been proposed to improve the quality of

cardinality estimation, in both the academic world and

commercial products. The solutions can be classified into four

categories.

1. Provide better statistics to the optimizer. For example [18]

talks about maintaining histograms using feedback from

previously executed SQL statements that gives better

cardinality estimates. [5] proposes creating an approximate

“synopsis” of data-value distributions based on the feedback

obtained from observations on the executed query workload.

It combines the technique of histograms with parametric

curve fitting leading to a specific class of linear splines.

2. New type of statistics. Statistics on individual columns is not

sufficient when dealing with the complexity of expressions

allowed by the SQL language. The following are some of the

new type of statistics used by commercial databases and

referenced in the literature.

Figure 2. Execution Plan for Q1

.

1815

a. Oracle supports collecting statistics on group of

columns to deal with correlation between columns

[13]. It also allows finding the group of columns in

a given workload [14]. Other database vendors

[11][12] also support collecting statistics on a

group of columns.

b. Filtered statistics [12] use a filter predicate to

select the subset of data that is included in the

statistics. It can improve query performance for

queries that select from well-defined subsets of

data. An experienced database administrator

knowledgeable about the workload has to create

the statistics that are relevant for the workload.

c. [4] Proposes collecting statistics on views and

some commercial systems support collecting

statistics on views [10]. Typically, the process of

collecting statistics on views is manual in these

implementations. However, [3] discusses a

statistics advisor that can recommend views for

which statistics need to be collected for a given

workload.

d. [8] argues for the construction of specialized

histograms, where the buckets are constructed to

bound the q-error [8] , an error measure (instead of

the variance, as is often the case). A rigorous

relationship can be established between q-error and

the cost of the final plan.

Detecting new statistics that are needed for a workload is a

difficult task in general. This poses a serious manageability

challenge, especially when the new statistics have to be

continuously detected as new SQL statements are added to

the workload or new applications are installed in the system.

Once the new statistics are identified, gathering and

maintaining the statistics poses another challenge. This paper

proposes ways to gather and maintain the statistics

automatically and continuously for query constructs

(including joins) that are necessary for getting good

cardinality estimates for the queries. This does not require

any input from database administrators.

3. SQL tuning. Tuning can be done in several domains: query

optimization, to improve the execution plans selected by

query optimizer; access design, to identify useful access

structures; SQL design, to restructure and simplify the text of

a badly written statement. Oracle’s Automatic SQL Tuning

feature [2] helps to automate the above tuning activities.

Some of the techniques proposed in [2] for verifying the

cardinality estimate using sampling queries, are used in this

paper as well. However, SQL tuning is designed in such a

way that it runs offline and is not part of running the

workload. Hence reducing the time taken to get accurate

cardinality estimates is not one of the primary goals. In

contrast, the ideas proposed in this paper are meant to run

while optimizing the SQL statement and make sure that it

runs in a reasonable amount of time using sampling, time

budget, SQL Plan directives, extended statistics. etc.

4. Feedback systems. Oracle 11 Release 2 introduced the use of

a feedback mechanism [6] for cases where the optimizer

cardinality estimates are incorrect. This technique corrects

the cardinality estimates for subsequent executions of the

same SQL statement using the actual cardinality observed

during prior executions of the statement. The actual

cardinality is stored in the shared cursor and is used only

when the same statement is executed. In addition, the

information stored in the cursor is not persistent and hence is

lost when restarting the DBMS. The techniques proposed in

this paper allow information learned in previous executions

to persist and can be used by other statements that share

similar SQL constructs.

Feedback mechanisms were also proposed earlier in LEO-

DB2’s learning optimizer [19]. This paper proposes

computing adjustments based on the deviation between the

estimated and actual cardinalities and storing them in

dictionary tables. These adjustments are readjusted when

new statistics are collected and can be incorrect. [22]

proposes a sampling based re-optimization method in which

after the query optimizer returns its best estimate plan, an

additional step is invoked in which the plan is re-optimized

by feeding the optimizer with refined cardinality estimates

obtained via sampling. If the re-optimized plan is different

from the optimizer plan then the original plan is considered

to be based on erroneous cardinality estimates and the re-

optimized plan is used for execution. This process of re-

optimization is repeated iteratively until the new plan is same

as that of the previous iteration.

The techniques we propose in this paper do not store the

adjustments. Instead, we store logical findings like

“misestimate has occurred for a SQL construct”. Actual

adjustments are computed during the compilation of the

statement. This accounts for any DML, statistics collection

etc., that happened since the misestimate has occurred.

3. ADAPTIVE STATISTICS

3.1 Architectural Overview
Adaptive statistics solve the cardinality misestimate issues that

manifest due to the limitations of pre-computed statistics. This

technique consists of computing the statistics

(selectivity/cardinality, even first class statistics like number of

distinct values) during optimization of the SQL statement. This

process happens in the Cost Estimator module. The statistics are

computed by executing a SQL statement against the table with

relevant predicates. This technique can be used to estimate

cardinality of operations that involve only single table as well as

more complex operations that involve join, group by etc. These

kinds of queries are referred to as statistics queries. Statistics

queries are executed in most stages of plan generation. Some

example statistics queries executed while optimizing the query Q1

in section 1.1, are:

1. Query Q3 below estimates the cardinality when costing full

table scan of products. It provides the cardinality after

applying both predicates on this table.

