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ABSTRACT

We introduce a new concept of leveraging traditional data
statistics as dynamic data integrity constraints. These data
statistics produce transient database constraints, which are
valid as long as they can be proven to be consistent with
the current data. We denote this type of data statistics by
constraint data statistics, their properties needed for consis-
tency checking by consistency metadata, and their implied
integrity constraints by implied data statistics constraints
(implied constraints for short). Implied constraints are valid
integrity constraints which are powerful query optimization
tools employed, just as traditional database constraints, in
semantic query transformation (aka query reformulation),
partition pruning, runtime optimization, and semi-join re-
duction, to name a few. To our knowledge, this is the first
work introducing this novel and powerful concept of deriv-
ing implied integrity constraints from data statistics. We
discuss theoretical aspects of the constraint data statistics
concept and their integration into query processing. We
present the current architecture of data statistics manage-
ment in SAP HANA and detail how constraint data statistics
are designed and integrated into this architecture. As an
instantiation of this framework, we consider dynamic parti-
tion pruning for data aging scenarios. We discuss our cur-
rent implementation for constraint data statistics objects in
SAP HANA which can be used for dynamic partition prun-
ing. We enumerate their properties and show how consis-
tency checking for implied integrity constraints is supported
in the data statistics architecture. Our experimental eval-
uations on the TPC-H benchmark and a real customer ap-
plication confirm the effectiveness of the implied integrity
constraints; (1) for 59% of TPC-H queries, constraint data
statistics utilization results in pruning cold partitions and
reducing memory consumption, and (2) we observe up to 3
orders of magnitude speed-up in query processing time, for
a real customer running an S/4HANA application.

1. INTRODUCTION

Data statistics management in database systems has been
carefully designed and integrated in many commercial sys-
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tems as the absence of data statistics results in poor per-
formance [6] while, on the other side, data statistics can be
very expensive to create and maintain [11]. Selecting the
most suitable data statistics depends on the current phys-
ical design, the current data, the current database work-
load, and, most importantly, on the current capabilities of
the query optimizer and query execution engines to effi-
ciently use data statistics. As many commercial DBMSs,
SAP HANA — an in-memory columnar RDBMS — has exten-
sive support for data statistics, which are used for statistical
needs such as cardinality estimation. The system features a
special DataStatistics component which manages data statis-
tics objects, including the maintenance of these objects when
data changes [22]. The DataStatistics component is designed
to isolate the consumers of data statistics from the manage-
ment and the storage of these objects. This design provides a
common API, for answering statistical questions without the
consumers being aware of which data statistics were used.

With increasing use of data aging' configurations and ap-
plications which are agnostic to how the data is stored, man-
aged, and aged, there is a need to internally create and use
special integrity constraints which capture the movement of
data from hot to cold partitions, from column store to ex-
tended store in SAP HANA. These transient integrity con-
straints describe a snapshot of the database state such as
data location and system topology. Such constraints can be
extremely useful for efficient query processing by helping in
restricting the access to cold data irrelevant to a query [10].
However, these dynamic integrity constraints can be ex-
tremely expensive to discover and maintain. Comparing the
building and the maintenance of traditional data statistics
to dynamic discovery of transient integrity constraints, we
make the observation that the two are very similar in how
the base data is processed for these objects, how they have
to be built, maintained and stored in a compact way, and
how they can be used in query processing.

With these observations in mind, we introduce in this pa-
per traditional data statistics which also can be used as tran-
sient integrity constraints. In our implementation, we lever-
age the existing DataStatistics component’s features, such
as (1) the isolation of maintenance details from the con-
sumers of DataStatistics services, (2) the persistence of the
data statistics in a compact format in the catalog, (3) the
support for distributed landscapes, and (4) the dynamical
maintenance of these objects when data changes. We intro-

'Data aging in SAP HANA physically partitions data into
one hot partition with recent data, and cold partition(s)
with historical data (see ”Data aging” in Section 2).



duce the theory behind the new concept of using traditional
data statistics as dynamic data integrity constraints. These
data statistics produce transient database constraints, which
are valid as long as they can be proven to be consistent with
the current data. We denote this type of data statistics by
constraint data statistics, their properties needed for consis-
tency checking by consistency metadata, and their implied
integrity constraints by implied data statistics constraints
(implied constraints for short). Implied constraints are valid
integrity constraints which are powerful query optimization
tools employed, just as traditional database constraints, in
semantic query transformation (aka query reformulation),
partition pruning, runtime optimizations, and semi-join re-
duction, to name a few. To our knowledge, this is the first
work introducing this novel and powerful concept of implied
integrity constraints from data statistics.

We demonstrate the usefulness of our proposed frame-
work, considering practical use-cases in data aging scenar-
ios. We design effective data statistics objects that: (1)
integrate well into current SAP HANA’s architecture; they
rely on existing information for efficient runtime consistency
verification, with no maintenance overhead. In this regard,
an implicit passive mechanism is in place to maintain the
consistency of our constraint data statistics objects, and (2)
are compact objects and can be kept in memory with very
small overhead to verify their consistency. This makes them
desirable for efficient dynamic pruning.

Dynamic partition pruning based on constraint data statis-
tics objects is complementary to static partition pruning.
Static pruning, which uses the fixed partitioning scheme def-
inition, can be applied when there is explicit reference(s) to
the partitioning key columns. However, dynamic partition
pruning can help to re-formulate query predicates which do
not reference the partitioning columns. Dynamic pruning is
particularly useful when there is a correlation between the
partitioning key columns and the columns with constraint
data statistics in query predicate. We show that constraint
data statistics can be used beyond partition pruning, e.g. for
semi-join reduction and runtime optimization using cached
plans. Our experiments confirm that our constraint data
statistics are powerful objects which can help to effectively
prune cold partitions for 59% of queries in TPC-H bench-
mark, and can reduce query processing time up to 3 orders
of magnitude for a real customer application.

1.1 Contribution

Our main contributions are presented as following:

e In Section 3, we present an architectural overview of
SAP HANA'’s DataStatistics component; we describe the
grand vision behind its design, as well as the services
it provides.

e In Section 4, we introduce our novel type of data statis-

tics objects, namely constraint data statistics, and present

the theoretical framework of query optimization with
constraint data statistics.

e In Section 5, we provide a use case for constraint data
statistics, in a data aging scenario. We enumerate the
requirements for an implied integrity constraint, and
design one, seamlessly integrated into SAP HANA.

e In Section 6, we document an end-to-end experimen-
tal evaluation of our proposal, using both the stan-
dard TPC-H benchmak and a real customer’s produc-
tive system in data aging configuration.

2. AN OVERVIEW OF SAP HANA

In this section, we present a brief overview of SAP HANA'’s
in-memory column store, query processing, and data aging.
The section provides the necessary background for the topics
covered in this paper. The architecture of SAP HANA is
described in full details in [14].

