
State Management in Apache Flink R©

Consistent Stateful Distributed Stream Processing

Paris Carbone† Stephan Ewen‡ Gyula Fóra?

Seif Haridi† Stefan Richter‡ Kostas Tzoumas‡

†KTH Royal Institute of Technology
{parisc,haridi}@kth.se

?King Digital Entertainment Limited
gyula.fora@king.com

‡data Artisans
{stephan,s.richter,kostas}

@data-artisans.com

ABSTRACT
Stream processors are emerging in industry as an apparatus that
drives analytical but also mission critical services handling the core
of persistent application logic. Thus, apart from scalability and
low-latency, a rising system need is first-class support for applica-
tion state together with strong consistency guarantees, and adaptiv-
ity to cluster reconfigurations, software patches and partial failures.
Although prior systems research has addressed some of these spe-
cific problems, the practical challenge lies on how such guarantees
can be materialized in a transparent, non-intrusive manner that re-
lieves the user from unnecessary constraints. Such needs served as
the main design principles of state management in Apache Flink,
an open source, scalable stream processor.

We present Flink’s core pipelined, in-flight mechanism which
guarantees the creation of lightweight, consistent, distributed snap-
shots of application state, progressively, without impacting contin-
uous execution. Consistent snapshots cover all needs for system
reconfiguration, fault tolerance and version management through
coarse grained rollback recovery. Application state is declared
explicitly to the system, allowing efficient partitioning and trans-
parent commits to persistent storage. We further present Flink’s
backend implementations and mechanisms for high availability, ex-
ternal state queries and output commit. Finally, we demonstrate
how these mechanisms behave in practice with metrics and large-
deployment insights exhibiting the low performance trade-offs of
our approach and the general benefits of exploiting asynchrony in
continuous, yet sustainable system deployments.

1. INTRODUCTION
Traditionally, when implementing data-driven applications and

services, state was separated from the application logic that per-
forms the computation on data. The typical architecture has the
state centralized in a database management system shared among
applications that are either stateless, or rely on the database for
data consistency and scalability among others. Recently, stream
processing has been gaining tremendous attention in the industry

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 12
Copyright 2017 VLDB Endowment 2150-8097/17/08.

as a paradigm to implement both analytical applications on “real-
time” data, but also as a paradigm to implement data-driven ap-
plications and services that would otherwise interact with a shared
external database for their data access needs. The stream process-
ing paradigm is more friendly to modern organizations that separate
engineering teams vertically, each team being responsible for a spe-
cific feature or application, as it allows state to be distributed and
co-located with the application instead of forcing teams to collab-
orate by sharing access to the database. Further, stream processing
is a natural paradigm for event-driven applications that need to re-
act fast to real-world events and communicate with each other via
message passing.

In point of fact, stream processing is not a new concept; it has
been an active research topic for the database community in the
past [29, 26, 17, 21] and some (but not all) of the ideas that un-
derpin modern stream processing technology are inspired by that
research. However, what we see today is widespread adoption of
stream processing across the enterprise beyond niche applications
where stream processing and Complex Event Processing systems
were traditionally used. There are many reasons for this: first, new
stream processing technologies allow for massive scale-out, similar
to MapReduce [31] and related technologies [46, 20, 22]. Second,
the amount of data that is generated in the form of event streams is
exploding. Processing needs now spread beyond financial transac-
tions, to user activity in websites and mobile apps, as well as data
generated by machines and sensors in manufacturing plants, cars,
home devices, etc. Third, many modern state of the art stream pro-
cessing systems are open source allowing widespread adoption in
the developer community.

Earlier attempts to distributed stream processing [8] provided
distributed programming model semantics but focused on the chal-
lenge of producing real-time, perhaps approximate results that
would later be augmented or corrected by more reliable, periodic
(e.g., overnight) batch compute jobs (e.g., Lambda Architecture
[41]). While this addresses real-time compute on data records, most
challenges related to consistent state management remain a concern
of the user and typically rest upon external database management
systems or traded off for further scalability.

We identified a set of hard challenges, faced daily by develop-
ers that architect critical continuous applications in the real world.
First, the lack of explicit computational state abstractions in stream
processing systems forces them to declare and maintain state ex-
ternally, decoupled from computational logic. Hence, the burden
of ensuring data consistency lies in the application logic, coordi-
nating computation with external database systems. Often, this is
complex to maintain as the code-base is divided across the state it
manages. Second, transactions with external storage can become

1718

the bottleneck of the whole application. Finally, operational chal-
lenges arise when there is need to scale in or out, deal with par-
tial failures or to simply change application logic with software
patches. While several of these important state management issues
have been previously researched and applied in production systems,
most known approaches fall short of doing so in a transparent man-
ner. For example, micro-batching techniques for reliable contin-
uous processing (e.g. Apache Spark and Trident [47, 16]) sacri-
fice programming model transparency and processing latency by
enforcing batch-centric application logic. Other proprietary con-
tinuous processing system solutions [18] on the other hand, build
on heavy transactional per-record processing. This pushes criti-
cal complexities outside the system relying on high-performance
key-value stores, special hardware and optimized network infras-
tructure.

Apache Flink [23, 7] is a stream processing system that ad-
dresses these challenges by closely integrating state management
with computation. Flink’s dataflow execution encapsulates dis-
tributed, record-centric operator logic to express complex data
pipelines. Consistent application state is a first-class citizen in
data processing pipelines written in Flink and is persisted using
a modular state backend. Furthermore, the system manages opera-
tions on state and orchestrates failure recovery and reconfiguration
(scale-out/in) whenever necessary without imposing heavy impact
on the execution or violating consistency. The core of our approach
in Apache Flink builds on distributed snapshots, a classical con-
cept that is proliferating anew today. Distributed snapshots enable
rollback recovery of arbitrary distributed processes [33] to a prior
globally consistent execution state. Several distributed computing
systems have used different variations of snapshotting mechanisms
[42, 40], though adopting sub-optimal protocols that impose global
synchrony and thus halt computational progress while also persist-
ing more state than required (i.e. records within network buffers).

In this work, we present a complete, continuous state manage-
ment solution that builds on distributed snapshots. Flink’s snap-
shotting mechanism has been in use since version 0.9 (June 2015)
and therefore hardened throughout frequent releases of the frame-
work and extensively tested in production at some of the largest
stream processing deployments in the world, on thousands of nodes
managing hundreds of gigabytes of state (see Section 5). The state
snapshotting mechanism is coordinated and pipelined, similarly to
the classical Chandy-Lamport’s protocol [27]. However, it is fine-
tailored for weakly connected dataflow graphs and superimposes
the acquisition of consistent snapshots without heavily impacting
throughput. More importantly, snapshots are compacted, limited to
minimal computational state with the exception of cyclic dataflow
graphs where the partial inclusion of records in-transit is necessary.
In situations where relaxed processing guarantees are acceptable
(i.e. at-least once processing guarantees) a totally asynchronous
version of the protocol can be selected on-demand. Moreover,
state and output that can be accessed from outside the system (e.g.
queryable state, pipeline output) is provided under different iso-
lation levels (read committed or uncommitted) in order to satisfy
the required trade off between consistency and latency. This paper
is the first principled description of the techniques that are imple-
mented in Apache Flink for state management. The main goal of
this work is to accurately describe these techniques and their sig-
nificance1. To summarize, this paper’s contributions:

1Most authors have been involved in the conception and implemen-
tation of these core techniques. Yet, the full credit for the evolution
of Flink’s ecosystem goes to the Apache Flink community, cur-
rently having more than 250 contributors.

• We provide a complete end-to-end design for continuous
stateful processing, from the conceptual view of state in the
programming model to its physical counterpart implemented
in various backends.

• We show how to naturally pipeline consistent snapshots in
weakly connected dataflow graphs and capture minimal state,
skipping in-transit records when possible, without impacting
general system progress.

• We demonstrate how snapshots can be utilized for a large
variety of operational needs beyond failure recovery such as
software patches, testing, system upgrades and exactly-once
delivery.

• We encapsulate different processing guarantees and isolation
levels for externally accessing partitioned operator state and
output, using snapshots.

