
Privacy-Preserving Network Provenance

Yuankai Zhang
Georgetown University

Adam O’Neill
Georgetown University

Micah Sherr
Georgetown University

{yuankai, adam, msherr, wzhou}@cs.georgetown.edu

Wenchao Zhou
Georgetown University

ABSTRACT
Network accountability, forensic analysis, and failure diagnosis are
becoming increasingly important for network management and se-
curity. Network provenance significantly aids network administra-
tors in these tasks by explaining system behavior and revealing the
dependencies between system states. Although resourceful, net-
work provenance can sometimes be too rich, revealing potentially
sensitive information that was involved in system execution. In this
paper, we propose a cryptographic approach to preserve the confi-
dentiality of provenance (sub)graphs while allowing users to query
and access the parts of the graph for which they are authorized.
Our proposed solution is a novel application of searchable sym-
metric encryption (SSE) and more generally structured encryption
(SE). Our SE-enabled provenance system allows a node to enforce
access control policies over its provenance data even after the data
has been shipped to remote nodes (e.g., for optimization purposes).
We present a prototype of our design and demonstrate its practical-
ity, scalability, and efficiency for both provenance maintenance and
querying.

1. INTRODUCTION
Network provenance [56] allows network administrators to de-

termine the precise causes and effects of network state, signifi-
cantly easing otherwise burdensome tasks such as failure diagnos-
tics, forensic analysis, network debugging, and network account-
ing. Efficient methods of storing and querying provenance [57]
have enabled practical network provenance systems, spurring prove-
nance products that have been deployed in enterprise networks [45].

To date, deployments of network provenance systems have been
restricted to single administrative domains due in part to the secu-
rity and privacy issues that arise when data are shared across ad-
ministrative boundaries. However, since the Internet is governed
by distributed protocols (BGP and DNS are notable examples), se-
cure provenance schemes that operate across networks could pro-
vide enormous benefit. For example, a provenance-enabled Inter-
net control-plane enables network administrators to reason about its
own routing rules and better diagnose cross-domain routing faults
such as bad gadgets [58]; with provenance support, participants

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

of distributed hash tables can better understand sudden workload
shifts and performance glitches.

Existing work investigates secure provenance systems in dis-
tributed environments that are robust against malicious or compro-
mised endpoints or network elements [40, 58]. There, the focus
has been on detecting false provenance information. This paper
argues that authenticity is not by itself sufficient for practical cross-
domain provenance systems. Provenance data collected on individ-
ual devices contains rich information that reveals details of system
executions and decision making processes, some of which might
be considered sensitive or confidential and should not be visible by
unauthorized parties in the distributed system. When disseminating
provenance information, we need to take into consideration organi-
zations’ privacy preferences. Prior position papers [6, 25] have pre-
viously identified such need, and suggested that partial and differ-
ential provenance access should be granted in a privacy-preserving
manner.

This paper introduces privacy-preserving network provenance
(PPNP), a distributed provenance scheme that supports the richness
of network provenance while providing strong privacy guarantees
over confidential data. We propose a cryptographic approach to
preserve the confidentiality of provenance (sub)graphs while allow-
ing authorized nodes to query and access the parts that are visible
to them. In PPNP, the access control of the vertices and edges of a
provenance graph is determined by their “labels.” Provenance data
owners can freely assign the labels (for example, based on the types
of the corresponding system state/events) and their corresponding
access control policies.

Our proposed PPNP scheme leverages previous work on a cryp-
tographic primitive called Searchable Symmetric Encryption (SSE),
introduced by Curtmola et al. [15]. Informally, SSE builds a secure
index (also called a dictionary) that maps each searchable keyword
to the corresponding data item(s), but is only searchable by key-
word w if a user possesses a trapdoor for w. Even after the gen-
erated secure index is shipped to another entity, a node still con-
trols the access of its data based on the roles of requesters. A
richer primitive called Structured Encryption (SE) due to Chase
and Kamara [10] considers arbitrary data structures such as graphs.
Our proof-of-concept scheme of PPNP builds upon SSE and SE
constructs by Cash et al. [9] and Chase and Kamara [10] and al-
lows privacy-preserving retrieval of a labeled (sub)graphs of an
encrypted graph. PPNP guarantees that the only portions of the
provenance graph that are revealed are those for which the querier
is authorized.

In particular, we adapt an SSE scheme of Cash et al. [9] for
use in our main construction and optimize it to reduce bandwidth
costs, making PPNP practical for large, distributed deployments.
To demonstrate the practicality and scalability of PPNP, we con-

1550



struct a proof-of-concept implementation which we call PrivProv
and measure its performance and overhead for two diverse prove-
nance tasks: inter-domain routing and Chord [51]. Our empirical
results demonstrate that PrivProv achieves strong confidentiality
guarantees with a negligible increase in latency and low bandwidth
overhead.

2. BACKGROUND
Before describing our privacy-preserving network provenance

scheme, we describe our system model (Section 2.1) and provide a
brief background on network provenance (Section 2.2).

2.1 System Model
Our model of a distributed system is based on that described by

Zhou et al. [57] in their exploration of efficient provenance tech-
niques. We briefly review this model here.

We model a distributed system as a set N = {N1, N2, ..., Nn}
of nodes that communicate by sending messages over a network.
The state of a node at a fixed point in time is expressed as a set of
tuples. State can be affected either by base tuples that are inserted
or deleted directly by the user, or by derived tuples that are derived
from existing rules. Derived tuples may be communicated between
nodes.

We use Network Datalog (NDlog) [34–37] to compactly describe
the derivation rules and dependencies among tuples that can exist
in the system. NDlog has been similarly applied to express rules in
other application settings, including provenance systems [57], sen-
sor and ad hoc networks [12, 33], and overlay networks [38, 49].
Although our choice of NDlog is motivated by its popularity in net-
work provenance systems, our proposed PPNP scheme is agnostic
to the particular provenance language; in particular, our model is
compatible with legacy systems so long as they can express deriva-
tion rules and dependencies.
Example: Network Routing. We use the mincost protocol from
ExSPAN [57] as a driving example. mincost computes the lowest-
cost paths between each pair of nodes in a network. For this exam-
ple, we assume an undirected topology. mincost is defined as the
following NDlog rules:
mc1 cost(@S,D,C) :- link(@S,D,C).
mc2 cost(@S,D,C) :- link(@Z,S,C1),

mincost(@Z,D,C2), C=C1+C2.
mc3 mincost(@S,D,MIN<C>) :- cost(@S,D,C).

Each rule has the form “ruleid p :- q1, q2, ..., qn.” sig-
nifying that “p should be derived whenever q1, q2, ..., and qn all
exist at the same time.” Unlike Datalog, NDlog supports a location
specifier in each predicate, written as @X, where X is the node on
which the tuple is located. For example, cost tuples derived via
rule mc1 reside on the same node as the corresponding link tuples
since both carry the same location specifier (@S).

In the above mincost example, a base tuple link(@S,D,C) ex-
ists if S has a direct link (an edge in the network topology) to D, at
a cost of C. Rule mc2 derives a cost(@S,D,C) tuple if there is a
direct link from S to Z and a minimum cost route (defined by rule
mc3) from Z to D. All paths with the same source and destination
are aggregated in rule mc3 to determine the minimal path cost.

Protocols run continuously in NDlog, and tuples are derived (or
underived) in response to the insertion, deletion, or modification of
base tuples. For example, mincost tuples may change if the cost
of a link changes.

2.2 Network Provenance
The notion of provenance has been extensively explored and suc-

cessfully applied to a variety of areas [7, 8, 13, 19, 22, 26, 27, 42,

43, 46, 47, 52, 53]. Of relevance here, network provenance [57–
59] helps operators of distributed systems better understand and
reason about the derivation history of network states in their dy-
namic distributed environments. Such capability has been shown
to be widely applicable to network management tasks such as fault
debugging, root cause analysis, and accountability.

For example, consider a scenario during the deployment of the
mincost program, where a three-node network consists of nodes a,
b, and c. The only link in the network is a link b→ c with a cost 3.
When a new link b→ awith a cost of 1 is inserted into the network,
a new path c → b → a becomes available in response to the link
insertion. The network provenance that explains the derivation of
mincost(c,a,4) is as follows:

• when node b discovers the new link to node a, it is reflected
as an insertion of base tuple link(@b,a,1) into b’s local
link table;
• the insertion of the link tuple triggers rule mc1, resulting in
cost(@b,a,1);
• rule mc3 is then used to derive mincost(@b,a,1), since
cost(@b,a,1) is the shortest path between b and a; and
• finally, combining the derived mincost(@b,a,1) tuple with

the fact that there is a link with cost 3 between node b and
c (represented as link(@b,c,3)), b concludes that there is a
path with cost 4 between a and c (represented as
cost(@c,a,4)). This information is also shipped to c to
notify c about the new available route.

