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ABSTRACT
Tumor location displacement caused by respiration-induced
motion reduces the efficacy of radiation therapy. Three med-
ically relevant patterns are often observed in the respiration-
induced motion signal: baseline shift, ES-Range shift, and
D-Range shift.
In this paper, for patients with lower body cancer, we de-
velop class profiles (a low dimensional pattern frequency
structure) that characterize them in terms of these three
medically relevant patterns. We propose an adaptive seg-
mentation technique that turns each respiration-induced mo-
tion signal into a multi-set of segments based on persistent
variations within the signal. These multi-sets of segments
is then probed for base behaviors. These base behaviors are
then used to develop the group/class profiles using a modi-
fied version of the clustering technique described in [1]. Fi-
nally, via quantitative analysis, we provide a medical charac-
terization for the class profiles, which can be used to explore
breathing intervention technique.
We show that, with i) carefully designed feature sets, ii)
the proposed adaptive segmentation technique, iii) the rea-
sonable modifications to an existing clustering algorithm
for multi-sets, and iv) the proposed medical characteriza-
tion methodology, it is possible to reduce the time series
respiration-induced motion signals into a compact class pro-
file. One of our co-authors is a medical physician and we
used his expert opinion to verify the results.

1. INTRODUCTION
A patient profile, in medical terms, is a list of data on

an individual patient collected during their treatment and
might include different kinds of measurements, such as age,
heart rate, blood pressure, etc. Often, full or partial data
from the profile can be used for disease analysis, where dif-
ferent kinds of measurements can be treated as different
attributes or variables. However, sometimes patient data
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consists of one or more continuous time series, with unan-
notated patterns. Moreover, the data may include signals
only from patients with no supporting control dataset. An-
other level of difficulty gets added if there is high variations
between patients and also, between signals from the same
patient collected during different times. An example of such
a dataset in the medical field, would be the respiration in-
duced tumor motion arising from patient treatment during
radiation therapy.
Radiation therapy (RT) involves delivering a tumoricidal
dose to cancerous tissue, while ensuring minimal damage
to healthy tissues and organs at risk. Respiration induced
motion causes significant geometric and dosimetric uncer-
tainties in radiotherapy for thoracic and abdominal tumors.
Such uncertainties have greater impact in case of hypofrac-
tionated regimens such as lung stereotactic body radiother-
apy (SBRT) [13], where very high, biologically potent doses
are delivered in relatively few fractions; 3-5 compared to 30
for conventionally-fractionated RT.

1.1 Dataset and Patterns of Interest

Figure 1: Superior-Inferior (up-down), Anterior-
Posterior (in-out) and Left-Right axes of human
physiology.

The tumor location displacement (Figure 2) is an
inevitable consequence of respiration, which involves the co-
ordinated movement of several abdominal muscle groups,
and results in dynamic variations in the motion character-
istics.These data were collected from patients with thoracic
and abdominal cancer, in Georgetown University Hospital,
who were treated with Cyberknife Synchrony [18], [11]. The
Synchrony subsystem (Figure 4) tracks tumor motion by es-
timating the tumor position (using an internal algorithm)
and produces 4D data, of 3D position information (in mm)
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with time (in seconds). The tracking process requires the
implantation of gold internal fiducial markers, making data
collection expensive and difficult [7]. In this dataset, one en-
tire clinical recording is referred to as a fraction, and thus,
one patient can have more than one fraction. There are 46
patients and 160 fractions with the length of each fraction
ranging between 7810 record samples (over 5 minutes) and
165592 record samples (over 110 minutes). So even though
the dataset is small in terms of the number of patients, it is
large in terms of samples collected (approximately, 84 hours
of time series data with 106 recorded samples).

Figure 2: 4D respiration-induced tumor-motion
data of four different fractions from the dataset,
showing inter and intra fraction variability (trans-
lated along the vertical axis for better readability),
with SI showing maximum variation. SI refers to
the superior-interior axis, AP to Anterior-Posterior
axis and LR to Left-Right axis.

Figure 3: Few varieties of Baseline Shift, ES-Range
Shift and D-Range Shift as seen in the dataset along
the SI axis. Along the gating column, the part of
the signal colored in magenta illustrates the inhala-
tion (and sometimes the exhalation) instances where
gating is necessary.

The inter-patient variations can be explained by the de-
pendency of respiratory pattern on factors like body size,
gender, age, life style, etc. The intra-patient variation can
be explained by the fact that breathing function is controlled
consciously and unconsciously and is prone to be affected
by the person’s emotions, instantaneous thought process,
etc. The errors due to these uncertainties can cause geo-
metric misalignments between the radiation beam (which is
directed based on computed tomographic imaging acquired
a few days before treatment) and the instantaneous position
of the tumor target. Such misalignment can reduce the effi-
cacy of radiation therapy due to the fact that tumors may
receive less than prescribed dose (thereby not achieving the
desired cell-kill) or normal tissue and critical organs may

receive more than intended dose (thereby causing excessive
radiation-related toxicity).

Figure 4: CyberKnife with Synchrony Tracking Sys-
tem

These variations can arise from three types of effects that
cause cycle-to-cycle changes in respiratory motion: (a) am-
plitude changes, (b) frequency changes and (c) baseline shifts.
For a given time interval within a respiratory trace, these
three types of changes may occur separately or in combina-
tion (any two or all three). In this paper, we are concerned
with baseline shifts and two forms of amplitude changes:

1. Baseline Shifts are essentially changes in the trend
lines and refer to permanent or persistent changes in
the mean position of the tumor.

2. ES-Range Shift, a form of amplitude change, de-
scribes a permanent or persistent change (expansion/
shrinkage) in the range of the amplitude fluctuation.

3. D-Range Shift, another form of amplitude change, is
a deviation in amplitude from an allowable range of
motion, as pre-defined by the physician. This ampli-
tude change, often requires the radiation beam to be
turned off during inhalation or exhalation.

