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ABSTRACT
Modern in-memory database systems are facing the need of
efficiently supporting mixed workloads of OLTP and OLAP.
A conventional approach to this requirement is to rely on
ETL-style, application-driven data replication between two
very different OLTP and OLAP systems, sacrificing real-
time reporting on operational data. An alternative approach
is to run OLTP and OLAP workloads in a single machine,
which eventually limits the maximum scalability of OLAP
query performance. In order to tackle this challenging prob-
lem, we propose a novel database replication architecture
called Asynchronous Parallel Table Replication (ATR). ATR
supports OLTP workloads in one primary machine, while it
supports heavy OLAP workloads in replicas. Here, row-
store formats can be used for OLTP transactions at the pri-
mary, while column-store formats are used for OLAP ana-
lytical queries at the replicas. ATR is designed to support
elastic scalability of OLAP query performance while it min-
imizes the overhead for transaction processing at the pri-
mary and minimizes CPU consumption for replayed trans-
actions at the replicas. ATR employs a novel optimistic
lock-free parallel log replay scheme which exploits charac-
teristics of multi-version concurrency control (MVCC) in
order to enable real-time reporting by minimizing the prop-
agation delay between the primary and replicas. Through
extensive experiments with a concrete implementation avail-
able in a commercial database system, we demonstrate that
ATR achieves sub-second visibility delay even for update-
intensive workloads, providing scalable OLAP performance
without notable overhead to the primary.
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1. INTRODUCTION
Modern database systems need to support mixed work-

loads of online transaction processing (OLTP) and online
analytical processing (OLAP) workloads [11, 17, 18]. OLTP
workloads contain short-lived, light transactions which read
or update small portions of data, while OLAP workloads
contain long-running, heavy transactions which reads large
portions of data. That is, transactional and analytical be-
haviors are mixed in today’s workloads. Note that row store
formats are typically used for handling OLTP workloads,
while column store formats are typically used for handling
OLAP workloads.

A conventional approach to support such mixed work-
loads is to isolate OLTP and OLAP workloads into sep-
arate, specialized database systems, periodically replicat-
ing operational data into a data warehouse for analytics.
Here, we can rely on an external database tool, such as
ETL (Extraction-Transformation-Loading) [20, 21]. How-
ever, this ETL-style, application-driven data replication be-
tween two different OLTP system and OLAP systems is in-
herently unable to achieve real-time reporting. Note that
we may run OLTP and OLAP workloads in a single ma-
chine. However, this approach requires an extremely expen-
sive hardware. Previous work such as Hyper [11, 18] focuses
on scaling up mixed workloads in a single hardware host,
which eventually limits the maximum scalability of analyti-
cal query processing.

From analysis of our various customer workloads, we no-
tice that one modern server machine can sufficiently handle
OLTP workloads while heavy OLAP workloads need to be
processed in different machines. This architecture can be
realized through database replication. In this situation, we
need to support 1) real-time and 2) scalable reporting on
operational data. In order to support real-time reporting,
we need to minimize the propagation delay between OLTP
transactions and reporting OLAP queries. In order to sup-
port scalable reporting, query processing throughput should
be able to increase accordingly with the increasing number
of replicas, elastically depending on the volume of the in-
coming workloads.
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Figure 1: Overall architecture.

Data replication is a widely studied and popular mech-
anism for achieving higher availability and higher perfor-
mance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16]. However, to the
best of our knowledge, there is little work on replication from
row store to column store for enhancing scalability of ana-
lytical query processing. Middleware-based replication [3],
which is typically used for replication across different (and
heterogeneous) DBMS instances, is not directly comparable
to our proposed architecture where both the primary and
replicas belong to the same database schema and common
transaction domain. We also notice that the-state-of-the-art
parallel log replayer [9] is not scalable due to the contention
at the inter-transaction dependency checking.

In this paper, we propose a novel database replication ar-
chitecture called HANA Asynchronous Parallel Table Repli-
cation (ATR). ATR is designed to incur low overhead to
transaction processing at the primary site while it supports
elastic scalability of the analytical query performance and
shows less CPU consumption for replayed transactions. Thus,
it can minimize the propagation (or snapshot) delay between
the primary and replicas.

Our contributions are summarized as follows: 1) Through
deep analysis in design requirements and decisions, we pro-
pose a novel database replication architecture for real-time
analytical queries on operational data. 2) We propose a
novel optimistic lock-free parallel log replay scheme which
exploits characteristics of multi-version concurrency control
(MVCC) and minimizes the propagation delay. 3) We pro-
pose a framework for adaptive query routing depending on
its predefined max acceptable staleness range. 4) Through
extensive experiments with a concrete implementation avail-
able in a commercial product, SAP HANA [17], we show
that ATR provides sub-second visibility delay even for write-
intensive workloads, achieving scalable, OLAP performance
without notable overhead to the primary.

The rest of this paper is organized as follows. Section
2 shows the proposed architecture of ATR and its design
choices. Section 3 presents how logs are generated at the
primary and replayed at replicas. In Section 4, we present
a post-failure replica recovery mechanism and ATR’s var-

ious implementation issues. Section 5 presents the results
of performance evaluations, and Section 6 gives an overview
of related work. Section 7 summarizes and concludes the
paper.

2. ARCHITECTURE

2.1 Overall Architecture
Figure 1 shows the overall architecture of ATR. The ATR

system consists of the primary and one or more replica
servers, each of which can be connected with another by
a commodity network interconnect without any shared stor-
age necessarily. All write requests are automatically directed
to the primary server by the database client library, em-
bedded in the application process. During the course of
processing a received write request, the primary server gen-
erates a replication log entry if the write request makes any
change to a replication-enabled table. Note that ATR can
be applied to only a selected list of tables, not necessar-
ily replicating the entire database. The generated replica-
tion log entry is shipped to the replicas via the network
interconnect and then replayed at the replicas. By replay-
ing the propagated replication log entries, the in-memory
database copies of the replicas are maintained in a queriable
and transactionally-consistent state. The database client li-
brary transparently routes read-only queries to the replicas
if the replica database state meets the given freshness re-
quirements of the queries.