Network provenance is captured as a directed graph, where the ver-
tices are the events (e.g., link(@b,a,1)) and rule execution in-
stances (e.g., mc1 and mc2), and the edges represent dependency
relationships between the events and rule execution instances.

There have been multiple proposals and standards for prove-
nance models; notable examples include Open Provenance Model
(OPM) [41] and PROV [23]. While these provenance models vary
in their detail (e.g., OPM introduces a comprehensive model that
captures the causal relationships between three types of entities:
artifacts, processes, and agents), they all share a common graph-
based notation in which edges in the graph represent dependency or
causal relationships among the vertices. This allows for an oppor-
tunity to develop a scheme that can be generally applied to a wide
range of provenance models. The proposed privacy-preserving
scheme employs structured encryption for general graph represen-
tation of provenance, and therefore is applicable to any graph-based
provenance model. While in this paper, we focus on the network
provenance model, the proposed private provenance scheme can
be extended to support other graph-based provenance models by
keeping additional annotations with the edges and vertices in the
graph. (We elaborate how the proposed scheme can be adopted to
the PROV model in Section 5.4.)

3. OVERVIEW AND GOALS
Although the use of provenance has been suggested for a vari-

ety of settings, we posit that the lack of confidentiality in existing
provenance systems severely limits its practical use since data can-
not be shared securely across administrative boundaries.

3.1 Case Studies: A Need for PPNP
Provenance information, by design, reveals information about

derived and communicated state. In distributed environments with
multiple data owners, such uninhibited sharing of information sig-
nificantly hinders the deployment of provenance systems, partic-
ularly when data may be derived from sensitive sources (for ex-
ample, in the case of inter-domain routing). To motivate the need

1551



for confidentiality, we survey existing provenance applications and
discuss how they could benefit from PPNP. For brevity, we discuss
three types of provenance applications in this paper and refer inter-
ested readers to a technical report for a full survey [55].

In our survey, we consider a model in which the provenance
graph is distributed among different authority domains. Each au-
thority domain owns the data corresponding to its piece of the prove-
nance graph. For example, in the case of provenance-enabled inter-
domain routing, an autonomous system (AS) owns the portion of
the provenance graph for a routing announcement that is based
off of the AS’ internal routing policies. To evaluate the benefits
of PPNP for our surveyed use-cases, we consider whether—in an
actual deployment—authority domains would be concerned about
protecting the confidentiality of the data it shares with other author-
ity domains.

Distributed system debugging [11, 54] requires strong confiden-
tiality. An entity that wishes to debug its own system may de-
pend on provenance data from external authorities. For example,
an observed misbehavior at router A might be caused by config-
uration errors at router B which is several hops away and owned
by a different authority. Even if different authorities are willing to
cooperate for debugging purposes, they are unlikely to share plain-
text provenance since it contains business secrets that are private
and sensitive. Protections are needed to permit only authorized ac-
cess to the sensitive data.

PPNP enables per-authority domain access controls, which makes
it especially well-suited for such use-cases. At the same time, some
derivations have distinguishable patterns in sizes, thus simply en-
crypting the derivations may still leak some information. We show
later in Section 5 that PPNP provides strong confidentiality and
strong derivation size hiding for these applications.

In a provenance-aware healthcare multi-agent system (HC-MAS)
there are multiple authorities of different healthcare actors [31],
which naturally makes the system decentralized and distributed.
Such systems require very strong confidentiality due to the fact
that healthcare records are highly private and sensitive. The Organ
Transplant Management Application (OTMA) example described
by Kifor et al. [31] demonstrates how a series of complex pro-
cedures are annotated with provenance, where each autonomous
authority carries out a subset of processing steps. Crucially, it is
critical to protect the confidentiality of internal decisions as these
themselves may be based on highly sensitive information (for ex-
ample, the results of HIV tests).

Internet-of-Things (IoT) devices produce enormous amounts of
data, and provenance has been proposed as a mechanism to bet-
ter understand and trace their data [50]. Since the data produced
by IoT devices is very often sensitive, there is an obvious need to
protect the confidentiality of this information, especially given the
pervasive use of always-on IoT devices. Here, PPNP provides an
important benefit by enabling operators to determine the causes and
effects of IoT state in a manner that protects individuals’ privacy.

Finally, in applications where provenance is not distributed and
is held by a single authority [5, 17, 28, 32], PPNP is less useful
since more straightforward encryption and role-based access con-
trol could be used to preserve privacy. In this paper, we focus on
distributed provenance graphs that span administrative boundaries.

3.2 Security Goals
PPNP enables support for privacy-preserving provenance main-

tenance and querying. Our high-level goal is to enable operators
of separately administered systems to share provenance data in a
more controlled manner such that sensitive data are revealed only
to authorized parties.

We conceptualize privacy-preserving network provenance by
considering a coloring of the provenance graph. Let C be a set of
colors, which can be roughly viewed as credentials. In our privacy-
preserving provenance model, each data owner has one or more
colors, and assigns exactly one of its colors to each of its tuples.
Conceptually, the coloring of nodes defines the access control pol-
icy for the provenance graph.
Dismissed: simple encryption of tuples. At first blush, it may
seem sufficient to simply encrypt the values of tuples stored in the
provenance graph to provide privacy protections. In our initial ex-
ploration of privacy-preserving provenance, we considered using
attribute-based encryption (ABE) [48] where colors represented at-
tributes and tuples were encrypted to enforce access controls.

However, encrypting only the vertices in the provenance graph
is insufficient to provide meaningful security since the structure of
a provenance graph can also be revealing. For example, in the case
of inter-domain routing, the structure of a provenance subgraph
belonging to an autonomous system (AS) may reveal the size of
that AS, its connections, and its business relationships (i.e., peers).
More generally, merely obfuscating the “labels” in a graph has been
dismissed by the security community as a poor method of informa-
tion hiding [44].

We require a stronger security model in which any party, honest
or malicious, learns only the portions of a given provenance graph
for which it possesses the corresponding colors. We express our
desired security properties more concretely next, and present and
analyze a scheme based on Searchable Symmetric Encryption [15]
(SSE) and more generally Structured Encryption (SE) [10] in Sec-
tion 4. We view part of our contribution as identifying a novel
application of SSE and SE to network provenance, which is also
much lighter-weight compared to ABE.1

Security goals and threat model. Let G = (V,E) be a simple
directed graph2 and L : V → 2C be a labeling function of ver-
tices (tuples) to colors. In a privacy-preserving network provenance
system, in response to a query, a (honest or malicious) querier
P with colors CP ⊆ C learns only a subgraph G′ ⊆ G such
that G′ = (V ′, E′) where V ′ = {v ∈ V |L(v) ∈ CP } and
E′ = {(vi, vj)|vi, vj ∈ V and {vi, vj} ∩ V ′ 6= �}.

We note that the subgraph may also contain half-edges in which
only one of its adjacent vertices is in the subgraph; for the “invisi-
ble” node in half-edges, P learns only that there is a corresponding
node in the full provenance graph.

We will use standard cryptographic primitives such as blockci-
phers and hash functions, and make standard assumptions about
their security. In Section 4, we formally define and analyze secu-
rity properties of PPNP.
Additional goals. A privacy-preserving network provenance
scheme should provide the following properties:

• Completeness: Upon receiving a query, PPNP should return
all vertices and edges that the requester is allowed to view.
• Portability: Provenance queries can be answered efficiently,

and the results should remain secure and complete even when
the provenance information is communicated to a remote
third-party node (e.g., for caching purposes or to delegate

1One important difference between SE and ABE is that SE does
not provide “collusion-resistance,” meaning different users might
be able to combine their keys to decrypt data neither could decrypt
on their own. However, for us credentials will be atomic, i.e., not
Boolean formulae on attributes, so this does not cause an issue.
2A simple directed graph is a directed graph with no self-loops or
multiple edges.

1552



storage to a cloud-based infrastructure) that may not have
full access to plaintext provenance.
• Performance: The protocol should have reasonably low over-

head, especially during provenance maintenance time. This
is particularly important for long running distributed systems
that have complex logic.