In-memory column store - In SAP HANA’s column
store, data is stored in a read-optimized main fragment and
a write-optimized delta fragment. Inserting new rows or up-
dating existing rows are both regarded as changes. Changes
do not physically modify existing rows (i.e. no in-place up-
date) but append new rows into the delta fragments. Dur-
ing the delta merge operation, all committed row changes
from the delta fragment are moved into a newly constructed
main fragment. Each query on a column is evaluated in-
dependently on the main and on the delta fragment of the
column. The two result sets are united and returned, with
some rows removed after applying proper row visibility rules.
In the main fragment, a data vector is used per column to
store which row position contains what value identifier from
the column’s dictionary. When searching a column for a
value, an inverted index may help to speed-up the search of
the corresponding rows in the data vector.

Query processing - Semantic query transformations
(aka query reformulation) are applied in different stages of
query processing. During query optimization, the rule based
optimizer applies normalization steps to the relational alge-
bra tree which is later used for cost-based optimization. The
relational algebra tree contains relational operators such as
projection, selection, join, and aggregations. Normalization
transformations which can safely be applied for plans which
will be cached - such as predicate transformation from dis-
junctive normal form to conjunctive normal form, tautol-
ogy elimination, static partition elimination - are applied
in this step of query optimization. Traditional database
constraints, which are always consistent with any database
state, are applied in query reformulation, similar to work
described in [10], in this phase. Static partition elimination
process for partitioned tables uses the normalized predicates
to prescribe complete elimination of partitions which have
no relevant rows for the query. After cost-based query opti-
mization, which in general will cache the best plan, runtime
optimizations are applied by different execution engines pro-
cessing parts of the query plan. At runtime, new predicate
normalization process is applied as values of the query pa-
rameters are now known; implied constraints, introduced in
this paper, can be used at this stage for query reformulation.
We denote the process of using some transient runtime infor-
mation, such as implied integrity constraints, for partition
elimination by dynamic partition pruning.

Data aging - The most-prominent way to avoid full
data scan of a table is to create physically independent
table partitions. This way, evaluating predicates on ta-
ble partitions can benefit from server parallelism. Further-
more, it is possible to skip partitions irrelevant to a query
(described shortly). With table partitioning in place, the
WHERE clause of a query, after query reformulation using
database integrity constraint, and predicate normalization,
can be used to determine whether data from a partition can
satisfy a query predicate condition. This can be achieved
by query reformulation using the partition definition (i.e.,
the partitioning scheme). Partitions that are guaranteed —
by their scheme definition — not to have any rows qualified
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by the query predicate can be pruned, i.e. not loaded dur-
ing query execution. This type of pruning is always correct
as it is based on the static partitioning scheme definition.
Often the partitioning scheme is chosen in a way that old
data, which is rarely accessed, is stored in other partitions
separate from frequently accessed data. This is often de-
scribed with the metaphor of hot (for current) and cold (for
old) data. Segmenting data into hot and cold partitions has
the key advantage that smaller amount of data needs to be
scanned and processed, when the majority of queries touch
the most recent data. This is beneficial, as the cold data
is often placed in containers with slower access time, which
can get (partially) loaded into main memory on demand [25].
Unfortunately, general table layout does not foresee the di-
rect implementation of data aging by range partitioning. As
an example, a business object may be made up of two tables;
Header and Lineitem. If only the Header table carries an
age information and/or a status that indicates whether the
business process is completed and the object is no longer re-
quired for normal processing, there is no option to properly
employ partitioning techniques on the Lineitem table. This
is why in S/4HANA, an artificial column has been added to
the data model. Once a business object is identified to be
no longer relevant for most OLTP processes, it gets closed by
setting a business date into the artificial column of all related
tables. Partitioning rules then ensure that the correspond-
ing rows are being moved to the proper cold partitions.

Query processing on aged tables - The standard us-
age scenario of partition pruning in data aging configuration
is limited to the predicates referring to the partitioning crite-
rion. Without such predicates, partitions cannot be pruned
by classic schema based partition pruning. Some applica-
tions may be able to explicitly provide the age in the query
predicate, or at least derive relevant range for the age based
on available business data. However, this information is not
always evident from the query predicate. In this case, there
are three possible ways to process the query. First, scan all
table partitions and probe them against the query predicate;
this is prohibitively expensive. Second, create an index on
columns that are referenced in query predicates, and utilize
this index to efficiently access data in each partition. While
attractive, we do not opt for this solution; in SAP HANA
each column index is stored with the corresponding column
partition, meaning that this solution would also require load-
ing of all column partitions®. The third possible solution is
to use constraint data statistics, defined per column parti-
tion, and perform consistency checking as described in Sec-
tion 5.2, to avoid accessing irrelevant partition(s).

3. ARCHITECTURE OF DATA STATISTICS
COMPONENT IN SAP HANA

Data statistics are handled by a dedicated DataStatistics
component, that is responsible for building and maintain-
ing all data statistics objects. This component is in charge
of answering statistical questions posed by every database
system component. For instance, the query optimizer uses
DataStatistics API during query optimization while query ex-
ecution engine uses it for runtime optimization such as dy-
namic partition pruning. DataStatistics answers to each sta-
tistical question by using the data statistics object(s) most
relevant to that particular request. In SAP HANA, there are

2The inverted index size is linear to the size of the column.
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Figure 1: DataStatistics component in SAP HANA

currently two categories of data statistics objects. The first
category consists of the basic runtime data statistics objects.
These objects are stored and maintained close to the data.
The second category consists of objects which are created
by DDLs; they are built and dynamically maintained by the
DataStatistics component. These objects are treated as first-
class citizen database objects®. The main architecture of
the DataStatistics component is depicted in Fig. 1. Each
node in the distributed landscape has its own DataStatistics
component which receives all statistical requests from local
consumers. To fulfil each request, DataStatistics has direct
access to the distributed metadata which stores information
on the defined data statistics objects. This architecture has
the primary goal of isolating the consumers of data statis-
tics from the management aspects of these objects, which in-
clude dynamical maintenance of content when data changes,
as well as life-cycle management?.

By design, all requests for statistical questions are sent to
local DataStatistics component. Because of this, the architec-
ture achieves another very important goal. The component
provides seamless integration of the DataStatistics Adviser
into SAP HANA’s architecture [9]. The adviser, in an ad-
visory mode, collects information on any type of statistical
requests, and advises of missing data statistics, as well as
unused or not useful ones. The DataStatistics Adviser is de-
signed from a unique perspective that data statistics needs
can be understood only based on the current implementa-
tion of database components consuming data statistics in
their normal query processing. This implies that:

1. Data statistics usefulness depends on the current physical
database design (e.g., partitioning scheme, data location®).
2. Data statistics usefulness depends on the current work-
load. A change in the workload properties may result in a
dramatic change in what data statistics are useful.

3. Data statistics usefulness depends on the characteristics
of the current data accessed by the workload.

4. Data statistics usefulness depends on the current imple-
mentation of the consumers of data statistics, i.e., the query
optimizer and the execution engines.

3They have dedicated schema, unique object identifier, and
are stored in database catalog.

4E.g. create, drop, alter, and refresh.