Although ATR can also be extended for high availability
or disaster recovery purposes, the main purpose of ATR is to
offload OLAP-style analytical workloads from the primary
server which is reserved for handling OLTP-style transac-
tional workloads. Additionally, by having multiple replicas
for the same primary table, ATR can elastically scale out the
affordable volume of the OLAP-style analytical workloads.
Moreover, by configuring the primary table as an OLTP-
favored in-memory row store while configuring its replicas
as OLAP-favored in-memory column stores in SAP HANA,
ATR can maximize the capability of processing mixed OLTP
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and OLAP workloads under the common database schema
and under the single transaction domain.

2.2 Design Choices
Under the overall architecture and design goals, Table 1

shows the practical design decisions during the development
of ATR for the SAP HANA commercial enterprise in-memory
database system. We group these design decisions into three
categories depending on where each decision is affected to
either both primary and replicas (Table 1a), primary only
(Table 1b), and replicas only (Table 1c).

Table 1: Summary of ATR design decisions.

(a) Common

D1.1 Replicate across formats (across row store for-
mat and column store format)

D1.2 Decouple and separate the replication log from
the storage-level recovery log

D1.3 Tightly couple the replication log generator
and sender within the DBMS engine

(b) Primary server

D2.1 Log the record-level SQL execution result to
avoid non-deterministic behaviors and the po-
tential conflict during parallel log replay

D2.2 Ship generated replication log entries as soon
as execution of its DML statement is com-
pleted

(c) Replicas

D3.1 Enable to perform parallel log replay in repli-
cas to minimize visibility delay

D3.2 Enable adaptive query routing depending on
its predefined max acceptable staleness range

D3.3 Support efficient post-failure replica recovery

Now, we explain each decision in detail and elaborate its
rationale. First, ATR replicates across different table for-
mats (across row store format and column store format)
(D1.1). Given that SAP HANA provides both the OLTP-
favored in-memory row store and the OLAP-favored the
in-memory column store, replicating from a row store to
a column store could be an interesting option for the cases
that require higher OLTP and OLAP performance together.
Note that replication from a column store to a row store is
not yet implemented in SAP HANA because there has been
no specific need of this combination.

Second, we have decoupled and separated the replication
log from the storage-level recovery log that is generated ba-
sically for the purpose of database recovery (D1.2). Because
it has been an important goal to make ATR work across
different table formats, it is almost impossible to rely on the
existing SAP HANA recovery log, which is tightly coupled
with the physical format of the target table type (for ex-
ample, differential logging for the row store [12]). There are
also many application cases where replicating only a selected
list of tables is sufficient and efficient, instead of replicating
all the tables in the database. Since the storage-level recov-
ery log is organized as a single ordered stream for the entire

database, it could generate an additional overhead to ex-
tract the redo logs of a few particular tables from the global
log stream. Moreover, in order to minimize any disruptive
change in the underlying storage engine of SAP HANA, a
practical design decision was made to decouple the newly-
developed replication engine from the existing underlying
storage engines.

Third, we have decided to log the record-level SQL ex-
ecution result (called record-level result logging) instead of
logging the executed SQL operation itself (called operation
logging) (D2.1). If we log the executed SQL string as it is,
it becomes very difficult to keep the replica database state
consistent with the primary because of the non-deterministic
SQL functions or because of the dependency on the database
state at the time of log replay. For example, the execution
order of the following two update statements is important
depending on the parameter value of the first statement,
but it will require a more complicated comparison method
to infer that these two statements have a dependency with
each other or will lead to restrictive parallelism during log
replay. In contrast to the operation logging, the record-level
result logging is free from such non-deterministic behaviors,
and the potential conflict between two different log entries is
easily detected by using the so-called RVID (record version
ID), which will be explained in more detail in Section 3.3.

update table1 set col1 = ? where col2 = ‘B’;

update table1 set col3 = ‘C’ where col1 = ‘A’;

Fourth, although ATR supports both lazy (or called asyn-
chronous) replication and eager (or called synchronous) repli-
cation [6], we have chosen the lazy replication as the default
mode in order to minimize the latency overhead to the write
transactions running at the primary. In the lazy replication,
a transaction can commit without waiting for its replication
log propagation to the replicas. As a side effect, it could
happen that a query executed at the replicas may refer to
an outdated database state. Although such a visibility delay
is unavoidable under the lazy replication, we have made ad-
ditional design decisions to minimize the visibility delay at
the lazy replicas especially for the OLAP applications which
require the real-time reporting for operational data.

• In-database replication: The replication log generator
and sender are embedded inside the database engine
(D1.3) instead of relying on an external application-
driven replicator like ETL tool [21] or middleware-
based replication [3] that can involve an additional
network round-trip to replicate from one database to
another.

• Early log shipping : ATR early ships the generated
replication log entry as soon as its DML statement is
completed (D2.2) even before the transaction is com-
pleted, differently from [9]. As illustrated in Figure 2,
this is especially important for reducing the visibility
delay of multi-statement transactions. Note that, un-
der the early log shipping, if the primary transaction
is aborted later, then the replica changes made by the
replication log entries should be rolled back as well.
However, compared to database systems employing the
Optimistic Concurrency Control [22], SAP HANA can
show relatively lower abort ratios because it relies on
pessimistic write locks for concurrency control among
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Figure 2: Early log shipping vs. Post-commit log
shipping.

the write transactions. Notice that the read queries
in SAP HANA do not require any lock based on the
MVCC implementation [14].

• Parallel log replay : ATR performs parallel log replay
in replicas to minimize visibility delay (D3.1). As SAP
HANA is typically deployed to shared-memory multi-
processor architectures, the replication log entries can
be generated from multiple CPU cores at the primary.
Therefore, without the parallel log replayer, the repli-
cas may not catch up with the log generation speed
of the primary which can eventually lead to high visi-
bility delay. To achieve full parallelism during the log
replay, we propose a novel log replay scheme which is
explained in Section 3.