• We describe large-scale pipeline deployments that operate
24/7 in production and rely heavily on stateful processing
coupled with runtime metrics and performance insights.

The rest of the paper is organized as follows: Section 2 gives an
overview of the Apache Flink stack and the basic principles behind
distributed snapshots and guarantees for dataflow execution graphs.
In Section 3 we describe the core state management mechanisms of
Flink, namely its stateful programming abstractions, the snapshot-
ting protocol and its practical usages. Section 4 summarizes fur-
ther implementation concerns such as backend support, concurrent
snapshots, the ability to query application state as well as end-to-
end guarantees. Finally, Section 5 describes existing large-scale de-
ployments and discusses metrics related to Flink’s snapshots, fol-
lowed by related work in Section 6, and our conclusions coupled
with future work and acknowledgements summarized in Section 7.

2. PRELIMINARIES

2.1 The Apache Flink System
The Apache Flink system [7] is an open-source project that pro-

vides a full software stack for programming, compiling and run-
ning distributed continuous data processing pipelines (Figure 1(a)).
Pipelines can be written as a series of data-centric transformations
expressed in a fluid, functional programming API (in Scala, Java or
Python) inspired by Flume Java[25], Dryad LINQ[45], Naiad[42]
and based in its majority on Google’s Dataflow Model [19] (i.e.,
identical windowing semantics and out-of-order processing logic).
At the core of the model there are two basic abstract data types,
the DataSet and DataStream representations which target bounded
and unbounded datasets respectively. Computation declared us-
ing the available higher-level domain-specific libraries such as the
SQL and Machine Learning (ML) packages, translates into a log-
ical pipeline using these core representations. A major distinctive
trait of the Flink programming model compared to state of the art is
the capability to declare local or partitioned, persistent application
state within continuous user-defined transformations through man-
aged data collections with diverse properties (append-only, muta-
ble, etc.). Flink’s runtime ensures that consistency is guaranteed
for any managed state declared despite potential partial failures or
reconfigurations, such as updates to the application code or changes
in execution parallelism.

Logical pipeline representations are optimised at the client and
shipped to Flink’s runtime, a distributed, continuous dataflow exe-
cution environment. The runtime derives a physical deployment of

1719

Figure 1: An Overview of the Apache Flink System Model and Architecture.

tasks and manages their continuous execution as depicted in Fig-
ure 1(b). As with most distributed data processing systems, Flink’s
runtime consists of a JobManager, a master process that holds the
metadata of active pipelines and coordinates execution by commu-
nicating with worker processes, the TaskManagers. Communica-
tion between the the JobManager and TaskManagers respects an
asynchronous RPC-based communication protocol, consisting of
periodic status updates (heartbeats) to the JobManager and schedul-
ing requests back to the TaskManagers. In contrast to batch-centric
job management [47] which prioritizes reconfiguration and coordi-
nation, Flink employs a schedule-once, long-running allocation of
tasks. However, the system is flexible to reconfigure pipelines to
more or less workers and re-allocate application state on-demand.
This approach minimizes management overhead while still allow-
ing for further adaptation to hardware or software changes or partial
failures that can potentially occur. Finally, pipeline deployments in
Flink are highly available, thus, tolerating even master failures via
leader election and passive failover in Zookeeper. All underlying
mechanisms for state partitioning, snapshotting and maintenance
are the main focus and covered thoroughly in this paper.

2.2 The Global Snapshotting Problem
Distributed systems are typically designed to hide concerns re-

lated to their distributed nature from the user, offering the view of a
single entity. For a distributed compute system like Flink we often
have to reason about the state of a pipeline in production at any time
during its execution. Referring to the complete distributed state of a
computation as an atomic unit, is essential to correctly rollback its
full execution to the point in time when that global state was cap-
tured. This is crucial when reconfiguration is required or a partial
failure caused a violation of the correct execution of the pipeline.
Generally, this approach is also known as rollback recovery [33].

Distributed snapshotting [27] protocols enable rollback recovery
by producing a correct, complete state replica of a distributed exe-
cution which can be used to restore the system to an earlier point
in time. In principle, a distributed system is a set of processes con-
nected via data channels, abstractly represented as a directed graph
of nodes and edges respectively. At any time during continuous
system execution the complete state is reflected in the nodes and
edges of that graph (i.e., internal state of processes and in-transit
events). A consistent snapshot should capture the complete state
while respecting causal execution dependencies so that no compu-
tational state or data are lost.

Existing snapshotting protocols are tailored to specific types of
graphs and vary in terms of complexity and performance. For ex-
ample, Chandy and Lamport’s original protocol [27] is designed for
strongly connected directed graphs (there exist a path between any
two processes) and it is transparently pipelined together with the
normal execution of the system through the use of special markers,
without affecting its operation. On the other hand, the same ap-
proach relies on aggressively logging any records that are in transit
in the duration of the protocol and it is incapable of terminating on
weakly connected graphs.

Weakly connected graphs are inherently relevant to distributed
dataflow processing systems [42, 38, 18, 25, 24]. Data records
are typically inserted to the system through special source vertices
while exiting through special sink vertices and cycles can option-
ally exist. Proposed protocols for snapshotting weakly connected
dataflow graphs such as Naiad’s two-phase commit [42] and IBM
Streams’ multi-stage snapshotting halt the regular operation of the
system to complete the snapshot and also end-up logging in-transit
records unnecessarily. In our approach, described thoroughly in
Section 3, we show how it is possible to naturally pipeline the snap-
shotting process in weakly connected graphs and capture minimal
state, skipping in-transit records when possible, without halting the
overall progress of the system.

3. CORE CONCEPTS AND MECHANISMS

3.1 System Model
Each processing pipeline in Flink is first defined as a logical di-

rected graph G = (T , E) where T is a set of vertices represent-
ing compute tasks and E is a set of edges representing data sub-
scriptions between tasks in T (Figure 2(a)). Data subscriptions can
apply arbitrarily between tasks in T , addressing the dependencies
prescribed directly or indirectly via the programming model (e.g.,
forward, shuffle and hash partitioning). A task t ∈ T can encap-
sulate the logic of a single operation (e.g., map, filter, fold,
window). However, standard logical dataflow optimisations such
as fusion [36, 25] are also applied in an intermediate step allowing
multiple operators to share the same task in T (Figure 2(b)). Each
logical graph is directly mapped to a physical, distributed graph
G∗ upon deployment or rescaling (Figure 2(c)). In the rest of this
section we are going to introduce the concept of managed state in
Apache Flink, followed by physical state partitioning and a descrip-
tion of how state and data are being allocated to tasks.

1720

Figure 2: Dataflow Graph Representation Examples.

3.1.1 Managed State
Each stream operation in Flink can declare its own state and up-

date it continuously in order to maintain a summary of the data
seen so far. State is a main building block of a pipeline as it encap-
sulates, at any time, the full status of the computation. There are
conceptually two scopes upon which managed state operates. For
purely data-parallel stream operations such as a per-key average,
the computation, its state and associated streams can be logically
scoped and executed independently for each key. This is similar to
how a relational GROUP BY projects rows of the same key to the
same set to compute grouped aggregates. We refer to this state as
Keyed-State. For local per-task computation such as a partial
machine learning training model, state can be declared in the level
of a parallel physical dataflow task, known as Operator-State.
Both Keyed-State and Operator-State are transparently
partitioned and managed by the runtime of the system. More im-
portantly, the system can guarantee that update operations on man-
aged state will be reflected exactly-once with respect to the input
streams. In Section 4 we explain in detail how the file system facil-
itates efficient external state persistence of different state types de-
spite the local view exposed to the programmer. Below, we briefly
explain how managed state can be declared and the basic intuition
for each of the state types.