Q3:

SELECT sum(c1)
FROM
(SELECT 1 AS c1
 FROM products p
 WHERE (p.prod_subcategory = 'Y Box Games')
 AND (p.prod_category = 'Electronics'));

1816

2. Query Q4 estimates the cardinality when costing the access

using the index on PROD_SUBCATEOGORY column.

Q4:

SELECT c1
FROM
(SELECT /*+ index(p products_prod_cat_ix) */
 count(*) as c1
 FROM products p
 WHERE (p.prod_category = 'Electronics'));

3. Query Q5 estimates the cardinality of the join between sales

and products.

Q5:

SELECT
/*+opt_estimate(@innerquery,table,p#2,rows=8)
*/
sum(c1)
FROM
(SELECT /*+ qb_name(innerQuery) */ 1 as c1
 FROM sales SAMPLE BLOCK(47,8) SEED(1) s#0,
 products p#2
 WHERE (p#2.prod_subcategory = 'Y Box Games')
 AND (p#2.prod_category = 'Electronics')
 AND (p#2.prod_id = s#0.prod_id)) innerQuery

The index, opt_estimate hints and sample clause in these queries

are described in later sections. Figure 3 shows the execution plan

generated by the optimizer using statistics queries. Note that

cardinality estimates for all the operations are accurate. Also, the

plan is different from Figure 2. The new plan uses a Hash Join to

join Products and Sales since the cardinality is estimated correctly

for scan of Products table (operation id 5).

Figure 3. Plan for Q1 using statistics queries

Executing statistics queries as part of optimizing user SQL

statements incur additional optimization time. Oracle employs

several techniques to reduce this overhead. We describe two of

these, adaptive sampling, and SQL plan directives (SPDs), below.

Adaptive Sampling: Use sample of the table in statistics queries

to estimate the cardinality. Sampling is done by Statistics Query

Engine as shown in Figure 4. This module is responsible for

computing the optimal sample size, executing the statistics queries

within a specified time budget, using the full or partial results

from statistics queries to derive the cardinality estimate, and

storing the result of statistics queries in SPDs.

SQL Plan Directives: SPDs are persistent objects that have run

time information of SQL or SQL constructs. They are used for the

following purposes.

 For tracking the SQL constructs that caused misestimates:

This happens in the Execution Engine when the cardinality

estimate for a particular construct in an operation is

significantly different from the actual rows produced by the

operation. Cost Estimator requests estimates from the

Statistics Query Engine only for the constructs for which

misestimates are recorded as SPDs. This is to avoid

executing statistics queries for each and every construct. To

avoid the overhead of tracking in the Execution Engine, the

directives are first recorded in Directive Cache in memory

(SGA) before it is flushed to disk by background process

(MMON).

 Statistics collector (DBMS_STATS) also looks at the SPDs

for constructs with a misestimate in the Dictionary and

gathers statistics for them. For example, if the SQL construct

has multiple equality predicates, statistics collector will

collect statistics for the group of columns in the predicates.

This allows the statistics collector to collect statistics only for

group of columns that caused the misestimate.

Figure 4. Adaptive Statistics Flow

 For persistently storing the result of statistics queries to

avoid repeated execution of the same statistics queries:

Statistics Query Engine first checks if there is a SPD that has

the result of the statistics query in Dictionary and uses it if

the result is still valid. If the result is stale, it executes the

statistics query to get the correct result and stores the new

result in directive.

The sections below discuss these techniques in detail.

3.2 Adaptive Sampling Methodology
We rely on sampling to limit the overhead when reading data from

tables to validate optimizer statistics. If an access structure (e.g.

index) is efficient then we skip sampling. For the latter case, the

index is forced using a hint as in example Q4. This section

describes the algorithms used to compute an appropriate sample

size, and extrapolating the statistics value to the full data .

Formally, the adaptive sampling addresses the following problem:

given a table T and a set of operators applied to T, provide an

estimate of the cardinality of the resulting dataset, based on a

sample. The operators applied to T include table filters, joins,

group by etc. The adaptive sampling algorithm consists of

Cost

Estimator
Dictionary

DBMS_STATS

MMON

Plan

Generator

Statistics

Query

Engine

Code

Generator
Execution

Engine

SGA

Directive

Cache

1817

iterating through the following four steps, until the quality test at

step 3 is successful:

Given n, number of blocks in the initial sample, and a query Q:

1. Sample: Randomly sample n blocks from T. Apply the

operators on the sample.

2. Cardinality Estimate: Estimate the cardinality of query Q for

the entire dataset, based on the resulting cardinality after

applying the operators on this sample and samples from

previous iterations (if any).