SSAP HANA supports multi-store tables which have some
partitions stored in SAP IQ, and remote tables which are
tables stored in a remote system.
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The last implication, immediately points to the extensi-
bility of the DataStatistics Adviser architecture. For instance,
when new statistical requests are triggered by new features
added to the query optimizer (such as applying integrity
constraints for query reformulation, or using constraint data
statistics for partition pruning) the DataStatistics Adviser,
without any changes, considers these requests for statis-
tics recommendations. The constraint data statistics, in-
troduced in this paper, were integrated into DataStatistics’s
architecture by adding support for:

1. A new type of request, to find implied integrity con-
straints from data statistics which are relevant to certain
predicates. In the current implementation, these requests
come from runtime optimization for dynamic partition prun-
ing (Section 5.3). The DataStatistics component finds rele-
vant constraint data statistics, and decides if their implied
integrity constraints are consistent with the database state
visible to the requesting transaction (Section 5.2).

2. New methods for building and maintaining constraint
data statistics: when such an object is built, its implied
integrity constraint must be consistent with the database
state®. A consistency metadata is attached to the object
which is used by DataStatistics component to decide the con-
sistency of its implied integrity constraint when used for a
request as described in (1). When the constraint data statis-
tics become inconsistent with the current database state,
the DataStatistics component dynamically, asynchronously,
rebuilds them”.

3. New method for DataStatistics Adviser to recommend the
creation of missing constraint data statistics based on this
new type of statistical questions. This feature is essential to
improve workload performance using constraint data statis-
tics, as even for a simple workload and partition topology,
defining useful constraint data statistics for dynamic parti-
tion pruning is inherently difficult for a human.

In the next section, we provide theoretical framework for
constraint data statistics and their implied integrity con-
straints, and present how these are used by the query opti-
mizer and execution engines during query processing.

4. QUERY OPTIMIZATION WITH
CONSTRAINT DATA STATISTICS

In this section, we first introduce the novel concept of con-
straint data statistics objects (Section 4.1). We then show
how these objects can be used during runtime query opti-
mization (Section 4.2). Constraint data statistics objects
can be integrated into our DataStatistics component. In Sec-
tion 5, we provide a concrete instantiation of constraint data
statistics objects, and its integration into DataStatistics com-
ponent for dynamic partition pruning in data aging scenario.

4.1 Constraint Data Statistics

We define constraint data statistics by leveraging tradi-
tional data statistics which can be used to generate valid
integrity constraints. These are data statistics objects which

are dynamically maintained by the system when data changes.

In particular, data statistics objects are augmented with ad-
ditional consistency properties. These properties allow the

SFor example, data statistics built using sampling do not
have this property.

"Note that these data statistics can be used as traditional
data statistics objects regardless of their consistency.
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system to decide if the data statistics object implies a valid
integrity constraint consitent with the data visible to a cur-
rent transaction. If it can be decided that an instance of a
data statistics is consistent to the snapshot of the transac-
tion, then its implied integrity constraint can be used, just
like normal database constraints, in semantic query trans-
formation (aka query reformulation [10]) and runtime opti-
mization. This utilization can result in dynamic partition
pruning, inference of new, more restrictive predicates, and
semi-join reduction, to name a few. Many types of tradi-
tional data statistics can be seen as implying new, valid,
integrity constraints. For example, a two bucket histogram
built for the column A of table T as [10,100, payload:],
[200, 300, payloads] naturally implies the integrity constraint:

(T.A between 10 and 100) or (T.A between 200 and 300).

If such implied integrity constraint can be decided to be con-
sistent with data visible to the current transaction, then it
can be used, just as any other database constraint, for query
reformulation [10]. Another example is the partitioned table
with simple data statistics depicted in Table 1 in Section 5:
their implied integrity constraints are as follows® :

dico :  (l-shipdate > '1996-12-12’ and
Linitem(current) ) or Lineitem(1,...,5)
ticy :  (l.shipdate BETWEEN ’1995-11-08’
and ’1996-12-12° and
Lineitem(1)) or Linitem(current,2,...,5)
ticg :  (l-shipdate BETWEEN ’1994-12-08’

and ’1995-29-12’ and

Linitem(2) ) or Linitem(current,1,3, ...,5)
and likewise for iics and iics. Let a relevant predicate in a
query be lshipdate >= '1996-01-01’. Assume that it can be
decided that all implied integrity constraints iico,...,dics
are consistent with the database state visible to the query
transaction. Under these conditions, we can apply query
reformulation using the above implied integrity constraints
resulting in the following predicate:

l_shipdate >= "1996-01-01" and Lineitem(current,1,...,5) and
((1_shipdate>’1996-12-12’ and Linitem(current)) or Lineitem(1,.,5))
and ((l_shipdate BETWEEN ’1995-11-08’ and ’1996-12-12’
and Lineitem(1)) or Linitem(current,2,...,5))

and ((l_shipdate BETWEEN ’1994-12-08’) and ’1995-29-12
and Linitem(2) ) or Linitem(current,1,3,...,5))

and ...

which, after predicate normalization, is equivalent to:
(Ishipdate > ’1996-12-12’ and Linitem(current) ) or (l-shipdate
BETWEEN ’1996-01-01’ and ’1996-12-12’ and Lineitem(1)) .
Hence, in this particular case, query reformulation using im-
plied integrity constraints results in dynamic partition prun-
ing of partitions 2, 3, 4, 5; moreover, the predicate for the un-
pruned partition 1 is a more restrictive predicate applicable
only for partition 1.

The main challenges are related to building and maintain-
ing constraint data statistics, and to make possible to de-
cide if the implied integrity constraint is consistent with the
database state for a given transaction consuming them. Our
current architecture for supporting such data statistics is
fully integrated in our DataStatistics component (Section 3).
This provides a complete isolation between consumer of data

8We use the notation T (i1, . .

.) to denote the predicate ’the
row belongs to either of the partitions (i1,...)

’



statistics and their maintenance, hence it is fully responsi-
ble for solving all the main challenges described above. To
make possible this type of decisions, we identify the fol-
lowing properties we need to provide for a data statistics
object: (1) when a data statistics object is built, the build
process must see all the data, visible or not to the current
transaction; (2) the implied integrity constraint is invari-
ant to data deletes; (3) the implied integrity constraint can
be made inconsistent only by data updates and data inserts;
(4) the data statistics stores enough information on the data
state when it was built: we denote this information as the
consistency metadata of the data statistics object; (5) the
consumer transaction must be able to provide information
on its visible database state which, together with the consis-
tency metadata of a data statistics, is used in the decision
if the implied integrity constraint is consistent or not to the
database state of the transaction: if the decision is yes, the
implied integrity constraint can be used, just as any integrity
constraint, for semantic query transformation.

As we explain in Section 5.2.2 in detail, for consistency
metadata of a data statistics object, our current design uses
a high-water mark for each physical partition, namely the
maximum record identifier of the last row inserted in that
particular partition. A logical data statistics object, de-
fined on a single table, has a physical data statistics object
for each partition of its data source table. The consistency
metadata of a data statistics object is kept for each of its
physical objects. It consists of the maximum record identi-
fier (MaxRowlID) of the partition the physical object is built
on, at the time the physical object was last refreshed.

Hence, constraint data statistics is a traditional data statis-
tics which have an implied integrity constraint that can be
decided if it is consistent with a database state.