Importantly, PPNP does not identify misbehaving nodes. While
there do exist techniques for discovering nodes in provenance sys-
tems that misbehave or equivocate when answering provenance
queries [58], such secure network provenance systems depend on
having unrestricted access to provenance information. We suspect—
although we do not investigate it here—that secure provenance sys-
tems can be straightforwardly deployed alongside PPNP within ad-
ministrative domains. We leave the study of the integration of se-
cure network provenance with privacy-preserving network prove-
nance as an interesting future research direction.

4. STRUCTURED ENCRYPTION FOR COL-
ORED SUBGRAPHS

PPNP PPNP relies on a new structured encryption scheme [10]
for “colored subgraph queries.” Intuitively, such a scheme allows
a user to encrypt a colored graph such that the encryptor can issue
a per-color token that allows decrypting only the subgraph whose
vertices have that color. The scheme leverages searchable symmet-
ric encryption (SSE) [15] which allows data to still be efficiently
searchable by a third-party even when it remains encrypted (Sec-
tion 4.3).

Briefly, PPNP operates by constructing a dictionary in which the
colors are the keys and each corresponding value contains the ver-
tices with that color and the edges between them. It also contains
a secret share of the corresponding cross-color edges, where the
other secret share is in the value for the other color (Section 4.4).
From the retrieved query result, an unauthorized user might be able
to infer an approximation of graph size, but she will not know the
exact size (due to padding) or details of individual edges as they
are protected by encryption and/or secret sharing. We further de-
scribe in Section 4.5 fragmentation, a performance optimization,
and present the complete leakage profile.

4.1 Notation and Conventions
All algorithms, including adversaries, are required to be efficient

and may be randomized unless otherwise specified. If A is a ran-
domized algorithm, then x←$A(. . .) denotes running A on the
elided inputs and fresh random coins, and assigning the output to
x. If A is deterministic, we drop the dollar-sign next to the arrow.
We denote by Pr [A(. . .)⇒ x ] the probability that A outputs x
when run on the elided inputs and fresh random coins.

If S is a finite set, then s←$ S denotes sampling a uniformly ran-
dom element from S and assigning it to s. We abbreviate
s1←$ S ; s2←$ S by s1, s2←$ S. Strings are binary. If s is a
string, then si denotes its i-th bit. If s1, s2 are strings then s1‖s2
denotes an encoding of s1, s2 from which they are uniquely recov-
erable. We often use other objects such as graphs as arguments to
algorithms or with string notation, with the understanding that they
are first implicitly encoded as strings in some canonical way.

4.2 Formal Model and Security
Formal Model. Let G = (V,E) be a simple directed provenance
graph, C be a set of colors, and L : V → 2C be a labeling func-
tion. A structured encryption scheme for privacy preserving net-
work provenance is a tuple of four algorithms:

GE = (KEYGENG, ENCG, TOKENGENG, SEARCHG)

The key generation algorithm KEYGENG outputs a key K. The
encryption algorithm ENCG takes as inputs a key K, a provenance
graphG, and a labeling function L, and outputs an encrypted graph
γ. The deterministic token generation algorithm TOKENGENG takes
as inputs a key K, and a color c, and outputs a token τc. The
deterministic query-answering algorithm SEARCHG takes as input a
list of tokens (τc1 , . . . , τcq ) and an encrypted graph γ, and outputs
a graph G′.
Correctness. We say that GE is correct if for allG,C,L as above,
all subsets C′ ⊆ C, all K output by KEYGENG, all γ output by
ENCG(K,G,L), all c′ ∈ C′ and all τc′ output by
TOKENGENG(K, c

′), it holds that SEARCHG((τc′)c′∈C′ , γ) outputs
the subgraph G′ = (V ′, E′) of G such that V ′ = {v ∈ V |L(v) ∈
C′} and E′ = {(v1, v2) ∈ E|v1, v2 ∈ V ′}.

Remark 4.1 The structured encryption schemes we define are
“response-revealing” in the terminology of [10]. Roughly, this
means that there is not a separate decryption algorithm, and the
search algorithm reveals the result of the query in the clear. This
is because in our application the querier and the entity executing
the SEARCHG are actually the same. This will also be the case for
the searchable symmetric encryption schemes we define later.

Security. We consider a non-adaptive, simulation-based notion.
Here “non-adaptive” refers to the fact that we only consider an ad-
versary that chooses its queries before seeing the encrypted graph,
and “simulation-based” captures the intuition that the adversary
only learns some associated leakage of the graph. Namely, given
a leakage function LK, consider the following experiments with an
adversary A against GE and simulator S. (Here and in similar ex-
periments below, A and S maintain state that we omit for simplic-
ity.) In the real experiment REALGE(A):
• The adversaryA first outputs a graphG, set of colorsC, labeling

function L, and colors c1, . . . , cq ∈ C.
• The experiment next generates K←$ KEYGENG,
γ←$ ENCG(K,G,L), and τci ← TOKENGEN(K, ci) for all i =
1 to q. It then passes (γ, τc1 , . . . , τcq ) to A.
• Finally, the adversary A outputs a bit b, which is output by the

experiment.

In the ideal experiment IDEALLK,GE(A,S):
• The adversaryA first outputs a graphG, set of colorsC, labeling

function L, and colors c1, . . . , cq ∈ C.
• The experiment then generates `← LK(G,C,L, c1, . . . , cq) and

passes ` to the simulator S.
• Finally, the simulator S outputs a bit b, which is output by the

experiment.

We say that GE is LK-Secure if for every adversary A there is a
simulator S such that

Pr[REALGE(A)⇒ 1]− Pr[IDEALLK,GE(A,S)⇒ 1]

is sufficiently small (say 2−128).

4.3 Searchable Symmetric Encryption
We provide some background on searchable symmetric encryp-

tion (SSE), first introduced by Curtmola et al. [15], which we will
use in our main construction below.

Let W be a set of keywords (also called labels). A dictionary is
a list of keyword-data pairs I = ((w1, d1), . . . , (wn, dn)), where
w1, . . . , wn ∈ W are unique. We write w ∈ I to mean that w =
wi for some 1 ≤ i ≤ n. For w ∈ I we denote by I(w) the
corresponding data di.

1553



Syntax. An SSE scheme is a tuple of four algorithms

SSE = (KEYGENS , ENCS , TRAPGENS , SEARCHS)

defined as follows. The key-generation algorithm KEYGENS out-
puts a key K. The encryption algorithm ENCS takes as inputs a
key K and a dictionary I and outputs an encrypted dictionary Ĩ.
The deterministic trapdoor generation algorithm TRAPGENS takes
as inputs a key K and a keyword w, and outputs a trapdoor Tw.
The deterministic searching algorithm SEARCHS takes as inputs a
trapdoor Tw and an encrypted dictionary Ĩ, and outputs a string d.
Correctness. We say that SSE is correct if for all n ∈ N, all
dictionaries I = ((w1, d1), . . . , (wn, dn)), all keywords w ∈ W ,
allK output by KEYGENS , all Ĩ output by ENCS(K, I), and all Tw

output by TRAPGENS(K,w), it holds that SEARCHS(Tw, Ĩ) outputs
I(w) if w ∈ I and ⊥ otherwise.
Security. As above, we consider a non-adaptive, simulation-based
notion. Given a leakage function LK, consider the following exper-
iments with an adversary A against SSE and simulator S. In the
real experiment REALSSE(A):
• The adversary A first outputs a dictionary I as above and key-

words w1, . . . , wq ∈W .
• The experiment next generates K←$ KEYGENS ,
Ĩ ←$ ENCS(K, I), and Twi ← TRAPGENS(K,wi) for all i = 1

to q. It then passes (Ĩ, Tw1 , . . . , Twq ) to A.

• Finally, the adversary A outputs a bit b, which is output by the
experiment.

In the ideal experiment IDEALLK,SSE(A,S):
• The adversary A first outputs a database I as above and key-

words w1, . . . , wq ∈W .
• The experiment then generates ` ← LK(I, w1, . . . , wq) and

passes ` to the simulator S.
• Finally, the simulator S outputs a bit b, which is output by the

experiment.

We say that SSE is LK-Secure if for every adversary A there is a
simulator S such that

Pr[REALSSE(A)⇒ 1]− Pr[IDEALLK,SSE(A,S)⇒ 1]

is sufficiently small.

4.4 Main Construction
We give a construction of structured encryption scheme for col-

ored subgraphs from an SSE scheme. The techniques are inspired
by the structured encryption scheme for labeled graphs by Chase
and Kamara [10], but the details of our construction differ.
Scheme. Let SSE = (KEYGENS , ENCS , TRAPGENS , SEARCHS) be
an SSE scheme. We assume graphs have vertex labels of some fixed
length. Our structured encryption scheme for colored subgraphs
with nonce-length k ∈ N is defined as

GE1 = (KEYGEN1, ENC1, TOKENGEN1, ANSWER1)

in Figure 1. Correctness follows from taking the nonce-length to
be sufficiently large to avoid collisions.