Knowing if the patient to be treated is prone to display a
particular variation on treatment day, will allow the physi-
cians to take appropriate preventive steps to regularize
breathing patterns and negate the three variations and re-
duce radiation-related toxicity. The respiratory motion man-
agement technique involves: 1) abdominal compression
for baseline shifts, where the patient is required to wear a
belt around stomach to control he amplitude of motion,
2) marginal expansion for ES-range shifts, which involves
defining the tumor and target volume for radiation therapy,
and 3) gating for amplitude deviations, where the tumor
motion is tracked so that the radiation can be turned off
when/if required.The three major patterns that character-
ize the dataset are shown in Figure 3.

1.2 Our Approach and Contributions
We observe that a patient can exhibit either a gradual

baseline shift, a sudden permanent baseline shift or a sudden
transient change in mean position. These baseline shifts or
changes in the trend line of the signal, constitute a change in
the mean of a signal segment. However, a change in mean
is also possible by uneven change in the amplitude range
resulting in ES-range shift. Thus, we hypothesize that the
clinically/medically relevant patterns are a combination of
simple, yet unknown, patterns. As such, we propose the
creation of group profiles for the patients for analysis. The
group profiles is developed based on distribution profiles of
patients as inspired by the creation of class profiles in [1]
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via clustering. The creation of these profiles is preceded
by our own signal segmentation and followed by medical
characterization of the profiles based on our hypothesis of
simple pattern combination.

Our main contributions come in the form of studying
an unimodal, unannotated dataset of relatively few patients
(due to the difficulty and expense of collecting data) but a
large number of samples, with lots of intra and inter patient
variability. In order to obtain useful and medically rele-
vant information from this dataset we propose an adaptable
segmentation method, which bypasses the need for concrete
thresholds and thus, gives reasonable results with all frac-
tions or signals without any parameter adjustments. And
even though we use the data structures (that facilitates the
clustering of the fractions) and cluster centroids in the same
manner as described in [1], we propose a different way to
initialize the structures, a different seeding technique, and a
different distance metric for clustering to suit our applica-
tion. We also incorporate a way to update or learn parame-
ters to suit our choice of feature vectors. Finally, we provide
an objective and quantitative medical interpretation of the
clustering results.

2. RELATED WORK
To the best of our knowledge, this is the first attempt to

create specialized profiles for patients using unimodal, time
series data.

As for segmenting signals, [8], [9] and [14] suggest using
different variations of Modified Varri, a standard adaptive
segmentation technique. [8] proposes to smooth the sig-
nal using moving average or Savitzky-Golay filter, which
avoids causing shifts in the original signal, prior to using
Modified Varri. [14], on the other hand, suggests to replace
the original feature used in the original Modified Varri with
fractal dimension approximated by Katz’s algorithm. While
both methods show improvement in performance, both suf-
fer from the three parameter problem associated with Mod-
ified Varri. If the size of the two windows, their percentage
overlap and the value of a sensitivity threshold are not set
correctly, the Modified Varri fails to segment properly. [9]
suggests an approximate solution to the parameter selec-
tion problem by using optimization via genetic algorithm.
However, the fact remains that the solution is approximate
and adds a computational overhead to the segmentation al-
gorithm. Also, all three variations of Modified Varri were
tested on EEG signals, which exhibit non-stationery varia-
tions. On a very different note, [6] simplifies the BIC model,
by using constant window size, to obtain a generalized like-
lihood ratio model to segment audio signals. However, this
assumes that the data points within a window follow a Gaus-
sian distribution, which invariably imposes a large window
size. [17] describes the creation of DSTree, which facilitates
the adaptive and dynamic indexing of time series data. They
prove an upper bound on the distance between two time se-
ries and use the upper and lower bounds to restrict their
search space without calculating the distance between ac-
tual time series. It provides two methods for query based
search. While, it does prove to be efficient segmentation
technique on large dataset, the DSTree does not match our
application requirements and adds extra overhead of creat-
ing the tree.

In terms of clustering, the technique for fuzzy cluster-
ing [12], is very similar to frequency based clustering used

in this paper. However, the frequency based technique de-
scribed in [1], which is modified in this paper, does not as-
sign one datapoint to multiple centroids with a membership
score. Rather, the frequency based technique assigns dif-
ferent data points belonging to a single set to different pre-
chosen centroids in a non-fuzzy way. The set of these data
points is then defined as a frequency vector, which measures
how many of its data point belongs to each centroid. Since
[1] provides a way for clustering multiple sets, where each
set is a collection of data points, the clustering method fits
our paradigm where each fraction (or a set) is a collection
of segments (or data points). However, due to challenges
faced with the dataset, we have to make changes to the al-
gorithm described in [1] and the details of these changes
can be found in Section III. In terms of similar application,
[15] creates call profiles of customers to optimize tariff using
clustering. However, the crux of the paper is the use of big
data tools like HBase and Storm and [15] provides strategies
for re-partitioning and aggregation of data to achieve their
goals. Another example of patient profiling can be found in
[19], where they create a healthcare system that gathers data
from different patient textual databases, creates profile trees
for patients, and provides platform for doctor intervention
during the analysis stage.

3. CHALLENGES AND OVERVIEW

Figure 5: Fixed length segmentation of a section of
fraction 117, setting the fixed length window at a)
100, b) 500, and c) 1000. d) Shows the ideal seg-
mentation on this faction fragment into 5 different
segments of varying length.