Fifth, together with the above approaches for reducing
the visibility delay, ATR also allows users to specify the
maximum acceptable staleness requirements of individual
queries by using a query hint like “select ... with result lag
(x seconds)” (D3.2). When a commit log is generated at
the primary, the current time is stored in the commit log
entry which is propagated to the replicas. Additionally, at
the replica side, when the commit log is replayed, the stored
primary commit time is recorded as the last commit replay
time. Based on the last commit replay time maintained at
the replica and the staleness requirement specified in the
executed query, it is determined whether or not the query
is referring to a database snapshot that is too old. If it is,
then the query is automatically re-routed to the primary
in order to meet the given visibility requirements. While
the primary is idle, a simple dummy transaction is periodi-
cally created and propagated to replicas to maintain the last
commit replay time more up-to-date.

Finally, as a consequence of lazy replication, if a failure
is involved during replication, a number of replication log
entries could be lost before they are successfully applied to
replicas. In order to deal with this situation, ATR supports
a post-failure replica recovery with an optimization espe-
cially leveraging the characteristics of in-memory column
store (D3.3), which will be explained in Section 4.1.

3. LOG GENERATION AND REPLAY
After describing the structure of the replication log entries

(Section 3.1), this section presents how they are generated
by the primary server (Section 3.2) and then replayed by
the replica server in parallel (Section 3.3).

3.1 Log Records
Each replication log entry has the following common fields.

• Log type: Indicates whether this is a DML log entry or
a transaction log entry. The transaction log is again
classified into a precommit log entry, a commit log
entry, or an abort log entry.

• Transaction ID : Identifier of the transaction that writes
the log entry. This is used to ensure the atomicity of
replayed operations in the same transaction.

• Session ID : Identifier of the session to which the log
generator transaction is bound. Transactions are ex-
ecuted in order within the same session sharing the
same context. Session ID is used to more efficiently
distribute the replication log entries to the parallel log
replayers, which will be explained in more detail in
Section 3.3.

In particular, the DML log entries have the following ad-
ditional fields.

• Operation type: Indicates whether this is an insert,
update, or delete log entry.

• Table ID : Identifier of the database table to which the
write operation is applied.

• Before-update RVID: Identifier of the database record
to which the write operation is applied. In SAP HANA
employing MVCC, even when a part of a record is up-
dated, a new record version is created instead of over-
writing the existing database record. Whenever a new
record version is created, a new RVID value, which
is unique within the belonging table, is assigned to
the created record version. Since RVID has 8 bytes
of length, its increment operation can be efficiently
implemented by an atomic CAS (compare-and-swap)
instruction without requiring any lock or latch. Note
that the insert log entry does not require Before-update
RVID.

• After-update RVID: While Before-update RVID is for
quickly locating the target database record at replica,
After-update RVID is applied to keep the RVID val-
ues identical across the primary and the replicas for
the same record version. Then, on the next DML log
replay for the record, the record version can be found
again by using the Before-update RVID of the DML
log entry. For this, RVID fields of the replica-side
record versions are not determined by the replica it-
self but filled by After-update RVID of the replayed
log entries. Note that the delete log entry does not
require its own After-update RVID.

• Data: Concatenation of the pairs of the changed col-
umn ID and its new value. Note that the column val-
ues have a neutral format that can be applied to either
of the HANA row store or the HANA column store so
that, for example, a DML log entry generated from a
row store table can be consumed by the corresponding
column store table replica.
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3.2 Log Generation
Figure 3 shows the architecture of the replication log gen-

erator and sender. After a DML statement is successfully
executed, the corresponding DML log entries are generated
from the record-level change results with their Before-update
RVID and After-update RVID values. The generated DML
log entries are directly appended to a shared log buffer with-
out waiting for the completion of the transaction. There can
exist multiple threads which are trying to append to the sin-
gle shared log buffer, but, the log buffer can be efficiently
implemented by a lock-free structure using an atomic CAS
instruction.

The transaction log entries are generated after the cor-
responding transaction’s commit or abort is decided, but
before their acquired transaction locks are released. Such
generated transaction log entries are also appended to the
same log buffer as DML log entries. Together with the single
log sender thread which multicasts the appended log entries
to the corresponding replicas in order, it can be concluded
that all the generated replication log entries are ordered into
a single log stream in the log buffer and delivered to each of
the replicas, ensuring the following properties.

• The transaction log entries are placed after their pre-
ceding DML log entries in the replication log stream.

• A later committed transaction’s commit log is placed
after its earlier committed transaction’s commit log in
the replication log stream.

3.3 Parallel Log Replay
The basic idea of the ATR parallel log replayer is to par-

allelize the DML log replay while performing the transac-
tion commit log replay in the same order with the primary.
Here, in order to reduce unnecessary conflict and minimize
the visibility delay, we propose the novel concepts of the
SessionID-based log dispatch method and the RVID-based
dynamic detection of serialization error, which will be de-
tailed below.

As illustrated in Figure 4, after receiving a chunk of repli-
cation log entries, the log dispatcher dispatches the received
log entries depending on their log type. If the encountered
log entry is a commit log, then it is dispatched to the global
transaction log queue. If the encountered log entry is a
DML log, a precommit log, or an abort log entry, then it
is dispatched to one of DML log queues basically by the
modulo operation with Session ID stored in the log entry.
Since a transaction is bound to a single session, all the log
entries generated from the same transaction are dispatched
to the same DML log queue. For the session which repeat-
edly accesses the same set of database objects with differ-
ent transactions, the SessionID-based log dispatch method

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 4Confidential
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Figure 4: Parallel log replay.

can reduce unnecessary conflict among the parallel replay-
ers than a plain TransactionID-based dispatch method. We
have not chosen the TableID-based dispatch method because
it can limit the parallelism for the skewed update workloads
to a particular table. Note that, although it is not yet fully
implemented, it is also considered to combine the SessionID-
based dispatch method with a dynamic adjustment method
for better load balancing across the available queues by mon-
itoring the length of each queue.