Intuitively, the scheme simply uses the underlying SSE scheme
to store the data for each color. The data for each color contains the
vertices with that color and the edges between them. It also con-
tains a secret share of the corresponding cross-color edges, where
the other secret share is in the data for the other color. We explain
our algorithm in more details in Section 5, with a driving example
that contains a concrete provenance graph.

Remark 4.2 In the implementation described in Section 6, we do
not store all the graph data in the dictionary as defined in the above
scheme, but rather the data stored in the dictionary serves as point-
ers to encrypted vertices or edges, which can then be decrypted by
the entity processing the query. This is done only for performance
and does not affect security.

Security Analysis. For the security analysis, we define leakage
profile LK1 in terms of a given leakage profile LK for the underlying
SSE scheme, plus some additional leakage on cross-color edges.
Namely, we define LK1(G,C,L, c1, . . . , cq) as LK(I, c1, . . . , cq),
for I defined as in Figure 1, plusH and NH , where

H = {(u, v) | L(u) = ci 6= cj = L(v), ci, cj ∈ (c1, . . . , cq)}

and

NH = {|(x, y)| | |(L(x), L(y)) ∩ (c1, . . . , cq)| = 1} .

Note that NH is the number of cross-color edges from(to) vertices
within (c1, . . . , cq) to(from) vertices outside (c1, . . . , c1); the ac-
tual edges remain secret.

For the SSE schemes we consider, the data corresponding to the
keywords for which trapdoors are requested is output by the leak-
age profile (as well as some additional leakage discussed later).
This means GE1 leaks not only the subgraph corresponding to the
colors for which tokens are requested, but also those cross-color
edges whose two colors are in (c1, . . . , cq), and the total number
of cross-color edges to or from this subgraph to vertices with other
colors that are not in (c1, . . . , cq). Leaking the total number of
cross-color edges could be eliminated by using padding and a mes-
sage authentication code, but we omit this from our main construc-
tion for bandwidth efficiency.

Formally, we prove the following theorem:

Theorem 4.3 If SSE is LK-secure, then GE1 is LK1-secure.

Proof Sketch. Given an adversary A1 against GE1, there is a cor-
responding adversary A against SSE defined in the natural way.
Hence, by LK-security of SSE, there is a simulator S such that

Pr[REALSSE(A)⇒ 1]− Pr[IDEALLK,SSE(A,S)⇒ 1]

is sufficiently small. We use S to construct a simulator S1 forA1 as
follows. Given LK1(G,C,L, (c1, . . . , cq)) = (LK(I, (c1, . . . , cq)),
H, NH) as defined above, S1 runs S on input LK(I, (c1, . . . , cq)).
Let ` be the output of S. Then S1 runs A1 on ` and the rest of
its input prepared appropriately using H and NH , and returns its
output. By the construction of A it follows that

Pr[REALGE1
(A1)⇒ 1]− Pr[IDEALLK,GE1

(A1, S1)⇒ 1]

is also sufficiently small. Hence GE1 is LK1-secure.

4.5 SSE with Fragmentation
Finally, we describe a dictionary-based SSE scheme with data

fragmentation based on the πpack scheme from Cash et al. [9],
which we optimize for bandwidth efficiency. We use this SSE
scheme in our structured encryption scheme for colored subgraph
queries above. Intuitively, the SSE scheme “chops up” the data for
each keyword into equal-sized fragments of some length parameter,
after padding to a multiple of the fragment length. It is described as
“pack”ing multiple items into one fixed length chunk in the original
πpack scheme.

More formally, to define the SSE scheme, let PRF : {0, 1}k ×
{0, 1}∗ → {0, 1}∗ be a function family. We also use a dictio-
nary data structure, which can be formalized in standard ways. The

1554



1: function KEYGEN1

2: return K←$ KEYGENS

3: function ENC1(K,G,L)
4: Construct Dictionary:
5: For each (u, v) ∈ E do: puv, quv←$ {0, 1}|u|, nuv←$ {0, 1}k
6: For each c ∈ C do:
7: lcV ← {v | L(v) = c, v ∈ V }
8: lcE ← {(u, v) | L(u) = L(v) = c, (u, v) ∈ E}
9: lcH1 ← {(u⊕ puv, quv, nuv) | L(v) 6= L(u) = c, (u, v) ∈ E},

10: lcH2 ← {(pxy, y⊕ qxy, nxy) | L(x) 6= L(y) = c, (x, y) ∈ E},
11: lc ← (lcV ‖lcE , ‖lcH1‖lcH2)
12: I ← (c, lc)c∈C
13: Encrypt Dictionary:
14: return γ ← ENCS(K, I)

15: function TOKENGEN1(K, c)
16: return τ ← TRAPGENS(K, c)

17: function SEARCH1((τc1 , . . . , τcq ), γ)
18: Search Encrypted Dictionary:
19: For each ci, 1 ≤ i ≤ q, do: lci ← SEARCHS(γ, τci)
20: Reconstruct Graph:
21: For each ci, 1 ≤ i ≤ q:
22: Parse lci as (lciV ‖lciE‖lciH1‖lciH2)
23: For each v ∈ lciV , V ′ ← V ′ ∪ v
24: For each (u, v) ∈ lciE , E′ ← E′ ∪ (u, v)
25: For each n in (u′ ⊕ p, q, n) and (p, v′ ⊕ q, n):
26: Compute (u′, v′) and E′ ← E′ ∪ (u′, v′)
27: return G′ = (V ′, E′)

Figure 1: Structured Encryption Scheme for Colored Subgraphs GE1

scheme SSEF with fragmentation-length f ∈ N and label-length
k ∈ N is defined as

SSEF = (KEYGENF , ENCF , TRAPGENF , SEARCHF )

in Figure 2. Correctness follows from taking the label-length to be
sufficiently large to avoid collisions.
Security Analysis. For the security analysis, we adopt the query
pattern leakage as defined by Chase and Kamara [10]. Namely,
define QP(w1, . . . , wq) to be the q × q binary matrix with a 1 at
position i, j if wi = wj and 0 otherwise. Then we define the leak-
age function

LKF (I, w1, . . . , wq)

= ({I(wi)}i∈[q],
n∑

i=1

d|I(wi)|/fe,QP(w1, . . . , wq)) .

The corresponding security theorem follows from the analysis of
the πpack scheme in Cash et al. [9].

Intuitively, it hides the length of each data item (while avoid-
ing padding each data item to the maximum length) for which the
adversary does not have the token for the corresponding keyword.
Interestingly, the fact that these lengths are hidden does not seem to
depend on f . However, as f increases, the adversary gets a better
upper-bound on the number of keywords, since

∑n
i=1d|I(wi)|/fe

is closer to n. In terms of bandwidth efficiency, as f decreases,
more pseudorandom labels need to be stored in the dictionary.

Hence, there is a tradeoff: bandwidth depends on how close the
length of each data item is to f , due to padding. If f is large and
these lengths are not close to f , then poor bandwidth efficiency
is achieved. The optimal choice of f for bandwidth efficiency is
therefore data-dependent.

Let {c1, . . . , cn} be the color set, k be the length of pseudoran-
dom labels and I = ((c1, d1), . . . , (cn, dn)) be the constructed
dictionary. The optimal fragmentation size F can be derived by

min
F

n∑
i=1

(

⌈
|di|
F

⌉
× (F + k)) .

5. PPNP DESIGN
In this section, we introduce PPNP, a novel privacy-preserving

network provenance system. PPNP uses the structured encryption
scheme presented in Section 4 as a cryptographic primitive to en-
force access control policies.

The access control policies are specified as the colors of the
vertices and edges in the provenance graph, as determined by the
provenance data owners. For simplicity, we assume that the color

of an edge is determined by the colors of its two end vertices.
(The proposed technique can be extended to support the case where
edges are labeled in isolation with vertex colors.)

Figure 4 shows an overview of PPNP’s design through a simpli-
fied example. Here, a node Q intends to query a provenance en-
try from node X, who already has a cached encrypted provenance
graph from node Y, where the complete provenance graph is as is
depicted in Figure 3.

• Upon receiving a provenance query for V1 from Q, X sends its
own encrypted provenance graph to Q, along with the cached
encrypted provenance graph from Y.

• Having received both X’s and Y’s encrypted provenance graph,
Q sends out token requests to X and Y, asking for tokens to access
their respective authorized colors.