Keyed-State: Any data-parallel stream computation can be
mapped to a user-defined key space and as a result any associated
state will also be scoped together with the computation. Typically,
data-stream records arrive to the system with some domain-specific
key such as a user-session identifier, a device address or a geo-
graphical location. In the most general case, Flink allows for a
user to map any record from its schema domain S to a given key
space K via the keyby : S → K operation supported by the
DataStream abstract type. Under key scope, state can be al-
located dynamically within a user-defined function by using spe-
cial collections that the model exposes through the API and vary
depending on the nature of the state. For append-only state per
key (e.g. for storing a pattern sequence or a window) there is a
ListState collection supporting an add operation. If the state
is otherwise a value that mutates during the application logic, there
is a ValueState type supporting an update operation. Other
basic state types such as ReduceState further allow for one or
two-step, on-the-fly, distributive function aggregations on managed
state. Finally, the MapState state type can support put and get
key-value operations and is preferred over having a custom map de-
clared as a ValueState since it avoids a full map deserialization
to perform single key lookups.

Operator-State: Another scope upon which state and compu-
tation can be declared is within the granularity of each parallel in-
stance of a task (task-parallel). Operator-State is used when
part of a computation is only relevant to each physical stream par-
tition, or simply when state cannot be scoped by a key. A Kafka
ingesting source operator instance for example that has to keep
offsets to respective partitions in Kafka [39] is using this scope.
Operator-State adheres to a redistribution pattern that allows
breaking state into finer-grained units when possible, allowing the
system to redistribute state when changing the parallelism of the
operator (scale in/out).

3.1.2 State Partitioning and Allocation

Physical Representation: The mapping of a logical graph G to
G∗ = {T ∗, E∗}, the physical, distributed execution graph (Fig-
ure 2(c)) occurs when a pipeline is deployed, on its initial run
or upon reconfiguration (e.g., for scale-out). During that stage
each logical task t ∈ T is mapped to a number of physical tasks
t1, t2, . . . , tπ ∈ T ∗, each of which gets deployed to available con-
tainers throughout a cluster (e.g., using YARN [43] or Mesos [35])
up to the decided degree of parallelism π ∈ N+.

Key-Groups: For tasks that have declared managed keyed state,
it is important to consistently allocate data stream partitions or re-
allocate in the case of reconfiguration. For flexibility, Flink de-
couples key-space partitioning and state allocation similarly to Dy-
namo[32]. Consider a user-defined key space K. The runtime
maps keys to an intermediate circular hash space of “key-groups” :
K∗ ⊂ N+ given a maximum parallelism π-max and a hash function
h as such:
K∗ = {h(k) mod π-max | k ∈ K, π-max ∈ N+, h : K → N+}
This mapping ensures that a single parallel physical task will han-
dle all states within each assigned group, making a key-group the
atomic unit for re-allocation. The intuition behind key-groups
lies in the trade-off between reconfiguration time (I/O during state
scans) and metadata needed to re-allocate state (included within
snapshots). On one extreme each parallel task could scan the whole
state (often remotely) to retrieve the values of all keys assigned to
it. This yields significant amounts of unnecessary I/O. On the op-
posite extreme, snapshots could contain references to every single
key-value and each task could selectively access its assigned keyed
states. However, this approach increases indexing costs (propor-
tional to num. of keys) and communication overhead for multi-
ple remote state reads, thus, not benefiting by coarse-grained state
reads. Key-groups offer a substantial compromise: reads are only
limited to data that is required and key-groups are typically large
enough for coarse grained sequential reading (if π-max is set ap-
propriately low). In the uncommon case where |K| < π-max it is
possible that some task instances simply receive no state.

State Re-Allocation: To re-assign state, we employ an equal-sized
key-group range allocation. For π parallel instances, each instance
ti ∈ T ∗, 0 ≤ i ≤ π receives a range of key-groups from di · π-max

π
e

to b(i + 1) · π-max
π
c. Seeks are costly, especially in distributed

file systems. Nevertheless, by assigning contiguous key-groups we
eliminate unnecessary seeks and read congestion, yielding low la-
tency upon re-allocation. Operator-State entries, which can-
not be scoped by a key, are persisted sequentially (combining po-
tential finer-grained atomic states defined across tasks), per opera-
tor, within snapshots and re-assigned based on their redistribution
pattern, e.g., in round-robin or by broadcasting the union of all state
entries to all operator instances.

1721

Figure 3: An Example of the Pipelined Snapshotting Protocol.

Figure 4: Alignment and Snapshotting Highlights.

3.2 Pipelined Consistent Snapshots
Flink’s snapshotting protocol provides a uniform way to capture

the complete state of a pipeline and roll it back whenever that is
required. We will first explain its intuition followed by a more for-
mal definition of the assumptions and description of the protocol
for directed acyclic and cyclic graphs respectively.

3.2.1 Approach Intuition
A continuous stream execution is conceptually divided into log-

ical periods that “cut” a distributed data stream into consecutive fi-
nite sets of records (Figure 3), which we call epochs. An epoch can
be triggered on-the-fly, periodically by the system or on-demand by
the user and is decoupled from any application logic (e.g., window-
ing constrains). A snapshot of the computation at epoch n refers to
a copy of the internal state of each task t ∈ T ∗ after the system
fully ingests every input record from the beginning of the compu-
tation (epoch 0) up to and including epoch n. In case of a failure
during or before a snapshot of epoch n is acquired we can simply
revert the global state of the distributed dataflow graph to a previ-
ous epoch (e.g., n− 1). A discrete approach to snapshotting would
be to let the system fully ingest epoch n, log the internal state of
each task t ∈ T ∗ and then proceed with epoch n + 1 (similarly
to micro-batching [47]). However, this approach raises latency and
underutilization costs related to the coordination of a discrete ex-
ecution which can be hard to amortize. Furthermore, other proto-
cols either disrupt normal execution [42, 38] or are incapable of
supporting typical weakly connected graphs [27].

Instead, Flink’s snapshotting protocol pipelines progressively the
partial acquisition of task states to eventually acquire a complete
snapshot, respecting epochs, while running concurrently alongside
normal operation. Special markers are injected in each data stream

partition at the dataflow sources, coordinated by the runtime and
get disseminated throughout the dataflow graph as depicted in Fig-
ure 3. Markers signal distributed tasks of new epochs and thus aid
to establish the appropriate moment to snapshot each local state and
proceed with further processing promptly. Tasks with multiple in-
puts execute an alignment phase (e.g., tasks t3 and t5 in Figure 3)
upon which they prioritize exclusively inputs from pending epochs.
Alignment is decentralized and eliminates the need to fully con-
sume an epoch or log records in transit before snapshotting. As we
explain in more detail further, cyclic graphs require partial chan-
nel logging only limited to each dataflow cycle. The snapshotting
protocol is coordinated centrally by the JobManager and each in-
vocation eventually completes or gets aborted (e.g., when a failure
occurs). In either case the overall dataflow computation can always
progress without interruptions and consecutive snapshots will even-
tually complete.

3.2.2 Main Assumptions
The protocol assumes a fail-recovery, deterministic process

model [33] where a partial process failure can be masked by re-
deployment and restoration of prior operational states. In detail,
our protocol builds on the following assumptions:

I: Input data streams are durably logged and indexed externally
allowing dataflow sources to re-consume their input, upon recov-
ery, from a specific logical time (offset) by restoring their state.
This functionality is typically provided by file systems and mes-
sage queues such as Apache Kafka [39].

II: Directional data channels between tasks are reliable, respect
FIFO delivery and can be blocked or unblocked. When a channel
is blocked, in-transit messages are internally buffered (and possibly
spilled to disk) and can be delivered on that end once it unblocks.

III: Tasks can trigger a block or unblock operation on their
input data channels and a send operation (records or control mes-
sages) on their output channels.

3.2.3 Directed Acyclic Graphs
Let us consider only directed acyclic graphs (DAGs) for now.

The protocol gets initiated at the source tasks of the dataflow by
the TaskManager, however, for simplicity we assume here that
the logic gets initiated upon receiving a special marker event in
each and every task (sources would “receive” that first through a
Nil channel). Algorithm 1 summarizes the snapshot alignment and
pipelining protocol that executes when a marker is received. Mind
that markers and records are handled sequentially by the same un-
derlying thread that also invokes user-defined operators.