The log entries distributed to multiple queues are de-
queued and replayed by the log replayer dedicated to each
log queue. The replay algorithm for each log type is pre-
sented in Algorithms 1 to 4. The trickiest part in the log
replay algorithm is how to ensure replaying DML log entries
in their generation order on the same database records while
replaying the transactions in parallel by multiple DML log
replayers. For example, in case of the parallel log replay
algorithm suggested in [9], the transaction replay order is
determined by using a central run-time inter-transaction de-
pendency tracker which may subsequently become a global
contention point. Unlike the pessimistic approach in [9],
ATR does not maintain any run-time inter-transaction de-
pendency graph nor any additional lock table. Instead, ATR
follows an optimistic lock-free protocol. After finding the
target database record for the log replay, the ATR replayer
checks whether or not the database change happened before
the current log entry is already applied. If not, we call it
a log serialization error and retry the log replay with re-
reading the target database record (lines 9 to 15 and 17 to
23 in Algorithm 1).

In order to correctly detect the log serialization error,
ATR exploits the characteristics of the MVCC implementa-
tion of SAP HANA. The update and delete log entries check
whether there exists a record version whose RVID equals to
Before-update RVID. If such a record version is not yet visi-
ble to the replaying transaction, it means that the preceding
DML operation for the the same record has not yet been
replayed. For example, imagine that there are three trans-
actions which have inserted or updated the same database
record in order, as illustrated in Figure 5 (T1 inserted, T2

updated, and then T3 updated the same record). Then, the
version space at the primary and the corresponding log en-
tries can be populated as in Figure 5. Under this scenario,
after replaying Log1 and Log2, Log5 can be encountered by
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a DML replayer before Log3 is replayed. However, while
trying to replay Log5, the DML replayer recognizes that
there is no record version whose RVID is equals to Log5’s
Before-update RVID, 02 and thus, it will encounter the log
serialization error and retry the DML replay operation (after
some idle time, if necessary).

By this proposed RVID-based dynamic detection of seri-
alization error, the DML log entries can be dispatched and
replayed to multiple queues freely without restriction (for
example, without TableID-based dispatch), and it is one of
the key reasons why ATR can significantly accelerate the
log replay and thus minimize the visibility delay between
the primary and the replicas.

3.4 Implementation Issues

3.4.1 DML Replay
The detailed DML log replay algorithm is presented in

Algorithm 1. In this algorithm, note that the DML replay
operation skips the integrity constraint check because it was
already done at the primary. It also skips the record locking
because there are no other concurrent write transactions in
the replica except the other DML log replayer and the trans-
action serialization is ensured by checking RVID visibility
among the DML log replayers, as discussed in Section 3.3.
Due to the skipped integrity check during parallel log re-
play, it is possible that duplicate records that have the same
unique key values co-exist tentatively (for example, when a
record at the primary is inserted, deleted and then inserted
again by transactions T1, T2, and T3, replaying their DML
log entries in the order of T1, T3, and T2 at a replica can lead
to such a situation). However, this does not lead to any real
problem because the result of DML replay is not directly
visible to the queries executed at the replica but visible only
after the corresponding commit replay is completed and also
because the commit log entries are replayed strictly in the
same order as the primary.

3.4.2 Commit Replay
We have paid special attention to the implementation of

the commit log replay not to make it as a bottleneck point in
the ATR parallel log replay scheme. The key idea is rather
to break down the transaction commit work into three parts,
precommit, commit, and postcommit, and then delegate the
precommit work to the parallel DML log replayers by us-
ing the precommit log entry and delegates the postcommit
work to asynchronous background threads. The precommit
log entry plays the role of marking that all DML log entries
of the transaction have been successfully replayed and of in-
forming the commit log replayer by using the transaction

Algorithm 1 Replay a DML log entry (τ , β, and α denote
TableID, Before-update RVID, and After-update RVID, re-
spectively.)

Require: A DML log entry L.
1: Find the transaction object T for L.TransactionID.
2: if T is empty then
3: Create a transaction object for L.TransactionID.
4: end if
5: if L.OperationType = Insert then
6: Insert L.Data into the table L.τ .
7: Set the inserted record’s RV ID as L.α.
8: else if L.OperationType = Delete then
9: while true do

10: Find the record version R whose RV ID equals
11: to L.β in the table L.τ .
12: if R is not empty then
13: Delete R. return
14: end if
15: end while
16: else if L.OperationType = Update then
17: while true do
18: Find the record version R whose RV ID equals
19: to L.β in the table L.τ .
20: if R is not empty then
21: Update R with L.Data and L.α. return
22: end if
23: end while
24: end if

Algorithm 2 Replay a precommit log entry

Require: A precommit log entry L.
1: Find the transaction object T for L.TransactionID.
2: Mark T ś state as precommitted.

Algorithm 3 Replay an abort log entry

Require: An abort log entry L.
1: Find the transaction object T for L.TransactionID.
2: Abort T .

Algorithm 4 Replay a commit log entry

Require: A commit log entry L.
1: Find the transaction object T for L.TransactionID.
2: Wait until T ś state becomes precommitted.
3: Increment the transaction commit timestamp of the

replica server by marking the T ś generated record ver-
sions with a new commit timestamp value.

state information maintained in the transaction object, as
shown in Algorithm 2. The important role of the commit
log replay is to mark the generated record versions by the
transaction’s DML replay as committed and thus to make
the record versions visible to the queries executed at the
replica server, as shown in Algorithm 4. Right after this
operation, the commit log replayer processes the next com-
mit log entry in the queue while delegating the remaining
post-commit work of the transaction to other background
threads.