As mentioned earlier, the dataset has no annotations and
no control dataset. Complicating matters, our dataset is
small (in terms of the number of patients, but large in terms
of total hours) and displays a multitude of inter- and intra-
patient variations. Thus, it is impossible to find a stan-
dard mode of variation, against which we can compare or
define anomalies or novel patterns. Moreover, it is an uni-
modal dataset, consisting of only the signals representing the
respiration-induced tumor motion without any information
on the patient’s age, life style details, changing heart rate,
etc. Also, to the best of our knowledge, the three medically
relevant patterns that are of interest to the oncologists, have
not been defined in computational or mathematical terms.
In our work, we rely on expert opinion for the validation
of our results. Thus, in order to handle this dataset, we
rely on segmentation and clustering techniques. Our work-
flow consists of three main stages of processing (described
in Sections IV, V and VI, respectively):

1. Stage 1- Segmentation: In time series processing,
the segmentation methodology determines how a sin-
gle signal is divided into multiple segments for ease
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of processing. In a fixed window segmentation, the
signals are divided into segments of fixed length, L.
However, for any choice of L, it is highly likely that
the predetermined point of segmentation breaks a pat-
tern of interest into two halves, affecting the nature
of feature vectors derived from the segments used for
further analysis (Figure 5). Thus the challenge here is
to capture consistent behavior in this volatile dataset.
Hence, we propose an adaptive segmentation process,
the variable length segmentation (VL segmentation),
which should entail the following characteristics: 1)
the segments produced should encapsulate only one
form of or no interesting variation. This ensures that
a feature vector associated with a segment is charac-
teristic of that particular variation. This is necessary
because the profiling process largely relies on cluster-
ing the segments, 2) the segmentation should not be
affected by the starting point of the algorithm. That
is to say, regardless of whether the algorithm is initial-
ized at time point ti or ti+c, where c is positive con-
stant, both runs of the algorithm should result in the
same segments for time points following ti+c, 3) the
segmentation process should overlook trivial variations
(explained fully in the next section), 4) the algorithm
should produce acceptable results for all patients and
fractions, without manual intervention of parameters
or thresholds.

2. Stage 2- Creation of distribution profiles: In this
stage, we cluster the segments produced in Stage 1, for
each fraction and develop their distribution profiles.
At the end of this stage, we expect to describe every
fraction in terms of the frequencies of few selected ini-
tial patterns (or the distribution profiles) and group
the fractions into groups of similar frequency behav-
iors. To accomplish this, we rely on the multi-set or
setwise clustering paradigm described in [1]. However,
this paradigm assumes a large volume (over 10000 data
points) of incoming data that changes over time; our
data, changes over time but has a small size and does
not involve streaming. As such, the selection of initial
patterns, on which the frequency behavior is formed,
requires to be handled differently, without compromis-
ing the stability of the group profiles. Also, grouping
the fractions, based on their distribution profiles, re-
quires a different method for initializing the group pro-
file structure to ensure purity of the resulting groups.
In addition, [1] suggests us to use euclidean distance as
the similarity matrix when forming the group profiles.
While euclidean distance is quite common and robust,
it does not capture the differences (and similarities)
in the frequency behaviors as required by the applica-
tion (example is provided in description of Phase 3 in
Section V). Thus, we had to incorporate a simple but
non-trivial penalty term to euclidean distance metric
to capture the required differences in the frequency be-
haviors. Due to the need to use discrete feature vector,
it is worth mentioning that we need to incorporate a
way of updating the discretization parameters during
the formation of the distribution and group profiles.

3. Stage 3- Medical characterization of group pro-
files: During this stage, we provide quantitative anal-
ysis of the distribution and group profiles, by inter-

preting the selected initial patterns (from Stage 2 ) in
terms that are found to be medically relevant. The
challenge here is finding and describing the bridge that
connects the group profiles to the medically relevant
patterns. This is accomplished by defining templates
for the medical behaviors in terms of the selected ini-
tial patterns and assigning three descriptive scores to
each group profile.

4. VARIABLE LENGTH SEGMENTATION
The variable length (VL) segmentation is designed to catch

and prioritize persistent amplitude changes or variations in
the amplitude patterns, lasting longer than few milliseconds.
A persistent change results in a change in pattern, whereas
a transient change is a momentary variation in the data and
thus, trivial by definition.

Figure 6: The five-number summary of a particular
Wi, where min denotes the minimum, Q1 denotes the
first quartile, M denotes the median, Q3 denotes the
third quartile, max denotes the maximum. The fig-
ure also illustrates the defined regions for perceived
change.

VL segmentation achieves this aim by pausing at every
possible point of perceived change as it loops over the signal
using a sliding window that moves one time step at a time.
A perceived change (Figure 6) is defined as a change, which
is caused by an amplitude value that goes beyond a thresh-
olded region defined for the current sliding window, Wi. The
thresholded region for the upper envelop is given by two per-
fectly horizontal lines, y = max(Wi) and y = max(Wi) +
δWi , and for the lower envelop by y = min(Wi) and y =
min(Wi)−δWi . Note, a perceived change can be either per-
sistent or transient. And hence, when a perceived change is
detected, VL executes a series of tests and verifies that the
change is persistent and hence, a point of segmentation. If
there is no perceived change, then VL segmentation moves
on to the next iteration after updating its variables.
Next, to search for and determine persistent changes, we use
the five-number summary [5] forWi, an example of which
is shown in Figure 6. (min,Q1,M,Q3,max) gives informa-
tion about the location (from the median), spread (from the
quartiles) and range (from minimum and maximum) of the
samples in Wi. Computationally, any change in the pattern
of amplitude (whether it is a spike or a permanent increase/
decrease in the size of amplitude or a change in mean po-
sition of the signal) will invariably alter the maximum and
minimum values of Wi. A persistent change on the other
hand, is likely to have a deeper effect in the neighborhood
of the change and likely to affect not only the maximum

1613



(max) and minimum (min) values of Wi but also the first
(Q1) and third (Q3) quartile values of Wi. And as such,
VL segmentation needs to look for changes in maximum
and minimum of the amplitudes, followed by the changes in
quartile values.

Figure 7: An example of Checkpoint 1

Note, change is a relative concept; that is, in general
terms, to detect a change we need to compare at least two
objects separated by time or space or both using a thresh-
old value. If the threshold value cannot be set to any fixed
value, we need to calculate a varying threshold. This can be
done by introducing a third object, whose comparison with
the other two objects, can be used to gauge the appropriate
threshold level, at any given time. Thus, to detect changes
with varying thresholds, every Wi is divided into and as-
sociated with three sub-windows, SWi1, SWi2 and SWi3.
As shown in Figure 7, SWi3 encapsulates the most recent
points in Wi, whereas SWi1 encapsulates the earliest points
in Wi.