3. Quality Test: Calculate a confidence interval around the

cardinality estimate, and perform a quality test on the

confidence interval.

4. Next Sample Size Estimate: If the quality test succeeds, stop.

If the test fails, calculate nnext, the number of additional

blocks required to be sampled, so that the resultant sample

size meets the quality test (with a certain probability). Set

nextnn . Go to step 1.

As mentioned earlier, we sample a random set of blocks from T,

as opposed to a random set of rows. This means that internal

correlation within rows in a block have to be taken into account

during the variance calculation, possibly resulting in larger

required sample sizes. However, block sampling is far cheaper

than row sampling, which makes this a reasonable trade-off.

Sampling at the block level introduces another complication: it is

expensive to remember for each row which block it originated

from, making a straightforward estimate of the block-level

variance impossible. To address this problem, we rely on two

statistical properties:

1. Central Limit Theorem [21]. The mean of a sequence of

independently and identically distributed (iid) random

variables follows a Normal distribution. This sample mean is

an unbiased estimate of the distribution mean. The variance

of the mean is
2 /n, where

2 is the distribution’s

variance, and n is the sample size.

2. The sum of square of K independent standard Normal

random variables follows a chi-squared distribution with K

degrees of freedom [21].

The basic approach, then, is, to

 Take multiple block samples of sufficient size, so that each

can be modeled as a sample from a Normal distribution, and

 Model the variance across samples as a chi-squared

distribution, to establish confidence intervals on the variance,

and derive the bounds on across-block variance from the

bounds on across-sample variance.

We present the details of the approach in the next sub-section.

3.2.1 Mathematical Details

3.2.1.1 Problem Formulation
Successful execution of the adaptive sampling algorithm requires

the solution of the following three problems:

a) Cardinality Estimate and Confidence Interval: Arrive at

an unbiased estimate M

of the true cardinality M of query

Q. Establish a 95% lower bound LM

 and a 95% upper

bound UM

 on M such that, UL MMM

 ˆ with

95% probability.

b) Quality Test: For a pre-determined λ, check if

MMU

)1(. For example, if λ=1, we can be 95%

confident that MMU

2 . That is, with 95% confidence,

the true value of M is not more than twice the estimated

value of M.

c) Next Sample Size Estimation: Given the current cardinality

estimate, and information about the samples taken till date,

estimate nk, the size of the next sample to take, so that the

condition MMU

)1(is likely to be met (with a

certain confidence).

The following three sections address each of these problems

respectively.

3.2.1.2 Solution Outline
Let µ be the ground truth mean number of rows matching the

query per block (referred to as the per block query cardinality).

Assuming that the number of blocks B constituting the table is

known, it is sufficient to estimate µ, as M = µ * B.

After K rounds of adaptive sampling, let the total number of

blocks sampled so far be N, and let the number of rows matching

Q in the ith block be xi. Then µ is estimated as:

N

x
N

i

i
 1

 (1)

The confidence interval around

can be calculated using the

well-known Central Limit Theorem [9] (ch. 4), which states that,

for a simple random sample x1,x2,..,xN from a population with

mean µ and finite variance σ2, the sample mean (calculated as

equation (1) above is an unbiased estimator of the population

mean µ, and is normally distributed as:

),(ˆ
2

N
N

 (2)

Using properties of the Normal distribution [9] (ch. 4), after N

samples, the 100(1-α)% upper confidence bound on µ is given by:

N
zUB

 *ˆ

Here zα is the 100(1-α)% percentile standard score (or z-score) of

the standard normal distribution [9], ch. 5]. We use α=0.025, so

that zα = 1.96. To establish this confidence interval, we need to

estimate σ, the query cardinality standard deviation across blocks.

A straightforward estimate of the population variance of per block

query cardinality is given by the sample variance of the sampled

blocks. However, since maintaining per block information is too

expensive, we use an alternative approach, described next, to

estimate σ.

3.2.1.3 Variance Estimation of Per Block Query

Cardinality

An alternate way to calculate

 is in terms of the number of

matching rows observed per round of sampling. Let the number of

1818

rounds of sampling completed be K, K ≥2. Let ni be the number of

blocks sampled in the ith round of adaptive sampling, and let si be

the number of rows matching Q found in the sample taken in the

ith round. Then:

K

i i

K

i i

n

s

1

1̂ (3)

An unbiased estimate M̂ of M is then given by BM *ˆˆ .

While we do not have access to the across-block variance σ, we

can compare how the estimate of the same mean changes from

round to round. We use these values to arrive at an estimate of σ.