• X and Y send back to Q the tokens—that is, the corresponding
keys for the colors that Q are authorized to access: green from
X, and blue and green from Y.

• Once Q receives the tokens, it can then extract a sub-provenance
graph for V1 that Q is allowed to view.

To illustrate differential access control in PPNP, we show the
view from another node P which intends to query the same graph
as Q in Figure 5. P is authorized to access red and green from X,
and blue from Y, while Q is authorized to access green from X, and
blue and green from Y.

We also show components, i.e. nodes and (half)edges, of Q’s
view in Figure 6. Q decrypts ciphertext-blocks from X and Y sepa-
rately. From X, Q successfully decrypts two vertices (V2 and V5),
one full edge ((5,2)), and three halfedges ((2,1), (4,2), (3,2)). Simi-
larly, from Y, Q gets two vertices (V3 and V6), and three halfedges
((3,2), (6,3), (6,3)). For halfedges, We use “cut shapes” to denote
matching halfedges visually. The actual matching is done by the
nonce associated with each halfedge. Note that for full edge, it is
not “cut”. Also, in order to recover the full edge, a node must pos-
sess both halfedges. Thus Q would match the two wavy halfedges
to recover edge (6,3), and two sawtooth halfedges to recover edge
(3,2). Halfedges (2,1) and (4,2) is not matched, and Q can only
infer that these two halfedges have one green vertices.

5.1 Answering Provenance Queries
Upon receiving a provenance query, a node first prepares its

provenance graph as a dictionary, and then replies with the en-
crypted graph as obtained using the ENC1 function.

Assume at node X, the provenance graph is denoted by G =
(E, V ), where V is set of vertices and E is set of edges in G.

1555



1: function ENCF (K, I)
2: Fragment and Encrypt Index:
3: Parse I as ((w1, d1), . . . , (wn, dn))
4: Initialize dictionary D
5: For 1 ≤ i ≤ n do:
6: K1‖K2 ← PRFK(w, 12k)

7: Pad di to length d |di|
f
e

8: Parse di as di,1‖ . . . ‖di,`i where each |di,j | = f
9: ctr ← 1

10: For each 1 ≤ j ≤ `i do:
11: Add (PRFK1(ctr, 1

k),PRFK2(ctr, 1
f )⊕ di,j) into D

12: ctr ← ctr + 1
13: return D

14: function KEYGENF

15: return K ← K
16: function TRAPGENF (K,w)
17: return PRFK(w, 12k)

18: function SEARCHF (K1‖K2, D)
19: For ctr = 1 until Retrieve returns ⊥
20: Retrieve PRFK1(ctr, 1

k) from D to get data c
21: di,ctr ← c⊕ PRFK2(ctr, 1

f )
22: ctr ← ctr + 1
23: Remove padding from di,ctr−1

24: return di,1‖ . . . ‖di,ctr−1

Figure 2: SSE scheme with fragmentation SSEF

Table 1: Provenance dictionaries, before fragmentation

term(c) vertices(lcV ) edges(lcE) half-edges(lcH )
@X:
red V1, V4 ∅ (p21, V1 ⊕ q21, n21), (V4 ⊕ p42, q42, n42)

green V2, V5 V5V2 (V2 ⊕ p21, q21, n21), (p42, V2 ⊕ q42, n42), (p32, V2 ⊕ q32, n32)
@Y:
blue V3 ∅ (p63, V3 ⊕ q63, n63), (V3 ⊕ p32, q32, n32)
green V6 ∅ (V6 ⊕ p63, q63, n63)

Figure 3: An example provenance graph.

Additionally, for each v ∈ V , we associate a color c with v. To
construct the data structure for SSE, we create the dictionary as
follows: (For simplicity, and in order to achieve a solution using
only light-weight symmetric-key cryptographic primitives, we im-
pose a constraint that a vertex is associated with exactly one color.
Extending our scheme to allow vertices with multiple colors, or
more generally Boolean formulae on the colors, is an interesting
direction of future work.)

The ENC1 function (shown in Figure 1) produces an encrypted
dictionary. It begins by constructing a list lcV that contains all ver-
tices that are labeled with the color c, for each color c in the color
set C. It then creates a a list lcE that contains all edges whose ends
are labeled as c. Then, a list lcH is constructed such that all half-
edges of c are covered, where the half-edges of a color c are defined
as the edges e = (u, v) that have either u or v labeled as c, but not
both. Finally, ENC1 concatenates the lists lcV , lcE , and lcH into a
single list, lc. The function constructs lc for each c ∈ C.

For a half-edge e = (u, v) where u is labeled as cu and v is
labeled as cv (cu 6= cv), we randomly generate p, q, and n such
that |u| = |v| = |p| = |q| = |n|. In lcuH , we include a tuple
(u ⊕ p, q, n) as an element in lcuH , and its corresponding tuple
(p, v ⊕ q, n) as an element in lcvH .

After building the dictionary, each (c, lc) pair is encrypted by a
secret key KX

c , where c is the color and X is the node where G is
located. ENC1 returns ENCS(K, I), the encrypted dictionary.

As an example, Table 1 provides the constructed dictionary for
the provenance graph depicted in Figure 3. As one can see from the
Table, the values of different keys in the dictionary may have dif-
ferent lengths. Unless otherwise masked (see below), this may leak

Y X Q
1

Y

(a)

Y X Q

Y X

2

(b)
Y X Q

?

?
3

3

(c)

Y X Q
4

4

(d)
Y X Q

Y

X

(e)
Figure 4: Answering Provenance Query. (a) At earlier time, X caches Y’s
encrypted provenance graph. (b) Upon receiving query from Q, X sends Q
both its own encrypted and cached provenance graphs. (c) Q asks X and
Y for authorized tokens. (d) X and Y send back tokens for colors that Q
are authorized to access. (e) Q decrypts provenance (sub)graphs that it is
allowed to view. Note that the dashed edge was recovered by cross-node
handling mechanism.

additional information about the underlying provenance graph. For
instance, when the vertices are labeled in an unbalanced fashion—
e.g., a majority of vertices share one same label and a small minor-
ity of vertices share another label—an adversary would be able to
distinguish the two labels from the lengths of document lists.

A typical approach to eliminating this information leakage is to
perform padding to the dictionary such that all keys have same-
lengthed values. However, such an approach introduces significant
storage and communication overhead. As described in Section 4.5,
we instead adopt an SSE scheme that incorporates data fragmen-
tation to mitigate the information leakage without incurring these
large costs. Table 2 shows the final fragmented dictionary, with
fragment size f = 5× |c| and |pad| = |c|.

1556



V1 V2 V3

V5

V4X Y

P’s view

V2 V3 V6

V5

X Y

Q’s view
Figure 5: Views from different parties of provenance graph in Figure 3.

@X

@Y

V2 V5

V3 V6

Figure 6: Components of Q’s view in Figure 5.

5.2 Handling Cross-node Communications
Consider an edge e = (u, v) that crosses two physical nodes: u

is located on node Y and has label cu; v is located on node X and
has label cv . It should be noted that a querier who has access to
vertex v should not automatically be granted access to any infor-
mation of u (i.e., the ID and label of u). Unless explicitly granted
the access to u, the querier should only be aware that v is connected
to some unknown vertex located on node Y .

Since each node encrypts its own provenance graph by its own
secret key, it is non-trival for two nodes to share information of
such a cross-node edge without compromising the aforementioned
property. To achieve this, we resort to an approach similar to how
we treated half-edges in Section 5.1.

When Y prepares its provenance graph, it randomly generates
p, q and n such that |u| = |v| = |p| = |q| = |n|. Similar to
half-edges, it includes tuple (u⊕ p, q, n) in lcuH , and adds an aux-
iliary element, (p, q, n), to the final inverted-index. Note that the
auxiliary elements of an inverted-index are not encrypted.

When X receives the encrypted inverted-index which includes
the auxiliary element) from Y, it parses p, q, n and adds tuple (p, v⊕
q, n) in lcvH of its inverted-index. Table 1 provides an example of
the generated inverted-indices for Figure 3, where cross-node com-
munications are involved.

5.3 Reconstruct Provenance Graph
After the query node receives the final answer to its query and

has been granted all tokens, it starts solving the provenance graph
jigsaw puzzle by assembling the separated pieces together.

For each puzzle piece, it decrypts the dictionary with its corre-
sponding tokens row-by-row. In more detail, from document list
lcV and lcE for label c, the vertices and edges with label c can be
recovered, as detailed in the SEARCH1 function listed in Figure 1.
For half edges in lcH , a hash map is maintained, where n in tuple
(p, q, n) is the search key. The purpose of this hash map is to match
every half edge with its other half using the cuts of the jigsaw.