4.1 Checkpoint 1: Intra-Window Amplitude
Change Ratio (Intra-ACR)

We combine our tools and strategy by defining height(SWij)
to be the abs(maximum(SWij)− minimum(SWij)), where
abs is the absolute value operation, i refers to the corre-
sponding Wi and j ∈ [1, 2, 3] subscripts the sub-windows.
Then, a change can be detected as a ratio of height changes
between the sub-windows for any particular Wi. The height
change ratio for Wi is given by:

δiintra−ACR =
i∆SW31

i∆SW21
where,

i∆SW31 = abs[height(SWi3)− height(SWi1)]
i∆SW21 = abs[height(SWi2)− height(SWi1)]

(1)

If Intra-ACR is zero or less than one or both i∆SW31 and
i∆SW21 equal to zero, then we can conclude that there is
no overall change in the maximum and minimum values of
Wi. It can also mean that here is no change in SWi3, which
contains the most recent points. Challenges arise if i∆SW21

is zero and i∆SW31 is non-zero (case 1) or if the intra-ACR
itself is equal to or greater than 1 (case 2). In general, at the
occurrence of case 1, there is probably a sign of impending
change; however this change might be a spike or a trivial
transient change. Case 2 can result when both i∆SW31 and
i∆SW21 are either very high or very low, which can be due
to transient changes. Thus, to rule out transient changes
and as a measure of persistence, we put forward two more
tests: an Inter-Window Amplitude Change Ratio checkpoint
using heights, followed by a Quartile checkpoint using quar-
tile comparison.

4.2 Checkpoint 2: Inter-Window Amplitude
Change Ratio (Inter-ACR)

Figure 8: The two windows for Inter-ACR

To verify that the change detected by the Intra-ACR, is
relevant along the time frame, we compare the change in
sub-window SWi3 to the change in a window that lags be-
hind Wi by α time steps and is denoted by Wi−α (Figure
8). More precisely, we compare:

i∆normalized
SW31 =

i∆SW31

height(W1)

∆normalized
Wiα =

abs(height(Wi−α)− height(Wi))

height(Wi−α)

checkpoint :

i∆normalized
SW31 > ∆normalized

Wiα

(2)

Note, if the comparison, i∆normalized
SW31 > ∆normalized

Wiα
, is true

then change detected in SWi3 is larger than the change de-
tected in (Wi−α), showing evidence for impending persistent
change.

4.3 Checkpoint 3: Quartile Change Ratio
The quartile checkpoint is only brought into action if the

Inter-ACR has been successfully satisfied and is the main
tool for determining persistent changes. Unlike a transient
change, such as a spike, if a persistent change is taking
place in the vicinity of Wi, then in addition to the mini-
mum and maximum values of Wi, the first and third quartile
values of Wi is likely to be affected as well. For example,
take a signal = [1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, ], which clearly
shows a spike as the transient change. A sliding window
moving over signal will show an obvious change in max-
imum value; however, its first (Q1) and third (Q3) quar-
tile values would remain unchanged. As such, the quartile
checkpoint uses the interquartile range, iqr, of Wi, where
iqr(Wi) = Q3(Wi) − Q1(Wi), where Q3(Wi) ≥ Q1(Wi) by
definition. The quartile checkpoint sets up tests in a man-
ner that is perfectly analogous to the Intra-ACR and Inter-
ACR checkpoints, except instead of using height, they use
the interquartile range. Also, if the condition described in
checkpoint 2 (using iqr) is satisfied, then we finally mark
the point as a segmentation point. The VL segmentation
algorithm is given in Table 1.
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Table I. Pseudo code for VL Segmentation

TR = Thresholded Region

Declare window size, Wsize

Initialize, the W , height and IQR
for each point, p

Add p to Wi−1 and obtain Wi

if p lies within TR
Remove p1 in Wi

Update the height and IQR of Wi

else
if Intra-ACR satisfied then

if Inter-ACR satisfied then
if Quartile Checkpoint satisfied then

Mark Segmentation Point.
end for

Figure 9: Segmentation of ‘whole’ fraction 117 as
achieved via VL Segmentation

Figure 10: The benefits of using VL Segmentation

Figure 11: Some trade-off of using VL Segmentation

VL Segmentation is robust to starting point:-
We mentioned earlier that with fixed length segmentation
can produce segments that vary depending on the starting
point of segmentation. So, we empirically verified that VL

segmentation is more robust than fixed length segmentation.
For verification, we went over each fraction in the dataset,
and for each fraction, we ran VL algorithm multiple times,
by removing a record from the left each time until no records
were left to be removed. Each time we recorded the segmen-
tation mark point. To clarify our finding, let us denote cj as
a marked segmentation point and Areaj as the region of 200
sample points preceding cj . Then as long as the algorithm
is initialized, such that the starting point is not in Areaj , cj
will be detected for the current set of fractions.

4.4 Visualizing VL Segmentation
To summarize the description of variable segmentation,

we present the results in Figures 9, 10 and 11. Figure 9
shows all the segmentation points detected for the entire
fraction 117. Figure 10 demonstrates that VL captures the
important patterns, such as, reversal or reduction of am-
plitude (Figure 10a and 10c) and changes in mean position
(Figure 10b); while Figure 10d shows the flexibility allowed
by VL. Figure 11a shows that VL is still sensitive to noisy
or aberrant data to some extent, while Figure 11c shows
the delicate balance between catching important and trivial
expansion/reduction in amplitude. Figure 11b shows that
some trivial but repeating patterns (black arrows) are ig-
nored by the technique, while Figure 11d focuses on the fact
that sometimes, VL marks a point for segmentation after
the change in already underway (ideal mark indicated by
the black arrow). Also, it is worth mentioning that by the
end of VL segmentation, we end up with 9665 segments.