4.2 Runtime Query Optimization

One of the main goal of this work is to show the power
of constraint data statistics for a specific runtime optimiza-
tion, namely dynamic partition pruning. In theory, both
static and dynamic partition pruning are methods of ap-
plying query reformulation [10] using conditions consistent
with the data in some or all of the partitions. The goal is
to use the rewritten predicates to prove that some of the
partitions have no useful rows for the given query, hence
achieving partition pruning. Practically, this type of query
reformulation is applied if the query already contains pred-
icates on relevant columns for which such conditions exist.
For example, if the query has local predicates (e.g., equality
with a constant, between predicates) on a column which is
used in the range partitioning scheme, predicate reformula-
tion using the partitioning scheme is used to achieve static
partition pruning.

Ezxample: The table T has the range partitioning scheme
PARTITION BY RANGE (A) (PARTITION 1 <= VALUES < 5,
PARTITION VALUE = 44, PARTITION OTHERS

resulting in three partitions for which the following con-
straints hold®:

c1: (1<=T.A<5 and T(1)) or T(2,3)

c2: (TLA=44 and T(2)) or T(1,3)

cs: (TTA<>44 and (TTA <1 or T.A >=5) and T(3))
or T(1,2).

9We use T'(i1, 92, . ..) to denote rows which belong to either
of the partitions (i1,1i2,...) of table T'

A query predicate p(T.A) on the column 7T.A can be rewrit-
ten as follows: ‘

p(T.A) == p(T.A) and T(1,2,3) “""E=L2

p(T.A) and T(1,2,3) and

(1<=TA<5 and T(1)) or T(2,3)) and

((T.A=44 and T(2)) or T(1,3)) and

((T'A<>44 and (T' A< 1 or T'A>=5) and T(3)) or
7(1,2))

For p(T.A) = T.A = 4, the above predicate is rewritten
as (T.A =4 and T(1)), hence achieving partition pruning
for partitions (2, 3); while for p(T.A) =" T.A >= 44’ the
above predicate is rewritten as
(T'A = 44 and T(2)) or (T.A > 44 and T(3)), with
partition (1) being pruned.

The constraint data statistics objects can be consumed

for query reformulation by using their implied integrity con-
straints. If an implied integrity constraint can be proven to
be consistent with the database state visible to the query
transaction, then it can be used, just as any integrity con-
straint for query reformulation. For each partition T'(3),
for each column T.A, the implied integrity constraint is
theoretically defined as: idica,: (pa,(T-A) and T(i) ) or
T(@1,...,i—1,9+1,...): the predicate pa,(T.A) is defined
using the current physical data statistics object which can
be, for example, a range predicate if data statistics object is
a simple min/max statistics, or can be a disjunction of range
predicates for a data statistics object of type histogram. As
an example, if the min/max statistics for l_shipdate, for par-
tition 1 of table Lineitem is (’1995-11-08’, ’1996-12-12’), its im-
plied integrity constraint is
#i¢] shipdate,: ( '1995-11-08" <= lLshipdate < '1996-12-12
and Lineitem(1) ) or Lineitem(current, 2,3,4,5).
For a query execution process, the implied integrity con-
straints, once proven to be consistent to the data visible to
the query transaction, can be used in these phases of the
query processing:

e Query optimization, if the plan being optimized will
not be cached: cached plans cannot use transient in-
tegrity constraints.

e Query optimization, if the plan being optimized will
be cached as a parameterized plan: if the implied in-
tegrity constraints are used for a cached plan, the data
statistics and its current consistency metadata can be
a parameter to the cached plan: new transactions can
use that parameterized plan, if an only if the stored
consistency metadata can be use to prove the consis-
tency of the implied integrity constraints.

e Query execution: as any optimization done during
query executions are done only for the current plan,
implied constraints can be used for any such optimiza-
tion: these may include dynamic partition pruning,
semi-join reductions using runtime values after a scan
of a table to achieve dynamic partition pruning on the
other join table.

S. CONSTRAINT DATA STATISTICS FOR
DYNAMIC PARTITION PRUNING

In this section, we present a use case of constraint data
statistics for dynamic partition pruning. We first motivate
our design by presenting the requirements for constraint
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Table 1: Ranges of 1_shipdate column for cold parti-
tions of aged Lineitem table (details in Sec. 6.1)

coldl cold2 cold3 cold4 coldb
min | 11Aug95 | 12Aug94 | 09Aug93 | 11Aug92 | 03Jan92
max | 12Dec96 | 29Dec95 | 29Dec94 | 29Dec93 | 28Dec92

data statistics. For simplicity, we formulate this as im-
provement opportunities for critical data aging operations
(Sec. 5.1). Then, we present our technical implementation
of a constraint data statistics, and we describe how it is in-
tegrated into SAP HANA’s architecture (Sec. 5.2). Finally,
in Sec. 5.3, we overview how our proposed data statistics
objects can be used during runtime query optimization.

5.1 Motivation: Data Aging in SAP HANA

We present two practical uses cases in this section. In
data aging, each table is segmented into a hot partition and
one or many cold partitions. The hot partition contains ac-
tivity pertaining to recent (i.e. current) data. Each cold
partition contains activities that are not recent, i.e. closed
in data aging terminology. We present two practical oper-
ations and motivate that they both benefit from constraint
data statistics. We carefully identify the requirements for
such data statistics objects in Sec. 5.1.3, and show how we
support them in SAP HANA (Sec. 5.2).

5.1.1 Query processing on cold partitions

Queries on aged tables may explicitly (or implicitly) pro-
vide hint(s) to query execution engine, to consider and/or
skip selected partition(s) of an aged table. For instance, a
hint could specify that only recent data, or data from desig-
nated cold partition are relevant for desired historical anal-
ysis. Otherwise, every partition of the aged table needs to
be loaded and examined; this has very large memory foot-
print and prohibitive CPU cost. One possibility to mitigate
this cost is to build (inverted) index for any column antici-
pated to be queried. However, such indexes are stored with
the column partition, meaning that probing the index would
again trigger a load. Keeping the index in memory brings an
extra overhead, as the size of an index is linear to the size of
the corresponding column. It is very desirable to prune par-
titions by comparing query predicate against the constraint
data statistics of each column partition. We use an example
to illustrate this using the aged Lineitem table'® from the
TPC-H benchmark and the query Q06 as

SELECT sum(l_extendedprice * 1l_discount) as revenue
FROM Lineitem

WHERE 1_shipdate >= to_date(’1994-01-01’)

AND 1_discount between round((0.6-0,01),2)

and round((0.6+0,01),2) AND 1_quantity < 24.

Table 1 contains an instance of the minimum/maximum
statistics for l_shipdate column, for each cold partition. When
evaluating QO06, these ranges can be leveraged to skip cold
partitions cold4 and cold5. This is because of the predicate
which references 1_shipdate in the query is guaranteed not to
have any candidate results in partitions cold4 and cold5.
These two partitions have l.shipdate earlier than 29Dec93
and 28Dec92. In our current implementation, this pruning is
achieved by creating constraint data statistics of type simple

10We explain the aging of the Lineitem table in Sec. 6.1.

for the column I_shipdate which contains the minimum and
maximum values for each partition. The implied integrity
constraint is used for dynamic partition elimination which,
indeed, results in pruning partition cold4 and cold5.