Note that, during the DML log replay, the recovery redo
and undo log entries are generated for the recovery of the
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replica server. They are asynchronously flushed to the per-
sistent log storage, and even the commit replay does not wait
for the log flush completion because the lost write transac-
tions on any failure at a replica can be re-collected from the
primary database. The detailed recovery algorithm will be
explained in Section 4.

3.4.3 Query Processing at Replicas
Queries running at the replicas just follows the existing

visibility rule of MVCC in SAP HANA. When a query starts,
it takes its snapshot timestamp value from the replica com-
mit timestamp which is incremented by the commit log re-
player as in Algorithm 4. Then, during its query processing,
the query judges which record versions should be visible to
itself by comparing the record versions’ creation timestamp
values with the query’s snapshot timestamp. The query vis-
ibility decision protocol is also described in [14].

4. RECOVERY AND OTHER IMPLEMEN-
TATION ISSUES

4.1 Post-Failure Replica Recovery
By the nature of the lazy replication, if a failure is involved

during log propagation or log replay, a series of replication
log entries could be lost before they are successfully applied
to the replica database. In order to deal with this problem, a
typical approach under the lazy replication is the so-called
store-and-forward method. The generated log entries are
stored persistently within the primary transaction bound-
ary and then propagated to the replicas lazily. Then, by
maintaining a watermark at the replayer side, the lost log
entries can be easily identified and resent from the persistent
store. Although we do not exclude the store-and-forward ap-
proach, we propose a novel efficient replica recovery method
that does not rely on the persistent replication log store, in
order to further reduce the overhead to the primary trans-
action execution.

The key idea is to detect the discrepancy between the
primary table and its replica table by comparing the RVID
columns of the two tables, as presented in Algorithm 5. Two
sets of the RVID values are collected from the latest record
versions of the primary and the corresponding replica tables.
And then, depending on the result of the relative comple-
ments of the two sets, the database records existing only
in the primary table are re-inserted to the replica and the
records existing only in the replica table are deleted.

Algorithm 5 Re-synchronize a replica table

Require: P , a set of RVID values from the primary table.
Require: R, a set of RVID values from the replica table.
1: Delete the records R \ P from the replica.
2: Insert the records P \R into the replica

For example, in the state of Figure 6, P = {r1, r3, r5, r9}
is collected from the primary table and R = {r1, r2, r4, r8}
from the replica table. Then, since R \ P = {r2, r4, r8}
and P \ R = {r3, r5, r9}, the replica records matching with
{r2, r4, r8} are deleted, and the primary records matching
with {r3, r5, r9} are re-inserted to the replica.
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Figure 6: Post-failure replica recovery.

Although comparing the entire RVID columns of two ta-
bles looks expensive at a glance, we took this approach es-
pecially considering the characteristics of SAP HANA in-
memory column store. Because the RVID column values
of the entire table are stored on a contiguous memory in a
compressed form [17] in SAP HANA column store, scanning
the entire RVID column values of a column store table can
be done rapidly.

4.2 Other Implementation Issues
This section presents a few other implementation issues

or corner cases that we have additionally addressed during
the course of implementing the ATR architecture.

4.2.1 Run-time Error Handling
In addition to the type of failures that have been discussed

in Section 4.1, a run-time error such as an out-of-memory
exception can also happen in the middle of log replay. Our
simple and practical solution is to switch off the replication
for the particular problematic table after retrying during
a predefined time period. If a particular replica is switched
off, then the next queries to the problematic replica table are
automatically re-routed to the other replicas or its primary
table without disruption of the overall service.

4.2.2 DDL Transaction Replication
Following the SAP HANA distributed system architecture

[13], the replica server does not maintain its own metadata
persistency but caches the needed metadata entities on de-
mand by reading from the primary. Therefore, if a DDL
transaction is executed at the primary, it does not generate
a separate DDL log entry but it invalidates the correspond-
ing metadata entities at the replicas. This invalidation op-
eration is performed at the time when the DDL transaction
commits after waiting until its preceding DML entries for
the table are replayed.

4.2.3 Routing Read-own-write Transactions
If a transaction tries to read its own earlier DML result

and the read operation is routed to the replica, then the
replica-routed query may not see its own change result yet.
Regarding this problem, two practical solutions are con-
sidered. First, it can be solved by maintaining additional
watermarks incremented on every DML and by letting the
replica-routed query check whether the sufficient number of
DML logs are replayed. Or, it can simply be avoided by
maintaining the changed table list for the active transac-
tion and then directly routing such detected read-own-write
queries to the primary. In the current production version of
ATR, the second approach is available.
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5. EXPERIMENTS
In this section, with the following experiment goals, we

provide our performance evaluation result of ATR imple-
mented in SAP HANA:

• The optimistic parallel log replay scheme of ATR shows
superior multi-core scalability over the primary-side
transaction processing or another pessimistic parallel
log replay algorithm which relies on a run-time inter-
transaction dependency tracker (Section 5.2).

• Based on its optimistic parallel log replay, ATR shows
sub-second visibility delay in the given update-intensive
benchmark (Section 5.3).

• Regardless of transaction conflict ratio, ATR log re-
player constantly shows higher throughput than the
primary (Section 5.4).

• The overhead of ATR at the primary is not significant
in terms of primary-side write transaction throughput
and CPU consumption (Section 5.5).

• ATR log replayer consumes fewer CPU resources than
the primary-side transaction processing for the same
amount of workloads, which results in higher capacity
for OLAP workloads at the replicas (Section 5.5).

• Finally, with the increasing number of replicas, ATR
shows scalable OLAP performance with no notable
overhead to the OLTP side (Section 5.6).

5.1 Experimental Setup
ATR has been successfully incorporated in the SAP HANA

production version since its SPS 10 (released in June 2015).
For the comparative experiments in this paper, we have used
the most recent development version of SAP HANA at the
time of writing and modified it especially to make the log re-
player switchable between the original ATR optimistic par-
allel replayer and another pessimistic parallel log replayer
[9].