1722

Algorithm 1: Snapshot Alignment
inputs← configured inputs;
outputs← configured outputs;
blocked← ∅ ;
Upon 〈marker〉 from in ∈ inputs

if in 6= Nil then
blocked← blocked ∪ in;
in.block();

if blocked = inputs then
foreach out ∈ outputs do

out.send(〈marker〉);
triggerSnapshot();
foreach in ∈ inputs do

in.unblock();

blocked← ∅ ;

Figure 5: Cycle Snapshotting Highlights.

Alignment: Figure 4 vizualizes the steps prior to and during snap-
shotting in more detail. When a task receives a snapshot marker on
one of its inputs, it blocks that channel since all computation asso-
ciated with the current epoch has to finish before continuing further
(Figure 4(a)). The blocking operation might result into spilling of
in-transit records within that channel to disk, if allocated memory
for network buffers reaches its limit. Once markers have been re-
ceived in all inputs (Figure 4(b)) the task can further notify down-
stream tasks while also proceeding with snapshotting. Markers are
first broadcasted forward and then local snapshotting is triggered,
both of which can progress concurrently without sacrificing consis-
tency (Figure 4(c)). Depending on the backend support, snapshots
can be triggered and executed asynchronously by another thread,
thus, minimizing their impact to the overall throughput. Once local
snapshotting is initiated (Figure 4(d)) input channels are unblocked
and regular operation continues to the next epoch. Overall, reli-
able FIFO data channels (Assumption II), combined with alignment
guarantee that epoch-order is always respected.

Relaxing Consistency: It is possible, if a pipeline allows for re-
laxed consistency requirements, to disable alignment (i.e., no input
blocking). Essentially, this means that a snapshot on epoch n will
contain side-effects of input residing in epochs ≥ n. Upon roll-
back records succeeding epochs n are going to be ingested again,
resulting into multiple state updates. This type of processing guar-
antees, also known as at-least-once processing, can be enabled on
Flink to trade-off consistency for practically zero latency impact if
the application has no critical requirements.

3.2.4 Dealing with Dataflow Cycles
Dataflow graphs in Flink can also support cycles. Cycles are

currently defined explicitly through Flink’s programming API as
asynchronous iterations, though bulk synchronous iterations (e.g.,
on stream windows) are also considered and can be supported in the
future. Cyclic snapshotting is handled as a special case and imple-
mented by system-specific, implicit tasks: an IterationHead
and IterationTail. These tasks act as regular dataflow source
and sink respectively, yet, they are collocated in the same physical
instance to share an in-memory buffer and thus, implement loop-
back streams transparently.

The default stream alignment logic presented (Algorithm 1)
would result into an incomplete distributed snapshot if applied on
cyclic graphs. That is due to the fact that records belonging to prior
epochs could still remain indefinitely in-transit within a cycle even
after a snapshot has been taken over. Thus, it is crucial to persist
these records in the snapshot in order to get a complete picture of
the correct distributed execution [27, 33]. Alternative approaches
to this problem consider a “flushing” phase which enforces the in-
clusion of all the in-transit records to the internal state of each task
[38], however, we argue that this problem is only relevant to the
state of a cycle. Thus, we execute a similar special logging pro-
tocol (Algorithm 2) that runs solely within the IterationHead
instances of each cycle.

As described in detail in Algorithm 2 and also visualized in Fig-
ure 5, IterationHead tasks receive a special marker from the
runtime signifying each epoch, same as the sources of the dataflow
graph. At that instance, they disseminate markers further within a
cycle and start logging in their own managed state all in-transit
events that exist within a cycle in that respective partition (Fig-
ure 5(a)). Once the marker of the snapshot is received back through
their respective collocated IterationTail (Figure 5(c)) they
trigger a snapshot of that log containing a complete backup of all
transmitted records in that epoch (Figure 5(d)). Again, FIFO chan-
nels and alignment executed by the rest of the tasks within a cycle
(Figure 5(b)) ensures that no records from succeeding epochs will
transit prior to the marker. This special logic also restricts chan-
nel logging to cycles and does not enforce anything other than task
states to be included in the snapshot for the rest of the graph.

3.3 Usages and Consistent Rollback
Consistent snapshots, described previously in Section 3.2 form

the basis for a variety of operations using the Apache Flink system.
Periodic snapshots are automatically triggered by Flink’s runtime
as a form of per-job “checkpoint” for the purposes of consistent
fail recovery whenever partial failures occur. However, the usages
of snapshots go beyond fault tolerance needs. For a system that is
widely deployed in a cloud infrastructure, having the ability to scale
resources in or out and lease containers is nowadays a necessity. In
principle, failover and re-scaling are two operations that share the
same underlying need for consistent reconfiguration support [24].
In this section we describe in more detail the operational benefits
that distributed snapshots make feasible, as well as the rollback
reconfiguration schemes that are currently supported.

3.3.1 Snapshot Usages
Flink’s snapshots define consistent points across parallel op-

erators and thus, are suitable points for reconfiguration. The
metadata of a snapshot contains all necessary information re-
quired to retrieve the complete pipeline state from an associ-
ated durable storage backend such as references and indexes to
operator state partitions (i.e., key-groups) and upstream logs (in

1723

Algorithm 2: Snapshotting in Cycles
outputs← configured outputs;
isLogging ← false ;
log ← ∅ ;
Upon 〈marker〉

if isLogging then
triggerSnapshot(log) ;
log ← ∅ ;
isLogging ← false ;

else
isLogging ← true ;
foreach out ∈ outputs do

out.send(〈marker〉);

Upon record
if isLogging then

log ← log ∪ record;

foreach out ∈ outputs do
out.send(record);

Figure 6: Snapshot usage examples.

case of cyclic graphs). Common causes of reconfiguration are:
1) application logic updates (e.g., software patches) of already
running jobs by replacing operators accessing the same snap-
shotted state or adding new state entries instead and 2) appli-
cation versioning, allowing forking running pipelines (an exam-
ple depicted in Figure 6). In practice, reconfiguration follows a
checkpoint-stop-modify-restore cycle, initiated exter-
nally by the user. However, it is also possible to be triggered topo-
logically by attaching reconfiguration commands to snapshot mark-
ers which reconfigure operators (replace code) at the point where
the snapshot is taken.

3.3.2 Consistent State Rollback
Rollback recovery gets initiated upon a task failure or when there

is a need to rescale. Typically, the latest snapshot is used to restart
the application from the beginning of the latest committed epoch.
Depending on the rollback cause, different recovery schemes are
employed. For example. during a full restart or rescaling, all tasks
are being redeployed, while after a failure only the tasks belonging
to the affected connected component (of the execution graph) are
reconfigured. In essence, known incremental recovery techniques
from micro-batch processing [47] are orthogonal to this approach
and can also be employed. A snapshot epoch acts as synchroniza-
tion point, similarly to a micro-batch or an input-split. On recovery,
new task instances are being scheduled and, upon initialization, re-
trieve their allocated shard of state. In the case of Iteration

Head recovery, all records logged during the snapshot are recov-
ered and flushed to output channels prior to their regular record-
forwarding logic. Eventually, all states within the pipeline are pro-
gressively retrieved and applied to reflect an exact, valid distributed
execution at the restored epoch.

It is additionally required for all data sources to rollback input
from the epoch where the snapshot occurred. Flink’s data sources
provide this functionality out-of-the-box by maintaining offsets to
the latest record processed prior to an epoch from external logging
systems. Upon recovery the aggregate state of those sources re-
flects the exact distributed ingestion progress made prior to the
recovered epoch. This approach assumes that external logging
systems, that sources communicate with, index and sequence data
across partitions in a durable manner (e.g., Kafka, Kinesis, PubSub
and Distributed File Systems).

4. IMPLEMENTATION AND USAGE
With explicit managed state and consistent snapshotting at its

core, Flink maintains a rich ecosystem of backends, connectors and
other services that interplay seamlessly and benefit from Flink’s
core mechanism. In this section, we summarize how most of these
subsystems build on-top of Flink’s core architecture, while expand-
ing it with asynchronous communication, delivery guarantees and
external state querying support.