5.1.2  Enforcing uniqueness constraint

Enforcing uniqueness of values in a column (or a set of
columns) is an important requirement of many business ap-
plications. Enforcing uniqueness is challenging particularly
in a data aging configuration. This is because for any OLTP
operation that changes the data, one has to rigorously exam-
ine all partitions and verify that uniqueness would remain
valid. One possible way to simplify uniqueness check is to
augment the table’s partitioning columns with the set of
columns that are present in a uniqueness constraint. Using
this technique, enforcing uniqueness becomes equivalent to
verifying whether each update violates the uniqueness con-
straint in exactly one partition only, as opposed to several
partitions. This approach, while significantly simplifying
the problem, has the risk of violating business uniqueness
semantics. This is because augmenting the primary key con-
straint with physical row placement columns opens the doors
to having rows with identical primary key (uniqueness con-
straint) but different physical partitioning columns. As an
alternative, we propose to verify uniqueness efficiently us-
ing constraint data statistics to the uniqueness checking for
some partitions based on their implied integrity constraints.
Instead of examining all partitions for each update, we pro-
pose to use first the constraint data statistics by checking
the updated value against the implied integrity constraint.
These objects are compact data structure and probing them
must be quick. For instance, consider an insert operation.
Let the constraint data statistics have the minimum m and
the maximum M of a column, for a certain partition. If the
inserted value is not inside the range [m,M ], there is no
need to examine that partition for uniqueness. Otherwise,
the partition has to be examined for uniqueness violation(s).

5.1.3 Remarks and requirements

Although dynamic partition pruning may seem similar to
classic schema-based partition pruning [24], it is quite dif-
ferent for two reasons. First, a table can only be physically
partitioned by one set of primary Column(s)u. Because of
this restriction, schema-based pruning can be applied when
either (1) there is a predicate with conditions on the pri-
mary partitioning column, or (2) there is an opportunity
for query re-formulation to learn the primary partitioning
column(s). Second, dynamic partition pruning extends the
possibility of pruning partitions; dynamic partition prun-
ing can be applied as a complementary pruning step after
schema-based partition pruning, to further reduce the num-
ber of partitions that are candidate for pruning, but not
pruned by the schema based step. Such pruning becomes
more fruitful, particularly when there is a correlation be-
tween column values and the partitioning key. However, dy-
namic partition pruning is useful only if the data statistics
object is consistent with the database snapshot of the con-
sumer transaction. Otherwise, using such data statistics for
pruning may produce incorrect query results if a partition is
pruned incorrectly. One approach to guarantee the consis-
tency is to rigorously maintain data statistics objects values

10Often an implied TEMPERATURE column consistent with
business logic is selected in data aging applications.
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per database snapshot. This solves the consistency problem,
but is very expensive to manage. Instead, we advocate for
a much simpler approach which fits well in the context of
data aging applications. We create data statistics objects
with an implied consistency metadata. In our design, we
carefully consider the following important requirements for
ideal consistency metadata:

1. Runtime verification of metadata consistency state for

each data statistics object must be efficient,

. Each snapshot can use data statistics objects having a
metadata state consistent with the snapshot, and

No extra cost is associated with maintaining the con-
sistency metadata of each data statistics object.

We present our implementation in the next section.

5.2 Implementation

We describe an instantiation of a constraint data statis-
tics object. We use the term synopsis to refer to our in-
stantiation. Each synopsis is constructed for a single col-
umn of a partitioned table'?. Each synopsis has a content
(Sec. 5.2.1) and a consistency metadata (Sec. 5.2.2), which
together ensure it satisfies the requirements we mentioned
in Sec. 5.1.3, when integrated into the DataStatistics compo-
nent (Sec. 5.2.3).

5.2.1 (Min,Max) as constraint data statistics

Let C be a column of the partitioned table T. A min/max
data statistics is defined, for each partition T'(p), as the pair
(min(T (p).C), maz(T(p).C)) which are the smallest and the
largest values, respectively, that appear in the the main and
the delta fragments of column C, of the partition T'(p) as-
suming that every row in the partition 7'(p) is visible when
minimum and maximum are computed. This content can
be constructed in constant time by consulting the main
dictionary and the delta dictionary of the column C, of
the partition T'(p). Note that we extract the content from
both the main fragment and the delta fragment of each col-
umn partition. This, corresponds to the physical content
of the column and does not filter out any row. Not in-
cluding visibility rules in the construction of the synopsis
content ensures that the synopsis can be consumed by any
snapshot that applies filtering rule(s) over the same phys-
ical content of the column. We next formalize this prop-
erty. Let min(T(p).C, Si) and maxz(T(p).C, S;) be, respec-
tively, the minimum and the maximum values of rows in
T(p).C that are visible under the snapshot S;. Our con-
struction of min/max synopsis guarantees that the range
[min(T(p).C, Si), maz(T(p).C, S;)] is included in the range
[min(T(p).C), maz(T(p).C)] defined above. Therefore, if a
transaction with snapshot S; wants to perform dynamic par-
tition pruning, e.g. based on the predicate "T.C' < value’,
it can safely use the range [min(T(p).C), maz(T(p).C)] in-
stead of the range [min(T(p).C, S;), maz(T(p).C, Si)], and
skip partition T'(p) if value < min(T(p).C'). The advantage
of using synopsis content over the current range visible to
the snapshot S, i.e. [min(T(p).C, Si),maz(T(p).C, Si)], is
that we do not need to maintain synopsis per snapshot. This
is part of the second requirement mentioned in Sec. 5.1.3.

128ynopsis can either be requested by a DDL statement, or
be recommended by statistics adviser.
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5.2.2 MaxRowlD as consistency metadata

Key requirements for a good consistency metadata are
that (1) it brings no extra cost to operations that modify
column content, and (2) the verification of data statistics
consistency with the current state of a column of a par-
tition must have low overhead. For these purposes, we use
MaxRowlID for consistency metadata for each table partition.
For each table partition T'(p), MaxRowID (T'(p),t) denotes
the maximum of the largest row identifier in the main frag-
ment and the delta fragment of T'(p) at time ¢t. When a row
is inserted into a table partition, the MaxRowID of that par-
tition is increased automatically in the current SAP HANA
implementation. In this regard, MaxRowID represents table
partition’s state at no extra cost: it is an existing piece of in-
formation already managed by the system for each partition.
The consistency check for a constraint data statistics is done
as following. Assume that the synopsis is built, for the table
partition T'(p), at time ¢;, with r; =MaxRowID (T'(p),t;). r:
is stored in the consistency metadata. Consider that a trans-
action 7T requests to use the synopsis at time t; > ;. As-
sume that the current maximum rowid for the partition 7'(p)
is 7; =MaxRowID (7'(p),t;). If r;=r;, then the DataStatistics
component decides that the synopsis content is consistent
with the requesting transaction database state. Therefore,
the implied integrity constraint can be used. However, if
r; > r; (note that r; cannot be less than r; as the maximum
row id is monotonically increasing), it cannot be safely de-
cided that the implied integrity constraint is consistent with
the current database state. Therefore, the constraint data
statistics cannot be used by the transaction 7. In this sce-
nario, the DataStatistics component marks the data statistics
as inconsistent and it will rebuild it (discussed in Sec. 5.2.3).