To generate a OLTP and OLAP mixed workload, we used
the same TPC-CH benchmark program as the one used in
[18]. The benchmark program runs both TPC-C and TPC-
H workloads simultaneously over the same data set, after
initially populating 100 warehouses as in [18]. Whenever
a transaction starts, each client randomly chooses its ware-
house ID from the populated 100 warehouses. Depending on
the purpose of the experiments in this section, we also used
only a subset of the TPC-CH benchmark which will be ex-
plained in more detail in the next subsections. All the tables
used in the TPC-CH benchmark are defined as in-memory
column store tables. Due to legal reasons as in [18], the
absolute numbers for the TPC-CH benchmark are not dis-
closed but normalized by undisclosed constants, except for
the micro-benchmark results conducted in Section 5.4 and
Section 5.5.

We have used up to six independent machines which are
connected to each other via the same network switch. Each
machine has four 10Gbit NICs which are bonded to a single
logical channel aggregating the network bandwidth up to
40Gbit/sec. Each machine has 1TB of main memory, 60
physical CPU cores (120 logical cores with hyper-threading),
and local SSD devices for storing the HANA recovery log and
checkpoint files. In the experiment of Section 5.6, we scale
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Figure 7: TPC-C throughput over the number of
threads (normalized by the 64-thread ATR replayer
throughput).

up to four replica servers with one primary server and one
client machine while the other experiments focus on single-
replica configuration.

5.2 Multi-core Scalability with Parallel Log
Replay

To see multi-core scalability of the ATR parallel log re-
player, we first generated the ATR log entries from the pri-
mary while running TPC-C benchmark for one minute of
the warm-up phase and five minutes of the high-load phase.
Then, after loading all the pre-generated ATR log entries
into main memory of a replica, we measured the elapsed time
for the ATR log replayer to process all the pre-generated and
pre-loaded log entries with varying the number of replayer
threads at the replica. To compare the log replay through-
put of the replica with the log generation throughput of the
primary, we also measured TPC-C throughput at the pri-
mary with varying the number of TPC-C clients.

Figure 7 shows the experimental results. The through-
put was calculated by dividing the number of transactions
included in the pre-generated log by the elapsed time, and
then normalized by the 64-thread ATR replayer throughput.
ATR showed scalable throughput with the increasing num-
ber of replayer threads and constantly higher throughput
than the primary transaction throughput. This means that
the log received from the primary could be processed at the
replica without any queuing delay.

Furthermore, to compare the optimistic parallel log re-
play algorithm of ATR with a pessimistic parallel replay
algorithm that relies on an inter-transaction run-time de-
pendency tracker, we have implemented the KuaFu-style
parallel replay algorithm based on our best understanding
of their paper [9]. For fair comparison, we used the same
ATR log format for the KuaFu implementation. At the pri-
mary side, the generated log entries are accumulated until
the transaction’s commit time (as explained in Figure 2)
since the KuaFu replayer assumes that log entries generated
from the same transaction appear consecutively in the log
stream. In KuaFu, the so-called barrier [9] plays the role of
synchronizing the parallel log replayers to provide a consis-
tent database snapshot to the replica queries, but we avoid
using the barrier in order to see the theoretically maximum
replay throughput of KuaFu.

The experiment result with the KuaFu implementation is
included in Figure 7. The KuaFu-style replayer also showed
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higher throughput than the primary but its throughput was
saturated when the number of replayer threads is higher
than 16. According to our profiling analysis, the critical sec-
tion used in the global inter-transaction dependency tracker
turned out to be a dominant bottleneck point as the num-
ber of the replayer threads increases. Note that [9] also
describes that the log replay throughput under a TPC-C-
like workload is saturated at 16 CPU cores “due to the
high cost of inter-cpu-socket locks”. Compared to a pes-
simistic parallel replayer like KuaFu, ATR does not require
any global dependency tracker which could be a single point
of contention. This is an important reason why ATR shows
better multi-core scalability and can outperform the other
approach against higher workloads at the primary.

5.3 Visibility Delay
To determine whether ATR can achieve real-time repli-

cation with the proposed optimistic parallel log replay al-
gorithm under the early log shipping protocol, we measure
the commit-to-commit visibility delay at the replica side.
While running the TPC-C benchmark at the primary side,
the replayer periodically measures the average visibility de-
lay every 10 seconds. After synchronizing the machine clocks
between the primary and the replica, the replayer calculates
the visibility delay by subtracting the primary transaction
commit time recorded in the replayed commit log entry from
the current time at the time of the commit log replay. Note
that this visibility delay measurement method is also used
when we enable the adaptive query routing based on its ac-
ceptable staleness range, as described in Section 2. We also
measure the visibility delay with different number of concur-
rent TPC-C connections to see the impact of the volume of
the primary transaction workloads. Note that the number
of replayers are dynamically configured to the same number
with the number of TPC-C clients.

Figure 8 shows the result. When the ATR parallel log
replayer is used, the visibility delay is maintained mostly
under 1 millisecond over time regardless of the volume of
concurrent TPC-C workloads at the primary. On the other
hand, the KuaFu-style parallel log replayer shows higher vis-
ibility delay and, especially when the number of concurrent
TPC-C workloads increases to 64 to see the impact of more
update-intensive workload, the length of the log replayer
queue started growing up and eventually ended up with high
visibility delay (more than 10 seconds) due to the perfor-
mance mismatch between the primary log generation and
the replica log replay, as also indicated by Figure 7.