5. ADOPTING SETWISE CLUSTERING
FOR RESPIRATION-INDUCED TUMOR
MOTION DATA

As mentioned before, the medically relevant patterns are
a combination of simpler patterns. And given the require-
ments and challenges, it is useful to computationally learn
or identify those simple patterns (or base behaviors) and
obtain a distribution profile for each patient in terms of the
base behaviors. The framework for such an analysis is pro-
vided by multi-set stream clustering, as described in [1]. The
segmentation process allows each patient to be described as
a sequence of temporally ordered segments, thus creating
entities [2] or multi-sets [1] of records/segments. However,
with the respiration-induced dataset, it is not possible to
implement the framework exactly as it is implemented in
[1]. The three mains reasons are:

• R1: The theory proposed in [1], assumes a large
dataset, with incoming data points via streaming. Our
dataset, though large in the number of samples, is
small in terms of number of patients, and so, we need
to optimize the use of data at each stage of the algo-
rithm.

• R2: [1] is proposed for applications (such as, the sale’s
behavior of different stores of a large super market
chain) that do not necessarily require a specific kind
of base behaviors e.g. they do not need to (but might)
have a semantic meaning. For our application, the
base behaviors need to map to or describe complex
medical patterns and hence, requires to be chosen ex-
plicitly in terms of baseline shifts and amplitude and
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Figure 12: The original and modified setwise clustering framework. fij is the jth anchor frequency of the ith

entity. pkj is the jth anchor average frequency for the kth class profile.

frequency variations. On the other hand, for distri-
bution profile creation, we require segments to be de-
scribed succinctly in lower dimension.

• R3: The definition of a match, in terms of two distri-
bution profiles for our application, is different from a
match described in [1].

We schematically present the original and the modified
frameworks used for analysis in this paper in Figure 12. For
clarity, the process described in Figure 12, is presented in
three phases: Phase 1-Selection of base behaviors (or an-
chors), Phase 2-Creation of distribution profiles. Phase
3-Creation of group profiles.

5.1 Phase 1: Selection of base behaviors

The exact base behaviors, though unknown to us, are
present within the collection of segments produced by VL
segmentation. Ideally, the base behaviors should be repre-
sented by a minimal set of segments that differ from one
another. In unsupervised learning, clustering is the most
straightforward way for finding class boundaries and the fi-
nal centroids, thus obtained, are expected to be as different
from each other as possible. Thus, in order for us to find the
different base behaviors, we can cluster the segments and
use the description of the centroids as a guide to finding the
base behaviors (Figure 12). This process is completely anal-
ogous to the process of finding anchors in multi-set stream
clustering (Figure 12). However, the modification of the
original algorithm comes in the form of three crucial de-
cisions: 1) the population or sample of segments to
use for clustering, 2) attributes for defining the seg-
ments, and 3) the number of centroids/anchors.

5.1.1 Deciding the sample
[1] divides the entire dataset into two samples: the initial

sample and the iteration sample. The initial sample (10%-
30% of the actual population) is then clustered to obtain
the anchors, under the assumption that the sample is per-
fectly representative of the actual population of data points.

This assumption, however, only holds if the dataset is large
enough. Using an unrepresentative initial sample will lead
to false distribution profiles, as they are defined in terms
of the anchors or base behaviors. On the other hand, if we
have to use over 50% of the population to obtain a repre-
sentative initial sample, then the size of the iteration sample
goes down and makes the final result unstable.

As such, we decide to probe the whole population as initial
sample and find the segments most suitable to act as base
behaviors. This also means that we need to use the entire
population as the iteration sample, which may result in an
unexpected systematic error. Thus, to avoid any systematic
error and for reasons stated in R2, we use an attribute set
(to find anchors) that is different than the attribute set used
to find the distribution profiles.

5.1.2 Attribute Set for finding base behaviors, ASBB

A signal or its segment can also be treated as a wave that
can be described by its amplitude and frequency. If unlike
a regular wave, the signal segment shows a lot of amplitude
variation then a single value/coefficient is not sufficient to
describe the change in amplitude. In such cases, a more com-
prehensive change in amplitude is obtained by calculating
and maintaining a sequence crest to trough distance. How-
ever, it is possible that each segment will have its own range
of amplitude and that two different segments with different
amplitude ranges can end up embodying the same pattern.
At this stage of analysis, we are not interested in the actual
crest to trough distances but rather how it changes relative
to one another with progressing time. Thus, within a given
segment, sk, we define the relative change between two con-
secutive crest to trough distances, ∆CTj−1 and ∆CTj as:

skδjCT =
sk∆CTj

sk∆CTj−1

where,

sk∆CTj =sk crestj −sk troughj
(3)

Hence, instead of maintaining a sequence of crest to trough
distances, we maintain a sequence of skδjCT for each segment
and define the first six attributes ofASBB to be [mean(δCT ),
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var(δCT ),min(δCT ),max(δCT ), iqr(δCT ),median(δCT )].
The seventh attribute of ASBB represents the variations in
frequency and defined as the number of peaks present in a
segment, normalized by length of the segment. It is denoted
by F . The eight and final attribute measures the correlation
of the raw segment with any positive sloping line (to capture
changes in trendline) and is denoted by T . The complete
ASBB = [mean(δCT ), var(δCT ),min(δCT ),max(δCT ),
iqr(δCT ),median(δCT ), F, T ].

Figure 13: Feature Discretion Cutoff

In order to incorporate an insight of the distribution of
each attribute across the entire dataset into ASBB , each at-
tribute is discretized using statistical quartiles and outliers,
in accordance to the cut off shown in Figure 13. This dis-
cretization process reduces noise in the set of feature vectors
obtained for base behavior selection.

5.1.3 Number of centroids/anchors
As mentioned earlier we want the base behaviors or cen-

troids to be a minimal set. Referring to the number of base
behaviors as q, in an experimental setup, we varied q (see
Figure 13) between values of 1 and 10. We found that if
q > c and c ∈ [1, 10], then we ended up with similar pat-
terns, resulting in degeneration of the base behaviors. Thus
we set q = c.

5.1.4 Back tracing the centroids to the segment
Since we are using different feature set for base behavior

selection and for distribution profile creation (as explained in
R2), we need to map the centroids/anchors, which are found
in the ASBB , back to the original segments. During the
mapping process, we look for segments in their ASBB format
that is closest to the centroids. Once those segments are
identified, they are marked to be used during the generation
of distribution profiles.
Note, that this mapping is not necessarily one to one as there
can be more than one segment (in their ASBB format) that
are closest and the same distance from a particular centroid.
However, that does not affect our analysis because segments,
which are equidistant from the centroids, present similar
variability and are all equally suitable to be an anchor or a
base behavior.