Using the MaxRowlID for consistency metadata provides
a very efficient consistency checking mechanism. Further-
more, MaxRowID has a low storage cost. Because MaxRowID
is an information that is already maintained by the system,
no extra cost is incurred in retrieving and using it. In each
snapshot, the DataStatistics component can read snapshot-
independent MaxRowID, and use it to determine the consis-
tency based on the stored consistency metadata of a data
statistics. Thus, our design addresses all the requirements
we listed in Sec. 5.1.3, for the ideal consistency checking.

5.2.3 Integration into DataStatistics Component

We briefly describe how constraint data statistics are in-
tegrated into data statistics API, our simple data structures
that use them, and the life-cycle of such statistics. In or-
der to efficiently support requests for implied integrity con-
straints, the DataStatistics component locally caches a data
statistics in the node which stores the column partition.
Data statistics objects are persisted in the catalog which is
accessible by each node in the SAP HANA landscape. When
the content of a synopsis is modified (described shortly), we
immediately update the local cache version and fire an asyn-
chronous job to update the persistent image of the synopsis
in the catalog. As described in Sec. 3, DataStatistics pro-
vides a new type of requests for the consumers of constraint
data statistics, e.g., for dynamic partition pruning. Once
DataStatistics receives such request, a look-up in the local
cache is performed, with the key being a combination of
the table identifier, the partition identifier, and the column
identifier. If a synopsis is found with its MaxRowID equal to
that of the table partition’s current MaxRowlID, the cached



synopsis is used and declare success. Else, the DataStatistics
component reads directly from the catalog'® and updates
the local cache. Again, when the MaxRowID of the synopsis
read from catalog matches with that of the table partition,
this constraint data statistics can be used and declare suc-
cess. Otherwise, this data statistics object is marked as in-
consistent, and it has to be refreshed asynchronously. The
content of each synopsis and its MaxRowlID is modified in
one of three possible ways. First, during the DDL state-
ment, CREATE or REFRESH. Such statements can be also
triggered by SAP HANA’s data statistics adviser. Second,
the during delta merge of a table partition, data statistics
are re-built for every column of the partition that has data
statistics defined in the catalog. Third, a daemon job can
periodically look for synopsis that are marked as inconsistent
by the DataStatistics component and re-build them using a
background job. We deem this solution sufficiently good, as
updates to cold partitions are rare by design in data aging
configurations.

5.3 Integration with partition pruning

Traditionally, partition pruning used by query optimiza-
tion can be categorized based on its usage of different query
execution components [19]. Using local filter predicates,
the pruning optimization can eliminate unnecessary par-
tition scan of a single table. Using transitive closure of
the local filter for a join table and the join predicates, the
partition pruning can be extended to the other join ta-
ble. Lastly, the partition pruning can be applied partition-
wise based on matching partitioning schemes of the two join
tables: it avoids unnecessary joins between different par-
titions. SAP HANA supports all three forms of partition
pruning. Partition pruning can also be categorized based
on the source of the constraint used for query reformula-
tion. The traditional partitioning scheme allows for static
partition pruning. The constraint data statistics objects (in-
troduced in Sec. 5.2) can be consumed by dynamic partition
pruning. The underlying optimization for dynamic partition
pruning is similar to that for static partition pruning. Prac-
tically, they both compare query range predicates on a col-
umn against the constraint describing the data in a partition
to find out whether they are disjoint. However, dynamic par-
tition pruning differs from static partition pruning as it uses
a transient constraint which describes the data at the query
execution time. Its column, content of the constraint and
the consistency of the content all come from the constraint
data statistics object and its maintenance. It is reflected
in its more dynamic nature of the integration with the ex-
ecution plan. Dynamic partition pruning in SAP HANA is
nevertheless integrated seamlessly with the existing static
partition pruning, i.e., in query optimization and semi-join
reduction. We next briefly review such integrations.

5.3.1 Query optimization

During query optimization, static partition pruning us-
ing literal filter predicates can eliminate partitions for any
plan. All surviving partitions are further prepared with the
static partition pruning information based on parameter-
ized predicates. Dynamic pruning adds to this preparation
with the extra pruning information based on both literal

13E.g. Another thread updated the data statistics after we
read it from the local cache, or we cannot find the relevant
synopsis in the cache after a database restart.

and parameterized predicates, and on the existing relevant
constraint data statistics objects. Normally, the dynamic
partition pruning is only prepared during the plan genera-
tion. The second phase — when the actual pruning optimiza-
tion happens — is done during query plan execution. This
allows the generated plan to be cached for future repeated
executions. During each execution, dynamic pruning checks
the consistency of the synopsis to decide whether it can still
use the constraint. If the synopsis is still valid, its current
content then participates in the actual pruning optimiza-
tion, together with any runtime static partition pruning. If
the plan is not cached, dynamic pruning can also happen
during the query optimization. This provides an extra opti-
mization opportunity as more types of query reformulation
are applied during query optimization.

5.3.2  Semi-join reduction optimization

Constraint data statistics are also used in the semi-join re-
duction optimization which potentially can improve the per-
formance of SAP HANA partition-wise join strategies. The
semi-join optimization is a runtime optimization applied to
the join operators. There are two slightly different types.
The first type happens at the beginning of the plan execu-
tion. It uses the plan data such as the surviving operator
based on the filter predicates and the existing consistent
data statistics object, to further restrict the partition-wise
joinable pairs. This can further avoid unnecessary join be-
tween partitions’*. The second optimization waits for the
first join table to finish its scan. Then, it uses the actual
qualifying values for the columns used in the join predicates
as the filter predicate (an interval) to check against the sec-
ond join table for partition pruning using relevant constraint
data statistics objects. The first type can in particular help
equi-joins through primary key to foreign key equality pred-
icates, when the foreign key can not be part of the partition
columns. As long as primary keys are generated using an
ever increasing counter across the partitions, the surviving
primary key partitions can fully eliminate the non-joinable
foreign key partitions.

6. EXPERIMENTAL EVALUATIONS

We present an experimental study of dynamic partition
pruning in a data aging configuration. We evaluate the use-
fulness of dynamic partition pruning for two different work-
loads: (1) the TPC-H benchmark '® on aged tables described
in Section 6.1, and (2) a running SAP ERP system.