5.4 Impact of Inter-transaction Conflict
As explained in Section 3.3, the ATR replayer can waste

CPU cycles for its retry operation especially when multi-
ple replayer threads try to update the same record. To see
whether the superior throughput of ATR over the primary
is sustained regardless of the inter-transaction conflict ratio,
we have measured the log replay throughput with varying
the conflict ratio. To emulate the conflict ratio, we have cho-
sen the ORDERLINE table from the TPC-CH benchmark,
and let 40 clients concurrently run update transactions on
top of the table while varying the initial table size from 1
to 1 million records. Each update transaction commits after
repeating the following update statement 10 times. The 10
primary keys used for each transaction are picked up ran-
domly from the key range of the initially populated data
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and then assigned in a monotonic order within the transac-
tion to avoid any unnecessary deadlock. In ORDERLINE
table, OL W ID, OL D ID, and OL O ID comprise the pri-
mary key. Note that we have used this single-table micro-
benchmark to generate more severe inter-transaction con-
flict situation since the performance variation is not notable
when we varied the conflict ratio by changing the number of
warehouses in the original TPC-CH benchmark.

UPDATE ORDERLINE SET OL_DELIVERY_D=?

WHERE OL_W_ID=? and OL_D_ID=? and OL_O_ID=?;
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Table 2: Micro-benchmark throughput and CPU consumption of each site.

Primary
throughput (tps)

Primary
CPU (%)

Replica
CPU (%)

Primary
CPU normalized
by throughput

Replica
CPU normalized
by throughput

Repl. Off 3046 25.76 N/A 8.46 N/A
Repl. On 2948 26.19 15.60 8.88 5.29

To confirm whether our designed micro-benchmark emu-
lates the conflict ratio well, we first measured the accumu-
lated lock waiting time throughout the benchmark for all the
clients, as shown in Figure 9. As expected, depending on the
initial table size, the conflict ratio varied significantly. The
larger lock waiting time means a higher transaction conflict
ratio because transactions have to wait until they acquire
a lock when there exist transaction conflicts. For example,
when the number of the initially populated records is set to
one, all transactions are serially executed due to conflicting
transactions with each other.

As the next step, we have measured the throughput of
the ATR replayer and the primary, varying the initial table
size. As in Section 5.2, we measured the log replay through-
put after pre-generating and pre-loading the replication log
entries. Figure 10 shows the experimental results. ATR
constantly shows higher throughput than the primary re-
gardless of the conflict ratio. Note that, in Figure 10, com-
pared to Figure 7, the gap between the ATR replayer and
the primary is smaller since Figure 7 was measured with
the TPC-C benchmark consisting of read/write workloads
while Figure 10 was measured with the write-only micro-
benchmark. Because only the write statements are propa-
gated to the replica, the replica in the TPC-C benchmark
handles fewer replay workloads compared to the designed
write-only micro-benchmark.

5.5 Replication Overhead
To evaluate the overhead incurred by ATR at the primary

side, we have measured the primary transaction through-
put while replicating the generated log entries to its replica.
To highlight the overhead, we have run the same update-
only single-table micro-benchmark as Section 5.4 while pop-
ulating 1 million records initially. However, differently from
Section 5.4 where the replayers run with the pre-generated
replication log, we measured the actual performance with
the log online-replicated from the primary.

Table 2 shows the result. When the replication is turned
off, the primary processed 3046 transactions per second while
showing 25.76% CPU consumption at the primary. When
the replication is turned on, the primary processed 2948
transactions per second while showing 26.19% CPU con-
sumption at primary. It means that the primary through-
put dropped by 3.2% with ATR enablement. The CPU
consumption at the primary increased by 1.6% (the third
column in the table) or by 5.0% in terms of the normalized
CPU consumption by the throughput (the fifth column in
the table). According to our CPU profiling analysis, the
additional CPU consumption was mainly contributed to by
replication log generation, log buffer management, and net-
work operations, as expected. Note however that most of the
replication operations at the primary (except the log gen-
eration itself) are executed asynchronously by background

threads without delaying the primary transaction execution,
and thus the impact to the primary transaction throughput
is not so significant.

In addition to the primary overhead analysis, we have also
measured the replica-side CPU consumption as in Table 2.
The replica showed only 60.6% of CPU consumption com-
pared to the primary-side execution of the same transaction
(=15.60/25.76) or 62.5% in terms of the normalized CPU
consumption (=5.29/8.46). Again, according to our CPU
profiling analysis, the CPU consumption at the replica was
saved since the replayer skips the integrity constraint check
and the record locking/unlocking during the log replay as
mentioned in Section 3.4. Furthermore, the skipped primary
key search at the replica is another important contributor
to such CPU cost savings. Note that the target record is
found by a simple hash operation with the 8-byte Before-
Update RVID value at the replica while the target record at
the primary is searched by the primary key value consisting
of OL W ID, OL D ID, and OL O ID. Such saved CPU re-
sources at the replicas can eventually lead to more capacity
for OLAP processing at the replicas, which will be shown in
more detail in Section 5.6.

5.6 Multi-Replica Scalability under Mixed
OLTP/OLAP Workload

Finally, we show the performance scalability of OLAP
queries under OLTP/OLAP mixed workload by using the
TPC-CH benchmark. We measured both TPC-C through-
put (in terms of transactions per second) and TPC-H through-
put (in terms of queries per second) varying the number of
replicas from 0 to 4. As the number of replicas increases, we
have increased the number of TPC-H clients proportionally
since the overall OLAP capacity increases with the number
of replicas. While the number of TPC-C client is fixed to
32, 120 TPC-H clients are added per replica server. The
number of clients has been chosen so that a single HANA
database server can be fully loaded in terms of CPU con-
sumption. Note that SAP HANA provides so-called intra-
statement parallelism for OLAP-style queries, where a sin-
gle OLAP query execution is parallelized by using multiple
available CPU cores at the time of its execution. However,
throughout this experiment, the intra-statement parallelism
was disabled to see more deterministic behavior with the
varying number of TPC-H clients. All the tables in the
TPC-CH schema have been replicated to all the available
replica servers. All the TPC-C transactions are directly
routed to the primary while the TPC-H queries are evenly
routed across all the available HANA database servers in-
cluding the primary server.