Let xi be the observed per block query cardinality for the ith

sample, defined as
n

s
x i

i . By the Central Limit theorem, xi can

be modeled as being sampled from a normal random variable,

),(2

ii NX where

i

i
n

 . In other words,

i

iX

follows a standard normal distribution. As the sum of

square of K standard normal random variables follows a Chi-

squared distribution with K degrees of freedom (χK), the following

holds true after K rounds:

 K

i i

iX

1

2

~ K

K

i

i
i

X
n

1

2

~ K

K

i

ii Xn
1

2

2

1

~ K

After K rounds, the β = 97.5% upper bound on σ2, written

as
2ˆ
UB , can be calculated as:

,

1

2

2ˆ

1
K

K

i

ii

UB

Xn

,

1

2

2ˆ
K

K

i

ii

UB

Xn

 (4)

We know that with 95% probability, σ2 is less than
2ˆ
UB . Here

95.0,K (since β=0.95) is the value v such that,

)(95.0, vP K . That is, 95.0,K is the 0.95 p-value, or the

0.05 inverse CDF. For example, based on the chi-squared table

at[16], for K=2, 95.0,K 0.103.

The 92.5% upper bound on the per block cardinality is then given

by the formula:

UBUB ˆ*96.1ˆˆ (5)

Similarly, the lower bound UBLB ˆ*96.1ˆˆ . can be

calculated using either eq. (1).

The reason we arrive at a 92.5% upper bound on the cardinality

estimate, is due to the probabilistic approximation we do at two

stages: while estimating the standard deviation, and while

estimating the mean. Combining the two probabilistic estimates

using the union bound [17], we get:

)ˆˆ(UBUBP

075.0)ˆ()ˆ(UBUB PP

Therefore, since the overall probability of error is less than 7.5%,

the result has at least a 92.5% confidence. Similary, it can be

shown that:

1.0)ˆˆˆ(UBLBUBP

In other words, setting α=0.025, β=0.95 gives us a 90%

confidence interval on the cardinality estimate.

While the above approach requires at least two rounds of

sampling before arriving at a confidence interval, it has the

following advantage: it can calculate an accurate confidence

interval from a block sample, without requiring any block-level

information. This is very useful, as storing block level information

per row is expensive computationally and in terms of memory

usage.

Given the upper and lower bound estimates on µ, it is

straightforward to calculate M, and perform the quality test

described in Section 3.2.1.1. The next section addresses how the

next sample size is calculated, if the quality test fails.

3.2.1.4 Next Sample Size Calculation
Let the number of rounds of sampling completed be K-1, with a

total of NK-1 blocks sampled. At the end of the Kth round of

sampling, we would like the following condition to hold, so that

no more rounds are required:

ˆ1ˆ

N
z

Note that our default value for α=0.05. Writing zα for brevity, the

above equation can be rewritten as:

2

22
2 ˆ

z

N
 (6)

Using the transitivity of inequality, and using eq. (4) for the left-

hand side, we see that (6) will be true if:

2

22

,

1

2

ˆ

z

N
Xn

K

K

i

ii

 (7)

Solving for N:

2
1

1

2

,

22

2

)ˆ()ˆ(
ˆ

KK

K

i

ii

K

xnxn
z

N (8)

Since
2)ˆ(Kx is not known until after the Kth sample, we use

an estimate. By the Central Limit Theorem:

1819

K

K
n

xE
2

2])ˆ[(

Replacing this in eq. (8):

2
1

1

2

,

22

2

)ˆ(
ˆ

K

i

ii

K

xn
z

N

Setting an upper-bound on σ2 using eq. (4), and pulling out the

common factor from the terms within the parenthesis:

 ,1

1

1

2

,

22

2 1
1)ˆ(

ˆ
K

K

i

ii

K

xn
z

N (9)

Eq. (9) gives us N, the total sample size in number of blocks that

would be sufficient to meet the quality test. Using this, the

optimal sample size for the Kth round can be calculated as n = N –

NK-1.

3.2.1.5 Special Case: No Matching Rows
In the case where no matching rows are found in the two initial

samples, we follow the following strategy: a sample of double the

size in the previous iteration is taken, till at least one matching

row is found, or till the total number of blocks sampled reaches a

pre-determined threshold. If no matching rows are found till the

threshold is reached, the query cardinality is estimated as zero. If

matching rows are found in the j-th iteration, the next sample is

calculated using eq. (9), where j = K-1 and xi=0 for iteration i < j.

3.2.1.6 Sampling for complex operators
Statistics queries can be complex, involving joins, group bys, etc.

To get optimal plans for complex statistics queries, Oracle sends

estimates generated for the parts of the statement earlier. This is

done using opt_estimate hints. An example hint can be seen in

Q5.

Currently Oracle uses sampling only for the largest table in the

complex statistics query and estimates the result using the

formulas mentioned in sections 3.2.1.2 – 3.2.1.5. This can be

improved using the techniques for join cardinality estimation

proposed in [20].

3.2.1.7 Sampling without Quality Metric (older

approach)
Before the introduction of the quality-metric based approach

described previously, the standard approach used by adaptive

sampling was to take a single sample of a pre-determined size, and

use the cardinality estimate arrived via this sample as the ground

truth, without further statistical validation or extra rounds of

sampling.