4.1 State Backend Support
Managed state consistency is coordinated by Flink’s snapshot-

ting algorithm (Section 3.2), however, it is the responsibility of the
state backends to handle state access and snapshotting for their re-
spective state partitions. We distinguish two main classes of state
backends: 1) Local State Backends, where access to state is kept
and controlled in the same physical node, and 2) External State
Backends, where state access is internally coordinated with an ex-
ternal system such as a database or key/value store.

Local state backends maintain all state in local memory or out-
of-core, within an embedded key-value database such as RocksDB
[13]. Out-of-core access is preferred in production deployments as
in that case state size is only limited by the quota of the local file
system allocated to each node. When a snapshot operation is trig-
gered, a copy of the current local states is written to a durable stor-
age layer (e.g., a distributed file system directory). The local state
backends can support asynchronous and incremental snapshotting
(Section 4.2) and yield considerable read/write performance as they
exploit data locality while eliminating the need for distributed or
transactional coordination.

External state backends coordinate state access with external
database management systems. There are two possible varia-
tions, depending on the properties of the external database: 1)
Non-MVCC (Multi-Version Concurrency Control) databases, can
be supported by maintaining within each task a write-ahead-log
(WAL) of pending state changes per epoch. The WAL can be com-
mitted to the database once an epoch has been completed. In more
detail, each snapshot is one distributed bulk 2-phase commit trans-
action: during a checkpoint, changes are put into the transaction
log (WAL) and pre-committed when triggerSnapshot() is
invoked. Once the global snapshot is complete, then pre-committed
states are fully-committed by the JobManager in one atomic trans-
action. This approach is feasible even when the database does not
expose the necessary program hooks to log, pre-commit, and fully
commit. 2) MVCC-enabled databases allow for committing state
across multiple database versions. This can integrate with Flink’s
snapshotting mechanism by associating each state update with the

1724

undergoing epoch. Once a snapshot is fully committed the ver-
sion is atomically incremented. Likewise, a failed snapshot epoch
decrements the current version. A general advantage of external
state backends is that rollback recovery does not require any I/O
to retrieve and load state from snapshots (contrary to local state
backends). This benefit becomes particularly impactful when state
is very large, by avoiding any network I/O upon reconfiguration,
thus, making it a suitable choice under low latency requirements.
Finally, another benefit that comes out-of-the-box with all external
backends is support for incremental snapshotting, since, by defini-
tion, only changes are committed externally.

4.2 Asynchronous and Incremental Snapshots
One of the assets of the pipelined snapshotting protocol pre-

sented in Section 3.2 is that it only governs “when” but not “how”
snapshots are internally executed. The triggerSnapshot()
call by each task is expected to create an identical copy of the cur-
rent state of that task. However, the copy is not required to be a
physical copy, it can be a logical snapshot that is lazily material-
ized by a concurrent thread. This type of operation is supported by
many copy-on-write data structures. More concretely, Flink’s local
backends allow for asynchronous snapshots as such:

The out-of-core state backend based on RocksDB [13] exploits
the LSM (log-structured merge) tree, internal representation of data
in RocksDB. Updates are not made in-place, but are appended
and compacted asynchronously. Upon taking a snapshot, the syn-
chronous triggerSnapshot() call simply marks the current
version, which prevents all state as of that version to be overwrit-
ten during compactions. The operator can then continue processing
and make modifications to the state. An asynchronous thread iter-
ates over the marked version, materializes it to the snapshot store,
and finally releases the snapshot so that future compactions can
overwrite that state. Furthermore, the LSM-based data structure
also lends itself to incremental snapshots, which write only parts to
the snapshot store that changed since the previous snapshots.

Flink’s in-memory local state backend implementation is based
on hash tables that employ chain hashing. During a snapshot, it
copies the current table array synchronously and then starts the ex-
ternal materialization of the snapshot, in a background thread. The
operator’s regular stream processing thread lazily copies the state
entries and overflow chains upon modification, if the materializa-
tion thread still holds onto the snapshot. Incremental snapshots for
the in-memory local backend are possible and conceptually trivial
(using delta maps), yet not implemented at the current point.

Finally, another feature that is provided to tasks as an optional
asynchronous subscription-based mechanism is to trigger notifica-
tions about completed snapshots back at the tasks that request them.
This is especially useful for garbage collection, discarding write
ahead logs or for coordinating exactly-once delivery sinks as we
explain further in Section 4.4.

4.3 Queryable State
A recent addition among Flink’s state management features is

the ability to directly query managed state from outside the system.
External systems can access Flink’s keyed-state in a similar way as
that of a key/value store, providing read-only access to the latest
values computed by the stream processor. This feature is motivated
by two observations. First, it is required by many applications to
grant ad-hoc access to the application state for faster insights. Sec-
ondly, eager publishing of state to external systems frequently be-
comes a bottleneck in the application as remote writes to the exter-
nal systems cannot keep up with the performance of Flink’s local
state on high-throughput streams.

Queryable state allows for any declared managed state within a
pipeline, currently scoped by key, to be accessed outside the system
for asynchronous reading, through a subscription-based API. First,
managed state that allows for query access is declared in the origi-
nal application. Upon state declaration, introduced in Section 3.1.1,
it is possible to allow access from external queries by simply setting
a flag in the descriptor that is used to create the actual state, having
an assigned unique name for this specific state to be accessed, as
such:

//stream processing application logic
val descriptor: ValueStateDescriptor[MySchema] = ...
descriptor.setQueryable("myKV")
...
val mutState: ValueState[MySchema] =

ctx.getState(descriptor)

Upon deployment, a state registry service gets initiated and runs
concurrently with the task that holds write access to that state. A
client that wishes to read the state for a specific key can, at any
time, submit an asynchronous query (obtaining a future) to that
service, specifying the job id, registered state name and key, as
shown below:

//client logic
val client = QueryableStateClient(cfg);
var readState: Future[_] = client.getKVState(job,

"myKV", key);

The current implementation of queryable state supports point
lookups of values by key. The query client asks the Flink master
(JobManager) for the location of the operator instance holding the
state partition for the queried key. The client then sends a request to
the respective TaskManager, which retrieves the value that is cur-
rently held for that key from the state backend. From a traditional
database isolation-level viewpoint, the queries access uncommit-
ted state, thus following the read-uncommitted isolation level. As
future work, we plan to add read-committed isolation support by
letting TaskManagers hold onto the state of committed snapshots,
and use that state to answer adhoc queries.

4.4 Exactly-Once Delivery Sinks
So far we have considered consistency guarantees associated

with the internal state of the system. However, it is most often im-
portant to offer guarantees regarding the side effects that a pipeline
leaves to the outside world, whether that is a distributed database,
file system or message queue. A pipeline interfaces with the out-
side world mainly via its dataflow sinks. Therefore, it is crucial that
sinks can offer exactly-once delivery guarantees. The feasibility of
achieving “read-committed” isolation guarantees to external writes
depends on the properties of the system upon which sinks commit
output and typically comes at a higher latency cost (this can, at-
times, violate strong SLAs on latency). A pipeline can always be
halted between snapshots after a failure or an urgent reconfigura-
tion request and both input and state can be rolled back consistently,
as it was described in Section 3. However, the same cannot always
be guaranteed about the output. If sinks are connected, for example,
to a printer that instantly flushes data on paper, a rollback would
possibly print the same or alternating text twice. Flink’s program-
ming model is equipped with two main types of sinks that facilitate
exactly-once delivery and build on the snapshotting mechanism: 1)
Idempotent and 2) Transactional Sinks.

Idempotent Sinks: Idempotency is a property used extensively
by many systems at the presence of failures in order to encour-
age repeatability and alleviate bookkeeping efforts and complex

1725

Figure 7: A visualization of Bucketing File Sinks.

transactions to offer delivery guarantees[3, 18]. In some cases de-
terministic pipeline logic and idempotency can already be offered
by the stream application (e.g., not involving stream interleaving
or other forms of non-determinism). For those cases, sinks need
to take no further action to achieve exactly-once delivery guaran-
tees than eagerly publishing their output. However, if the end-to-
end application logic cannot tolerate uncommitted reads a write-
ahead-log (WAL) needs to be coordinated with asynchronous snap-
shot notifications to publish changes to the external system once
a snapshot for an epoch is complete. Flink’s Cassandra database
sink maintains a WAL of prepared query statements as part of
its state. Once an asynchronous notification (Section 4.2) arrives
for an epoch, the database sink commits all pending writes to the
database. The idempotency property of the queries guarantees that
even if publishing is disrupted, output will be consistent by simply
re-committing the same queries and thus, eventually, leaving the
same side effects upon subsequent system reconfigurations.