6.1 Datasets and Metrics

Dataset I (aged TPC-H) - We used the data and the
queries from the standard TPC-H benchmark, configured in
a data aging scenario. We simultaneously aged the Orders
and the Lineitem tables, using the configuration similar to
data aging performed in a typical SAP S/4HANA ERP sys-
tem. For each entity, the activities that pertain to each
calendar year are stored in one physical partition. This was
achieved by performing aging runs on tables. To age the
Orders and the Lineitem tables, we first added a new col-
umn named TEMPERATURE to both tables. To populate the
TEMPERATURE column in Lineitem, we first grouped rows
in Lineitem by the l.orderkey column. For each order key

1% g. see the analysis of Q04 of TPC-H in Sec. 6.2
Bhttp://www.tpc.org/tpch/
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group, we extracted the maximum of three date columns
{l.shipdate, lreceiptdate, l.orderdate} for every row in the
same order key group. This maximum date represents the
activity date of the latest line item corresponding to an or-
der. For all line items in each order key group, we set the
TEMPERATURE column equal to the maximum date from the
corresponding order key group. Next, we set the TEMPERA-
TURE attribute of each row in the Orders table equal to the
TEMPERATURE of each line item row that refers to the order
by its primary key. Because the line items having the same
order key get the same TEMPERATURE by our construction,
each row in the Orders table received one date value for the
TEMPERATURE column. By our construction, both Lineitem
and Orders tables have common agreement on the activity
of each transaction: all orders and line items in each trans-
action have the same TEMPERATURE. This resembles the
business logic of a typical SAP S/4HANA ERP system. We
aged the Orders table, and similarly the Lineitem table, by
range partitioning each table on the TEMPERATURE column.
This produced 7 physical table partitions for each aged ta-
ble. The current (hot) partition stored orders from the last
two years (1997 and 1998). The 6 cold partitions, each con-
tained orders for one calendar year (from 1996 to 1992 and
beyond). We stored every column of each cold partition
using SAP HANA’s page loadable column class [25]. We re-
port experiment results for SF 0.1. Furthermore, we report
experiments with larger dataset on real production system.
Dataset II (real production system) - This is a sys-
tem setup for a SAP S/4HANA financial application. There
are three aging tables in this system, with 598M, 38M, and
151M rows. Queries are from a typical financial application.
The cold partitions of aged tables were stored using page
loadable column class [25]. Total memory size consumed by
this workload was 10 Gigabytes, and all experiments were
conducted on a dedicated system, running no workload but
our tests, when the timing measurements were collected.
Constraint Data Statistics - We created constraint
data statistics designated to be used for dynamic partition
pruning purpose, for each column that appeared in at least
one predicate of the queries in each workload. The construc-
tion of each of these data statistics objects takes constant
time per column in each partition; it only requires to ac-
cess the main and the delta dictionaries of each column in
order to get the minimum and the maximum values that ap-
pear per column partition. As the TPC-H benchmark does
not have updates, the statistics we constructed remain valid
in our experiment. For Dataset 1., we constructed 15 data
statistics objects for the aged Lineitem and Orders tables.
Measures - Two measures are of our interest. First, the
number of partitions pruned per query by a valid constraint
data statistics. Larger number of pruned partitions is more
desirable and it translates directly into better memory uti-
lization. The largest number of this measure for Dataset I
is 6 per aged table (i.e. the total number of cold partitions).
Second, we report the query runtime when constraint data
statistics are used for partition pruning, over the runtime of
the same query without dynamic pruning. We expect no re-
gression when there is no pruning , i.e. the ratio is equal to
one. A ratio smaller than one is observed when partition(s)
are pruned. For each query, we report the average runtime
ratio for 200 runs. In each run we first cleared the plan cache
and unloaded the tables referenced in the query. As we do
not re-write the queries to use TEMPERATURE columns, thus

1666

H lineitem orders

5

4

3

sy | [

A SR O (5 B B .
= N MM g N O NN 00 OO O 4 N M T 1N O™~ 0 OO O -« N
O O O O O 0 OO0 O ™ ™o ™o o A =+ oA o o o N NN
8333833038303 0030000dadaTaa

Figure 2: Number of pruned partitions in Lineitem
& Orders tables, for 22 TPC-H queries

relative query execution time

va/\

1.2

0.8
0.6
0.4
0.2

oy

- N o n O
o O 9 9 9O 9
g ogoagagda

Q09
Q10
Ql1
Q12
Q13
Ql4
Q15
Qle
Q17
Q18
Q19
Q20
Q21
Q22

~
o o
g g

Figure 3: Avg. runtime ratio (query processing time
with pruning over processing time without pruning)
for 22 TPC-H queries

no static partition pruning is performed in our experiments.

6.2 TPC-H Results

Fig. 2 demonstrates that for 13 queries (out of total
22 queries), dynamic pruning could prevent loading of at
least one partition from either the Lineitem or the Orders
tables. After examining the constraint data statistics usage
(we provide examples for two queries later in this section),
we noticed that only the data statistics defined on 1_shipdate,
l_commitdate, 1_receiptdate, and o_orderdate columns were the
ones that were successfully used for dynamic partition prun-
ing. Interestingly, these four columns are all correlated with
the TEMPERATURE column, however, TEMPERATURE does
not appear explicitly in any of the 22 queries. This demon-
strates that, while the aged tables are physically partitioned,
the latent semantic correlation between TEMPERATURE and
the other four date columns has provided an effective mech-
anism that offer pruning without explicitly mentioning the
primary partitioning column, which otherwise would bene-
fit from static schema-based pruning. Despite pruning cold
partitions for 59% of TPC-H queries, we did not observe end-
to-end performance improvements (Fig. 3). In most cases,
the running time with partition pruning was identical to that
without runtime pruning. To figure out the reason behind
this, we profiled all queries that could benefit from partition
pruning. We present the summary of our analysis of query
execution for two representative queries: Q04 and Q06 in Fig.
4. Our optimizer assigns each of these two queries to be ex-
ecuted by two different SAP HANA execution engines; Q04
by Join Engine and Q06 by OLAP Engine. Without dynamic
partition pruning, the SAP HANA’s semijoin reduction plan
executes as illustrated in Fig. 4a. The predicate conditioned
on the order date is pushed down to JEEvalPrecond layer, and
is evaluated in parallel on every 7 partition of the aged Orders
table. With the consistent data statistics objects defined on
the Orders table and considering the joining columns, the ac-
tual execution of the semi-join is further improved (Fig. 4c).
On the leaf scan level, the filter condition pruning is able
to eliminate the loading of all but 3 partitions. Further-
more, the dynamic pruning achieves the optimal partition-
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Figure 4: Execution plans for two TPC-H queries (Q04 and Q06) with and without dynamic partition pruning

wise join between JEStep! and JEStep2 by eliminating all
but one pair from any source partition'®. However, because
of SAP HANA'’s inter-partition parallelism, the end-to-end
execution time of JEEvalPrecond step is dominated by the
execution time of the most expensive access to aged Orders
table. The most expensive access, however, is common to
both Fig. 4a and Fig. 4c and corresponds to accessing the
cold partition which returned 4,215 rows. Because of this
parallelism, no improvement were observed in end-to-end
runtime as a result of partition pruning for Q04, even though
it skipped 4 cold partitions (marked with * in Fig. 4a) and
reduced overall memory consumption by 25%. For Q06, as
demonstrated in Fig. 4b,d, we observe that OLAP Engine’s
preliminary step can benefit from partition pruning to skip
4 partitions of aged Lineitem. It reduced memory consump-
tion by 21%. However, there are two factors that prevent
runtime reduction here. First, similar to the case for Q04,
SAP HANA'’s inter-partition parallelism masks runtime sav-
ing by pruned partitions (Fig. 4b) because the runtime for
reading two cold partitions dominate the BwPopSearch step.
Second, for this query, the parallel aggregation step for cold

16The 1 row connection between JEStep! and JEStep2 here
indicates that no actual join happened between the pair.

partitions dominate the end-to-end running time of QO06.
Thus, improvement in BwPopSearch step was not observed
in query execution time, even though both BwPopSearch and
BwPopAggregateParallel steps benefited from dynamic parti-
tion pruning.