Further rounds of sampling were performed only in the case of the

cardinality estimate yielding a value of zero. In this case, the

sample size was successively doubled until a non-zero cardinality

estimate was arrived at, or the entire table had been read.

3.2.2 Time budget and enforcement for statistics

queries
Oracle keeps track of performance data for previously executed

statements. Historical execution information is also available in

Automatic Workload Repository [15]. This information is used

for budgeting the time used for statistics queries. Oracle allots a

fraction of the time it spends in actually executing the query in the

past for executing the statistics queries. Once the limit allotted for

a statistics query is reached, the query execution is stopped and

the results generated so far are retrieved. The result will not be as

accurate as when the statement executes to completion, but can be

sufficient for the purpose of query optimization.

3.3 SQL Plan Directives
SPDs are persistent objects that have run time information of SQL

or SQL constructs. These objects are stored in the Dictionary,

which can be used to improve statistics gathering and query

optimization on future executions. Currently Oracle has two types

of directives – “Adaptive Sampling” and “Adaptive Sampling

Result” directives. They are described next.

3.3.1 Adaptive Sampling Directives
Adaptive sampling directives are created if execution-time

cardinalities are found to deviate from optimizer estimates. They

are used by the optimizer to determine if statistics queries (using

sampling) should be used on portions of a query. Also, these

types of directives are used by the statistics gathering module to

determine if additional statistics should be created (e.g. extended

statistics). The directives are stored based on the constructs of a

query rather than a specific query, so that similar queries can

benefit from the improved estimates.

Creation of directives is completely automated. The execution

plan can be thought of as a tree with nodes that evaluates different

SQL constructs of the query. During compilation of the query

(more precisely in Code Generator), the constructs evaluated in

these nodes are recorded in a compact form in the system global

memory area (SGA), and can be looked up later using a signature.

The signature enables sharing of a construct between queries.

For example consider Figure 2, node 6 of the query plan for Q1

scans the Products table with predicates on columns

PROD_CATEGORY, PROD_SUBCATEGORY. The signature in this

case will be built using PRODUCTS, PROD_CATEGORY,

PROD_SUBCATEGORY. That is, the signature does not use the

values used in the predicates. So if another query has predicates

on the same set of columns but with different values, the construct

in the SGA can be shared.

At the end of execution of every query, the Execution Engine goes

over all nodes in the execution plan starting from the leaf nodes

and marks those SQL constructs corresponding to node in SGA,

whose cardinality estimate is significantly different from the

actual value. The nodes whose children have misestimates are not

marked, as the misestimate can be caused by a misestimate in the

children. For example, in Q1, the optimizer has misestimated the

cardinality for products table in node 6. The construct in this node

(PRODUCTS table with PROD_CATEGORY and

PROD_SUBCATEGORY) is marked while that of the parent nodes

5, 4 etc are not. The SQL constructs that are marked (because they

caused a misestimate) are used for creating the directive. The

creation is done periodically by a separate background process,

called MMON. The directives are stored persistently in Dictionary

along with the objects that constitute constructs. They are called

directive objects. In our example, PRODUCTS,

PROD_CATEGORY, PROD_SUBCATEGORY are the directive

objects created for the misestimate in node 6 of Q1. The directive

can be used for other queries where these directive objects are

present.

1820

Cost Estimator estimates the cardinality for SQL constructs using

the available pre-computed statistics in Dictionary in the normal

way. Once this is done, it will look for any directive that exists for

the construct. It will request Statistics Query Engine to execute

statistics adaptive sampling query and get the more accurate

estimate if a directive exists for the construct.

One straight forward way to check if a directive exists for a

construct is to build the signature of the construct and see if there

exists a directive with the same signature. To maximize the usage

of directives and reduce the number of directives created, instead

of doing an exact match on the signature, we check if there is a

directive that has a subset of objects of the current construct being

estimated. If we find such a directive, we execute the statistics

adaptive sampling query. For example, the directives created for

products table during execution of Q1 can be used by another

query with an additional predicate on products table.

As mentioned earlier, we do not create directives for a node if

there is misestimate for its children. Instead a directive for the

children is created. If the misestimate in the parent node still

manifests without any misestimates in child nodes after using the

directives for children, a directive for the parent node is created.

In this case the misestimate in parent is not caused by children.

The overall process is shown in Figure 4.

3.3.2 Adaptive Sampling Result Directives
Adaptive sampling directives reduces the number of statistics

queries executed in the system by executing statistics queries only

if there is a directive created for the construct it is estimating

cardinality for. For the statistics queries executed, it still adds an

overhead to compilation. The same statistics queries may get

executed for several top level SQL statements. We use directive

infrastructure to avoid the overhead of this repeated execution.

The result of the statistics query is stored in a directive of type

Adaptive Sampling Result. This type directive has the following

directive objects:

 The tables along with its current number of rows referenced

in the statistics query.

 The SQL identifier (sqlid). It is-a hash value created based

on the SQL text.