Transactional Sinks: When idempotency cannot be guaranteed,
committing output to external systems (e.g., File Systems, DBMSs)
has to be made in a coordinated, transactional way. We identify two
variants of this approach:

1) Maintaining a WAL at the sinks and eventually publishing it
when a snapshot notification arrives locally using a 2-phase commit
with the external system. An example of this approach is Flink’s
transactional SQL sink which includes in the sink’s state the WAL
to be committed. Eventually, all changes are atomically committed
across partitions after the first successful snapshot.

2) Alternatively, another approach that works well in conjunc-
tion with distributed file systems is to append uncommited output
eagerly by every sink. On snapshot, output partitions can be pre-
committed (e.g., by flagging a file directory) and eventually com-
mitted once the global snapshotting process is complete and noti-
fied across partitions. Upon failure changes can be rolled back. An
example of this approach is Flink’s bucketing file sink (depicted in
Figure 7) which eagerly appends stream output within uncommit-
ted distributed file directories which group (or “bucket”) file parti-
tions by time-period. After a pre-configured inactivity time-period
in-progress directories become pending and are ready to be
committed. The Bucketing File Sink integrates with Flink’s snap-
shotting algorithm and associates epochs with buckets. Once a file
bucket is under pending mode and an asynchronous notification
for an associated epoch has been received, it can be moved to a
committed state via an atomic rename operation. Potential dis-
ruptions between epochs resolve into a truncate (Posix) opera-
tion, which is currently supported by major distributed file systems
and conveniently reverses append operations to the right epoch.

4.5 High Availability & Reconfiguration
All metadata associated with the active state of long-running

pipelines is kept within the JobManager node. This makes
the importance of this central node quite high for the general
functionality of the system but also a single-point-of-failure. A
JobManager failure would halt the coordination of the snapshot-
ting protocol, the collection and management of snapshot meta-
data as well as making further job deployments and rescaling re-
quests unavailable, thus, eliminating the purpose of any fault toler-
ance mechanism. To deal with such a critical failure we employ a
passive-standby high availability scheme where configured standby
nodes can take undertake the coordination role of the failed mas-
ter node via distributed leader election. When this mode is en-
abled, the coordination of vital decisions such as job deployment
and scheduling are undertaken via a distributed decision protocol
which logs committed operations atomically (currently utilizing a
Zookeeper quorum executing the zab protocol [37]). This in-
troduces some additional latency for such critical operations, how-
ever, non-critical decisions such as the persistence of the most re-
cent snapshot metadata for a job, are asynchronously committed
and logged. The worst scenario of a potential failure during non-
critical commits would simply result into, a yet valid restoration of
active pipeline state from consistent snapshots that correspond to
earlier epochs that have been fully committed prior to the failure.

5. LARGE-SCALE DEPLOYMENTS
Flink is one of the most widespread open source systems for data

stream processing, serving the data processing needs of companies
ranging from small startups to large enterprises. It is offered com-
mercially by several vendors, including data Artisans, Lightbend,
Amazon AWS, and Google Cloud Platform. A number of compa-
nies have published case studies on how they use Flink for stateful
stream processing at large scale in the form of blog posts or pre-
sentations at industrial conferences and trade shows. For example,
Alibaba, the world’s largest e-commerce retailer company, deploys
Flink on over 1000 nodes to support a critical search service [2]
and keep search results and recommendation as relevant to their
active retail catalogue as possible. Uber, the world’s largest pri-
vately held company at the time of writing is building a stream
processing platform based on SQL and Flink, called AthenaX [1]
to allow access to timely data to the data scientists in the company.
Netflix is building a self-serve, scalable, fault-tolerant, multi-tenant
Stream Processing as a Service platform leveraging Apache Flink
with the goal to make the stream of more than 3 petabytes of event
data per day available to their internal users [14]. Other use cases
come from the banking sector [15], telecommunications [12] and
others 2.

In the remainder of this section, we present live production met-
rics and insights related to Flink’s state management mechanism on
a use-case by King (King Digital Entertainment Limited), a lead-
ing mobile gaming provider with over 350 million monthly active
users.

5.1 A Real-Time Analytics Platform
The Rule-Based Event Aggregator (RBEA) by King [4], is a re-

liable live service that is implemented on Apache Flink and used
daily by data analysts and developers across the company. RBEA
2For the interested reader, the annual Flink Forward series of con-
ferences contains much of these industry presentations [9] and a
recent survey of the Flink community conducted by data Artisans
[10] provides further statistics on how Flink is used within enter-
prises.

1726

Figure 8: Overview of the Flink pipeline implementing an adhoc standing query execution service at King

showcases how Flink’s stateful processing capabilities can be ex-
ploited to build a highly dynamic service that allows analysts to de-
clare and run standing queries on large-scale mobile event streams.
In essence, the service covers several fundamental needs of data
analysts: 1) instant access to timely user data, 2) the ability to de-
ploy declarative standing queries, 3) creation and manipulation of
custom aggregation metrics, 4) a transparent, highly available, con-
sistent execution, eliminating the need for technical expertise.

5.1.1 The RBEA Service Pipeline
Figure 8 depicts a simplified overview of the end-to-end Flink

pipeline that implements the core of the service. There are two
types of streams, ingested from Kafka: a) an Event stream orig-
inating from user actions in the games (over 30 billion events per
day) such as game start/game end and b) a Query stream
containing standing queries in the form of serialized scripts written
by data analysts through RBEA’s frontend in a provided DSL (us-
ing Groovy or Java). Standing queries in RBEA allow analysts to
access user-specific data and event sequences as well as triggering
special aggregation logic on sliding data windows.

Standing queries are forwarded and executed inside [Query
Processor] instances which hold managed state entries per user
accumulated by any stateful processing logic. A “broadcast” data
dependency is being used to submit each query to all instances of
the [Query Processor] so it can be executed in parallel while
game events are otherwise partitioned by their associated user ids
to the same operator. Aggregation calls in RBEA’s standing query
DSL trigger output events from [Query Processor] opera-
tor which are subsequently consumed by the [Dynamic Window
Aggregator]. This operator assigns the aggregator events to the
current event-time window and also applies the actual aggregation
logic. Aggregated values are sent to the [Output sink] oper-
ator which writes them directly to an external database or Kafka.
Some details of the pipeline such as simple stateless filter or pro-
jection operators have been omitted to aid understanding as they
don’t affect state management.

5.1.2 Performance Metrics and Insights
The performance metrics presented here were gathered from live

deployments of RBEA over weeks of its runtime in order to present
insights and discuss the performance costs related to snapshotting,
as well as the factors that can affect those costs in a production
setting. The production jobs share resources on a YARN cluster
with 18 physical machines with identical specification each hav-