5.2 Phase 2: Creation of distribution profiles

In order to obtain the distribution profiles in terms of the
base behavior for each entity/signal: 1) we need to define
the attribute set, and 2) track the proportion of each of the
q base behaviors or similar behaviors, present in the entity’s
data/segments.

5.2.1 Attribute Set for finding distribution profiles,
ASDP

The choice of feature vector, for this stage of analysis,
is determined by the need to identify changes in patterns,
which are often caught by ”the shape parameters”. Since

these shape parameters are captured succinctly by moments
[10] we use the first five moments of the amplitude distri-
bution. The first moment accounts for the DC (in the fre-
quency domain) value or mean of the the signal segment; the
second moment gives the average AC power; the third mo-
ment measures the skewness; the fourth moment or kurtosis,
accounts for fluctuation in the power; and the fifth moment
measures the heaviness of tail and mode of the distribution,
given the skewness. The moment feature vectors are then
discretized according to the cut off shown in Figure 13.

5.2.2 Tracking proximity of entity data to base be-
haviors

Once the base behaviors have been identified, we can iter-
ate over the entity data or feature vectors in temporal order
and match the feature vectors to the base behaviors.

f t+1
ij =

(f tij × nti) + 1

nti + 1

nt+1
i = nti + 1

(4)

At each iteration, we need to track the number of indi-
vidual feature vector we have seen from a particular entity
and also, record the number of times a feature vector from
a particular entity is assigned to a particular base behavior,
based on proximity measure. This tracking process is conve-
niently simplified by the use of fingerprints by the multi-set
stream clustering framework. A fingerprint is a q dimen-
sional vector, associated with each entity, such that the q
bins track the frequency of the base behavior proximity as-
signment and is denoted as [f1, ..., fq]. When a fingerprint
is associated with a set of data points to track the number
of feature vectors seen, it can be denoted as [f1, ..., fq, n].
For example- suppose the (t + 1)th data point is a feature
vector from entityi and is closest to base behavior, bj , where
j ∈ [1, q]. Then, fij and ni is updated as shown in equation
4. Since, sum of fij over j is required to be 1 at any point in
time, the completed fingerprints can be used as distribution
profiles for the corresponding entities.

5.3 Phase 3: Creation of group profiles

Since it is possible to have a large number of entities, some
of which are similar to one another, studying the entities as a
group would provide a better insight. The multi-set stream-
ing clustering framework suggests to dynamically group the
fingerprints even as they are updated during each iteration.
This allows the groups to change and evolve in a way that
tracks progression over time. The groups are described by
the fingerprint average of the members and are referred to
as class profiles. For the purpose of this paper, we denote a
particular class profile as [pk1, ..., pkq], where k identifies the
group and the values [1, ..., q] refer to the base behaviors.
For full description of class profiles as micro-clusters, please
refer to [1].
To obtain the best separation of entities, k is allowed to
run from 1 to 2q − 1 because it allows us to initialize the
profiles with all possible binary combination of q zeros and
ones. When pkj is initialized to be non-zero, it attracts fin-
gerprints that have a high frequency for the corresponding,
bj .
Note, the class profiles are similar to histogram and calcu-
lating similarity based only on euclidean distance results in
a subtle discrepancy. For example, suppose we have three
different histograms with four bins: hist1 = [0.8, 0.2, 0, 0],
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hist2 = [0.6, 0.2, 0.2, 0] and hist3 = [0.6, 0.4, 0, 0]. The dis-
tances between the histograms are: dis(hist1 − hist2) =
0.2828, between dis(hist1 − hist3) = 0.2828 and between
dis(hist2 − hist3) = 0.2828. However, for our application,
it is required to have hist1 and hist3 to more similar to one
another than to hist2 because their non-zero bins have a
perfect match even though the bin proportions are differ-
ent. As a result, for the similarity metric, we use the the
Euclidean distance with a penalty term for histograms with
mismatched bins.

6. MEDICAL CHARACTERIZATION OF
THE GROUP PROFILES

As mentioned earlier, the data for respiration-induced tu-
mor motion is of importance to the radiation oncology com-
munity because it can be used to study three clinically sig-
nificant patterns, baseline, ES-range and D-range shifts.

Figure 14: Selected base behaviors

The process of medical characterization of class profiles in-
volves three steps: 1) understanding the base behaviors, 2)
defining clinically significant patterns in terms of the base
behaviors, and 3) for ease of analysis, quantifying the pres-
ence of the clinical patterns in each group profile as an as-
signed score.

In order, to identify these three patterns in the class pro-
files, which is significantly of lower dimension than the ac-
tual entity signal, we need to re-examine the base behaviors
that were selected during the clustering process. Figure 14
shows that b1 sets up the comparison for high amplitude,
while, b2 represents abnormal breathing cycles. b3 captures
increasing sudden changes in mean position, coupled with
widening range of amplitude. And finally, b4 captures grad-
ual changes in mean position and/or irregular changes in
amplitude.

One obvious characteristic of the class profile, which needs
to be taken into consideration, is that just the presence of
a base behavior, bj , by itself, does not give a comprehensive
description of the entity. The complete description of the
entity, is given by the presence of a particular bj , along with
the relative magnitudes of the base behaviors present. Since
q = 4, there are six unique pairwise combinations of the
base behaviors. Thus, based on the description of the three
clinically significant patterns, obtained from our co-author,
who is a medical physician, we define a 6-vector in terms
of bj , which allows us to create templates for clinically sig-
nificant patterns, without explicitly defining a combination
ratio cutoff for the base behaviors. The 6-vector is defined
as: [(b1−b2), (b1−b3), (b1−b4), (b2−b3), (b2−b4), (b3−b4)].
For example, if we are looking for changes in mean posi-
tion, we want the proportions of b3 and b4 to exceed the
proportions of b1 and b2 and require the term, (b2 − b3) to

be negative. If we are looking for D-range shifts, then we
need the term, (b1 − b3) to be positive. For mean position
changes, the sign for the term, (b1 − b2) does not matter;
whereas for D-range shifts, the term should be positive and
negative for ES-range shifts. Following a similar approach,
we define the templates for the clinically significant patterns,
using the base behaviors as follows:

• Baseline shifts: ~b = [0/±,−,−,−,−, 0/±]

• ES-range shifts: ~es = [−, 0/±,−,+, 0/−,−]

• D-range shifts: ~d = [+,+,+,−, 0/±, 0/±]

Suppose, the 6-vector for a particular class profile m is
given by ~vm = [vm1, vm2, vm3, vm4, vm5, vm6]. Then to quan-
tify the clinical patterns, each class profile is matched to all
three templates and three separate scores, [scoreb, scorees,
scored], are assigned to the class profile. If j ∈ [‘b’, ‘es’,
‘d’] and there is a sign match between vmi and bi or esi or

di, where i refers to a particular index in ~b or ~es or ~d, then
scorej is updated by |vmi| amount. Thus, the final scores
are defined as:

scorej =

∑6
i=1 f(vmi, ji)∑6

i=1|vmi|
, where

f(vmi, ji) = |vmi|, if there is a sign match;

otherwise, f(vmi, ji) = 0

(5)

7. RESULTS AND ANALYSIS

7.1 Implementation Details
VL Segmentation: δWi is set to be proportional to

height(SWi3). Also in Wi−α, α is set to be 50 in the cur-
rent implementation. The size of the sliding window is set
to 100 sample points because based on the dataset used for
experimental analysis in this study, the sample rate of tumor
motion is 25 Hz, and an average respiratory cycle has a du-
ration of approximately 4 seconds and 100 samples points
approximates 4 seconds. Also, fractions that showed only
trivial variations, were segmented using fixed length seg-
mentation as trivial variations are ignored by VL.
Setwise Clustering: During Phase 1, we find q = 4 using
complete linkage clustering, with q > 4 resulting in degener-
ation of the anchors. Also, during back tracing the centroids
to the segment, we empirically verified that for our dataset,
the mapping is one to one. In Phase 2, the fingerprints are
initialized using the first segments of each entity. In Phase
3, we end up with 2q−1 = 24−1 = 15 different class profiles
that are explained and analyzed in Sections 7.2, 7.3 and 7.4.
Result Validation: As mentioned earlier, one of our co-
authors is a medical physician and the results presented in
the following sections have been verified by his expertise.

7.2 Base behavior analysis
We described b1, b2, b3 and b4 in Section VI. The fifteen
class profiles are presented as stacked bar charts in Figures
15 and 16, along with some examples of their respective en-
tity members. The class profiles in Figures 15 and 16 are
grouped according to a kmeans++ clustering, which is per-
formed on the profiles for ease of analysis and presentation
and is explained later in this section. The amplitude of the
signals in Figures 15 and 16 has been normalized to be be-
tween [-1, 1] for clear comparison.
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Figure 15: From left to right, meta-classes 1 and 2 respectively. The example of the members of each class
profile is presented beneath the respective bar graph. In the reading the bar charts, dark blue represents
the proportion of b1, light blue represents the proportion of b2, light green the proportion of b3 and yellow
represents the proportion of b4.

It is very clear from these two figures that any presence
of b3 predicts simultaneous changes in the mean position
within a very narrow amplitude range the and the propor-
tion of b3 determines whether or not a baseline shift is im-
minent. Presence of b4 (without any presence of b3) is in-
dicative of a signal displaying gradual changes in mean po-
sition and/or amplitude variation. b1 is representative of
signals with a maximum amplitude higher than 1mm and
its proportion distinguishes between spikes and consistent
high amplitude. Finally, b2 represents high variability in
amplitude range and pattern.

7.3 Quantifying the Clinical Patterns
The evidence, found from base behavior analysis, fur-

ther supports our definition of the 6-vector as: [(b1 − b2)−
(b1− b3), (b1− b4), (b2− b3), (b2− b4), (b3− b4)] and baseline
shift template as [0/±,−,−,−,−, 0/±], ES-range shift as
[−, 0/±,−,+, 0/−,−] and D-range shift [+,+,+,−, 0/±,
0/±]. The score obtained from this template comparison
(obtained by using the technique described in Section VI) is
summed up in Table II. The values in brackets in Table II is
the relative ranks of the scores. To obtain the relative rank,
we sort the scores and rank the unique positions. There are
fifteen different class id because we set q = 4 as described
earlier.

The score for each pattern can be seen as fuzzy label-
ing/classification and can be interpreted as a probability
measure of how likely the particular pattern will show up
on any member fraction of the group. For example- mem-
ber fractions of Class ID 2 will mostly display changes in
mean position often leading to drastic baseline shifts and
show amplitude variation because it has a high score for
baseline shift and relatively low values (more prominently
seen from the high relative ranking) for the other two pat-
terns. Class ID 5 and 7, on the other hand, will show both
high amplitudes and changes in mean position because both
baseline shift and D-Range shift have high scores. However,

compared to members of Class ID 5, the changes in mean
position will be more prominent for members of Class ID
7 because Class ID 7 has a lower relative rank for baseline
shift than Class ID 5. Also, since Class ID 7 got a lower rel-
ative rank for ES-Range Shift than Class ID 7, the members
of Class ID 7 are more likely to show ES-Range Shift.

In summary, we find that classes 1, 2, 3, 5, 7, 9, 11 and 15
show high similarity to baseline shift template. ES-Range
Shift appears to be less polar between the groups with class
9 showing the highest similarity to the respective template.
Classes 1, 5, 7, 9, 11, 13 and 15 show high similarity for
the D-range shift template. From this table, we see that
Classes 12 and 14 have the lowest similarity to baseline shift
template; classes 2 and 6 does not show strong likeness to
D-range shift template; and class 4 is most dissimilar with
ES-range shift template. Furthermore, the relative ranking
provides evidence that the class profiles can be grouped fur-
ther. For example- classes 2 and 3 and classes 7 and 9 have
very similar scores for all patterns.