6.3 Production System Results

Fig. 5 shows the runtime of a set of representative queries
on a large SAP S/4HANA Central Finance system, with and
without constraint data statistics. The queries access the
same data from the perspective of different applications e.g.,
general ledger, asset management or controlling, and for dif-
ferent purposes, e.g., point and analytical queries. Each of
the queries includes a time-based restriction (e.g. year or
posting date) which is correlated to the partitioning field
(TEMPERATURE). The content of the partitioning field is
populated by the data aging process for financial account-
ing documents'”. For the fields used as a time based restric-
tion, a corresponding constraint data statistics object was
created. We observe that for a large number of queries, dy-
namic partition pruning significantly improved the query ex-
ecution time, from 2 to 3 orders of magnitude, especially in

"http:/ /help-legacy.sap.com/sfin
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Figure 5: Impact of using dynamic partition pruning
on the query execution time of a real system. Hori-
zontal axis: queries, vertical axis: runtime (ms).
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situations where none of the cold partitions were loaded into
memory. For the queries with no performance improvement,
however, we do not observe any regression. After careful in-
vestigation, we learned that the savings come directly from
pruning access to cold partitions. On such a large system,
this pruning contributes to significant performance runtime
improvement and memory reduction.

6.4 Remarks and Discussions

We anticipate that the end-to-end running time could be
significantly improved in three cases, at least. First, if the
query explicitly asks to access only the current hot parti-
tion. This scenario happens frequently, when analysis is per-
formed on hot data. In this case, cold partitions get pruned
implicitly, i.e. without a predicate in the query which refers
to the TEMPERATURE column. Second, when the database
server is heavily loaded and SAP HANA decides to serialize
execution, rather than using inter-partition parallelism. In
this case, the impact of pruning cold partitions becomes im-
mediately visible in the end-to-end running time. Finally,
there are valid configurations in which the cold partitions
reside on remote systems or on extended storage. In such
configurations, given the fact that data statistics objects are
available locally and in transient data structures, partition
pruning can achieve significant performance improvement
by reducing communication to remote system, to push re-
sult sets for join or to fetch results.

7. RELATED WORK

Partitioning is a well established database performance
optimization technique [1, 4, 7]. Skipping data not relevant
to a query can be done using Small Materialized Aggre-
gates [21], zone map filters [15], B+Tree index structures [2],
Quadtree-like index structures [20], and features extracted
from data and workload [26, 27]. Data pruning has been im-
plemented at different granularity levels (e.g. column block
and table partition) and it has been deployed in many com-
mercial systems and large scale big data scenarios [8, 17,
23]. Aside from horizontal and vertical table partitioning,
hybrid segmentation has been proposed in the literature to
improve the performance of in-memory databases depending
on workload [16, 18]. For instance, Grund et al. [16] propose
to horizontally partition a selective set of columns accessed
mostly by OLAP-style queries, and vertically segment a set
of columns that are mostly involved in OLTP workload.

Our work on using data statistics objects for dynamic
partition pruning is related to the Small Materialized Ag-
gregates (SMA) [21]. Each SMA contains aggregate values
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extracted from a bucket of tuples. SMAs can be used to eval-
uate a predicate or to compute aggregate values. SMAs can
be constructed during column load [15]. We study two as-
pects in dynamic partition pruning, which were not studied
before. First, the management of our data statistics objects
can be performed efficiently with no overhead on the OLTP
performance. This is because we rely on automatic mainte-
nance of MaxRowld, which is readily available at query pro-
cessing time, for verifying consistency. Second, even though
a data statistics object is not completely consistent with the
database state at a given time, the corresponding content
can be used whenever small error in precision can be toler-
ated, e.g. during query optimization. We also enumerate
other possible use cases of constraint data statistics objects,
apart from dynamic pruning.

The recent work related to defining new types of integrity
constraints [12, 13], such as matching dependencies and con-
ditional functional dependencies, is very important to our
work: our data statistics structures are used in defining im-
plied integrity constraints, which we envision, in the future
work, will be these complex new types of database con-
straints. Hence, work related to how these new types are
used in query reformulation [10] is of most importance for
this work. Moreover, adding support for matching depen-
dencies and conditional functional dependencies in the query
optimizer for query reformulation, will immediately extend
the usefulness of our constraint data statistics for a larger
class of queries. Beside the traditional data dependencies
defined by user as part of the database schema, research
work such as [3] addresses the problem of dynamically dis-
covering interesting data dependencies on an instance of the
database, and use those in the query optimization. Such
constraints are built by first identifying interesting columns
which may be related, and then use the values to gener-
ate integrity constraints. In contrast, our work relies on
traditional data statistics objects already managed by the
database system, and extends their usage, when possible,
as sources of dynamically defined data dependencies. Our
approach is based on the fact that data statistics objects are
defined for interesting columns which are used in the WHERE
clause. Hence, such columns are already the prime candi-
dates to benefit from the existence of integrity constraints.

The authors of [5] define the concept of data integrity
constraints which are applicable to a single sandbox and are
visible and relevant to the applications running in the same
sandbox. The custom integrity constraints, defined by the
user, are allowed to be inconsistent with the data, however
the applications cannot access the data but in the states
where these integrity constraints are valid. For this pur-
pose, the system must be able to decide if a data state is
consistent to a set of custom integrity constraints defined for
a certain sandbox. In contrast, in this paper, we introduce
implied integrity constraints which are dynamically defined
from physical data statistics objects, for certain types of
traditional data statistics. Implied integrity constraints are
transient database constraints, redefined any time the im-
plicant data statistics are rebuild; their consistency with a
database state of a current transaction can be decided by the
definition of the data statistics object and the consistency
metadata attached to each physical data statistics object.



8. CONCLUSION

We presented the architecture of the unified statistics man-
agement component in SAP HANA. We emphasized the
grand vision of this architecture; an extensible component
that can answer any data statistics requests. Our data
statistics adviser can monitor all data statistics requests,
and can suggest creating missing relevant statistics, as well
as refreshing existing but stale ones, and dropping those less
needed. We proposed a new theoretical concept, which we
name it implied data statistics constraint. We formalized
these constraints as a class of integrity constraints which
are valid as long as they can be proven to be consistent
with the current database state. This offers powerful query
optimization tools, which can be utilized — like any tradi-
tional database constraint — for semantic query transforma-
tion, partition pruning, runtime optimization, and semi-join
reduction, among others. We presented the implementa-
tion of our constraint data statistics objects, and demon-
strated its seamless integration for dynamic partition prun-
ing. Our implementation brings zero maintenance overhead,
constraint consistency can be verified at runtime by piggy-
backing on existing piece of metadata maintained at table
partition level. Our experiments showcase the impact of
(1) our new theoretical concept, and (2) our technical im-
plementation integrated in our unified and overarching ar-
chitechture; 59% of TPC-H queries skip loading cold parti-
tion(s), and queries on a large production system run up-to
3 orders of magnitude faster. We plan to investigate alter-
natives for consistency metadata in scale-out setting.
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