Recall that each half edge e = (u, v) with cu 6= cv appears twice
in the dictionary: once in the document list for cu in the form of
(u⊕ p, q, n), and once for cv in the form of (p, v⊕ q, n). With the
two tuples matched by n, the original edge (u, v) can be recovered
by (u⊕ p, q)⊕ (p, v ⊕ q).

The same matching method applies to cross-node edges as well.
Each cross-node edge e = (u, v) with u ∈ Y and v ∈ X also
appears twice: once in the dictionary reported by Y in the form of
(u⊕ p, q, n), and once in the dictionary reported by X in the form
of (p, v⊕q, n). From here, the provenance graph can be recovered.

5.4 Application of PPNP
While we focus on the application of PPNP to network prove-

nance; it is not difficult to apply PPNP to other graph-based prove-
nance models.

Table 2: Fragmentation of the inverted-indices (dictionaries) from Table 1.
F is a PRF. Colors are abbreviated as r, g, b. To improve readability,
parentheses and commas have been omitted.

term(c) document-list(lc)
@X:

F (KX
r , 1) V1 V4 p21 V1 ⊕ q21 n21

F (KX
r , 2) V4 ⊕ p42 q42 n42 pad pad

F (KX
g , 1) V2 V5 V5 V2 V2 ⊕ p21

F (KX
g , 2) q21 n21 p42 V2 ⊕ q42 n42

F (KX
g , 3) p32 V2 ⊕ q32 n32 pad pad

@Y:
F (KY

b , 1) V3 p63 V3 ⊕ q63 n63 V3 ⊕ p32
F (KY

b , 2) q32 n32 pad pad pad
F (KY

g , 1) V6 V6 ⊕ p63 q63 n63 pad

Applying PPNP to PROV. For concreteness, we briefly describe
the application of PPNP to the PROV provenance model. PROV
adopts a graph-based provenance model where a vertex in the graph
can be one of three types: (a) entities, such as physical or digital
items; (b) activities, such as actions or processes that derives enti-
ties; or (c) agents, such as persons, organizations or software that
are partly responsible for activities. Edges in the graph identify
direct relationships between the vertices. For example, an edge be-
tween an entity and an activity can describe that the entity was gen-
erated by the activity. The exact relationship that an edge identifies
is encoded as an annotation of the edge (e.g., a “wasGeneratedBy”
annotation for the previous example).

Assume that a set of provenance stores collectively maintain a
distributed PROV provenance graph, and that the PROV prove-
nance graph has been “colored” based on an imposed access con-
trol policy by the owners. The PROV provenance graph can be
constructed as a colored graph with annotations on the edges and
vertices. The SSE-based structured encryption scheme presented in
Section 4 would still be applicable with a minor extension to further
incorporate the annotations: we additionally include annotations
to their corresponding vertices, edges and half-edges in the con-
structed dictionary. The retrieved partial view of the provenance
will then naturally contain the annotations of the vertices and edges
that the querier is permitted to access.
Customizing PPNP for deployment. We also note that there are
several tunable knobs that can be customized based on the privacy
requirement of individual applications.

For distributed system debugging [11, 54] and IoT tracking [50]
that require strong confidentiality, it is necessary to apply GE1 from
Figure 1 with the fragmentation-aware SSEF scheme in Figure 2.
For confidentiality, any querier who does not hold the authorized
token for a color c would not be able to access the vertices and
edges with that color, even if it holds the ciphertext the for entire
graph. With fragmentation, the querier cannot deduce from the
ciphertext sensitive information such as the names and the number
of colors/lables, or the provenance graph size (due to padding).

In provenance-aware healthcare multi-agent systems
(HC-MAS) [31], one can simply apply GE1 with any underlying
SSE scheme, as it is unnecessary to apply fragmentation for hiding
the names and the number of colors/labels in the provenance graph.
In this case, the colors correspond to medical procedures which are
publicly available information.

6. EVALUATION
We constructed PrivProv in RAPIDNET, a declarative NDlog en-

gine built upon the ns-3 network simulator. In order to compare
PrivProv with previous network provenance systems (e.g., ExS-

1557



Table 3: Experiment configurations.

Configuration Dictionary Fragment Encrypt Token
ExSPAN No No No No

ExSPAN+Dictionary Yes No No No
PrivProv w/o Token Yes Yes Yes No
PrivProv w/ Token Yes Yes Yes Yes

PAN [57]), we obtained the source code of the ExSPAN system
from Zhou et al. [57] and modified it to support PrivProv’s privacy-
preserving features. Specifically, we added functionality for con-
structing inverted-indices from provenance graphs, fragmenting and
encrypting the inverted-indices, decrypting ciphertexts, and recon-
structing provenance graphs from inverted-indices. In addition, we
modified the RAPIDNET compiler to include labels for provenance
graphs, and implemented user-defined functions in RAPIDNET to
interact with SSE. Cryptographic functions used in our PrivProv
implementation were imported from the Crypto++ library [14].

By default, ExSPAN uses “string polynomials” to send digests of
provenance graphs. For example, the provenance graph in Figure 3
would be transmitted as V1(V2(V4 + V5 + V3(V5))). To ensure a
fair comparison to PrivProv, we modified user-defined functions in
ExSPAN to include “full” provenance graphs in which a full list of
vertices and edges are transmitted to represent a graph.

The source code of our prototype implementation, published un-
der an open-source license, is available for download [1].

6.1 Evaluation Settings
To understand the relative overheads of building the dictionary,

encryption, and performing a token query in PrivProv, we evaluated
the following four configurations:

• ExSPAN serves as our baseline, which returns results of
provenance queries in plaintext. It does not construct or com-
municate the secure dictionaries used for supporting SSE.
• ExSPAN+Dictionary returns provenance queries in the for-

mat of a dictionary that maps colors to their corresponding
vertices and edges in the provenance graph. For an edge with
different colored ends, the edge will be included in the entries
of both colors.
• PrivProv w/o token additionally applies cryptography to con-

struct the privacy preserving query result.
• PrivProv w/ token further includes the token query that re-

trieves, from the original owner, the token required for re-
constructing the provenance graph.

Table 3 presents a summary of the four configurations.
Applications. We evaluated PrivProv with two representative ap-
plications: mincost (introduced in Section 2) and the Chord [51]
distributed hash table (DHT) which provides the capability of in-
serting and retrieving key value pairs in a distributed fashion. For
Chord DHT, we focused on the provenance of the lookup process
that, upon a user’s request, identifies the node responsible for host-
ing a provided key. This process can be succinctly implemented in
NDlog using the following rules [34]:
l1 lookupResults(@R,K,S,SI,E):- lookup(@NI,K,R,E),

node(@NI,N), bestSucc(@NI,S,SI), K in (N,S].
l2 bestLookupDist(@NI,K,R,E,a_MIN<D>):- node(@NI,N),

lookup(@NI,K,R,E), finger(@NI,I,B,BI),
D := K-B-1, B in (N,K).

l3 forwardLookup(@NI,a_MIN<BI>,K,R,E):- node(@NI,N),
bestLookupDist(@NI,K,R,E,D),
finger(@NI,I,B,BI), D == K-B-1, B in (N,K).

l4 lookup(@BI,K,R,E):- forwardLookup(@NI,BI,K,R,E),
f_typeOf(BI) != null.

500 1000 1500 2000 2500 3000
Time (Seconds)

0

50

100

150

200

250

300

Ba
nd

w
id

th
 (K

B/
s)

ExSPAN
ExSPAN+Dict(Half)
ExSPAN+Dictionary
PrivProv w/o token
PrivProv w/ token

Figure 7: Bandwidth utilization of provenance queries.

Experimental setup. We performed the experiments on a Dell
OptiPlex 7040 desktop running Ubuntu 14.04 LTS kernel version
3.19.0 with an Intel Core i7-6700 processor, 32GB 2133MHz DDR4
RAM, and a M.2 256GB SATA SSD.

Our experiments used ns-3’s simulation functionality, which al-
lows evaluations of PrivProv in a sizable network topology. Net-
work topologies in all experiments are generated by the GT-ITM
topology generator [24] using Transit-Stub type networks. On av-
erage, each transit node is connected to eight stub domains; each
stub domain contains on average three nodes, while each transit
domain contains four nodes. Thus, on average, each transit domain
contains 50 nodes. We increase the number of transit domains to
vary the size of network topologies. The links between transits are
configured with 1Gbps of bandwidth and 20ms latency, while links
within a transit have 100Mbps bandwidth and 50ms latency.