ing 32 CPU cores, 378 GB RAM with both SSD and HDD. All
deployments of RBEA are currently using Flink (v.1.2.0) with lo-
cal out-of-core RocksDB state backend (on SSD) which enables
asynchronous snapshotting to HDFS (backed by HDD). The perfor-
mance of Flink’s state management layer, that we discuss bellow,
has been evaluated to address two main questions: 1) What affects
snapshotting latency?, and 2) How and when is normal execution
impacted?
1) What affects snapshotting latency?
We extracted measurements from five different RBEA deployments
with fixed parallelism π = 70 ranging from 100 to 500 GB of
global state respectively (each processing data from a specific mo-
bile game). Figure 9(a) depicts the overall time it takes to undertake
a full snapshot asynchronously for different state sizes. Mind that
this simply measures the time difference between the invocation of
a snapshot (epoch marker injection) and the moment all operators
notify back they have completed it through the asynchronous back-
end calls. As snapshots are asynchronously committed these laten-
cies are not translated into execution impact costs, which makes
alignment the sole factor of the snapshotting process that can affect
runtime performance (through partial input blocking). Figure 9(b)
shows the overall time RBEA task instances have spent in align-
ment mode, inducing an average delay of 1.3 seconds per full snap-
shot across all deployments. As expected, there are no indications
that alignment times can be affected by the global state size. Given
that state is asynchronously snapshotted, normal execution is also
not affected by how much state is snapshotted.
2) How and when is normal execution impacted?
Alignment employs partial blocking on input channels of tasks and
thus, more connections can introduce higher runtime latency over-
head. Figure 9(c) shows the total times spent aligning per full snap-
shot in different RBEA deployments of fixed size (200GB) hav-
ing varying parallelism. Evidently, the number of parallel subtasks
π affects the alignment time. More concretely, the overall align-
ment time is proportional to two factors: 1) the number of shuf-
fles chained across the pipeline (i.e., RBEA has 3× keyby for the
PROCESSOR, WINDOW and OUTPUT operators respectively), each
of which introduces a form of alignment “stage” and 2) the paral-
lelism of the tasks. Nevertheless, occasional latencies of such a low
magnitude (∼1sec) are hardly considered to be disruptive or break-
ing SLAs, especially in highly utilized clusters of such large-scale
deployments where network spikes and CPU load can often cause
more severe disruptions.

1727

10
0

20
0

30
0

40
0

50
0

Global State Size (GB)

0

50

100

150

200

250
To

ta
lS

na
ps

ho
tt

in
g

T
im

e
(s

ec
)

(a) Snapshot Duration vs Total Size
[π:70, state:[100:500GB], hosts:18]

10
0

20
0

30
0

40
0

50
0

Global State Size (GB)

0

200

400

600

800

1000

1200

1400

To
ta

lA
lig

nm
en

t
T

im
e

(m
se

c)

(b) Alignment Time vs Snapshot Size
[π:70, state:[100:500GB], hosts:18]

30 50 70
Parallelism

0

200

400

600

800

1000

1200

1400

To
ta

lA
lig

nm
en

t
T

im
e

(m
se

c)

PROC
WIN
OUT

(c) Alignment Time vs Parallelism
[π : [30 : 70], state:200GB, hosts:18]

Figure 9: RBEA Deployment Measurements on Snapshots

6. RELATED WORK
Reliable Dataflow Processing: Flink offers coarse grained, job-
level snapshot maintenance which grants various operational ben-
efits. Several proposed reconfiguration and state management
schemes [24] are restricted to fine-grained task management and
reconfiguration, thus, lacking the benefits, applications and scale of
global snapshots (Section 3.3.1). IBM Streams employs a pipelined
checkpointing mechanism [38] that executes in-flight with data
streams as with Flink’s, tailored to weakly connected graphs with
potential cycles. The most distinct difference to Flink’s approach
is that IBM Stream coordinates a two-phase snapshotting protocol:
1) First, all records in transit are consumed in order to make sure
that they are reflected in the global state while blocking all out-
puts. 2) All operators trigger their snapshot in topological order,
using markers as in our technique and resume normal operation.
Flink’s protocol only drains records within cycles without affect-
ing regular processing whatsoever. Furthermore, Flink’s alignment
is a local operation and does not halt global progress or hold up
output in an execution graph making it more transparent and non-
intrusive. Finally, IBM Streams supports language abstractions
for selective fault tolerance. On Flink, the choice of snapshotting
state is achieved by simply using managed state versus unregis-
tered state, without requiring further user intervention. In the scope
of a pipeline/component, snapshots can also be enabled or disabled
through Flink’s configuration.

Apache Storm [8] initially offered only guaranteed record pro-
cessing through record dependency tracking. However, the most
recent releases of Storm (and Apache Apex[5]) incorporated a vari-
ant of Flink’s algorithm to its core in order to support exactly-
once processing guarantees. Meteor Shower [44] employs a simi-
lar alignment phase to Flink. However, it cannot incorporate cyclic
dataflow graphs which is a common case for online machine learn-
ing [30] and other applications. The same solution does not cover
state rescaling and transparent programming model concerns. Na-
iad [42] and the sweeping checkpointing technique [15] enforce
in-transit state logging even in subgraphs where cycles are not
present. Moreover, Naiad’s proposed three phase commit disrupts
the overall execution for the purpose of snapshotting. Finally, Mill-
Wheel [18] offers a complete end-to-end solution to processing
guarantees, similarly to Flink. However, its heavy transactional
nature, idempotency constraints and strong dependence on a high-
throughput, always-available, replicated data store [28] makes this
approach infeasible in commodity deployments. In fact, Apache
Flink’s distributed dataflow runtime serves today as a feature-
complete runner of Apache Beam[6], Google’s open-source imple-
mentation of the Dataflow Model[11].

Microbatching: Stream micro-batching or batch-stream process-
ing (e.g. Spark Streaming [47], Comet [34]) emulates continuous,
consistent data processing through recurring deterministic batch
processing operations. In essence, this approach schedules dis-
tinct epochs of a stream to be executed synchronously. Fault toler-
ance and reconfiguration is guaranteed out-of-the-box through re-
liable batch processing at the cost of high end-to-end latency (for
re-scheduling) and restrictive model, limited to incremental, peri-
odic immutable set operations. Trident [16], a higher level frame-
work built on Apache Storm offered exactly-once processing guar-
antees through a similar transactional approach on predefined sets
but executed on long-running data stream tasks. While fault tol-
erance is guaranteed with such techniques, we argue that high la-
tency and such programming model restrictions make this approach
non-transparent to the user and often fall short in expressivity for a
significant set of use-cases.

7. CONCLUSION AND FUTURE WORK
We presented Apache Flink’s core mechanisms for managing

persistent, large-scale pipelines with large application state in pro-
duction. Flink is a flexible, reconfigurable distributed system
which runs continuous, analytical, data-centric computation offer-
ing strong state consistency guarantees. A distinct snapshotting
mechanism acquires a global view of the system periodically or
upon demand which allows for coarse grained rollback recovery
in a asynchronous, transparent and efficient manner. Snapshots
allow for fundamentally practical reconfiguration usages, ranging
from partial failure recovery to application versioning and debug-
ging. Flink’s ecosystem of modules and services built on its core
offer different flavours of external state access and isolation while
abstracting reliability concerns from the programmer. Finally, we
discussed usages of Flink and the low execution overhead of Flink’s
snapshots in large-scale production deployments.
Future Work: Our main future focus on Apache Flink is to fur-
ther improve its state management capabilities with incremental
in-memory snapshots and automated system estimation of through-
put and reconfiguration latency trade-offs for optimized incremen-
tal snapshots. Furthermore, we are planning to include the capa-
bility of auto-scaling pipelines according to runtime requirements
without user circumvention. Finally, we want to support flexible
state representations for iterative analysis through efficient bulk
synchronous processing on streams.
Acknowledgments: We would like to thank here the whole com-
munity of Flink’s contributors, peer-reviewers and the financial
support from the End-to-End Clouds project granted by Stiftelsen
för Strategisk Forskning (RIT10-0043) and the Streamline project
funded by European Union’s Horizon 2020 (688191).

1728

8. REFERENCES
[1] AthenaX : Ubers stream processing platform on Flink. http:

//sf.flink-forward.org/kb sessions/athenax-
ubers-streaming-processing-platform-on-flink/.

[2] Blink: How Alibaba Uses Apache Flink. http://data-
artisans.com/blink-flink-alibaba-search/, 2016.

[3] Introduction to Spark’s Structured Streaming.
https://www.oreilly.com/learning/apache-spark-
2-0--introduction-to-structured-streaming, 2016.

[4] Rbea: Scalable Real-Time Analytics at King.
https://techblog.king.com/rbea-scalable-real-
time-analytics-king/, 2016.

[5] Apache Apex. https://apex.apache.org, 2017.
[6] Apache Beam. https://beam.apache.org/, 2017.
[7] Apache Flink. http://flink.apache.org/, 2017.
[8] Apache Storm. http://storm.apache.org/, 2017.
[9] Flink Forward. http://flink-forward.org/, 2017.