 A signature of the environment (bind variables etc) in which

the statistics query is executed.

This type of directive is created immediately after executing a

statistics query in Statistics Query Engine. The usage of the result

stored in these type of directives is as follows:

 The statistics query engine first checks if a directive is

created for the statistics query before executing the

statement. The lookup is done based on the sqlid of the

statistics query.

 If there is a directive, we check if the result stored in the

directive is stale. The result can be stale if some DML has

happened for any of the tables involved in the statistics

query. If the current number of rows (maintained in SGA) for

any of the tables is significantly different from what is stored

in the directive, we consider the directive as stale.

 If a directive is stale, we mark it as such and execute the

statistics query to populate the new result in the directive.

3.3.3 Automatic extended statistics
In real-world data, there is often a relationship or correlation

between the data stored in different columns of the same table.

For example, in the products table, the values in

PROD_SUBCATEGORY column are influenced by the values

PROD_CATEGORY. The optimizer could potentially miscalculate

the cardinality estimate if multiple correlated columns from the

same table are used in the where clause of a statement. Extended

statistics allows capturing the statistics for group of columns and

helps the optimizer to estimate cardinality more accurately [13].

Creation of extended statistics was manual when it was introduced

in Oracle 11g. Oracle had also introduced APIs to find all column

groups in a given workload and to create extended statistics for all

of them [13].

In Oracle 12c, the extended statistics are automatically created for

all the column groups found in the SQL constructs that caused the

misestimate. This avoids the creation of extended statistics for

unnecessary group of columns that are not causing a misestimate

in cardinality and suboptimal plans. The automatic creation of

extended statistics relies on the SPD infrastructure explained in

section 3.3.1. The adaptive sampling directives maintain different

states depending on whether the corresponding construct has the

relevant extended statistics or not. It goes through the following

state changes, as shown in Figure 5.

 NEW: When a directive is created as described in section

3.3.1 it will be in the NEW state.

 MISSING_EXT_STATS: When optimizer finds directives

corresponding to the constructs in the query it will check if

there is a column group in the construct. If no extended

statistics are created yet for the group then those column

groups will be recorded in the dictionary tables. The state of

the directive will be changed to MISSING_EXT_STATS.

 HAS_EXT_STATS: The statistics gathering process (either

manual, or automatic job) creates extended statistics for the

groups that are monitored. If optimizer finds the extended

statististics for the column group corresponding to the

directive, it will change the state to HAS_EXT_STATS.

Statistics queries are not executed for the directives with

HAS_EXT_STATS state. If the extended statistics produce

more accurate estimate, it avoids the overhead of executing

statistics queries.

Figure 5. SPD State Transition Diagram

 PERMANENT: If Execution engine finds misestimate for a

construct and if the construct has a directive with state

HAS_EXT_STATS, it goes throgh a state transition to

PERMANENT and will use statistics queries from then

onwards for the directive. This is because the extended

statistics in previous state did not help to correct the

misestimate for some queries.

All the states except HAS_EXT_STATS execute statistics queries.

NEW

MISSING_EXT_STATS HAS_EXT_STATS

PERMANENT

1821

4. PERFORMANCEEVALUATION
Adaptive statistics feature is available in Oracle 12c which has

been in production for over 4 years and this section presents a

performance study of the feature in Oracle 12c Release 2. The

various aspects of adaptive statistics are evaluated on a publicly

available workload as well as using a real customer workload.

4.1 Workloads
We ran our experiments on two workloads.

 IMDB Workload [7]: We used the IMDB dataset benchmark

that uses data from the Internal Movie Data Base (IMDB).

We ran our tests on the 113 queries in the benchmark.

 Customer X Workload. This is a real-world workload from a

large market research company. We ran our tests on a sample

of 29 queries with a diverse profile based on the execution

time: short, medium and long.

4.2 Experiment Setup
The experiments were run on a 48 CPU, X86 machine running

Linux 3.8. The machine has 512GB of physical memory.

For each of the workloads, we ran six different experiments:

1. Baseline. Adaptive statistics feature is not used.

2. Adaptive statistics without quality metrics (AS w/o QM). The

quality of the results from the statistics queries is not

measured in this experiment as described in section 3.2.1.7.

3. Adaptive statistics with quality metrics (AS w/ QM). Quality

test is performed on the results of the statistics queries and

statistics queries are re-executed with higher sample size as

described in section 3.2.

4. Adaptive statistics with quality metrics and with cache (AS

w/ QM+Cache). The results of the statistics queries are

cached persistently (section 3.3.2) and they are fetched from

the cache instead of executing them.

5. Adaptive statistics with directives (AS w/ SPD). Statistics

queries are executed only if there is a corresponding SPD

(section 3.3.1).

6. Adaptive statistics with directives and extensions (AS w/

SPD+EXT). If there is extended statistics corresponding to a

SPD, the corresponding statistics queries are not executed

(section 3.3.3) in this setup.