Unless explicitly specified, our experiments ran on a 100-node
topology generated with the settings described above.
Workflow. After applications reach a fixed point—that is, all pair-
wise shortest paths are computed (for mincost), and the Chord
ring and finger tables are stabilized (for Chord). 1000 provenance
queries are issued against randomly chosen min-cost paths (for
mincost) and lookup results (for Chord).

PrivProv supports a general graph coloring scheme. In this pa-
per, we adopted a simple scheme in which provenance vertices are
colored based on the IP address of the vertices’ host machine. This
corresponds to a straightforward role-based access policy. For sim-
plicity, we use the SHA-1 digest of IP addresses as vertex colors.

We set the fragment size to 300, except for the evaluation of
fragmentation optimization, which uses a varying fragment size.

6.2 Evaluation Results
PrivProv does not introduce any modification to provenance main-

tenance. (We confirm this below.) We thus focus on evaluating the
performance of provenance querying.

6.2.1 Communication Overhead
Figure 7 presents the aggregate bandwidth utilization over time

during the processing of 1000 random queries.
We observed that PrivProv incurs roughly a fourfold communi-

cation overhead compared with ExSPAN, where 50% of the over-
head comes from the construction of the inverted-index. This is ex-
pected since almost every edge is a cross-color edge (recall that ver-
tices are colored based on the hosting machine), each edge would

1558



0 500 1000 1500 2000 2500
Query Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

ExSPAN
PrivProv w/o token
PrivProv w/ token

(a)

ExSPAN PrivProv w/ token
0

100

200

300

400

500

600

700

800

900

Av
g 

Ti
m

e 
pe

r Q
ue

ry
 (m

s)

CPU Time
Network Time
Provenance Time
Token Network Time

(b)

ExSPAN PirvProv w/ token
0

1000

2000

3000

4000

5000

6000

7000

Av
g 

Ti
m

e 
pe

r Q
ue

ry
 (m

s)

CPU Time
Network Time
Provenance Time
Token Network Time

(c)

Figure 8: The cumulative distribution of provenance query latencies (figure a), a breakdown of provenance query latencies (figure b), and the query latency
composition of 100 node topology running 1000 uniformly random queries in Chord (figure c).

50 100 150 200 250 300 350 400 450 500
# Nodes

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Co
m

m
un

ic
at

io
n 

Ov
er

he
ad

 p
er

 Q
ue

ry
 (M

B)

ExSPAN
ExSPAN+Dict.

PrivProv w/o token
PrivProv w/ token

Figure 9: Communication overhead with varying network sizes.

100 200 300 400 500 600 700 800 900 1000
Fragment size (Bytes)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Av
g.

 C
om

m
. O

ve
rh

ea
d 

pe
r Q

ue
ry

 (M
B)

N=100
N=200
N=300

Figure 10: Communication overhead with varying fragmentation sizes.

appear exactly twice in the inverted-index. For applications that re-
quire less confidentiality of cross-color edges—for example, if it is
acceptable to reveal cross-color edges even when a user has tokens
for only one end of the edges—the communication overhead would
be significantly reduced, as shown by ExSPAN+Dict(Half) in the
figure, where a cross-color edge is revealed under edge-tail’s to-
ken. The average bandwidth for ExSPAN and ExSPAN+Dict(Half)
are 28.91KB/s and 37.85KB/s respectively, compared to 65.27KB/s
for ExSPAN+Dict. Other factors that contribute to the overhead
include fragmentation, padding that ensures the inverted list of all
colors have the same length, and auxiliary information for handling
cross-machine edges. The overhead of token queries is negligible.

6.2.2 Query Latency
Figure 8 (a) presents the Cumulative Distribution Function (CDF)

of the query latencies of 1000 random provenance queries. The fig-

1650 1700 1750 1800 1850
Time (Seconds)

0

2000

4000

6000

8000

Ba
nd

w
id

th
 (K

B/
s)

ExSPAN
ExSPAN+Dictionary
PrivProv w/o token
PrivProv w/ token

Figure 11: Bandwidth utilization of 100 node topology running 1000 uni-
formly random queries in Chord.

ure shows that PrivProv w/o token does not introduce much latency.
In fact, it almost overlaps with ExSPAN. Token queries, however,
require an additional round trip time, which slows the provenance
query by 20%. We remark that tokens can be cached and hence the
token query overhead can be amortized over multiple provenance
queries.

Figure 8 (b) presents the breakdown of the query latencies. “CPU
time” counts the time spent in retrieving plaintext provenance from
maintained provenance tables; “provenance time” counts the time
spent in constructing and assembling query results based on the
retrieved plaintext provenance; “network time” counts simulation
time spent in transmitting provenance query results; and “token
network time” counts simulation time spent in network delay and
transmission delay for token queries.

Since the experiments were run in simulation mode, we calcu-
lated query latencies in two parts: we tracked CPU time and prove-
nance time by recording the actual wall clock time during the exe-
cution; for network time, we considered ns-3’s simulated network
transmission time.

We observed that PrivProv does not incur much computation
overhead (as indicated by the low provenance time) for preparing
and parsing the secure dictionary of provenance graphs. PrivProv

1559



introduces a small increase in network time due to increased size of
messages. The significant delay comes from processing the token
queries, which introduces one additional round trip time. We note
that these findings align with the latency results of Figure 8(a).

One counterintuitive point is that CPU time of PrivProv is slightly
lower than that of ExSPAN. Upon further investigation, we found
that the additional CPU time in ExSPAN is caused by the imple-
mentation of RAPIDNET where objects are deep-copied. In contrast,
PrivProv uses a flat encoding for the encrypted secure dictionary
and thus has a less “structured” encoding of provenance objects as
compared to ExSPAN.

6.2.3 Scalability
Figure 9 presents the communication costs for 1000 random

provenance queries for various sized network topologies. We make
two observations: (i) The communication overhead of provenance
queries increases sublinearly with network size. This is expected
since for mincost the provenance complexity is directly related
to the network diameter, the latter of which also increases sub-
linearly with network size. (ii) Second, the relative overhead of
constructing the dictionary (ExSPAN+Dictionary), creating the se-
cure dictionary (PrivProv w/o token), and processing token queries
(PrivProv w/ token) remains unchanged, which reconfirms our ob-
servation from Section 6.2.1.

Figure 9 shows that the overhead plateaus after 200 nodes. This
is due to the fact that the network diameter remains the same. In
our experiment setting, we increased network size by adding more
transit domains in the network, which did not increase network di-
ameter after four transit domains. Thus, the depth of the resulted
provenance graphs did not grow further. The scalability relies on
the underlying protocol. PrivProv should not affect the scalability
of provenance maintenance and querying since it adds a constant
factor of overhead, in both computation and communication.

6.2.4 The Effect of Fragmentation
Figure 10 presents the effect of various fragmentation size on

communication overhead. We performed the experiments on three
network topologies with 100, 200, and 300 nodes respectively. As
we can observe clearly from the figure that the “V” shaped lines
indicate an optimal fragmentation size which minimizes network
communication overhead. The intuition is that with small frag-
mentation size, the overhead of maintaining meta-data such as ran-
dom labels is significant, analogous to sending small payload TCP
segments, while with large fragmentation size, padding becomes
a significant contributing factor to the communication overhead.
As discussed in Section 4, the optimal fragmentation size is deter-
mined by the length distribution of di. The evaluation assumes a
coloring scheme where provenance vertices are colored based on
IP address of the vertices’ host machine (Section 6.1). As a result,
each color contains provenance vertices and edges related to cost

and mincost tuples on one physical node. Although the network
size increases, the distribution of di remains roughly unchanged,
and so is the optimal fragmentation size.

6.2.5 Evaluation of Chord DHT
Figure 11 presents bandwidth consumption over time for pro-

cessing 1000 random provenance queries when the underlying pro-
tocol is the Chord DHT. We observed that PrivProv incurs 2-3x
overhead in bandwidth consumption. For Chord, the majority of
the edges (around 80%) in a provenance graph have the same color
for both ends; the relative cost for constructing the dictionary is
thus significantly lower than that of mincost. The relative cost for

constructing the secure dictionary, on the other hand, remains sim-
ilar to mincost, as expected.

Figure 8 (c) presents the breakdown of query latency for Chord.
The figure shows that CPU time dominates query latency, due to
the increase in program complexity of Chord, compared with min-
cost. Again, the increases in provenance time and network time
are nearly negligible.