Figure 11 shows the normalized throughput of OLTP and
OLAP with the different number of replicas. N replicas
denote that there are N+1 database servers including the
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primary. The normalized throughput was calculated by di-
viding the measured throughput by the throughput with-
out replication. Although the OLTP throughput decreases
slightly with the increasing number of replicas, the OLAP
throughput increases almost linearly. This result confirms
that ATR can offer scalable OLAP performance without
creating notable performance overhead to OLTP workloads.
Note that the OLAP throughput also shows slightly super-
linear scalability when the number of replicas is 1 or 2. This
is because the replayed transaction consumes less CPU com-
pared to its original execution at the primary, as discussed
in Section 5.5. As a result, each replica has a larger OLAP
capacity than the primary in terms of available CPU re-
sources.

6. RELATED WORK
Database replication is a widely studied and popular con-

cept for achieving higher availability and higher performance.
There are a number of different replication techniques de-
pending on their purposes or application domains.

Cross-datacenter system replication is an option for in-
creasing high availability against datacenter outages [5, 15,
19]. For such a high availability purpose, even SAP HANA
provides another different replication option, called HANA
System Replication[19], which basically focuses on replicat-
ing entire database contents across data center. On the
contrary, HANA ATR focuses on load balancing and scal-
able read performance by replicating a selected list of tables
within a single data center although we do not exclude the
possibility of extending ATR for the purpose of high avail-
ability or geo-replication.

When we need to allow the replication system to span
heterogeneous database systems while decoupling the repli-
cation engine from the underlying DBMS servers or to trans-
form the extracted source data as in ETL processing, middle-
ware-based database replication has been another practical
technique [1, 3, 7, 16, 21, 20]. However, differently from
those techniques, HANA ATR embeds the replication en-
gines inside the DBMS kernel aiming at the real-time repli-
cation between HANA systems without making any addi-
tional hop during the replication.

Depending on where the incoming write workloads can
be processed, there are two replication options: master-
slave replication and multi-master replication. In the multi-
master replication [1, 2, 7, 10], each replica can serve both
read and write workloads. However, in order to make all
the replicas execute the write transactions in the same order
even against conflicting transactions, the multi-master repli-
cation may need to involve a complex consensus protocol or
the increased possibility of multi-node deadlocks [8]. Like [6,
9, 16], ATR takes the master-slave replication architecture,
simplifying the transaction commit protocol and avoiding
the danger of multi-master deadlocks. However, in contrast
to [6, 9, 16], ATR employs the transparent and automatic
routing protocol as explained in Section 2 so that the appli-
cation developer need not be concerned about the location of
the primary copy of a particular table. Additionally, based
on its table-wise replication feature, ATR offers the option
of placing the master copy of tables in different database
nodes. Still, write transactions for a particular table are di-
rected to a particular database node, but write transactions
for another table can be processed in a different database
node for distributing the write workloads to multiple nodes
overall. We call this architecture semi-multi-master replica-
tion to distinguish from the plain forms of multi-master or
master-slave replication architecture. [4] can also be clas-
sified as a semi-multi-master replication like ATR. In this
semi-multi-master replication of ATR, there is a possibil-
ity of multi-node deadlock but it is automatically detected
by using the existing multi-node deadlock detector of SAP
HANA [13]. A detailed description on the semi-multi-master
configuration goes beyond the scope of this paper.

Compared to [10] which relies on eager (or synchronous)
replication, ATR follows lazy (or asynchronous) replication
to reduce the overhead at the primary-side transaction ex-
ecution as in [2, 4, 6, 7, 9, 16]. However, differently from
those other lazy replication techniques, ATR is optimized
to reduce the visibility delay between the primary and its
replicas by employing a couple of optimizations such as early
log shipping and parallel log replay.

For parallel replay under lazy replication, [9] relies on a
run-time inter-transaction dependency tracker, which may
become a contention point as shown in Section 5.2. Com-
pared to such a pessimistic parallel log replay approach,
ATR employs an optimistic lock-free parallel log replay algo-
rithm by leveraging the record version ID of MVCC imple-
mentation. In [9], transactions belonging to the same bar-
rier group can be committed out of order but their changes
become visible to the replica queries after all the transac-
tions in the barrier group are replayed and committed. As a
result, the barrier length can affect the log replay through-
put and the visibility delay; for example, if the length of
a barrier increases, the log replay throughput can increase,
but the visibility delay may increase. In ATR, all the com-
mit log replay operations are serialized by the single queue
and single replayer, and the committed transaction results
become immediately visible to the replica queries. In ad-
dition to the optimistic lock-free parallel log replay algo-
rithm, with careful separation of the serialized portion of
commit operations from the other parallelized DML, pre-
commit, and post-commit operations, ATR achieves both
high-throughput parallel log replay and shorter visibility de-
lay.
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7. CONCLUSION
In this paper, we presented an efficient and scalable repli-

cation architecture called ATR in SAP HANA. We empir-
ically showed that ATR enables real-time replication with
sub-second visibility delay even for update-intensive work-
loads, showing scalable OLAP performance without notable
overhead to the primary.

We first proposed the novel replication architecture for
scaling out mixed workloads of OLTP and OLAP along with
important design choices made. We then proposed an effi-
cient, scalable log generation and parallel replay scheme.
Here, the log buffer at log generation is implemented by a
lock-free structure using an atomic CAS instruction, while
a parallel log replayer exploits a novel, optimistic lock-free
scheme by exploiting characteristics of MVCC. Particularly,
the novel concepts of SessionID-based log dispatch method
and RVID-based dynamic detection of serialization error
were proposed. In order to support full-fledged replication in
a commercial in-memory database system, we next proposed
the RVID-based post-failure replica recovery mechanism and
presented various implementation issues.

Through extensive experiments with a concrete implemen-
tation available in a commercial product, we showed that
ATR achieves sub-second visibility delay even for update-
intensive workloads, providing scalable, OLAP performance
without notable overhead to the primary. Overall, we be-
lieve that our comprehensive study for replication across
formats lays a foundation for future research in scale-out
in-memory database systems.
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