In each experiment, we measure the parse time (time to generate

the execution plan), the total execution time (aggregate time spent

by all the processes that participated in the execution) and the

wall clock run time (the difference between the start and end of

the execution of the query). Note that if the query executes in

serial then the total execution time is same as the wall clock run

time. However, for a parallel query execution, the wall clock time

is less than or equal than the total execution time. All the

experiments used a degree of parallelism of 16.

4.3 Results

4.3.1 IMDB Workload
Out of 113 queries, 107 queries changed plans with “AS w/ QM”.

We analyzed the plan changes for a sample of 23 queries. 20

queries had a join order change. Join method changed from

nested-loops to hash join in 12 queries and 2 queries had the

reverse change, i.e. from hash join to nested-loops join.

Figure 6 shows the wall clock run time and the average hard parse

time and Figure 7 shows the total execution time and average hard

parse time for the workload.

From Figure 6, it can be seen that compared to baseline, with AS

w/o QM, the wall clock run time improves by about 70% at the

expense of long parse time. The average parse time worsens

further by about 56% if quality metrics are not used for statistics

queries. For this workload, the wall clock run time remains almost

the same with and without quality metrics. We verified that the

cardinality estimated is more accurate when using the Quality

Metric. However, this improved cardinality estimate does not

result in different plans in this workload.

On the other hand, as can be observed from Figure 7, the total

execution time increases when adaptive statistics are used though

the wall clock run time decreases. This shows that using adaptive

statistics, the optimizer is able to find plans that are more

parallelizable. These plans use more resources and finish

execution faster.

Note that “AS w/ QM+Cache” experiment has a parse time that is

close to that of Baseline. This means that, if the workload is

executed multiple times, only the first execution incurs the higher

parse time, which is then amortized over later executions. In

addition, usage of SPDs reduces the parse time considerably even

for the first execution by selecting only the statistics queries that

correct cardinality misestimates. Using directives (AS w/ SPD)

decreased the wall clock time by about 6.8%. However, the

improvement is significantly lower than that of AS w/ QM (no

directives) in this workload. This is because, SPDs are created

only for the misestimates seen in the final plan. It takes several

executions with different plans (e.g. different join orders) to

generate more directives. Also there is no guarantee that we will

see the join orders that has misestimate in the final plan even if

the query is run several times. Hence, we created directives only

from the first three executions in this experiment.

Finally, Adaptive Statistics w/Directives & Extension parse time

is better than without using Extensions, since statistics queries are

not executed if there are extended statistics to help to produce

better quality estimates.

Figure 10 shows a scatter graph with the relationship between the

run-time of a query and the absolute improvement in the run-time,

as a result of AS w/ QM. In the graph, the queries can be divided

into two categories based on the difference in the impact of

adaptive sampling: the short queries (<30 seconds run-time), and

the long queries (>30 seconds run-time). For the long queries, the

absolute improvement grows roughly linearly with the run-time,

so that the percentage improvement is roughly constant. This is a

desirable property, as the long running queries show the greatest

improvement. However, the same does not hold for short running

queries, with many showing a small improvement, or even a

significant increase in the run-time (in terms of percentage).

However, with the exception of one query, most queries that show

an increase in the run-time have wall clock run-time of less than

30 seconds, and hence do not have a large negative impact on the

overall wall clock run-time.

1822

4.3.2 Customer X Workload
Out of 29 queries, 21 queries changed plans with “AS w/ QM”.

The changes fall in the following categories: (1) access path

changes (different indexes, from index scan to sequential table

scan) [4 queries], (2) Join order [15 queries], (3) Join method

(from nested loop to hash join) [3 queries], Transformation: join

predicate push down and Group by placement is not chosen in 3

and 1 queries respectively.

We can see trends similar to the IMDB benchmark in the

Customer X workload (Figure 8 and Figure 9) except for the

following differences.

 With quality metric, the wall clock time or total execution

time is better than not using quality metric. So the quality

test makes a difference in this workload.

 The total execution time for “AS w/ SPD” is about 50%

better than baseline, while spending a very small amount of

extra parse time. However, wall clock time does not show a

comparable improvement. This is due to two queries that,

based on better estimates choose a plan that distributes the

records differently, which causes some parallel processes to

run idle. If we exclude these two queries, the wall clock time,

is comparable to the total execution time, in being about 50%

better than baseline.

Figure 6. IMDB Workload – Wall Clock Run Time Figure 7. IMDB Workload – Total Execution Time

Figure 8. Customer X Workload – Wall Clock Run Time Figure 9. Customer X Workload – Total Execution Time

Figure 10. IMDB Workload: Run-time vs Improvement with

Adaptive Statistics (using QM)

Figure 11. Customer X Workload: Run-time vs Improvement with

Adaptive Statistics (using QM)

1823

 In this workload, the parse+total execution time is three

times better than using adaptive statistics even without cache,

directives and extensions.