7.4 Interpretation of the Quantification of
Clinical Patterns

Table II shows us that classes 13 and 15 have very similar
scores for marginal expansion and gating but their scores for
baseline shift are very different. We want to know whether
it is possible to group classes like 13 and 15 together into
meta-classes, such that the meta-classes retain medical con-
text and meaning.

This leads us to our next step of our analysis, which is
to cluster the class profiles using kmeans++ based on the
scores presented in Table II. We try different values of k and
find that k > 3 characterizes trivial variations only. With
k = 3, we get three meta-classes:

• Meta-Class 1 contains the class profiles with class id
4, 8, 10, 12, and 14, all of which display high am-
plitude. With a total of 29 fractions, the amplitude of
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Figure 16: Meta-class 3 with profiles 1, 5, 7, 9, 11, 13, 15.

this meta-class, ranges from 1.2mm (class id 4) to 6mm
(with one exception where the amplitude is 0.45mm).
The best way to interpret this result is that these 29
fractions in group 2 dominantly display high amplitude
(different from spikes), which might mask/devalue the
presence of baseline and ES-range shifts.

• Meta-Class 2 contains the class profiles with class id
2, 3, 6. With a total of 45 fractions, this meta-class
dominantly exhibits baseline shifts with likely displays
of some ES-range shifts as well. Class profile with class
id 2 displays drastic baseline shifts. Class profile with
class id 3, contains signals that display baseline shifts
punctuated by spikes that are uncharacteristic of the
fractions. Class profile with class id 6, is more likely to
display shifts in mean position frequently for shorter
duration, when compared to class profile with class id
2.

• Meta-Class 3 contains the class profiles with class id
1, 5, 7, 9, 11, 13, 15. With a total of 86 fractions, rep-
resents a group where we the fractions show infrequent
changes in baseline (gradual) and/or ES-range shifts
that is present only for a short duration and is punc-
tuated by spikes. None of the characters seem to dom-
inate these group and any conclusion on dominance
requires a closer look at individual class profiles.
Figures 15 and 16 organize the profiles according to
this grouping.

In order to test our methodology, we present our results
on the data along SI axis only, because majority of the treat-
ment fractions show dominant SI (Superior-Inferior) motion
[18] [11]. We have also tested the methodology separately on
data along AP and LR axes, which produces similar results.
AP data shows similar anchor degeneration as SI data but
displays a much narrower range of amplitude motion than SI
motion ( the mean is less than half of SI amplitude range).
As a result, due to our method of discretizing feature vec-
tors, the AP data does not pick an anchor high amplitudes.
Data along the LR axis, picks similar anchors as SI data but

the anchors do not degenerate at q = 5; this is due to the
cutoffs used for feature vector discretization. As result, LR
data picks one extra anchor that adds resolution to changes
in mean position.
The importance of meta-classes 1, 2 and 3 arises due
its ability to highlight the dominant character their mem-
bers, which can be used to explore the breathing interven-
tion techniques. Meta-class 1 makes exploring gating as
a relevant breathing intervention treatment for the group.
Members of meta-class 2 might benefit from the considera-
tion of abdominal compression as the intervention technique.
Meta class 3 might benefit from abdominal compression and
marginal expansion and maybe, even gating.

Table II. Percentage Scores and Relative Rank.
The class ID corresponds to the stacked bar charts in
Figures 15-16. The numbers in bracket shows the
relative ranking of the entire score table, with 1
being the highest rank.

Table II
Class
ID

Baseline
Shift

ES-Range
Shift

D-Range
Shift

1 99.9 (1) 66.7 (17) 99.80 (1)
2 99.9 (1) 66.6 (17) 33.4 (29)
3 100 (1) 73.0 (13) 62.3 (20)
4 34.9 (27) 34.0 (28) 66.6 (17)
5 90.8 (5) 60.0 (21) 90.8 (5)
6 81.9 (10) 54.6 (22) 45.4 (26)
7 97.6 (3) 65.0 (19) 83.7 (9)
8 35.5 (27) 66.8 (17) 67.4 (17)
9 87.4 (7) 70.9 (14) 100 (1)
10 47.2 (25) 61.3 (21) 61.3 (21)
11 90.3 (6) 69.9 (15) 85.1 (8)
12 1.2 (31) 49.4 (24) 74.7 (12)
13 77.8 (11) 66.0 (18) 99.0 (2)
14 31.4 (30) 50.7 (23) 67.1 (17)
15 92.9 (4) 67.8 (16) 100 (1)

7.5 A Note on Method Performance
As we mentioned earlier, one of the biggest challenges with

this dataset is that it neither has a control dataset nor is it
annotated. If we had the control dataset, then we could use
supervised learning methods to learn different patterns and
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class boundaries. If the dataset was annotated, then even in
the absence of control dataset, we could have reduced our
result to a single accuracy value. Our previous works, [3],
[16] and [4], are centered around this dataset. Even though
[3] and [16] use very similar approaches as used in this paper,
due to difference in target application, we cannot provide a
comparison.[4] provides an automatic annotation technique
and explores the readiness with which learning methods can
learn the patterns if a proper annotation was provided. As
a result, the only way we can validate our methods and
analysis is through the expertise of a medical physician. On
of our co-authors is a medical physician and at every step of
the process, we relied on his expertise to determine medical
relevance of our paper.

8. CONCLUSION
We conclude by saying that through a series of analy-

sis we created low dimensional patient profiles with medical
context from an uni-modal respiratory-induced tumor data.
Our results were verified by the expertise of one of our cp-
authors, who is a medical physician. To obtain the result,
we proposed a new adaptive segmentation technique that
makes the correct compromises to capture persistent change
in a time series signal. We then modify an existing multi-set
clustering in various ways to create the patient class profiles.
We follow this up by the quantification of the clinical pat-
terns and its analysis within medical context. In our next
work, we would like to combine information from all three
axes and create the profiles. For future work, we could try to
map the profiles to breathing treatment interventions which
are subject to change over time. We could also attempt to
apply this technique to other bio-sensor dataset (once avail-
able) and test the generalizability of the technique.
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