[10] Flink Survey. http://data-artisans.com/flink-user-
survey-2016-part-1/, http://data-artisans.com/
flink-user-survey-2016-part-2/, 2017.

[11] Google Cloud Dataflow.
https://cloud.google.com/dataflow/, 2017.

[12] Real-time monitoring with Flink, Kafka and HB. http:
//2016.flink-forward.org/kb sessions/a-brief-
history-of-time-with-apache-flink-real-time-
monitoring-and-analysis-with-flink-kafka-hb/,
2017.

[13] Rockdb. http://rocksdb.org/, 2017.
[14] Stream processing with Flink at Netflix. http:

//sf.flink-forward.org/kb sessions/keynote-
stream-processing-with-flink-at-netflix/, 2017.

[15] StreamING models, how ING adds models at runtime to catch
fraudsters. http://sf.flink-forward.org/kb sessions/
streaming-models-how-ing-adds-models-at-
runtime-to-catch-fraudsters/, 2017.

[16] The Trident Stream Processing Programming Model.
http://storm.apache.org/releases/0.10.0/Trident-
tutorial.html, 2017.

[17] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new
model and architecture for data stream management. VLDBJ, 2003.

[18] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle.
MillWheel: Fault-tolerant stream processing at internet scale. In
VLDB, 2013.

[19] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt, et al. The dataflow model: a practical approach to
balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. VLDB, 2015.

[20] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, et al. The
Stratosphere platform for big data analytics. The VLDB Journal –
The International Journal on Very Large Data Bases, 2014.

[21] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom. Stream: The stanford data
stream management system. Book chapter, 2004.

[22] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.
Nephele/pacts: a programming model and execution framework for
web-scale analytical processing. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 119–130. ACM, 2010.

[23] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. IEEE Data Engineering Bulletin, page 28, 2015.

[24] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In Proceedings of the
2013 ACM SIGMOD international conference on Management of
data, pages 725–736. ACM, 2013.

[25] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. FlumeJava: easy, efficient
data-parallel pipelines. In ACM Sigplan Notices. ACM, 2010.

[26] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah. TelegraphCQ: continuous dataflow processing. In
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 668–668. ACM, 2003.

[27] K. M. Chandy and L. Lamport. Distributed snapshots: determining
global states of distributed systems. ACM Transactions on Computer
Systems (TOCS), 3(1):63–75, 1985.

[28] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS), 26(2):4, 2008.

[29] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik. Scalable distributed stream
processing. In CIDR, volume 3, pages 257–268, 2003.

[30] G. De Francisci Morales and A. Bifet. Samoa: Scalable advanced
massive online analysis. The Journal of Machine Learning Research,
16(1):149–153, 2015.

[31] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[32] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: amazon’s highly available key-value store.
ACM SIGOPS operating systems review, 41(6):205–220, 2007.

[33] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys (CSUR), 34(3):375–408, 2002.

[34] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou.
Comet: batched stream processing for data intensive distributed
computing. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 63–74. ACM, 2010.

[35] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, 2011.

[36] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A
catalog of stream processing optimizations. ACM Computing Surveys
(CSUR), 46(4):46, 2014.

[37] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX annual
technical conference, volume 8, page 9, 2010.

[38] G. Jacques-Silva, F. Zheng, D. Debrunner, K.-L. Wu, V. Dogaru,
E. Johnson, M. Spicer, and A. E. Sariyüce. Consistent regions:
guaranteed tuple processing in ibm streams. Proceedings of the
VLDB Endowment, 9(13):1341–1352, 2016.

[39] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging
system for log processing. NetDB, 2011.

[40] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: a framework for machine learning
and data mining in the cloud. Proceedings of the VLDB Endowment,
5(8):716–727, 2012.

[41] N. Marz and J. Warren. Big Data: Principles and best practices of
scalable realtime data systems. Manning Publications Co., 2015.

[42] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a timely dataflow system. In ACM SOSP, 2013.

[43] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 5. ACM, 2013.

[44] H. Wang, L.-S. Peh, E. Koukoumidis, S. Tao, and M. C. Chan.
Meteor shower: A reliable stream processing system for commodity
data centers. In Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International. IEEE, 2012.

[45] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey. Dryadlinq: A system for general-purpose distributed
data-parallel computing using a high-level language.

[46] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. HotCloud, 2010.

[47] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized
streams: an efficient and fault-tolerant model for stream processing
on large clusters. In Proceedings of the 4th USENIX conference on
Hot Topics in Cloud Ccomputing, pages 10–10. USENIX
Association, 2012.

1729

http://sf.flink-forward.org/kb_sessions/athenax-ubers-streaming-processing-platform-on-flink/
http://sf.flink-forward.org/kb_sessions/athenax-ubers-streaming-processing-platform-on-flink/
http://sf.flink-forward.org/kb_sessions/athenax-ubers-streaming-processing-platform-on-flink/
http://data-artisans.com/blink-flink-alibaba-search/
http://data-artisans.com/blink-flink-alibaba-search/
https://www.oreilly.com/learning/apache-spark-2-0--introduction-to-structured-streaming
https://www.oreilly.com/learning/apache-spark-2-0--introduction-to-structured-streaming
https://techblog.king.com/rbea-scalable-real-time-analytics-king/
https://techblog.king.com/rbea-scalable-real-time-analytics-king/
https://apex.apache.org
https://beam.apache.org/
http://flink.apache.org/
http://storm.apache.org/
http://flink-forward.org/
http://data-artisans.com/flink-user-survey-2016-part-1/
http://data-artisans.com/flink-user-survey-2016-part-1/
http://data-artisans.com/flink-user-survey-2016-part-2/
http://data-artisans.com/flink-user-survey-2016-part-2/
https://cloud.google.com/dataflow/
http://2016.flink-forward.org/kb_sessions/a-brief-history-of-time-with-apache-flink-real-time-monitoring-and-analysis-with-flink-kafka-hb/
http://2016.flink-forward.org/kb_sessions/a-brief-history-of-time-with-apache-flink-real-time-monitoring-and-analysis-with-flink-kafka-hb/
http://2016.flink-forward.org/kb_sessions/a-brief-history-of-time-with-apache-flink-real-time-monitoring-and-analysis-with-flink-kafka-hb/
http://2016.flink-forward.org/kb_sessions/a-brief-history-of-time-with-apache-flink-real-time-monitoring-and-analysis-with-flink-kafka-hb/
http://rocksdb.org/
http://sf.flink-forward.org/kb_sessions/keynote-stream-processing-with-flink-at-netflix/
http://sf.flink-forward.org/kb_sessions/keynote-stream-processing-with-flink-at-netflix/
http://sf.flink-forward.org/kb_sessions/keynote-stream-processing-with-flink-at-netflix/
http://sf.flink-forward.org/kb_sessions/streaming-models-how-ing-adds-models-at-runtime-to-catch-fraudsters/
http://sf.flink-forward.org/kb_sessions/streaming-models-how-ing-adds-models-at-runtime-to-catch-fraudsters/
http://sf.flink-forward.org/kb_sessions/streaming-models-how-ing-adds-models-at-runtime-to-catch-fraudsters/
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html

	Introduction
	Preliminaries
	The Apache Flink System
	The Global Snapshotting Problem

	Core Concepts and Mechanisms
	System Model
	Managed State
	State Partitioning and Allocation

	Pipelined Consistent Snapshots
	Approach Intuition
	Main Assumptions
	Directed Acyclic Graphs
	Dealing with Dataflow Cycles

	Usages and Consistent Rollback
	Snapshot Usages
	Consistent State Rollback

	Implementation and Usage
	State Backend Support
	Asynchronous and Incremental Snapshots
	Queryable State
	Exactly-Once Delivery Sinks
	High Availability & Reconfiguration

	Large-Scale Deployments
	A Real-Time Analytics Platform
	The RBEA Service Pipeline
	Performance Metrics and Insights

	Related Work
	Conclusion and Future Work
	References