Figure 11 shows a scatter graph, displaying the relationship

between the query run-time, and the absolute improvement in the

run-time. It demonstrates similar pattern as in IMDB workload:

the absolute improvement for a query increases linearly with the

query runtime.

5. CONCLUSION
We presented the problems caused by incorrect statistics of

intermediate results, surveyed the existing solutions and presented

the approach we introduced in Oracle 12c. We performed

experiments using two SQL workloads, IMDB and a real

customer workload. The experiments show that the approach of

computing statistics during compilation using statistics queries

gives significant improvement on execution time. The techniques

used for reducing compilation overhead of statistics queries were

effective in these workloads.

6. REFERENCES
[1] R. Ahmed, A. W. Lee, A. Witkowski, D. Das, H. Su, M. Zaït,

and T. Cruanes. Cost-based query transformation in oracle.

In Proceedings of the 32nd International Conference on

Very Large Data Bases, Seoul, Korea, September 12-15,

2006, pages 1026–1036, 2006.

[2] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaït, and M.

Ziauddin. Automatic SQL tuning in oracle 10g. In

(e)Proceedings of the Thirtieth International Conference on

Very Large Data Bases, Toronto, Canada, August 31 -

September 3 2004, pages 1098–1109, 2004.

[3] A. El-Helw, I. F. Ilyas, and C. Zuzarte. Statadvisor:

Recommending statistical views. PVLDB, 2(2):1306–1317,

2009.

[4] C. A. Galindo-Legaria, M. Joshi, F. Waas, and M. Wu.

Statistics on views. In VLDB 2003, Proceedings of 29th

International Conference on Very Large Data Bases,

September 9-12, 2003, Berlin, Germany, pages 952–962,

2003.

[5] A. C. König and G. Weikum. Combining histograms and

parametric curve fitting for feedback-driven query result-size

estimation. In VLDB’99, Proceedings of 25th International

Conference on Very Large Data Bases, September 7-10,

1999, Edinburgh, Scotland, UK, pages 423– 434, 1999.

[6] A. W. Lee and M. Zaït. Closing the query processing loop in

oracle 11g. PVLDB, 1(2):1368–1378, 2008.

[7] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper,

and T. Neumann. How good are query optimizers, really?

PVLDB, 9(3):204–215, 2015.

[8] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad

plans by bounding the impact of cardinality estimation

errors. PVLDB, 2(1):982– 993, 2009.

[9] W. Navidi. Statistics for Engineers and Scientists. McGraw-

Hill, New York, 2006.

[10] IBM Developer Works. Get the most out of DB2 optimizer:

Leveraging statistical views to improve query execution

performance.

https://www.ibm.com/developerworks/data/library/

techarticle/dm-1305leverage.

[11] IBM Developer Works. Understand column group statistics

in db2.

http://www.ibm.com/developerworks/data/library/techarticle/

dm-0612kapoor/index.html.

[12] MSDN. Statistics, SQL Server 2016.

https://msdn.microsoft.com/en-us/library/ms190397.aspx.

[13] Oracle Blog. Extended statistics.

https://blogs.oracle.com/optimizer/entry/extended_statistics.

[14] Oracle Blog. How do I know what extended statistics are

needed for a given workload.

https://blogs.oracle.com/optimizer/entry/how_

do_i_know_what_extended_statistics_are_needed_for_a_giv

en_ workload.

[15] Oracle Documentation. Overview of the automatic workload

repository.

http://docs.oracle.com/cd/E11882_01/server.112/e41573/

autostat.htm#PFGRF02601.

[16] Penn State. Chi-square table.

http://sites.stat.psu.edu/~mga/401/tables/Chi-square-

table.pdf.

[17] Wikipedia. Boole’s inequality.

https://en.wikipedia.org/wiki/Boole’s_inequality.

[18] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M.

Tran. ISOMER: consistent histogram construction using

query feedback. In Proceedings of the 22nd International

Conference on Data Engineering, ICDE 2006, 3-8 April

2006, Atlanta, GA, USA, page 39, 2006.

[19] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO -

DB2’s learning optimizer. In VLDB 2001, Proceedings of

27th International Conference on Very Large Data Bases,

September 11-14, 2001, Roma, Italy, pages 19–28, 2001.

[20] D. Vengerov, A. C. Menck, M. Zaït, and S. Chakkappen.

Join size estimation subject to filter conditions. PVLDB,

8(12):1530–1541, 2015.

[21] R. R. Wilcox. Fundamentals of Modern Statistical Methods:

Substantially Improving Power and Accuracy. Springer,

2010.

[22] W. Wu, J. F. Naughton, and H. Singh. Sampling-based query

re-optimization. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD Conference

2016, San Francisco, CA, USA, June 26 - July 01, 2016,

pages 1721–1736, 2016.

[23] M. Ziauddin, D. Das, H. Su, Y. Zhu, and K. Yagoub.

Optimizer plan change management: improved stability and

performance in oracle 11g. PVLDB, 1(2):1346–1355, 2008.

1824