Token network time delay adds one more round trip time. The
increase in token network time delay compared with mincost is
due to the increased number of physical nodes and hops involved in
one provenance query. For mincost, the number of physical nodes
and hops involved in one query is capped by the network diameter.
For Chord, however, since it is an overlay application, each hop
corresponds to multiple physical hops in the underlying network.

7. RELATED WORK
Provenance. Provenance is a concept initiated from the database
community [7], but it has recently been applied in several other ar-
eas, including distributed systems [54, 57, 58], storage systems [42],
operating systems [20], and mobile platforms [18]. Our work is
mainly related to projects that use network provenance for diagnos-
tics. In this area, ExSPAN [57] was the first system to maintain net-
work provenance at scale; SNP [58] added integrity guarantees in
adversarial settings, DTaP [59] a temporal dimension, and Y! [54]
support for negative events. Bao et al. developed efficient schemes
for labeling workflow provenance [2, 3]. Glavic et al. presented
query rewriting techniques for processing provenance in [21].

Position papers, such as those by Hasan et al. [25] and Bertino et
al. [6], highlight the need and challenges for privacy in provenance
systems. Privacy concerns of scientific workflow provenance are
raised by Davidson et al. [17]. PPNP presents a solution to these
challenges by performing queries on encrypted provenance graphs
in a privacy-preserving manner.

The Secure-View problem, introduced by Davidson et al. [16],
aims to hide module information without losing too much utility of
provenance. Maruseac et al. [39] propose an obfuscation scheme
to provide differential privacy of provenance paths; the obfuscation
scheme allows for statistically similar results (with a bounded er-
ror), unlike the exact provenance query results provided by PPNP.
Bates et al. [4] present a complete architecture for provenance man-
agement in the cloud. The work is complementary to PPNP, where
it can be used as a basis for setting up attribute-based (or role-
based) access control. Finally, Khan et al. [30] propose secure Lo-
cation Provenance which enforces the security guarantees (includ-
ing privacy) by employing a collection of cryptographic constructs.
The proposed solution focuses on Location Provenance which as-
sumes a chain-based provenance model, whereas PPNP is applica-
ble to the more general graph-based provenance model.
Searchable Symmetric and Structured Encryption. We do not
attempt to provide a comprehensive overview of work on search-
able symmetric encryption or more generally structured encryption,
and instead refer the reader to an excellent talk of Kamara [29] for
an overview of these primitives and other approaches for searching
on encrypted data.

8. CONCLUSION
This paper presents PPNP, a novel distributed privacy-preserving

network provenance scheme that supports the richness of network
provenance while providing strong privacy guarantees over confi-
dential data. We formally prove that our proposed cryptographic-
based PPNP scheme is secure, and show how PPNP can be applied
to existing provenance systems that require heterogeneous privacy

1560



preferences. We develop a prototype implementation, PrivProv,
and evaluate its performance on two distinctly different provenance
applications. Our evaluation results demonstrate that PrivProv in-
curs negligible increase in latency and a reasonable bandwidth over-
head, making it practical for large, distributed deployments.

Acknowledgments
We thank Mohammad Zaheri for several insightful conversations
about this work, and the anonymous reviewers for their insight-
ful comments. This paper is partially funded from CNS-1149832,
CNS-1527401, CNS-1453392, CNS-1513734 and CNS-1650419.
The findings and opinions expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding agen-
cies.

References
[1] PPNP Code Release. http://security.cs.georgetown.edu/

˜yuankai/ppnp-code.tar.gz.
[2] Z. Bao, S. B. Davidson, S. Khanna, and S. Roy. An optimal labeling scheme for

workflow provenance using skeleton labels. In Proceedings of SIGMOD, 2010.
[3] Z. Bao, S. B. Davidson, and T. Milo. Labeling recursive workflow executions

on-the-fly. In Proceedings of SIGMOD, 2011.
[4] A. Bates, B. Mood, M. Valafar, and K. Butler. Towards secure provenance-

based access control in cloud environments. In Proceedings of the third ACM
conference on Data and application security and privacy. ACM, 2013.

[5] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer. Trustworthy whole-system
provenance for the linux kernel. In USENIX Security, 2015.

[6] E. Bertino, G. Ghinita, M. Kantarcioglu, D. Nguyen, J. Park, R. Sandhu, S. Sul-
tana, B. Thuraisingham, and S. Xu. A roadmap for privacy-enhanced secure data
provenance. Journal of Intelligent Information Systems, 2014.

[7] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of
data provenance. In Proceedings of ICDT, 2001.

[8] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. VisTrails:
Visualization meets data management. In Proceedings of SIGMOD, 2006.

[9] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data struc-
tures and implementation. IACR Cryptology ePrint Archive, 2014.

[10] M. Chase and S. Kamara. Structured Encryption and Controlled Disclosure. In
ASIACRYPT, 2010.

[11] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. The Good, the Bad,
and the Differences: Better Network Diagnostics with Differential Provenance.
In Proceedings of SIGCOMM, 2016.

[12] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and
I. Stoica. The Design and Implementation of a Declarative Sensor Network
System. In Proceedings of SenSys, 2007.

[13] S. Cohen-Boulakia, O. Biton, S. Cohen, and S. Davidson. Addressing the prove-
nance challenge using zoom. Concurrency and Computation : Practice and
Experience, 2008.

[14] Crypto++. https://www.cryptopp.com.
[15] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. In Proceedings of
CCS, 2006.

[16] S. B. Davidson, S. Khanna, T. Milo, D. Panigrahi, and S. Roy. Provenance views
for module privacy. In Proceedings of PODS, 2011.

[17] S. B. Davidson, S. Khanna, S. Roy, J. Stoyanovich, V. Tannen, and Y. Chen. On
provenance and privacy. In Proceedings of ICDT, 2011.

[18] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: Lightweight
provenance for smart phone operating systems. In USENIX Security, 2011.

[19] I. T. Foster, J.-S. Vöckler, M. Wilde, and Y. Zhao. Chimera: A virtual data sys-
tem for representing, querying, and automating data derivation. In Proceedings
of SSDBM, 2002.

[20] A. Gehani and D. Tariq. Spade: support for provenance auditing in distributed
environments. In Proceedings of International Middleware Conference, 2012.

[21] B. Glavic and G. Alonso. Perm: Processing provenance and data on the same
data model through query rewriting. In Proceedings of ICDE, 2009.

[22] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G. Ives, and V. Tan-
nen. ORCHESTRA: Facilitating collaborative data sharing. In Proceedings of
SIGMOD, 2007.

[23] P. Groth and L. Moreau. Prov-overview. an overview of the prov family of doc-
uments. 2013.

[24] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
[25] R. Hasan, R. Sion, and M. Winslett. Introducing secure provenance: problems

and challenges. In Proceedings of the 2007 ACM workshop on Storage security
and survivability. ACM, 2007.

[26] R. Hasan, R. Sion, and M. Winslett. Preventing history forgery with secure
provenance. ACM Transactions on Storage (TOS), 2009.

[27] R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and reduce
workflows. In Proceedings of CIDR, 2011.

[28] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T. Millstein,
and T. Condie. Titian: Data provenance support in spark. Proceedings of the
VLDB Endowment, 2015.

[29] S. Kamara. How to Search on Encrypted Data. https://cs.brown.edu/
˜seny/slides/encryptedsearch-full.pdf.

[30] R. Khan, S. Zawoad, M. M. Haque, and R. Hasan. Otit: Towards secure prove-
nance modeling for location proofs. In Proceedings of the 9th ACM symposium
on Information, computer and communications security. ACM, 2014.

[31] T. Kifor, L. Z. Varga, J. Vazquez-Salceda, S. Alvarez, S. Willmott, S. Miles, and
L. Moreau. Provenance in agent-mediated healthcare systems. IEEE Intelligent
Systems, 2006.

[32] L. Kot. Tracking personal data use: Provenance and trust. In CIDR, 2015.
[33] C. Liu, R. Correa, X. Li, P. Basu, B. T. Loo, and Y. Mao. Declarative policy-

based adaptive mobile ad hoc networking. IEEE/ACM Transactions on Network-
ing (TON), 2011.

[34] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In Proceedings of SOSP, 2005.

[35] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative routing:
extensible routing with declarative queries. In Proceedings of SIGCOMMM,
2005.

[36] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In Proceedings of SIGMOD, 2006.

[37] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking. Communi-
cation of ACM, 2009.

[38] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified Platform for
Dynamic Overlay Selection and Composition. In Proceedings of CoNEXT, 2008.

[39] M. Maruseac, G. Ghinita, and R. Rughinis. Privacy-preserving publication of
provenance workflows. In Proceedings of the 4th ACM conference on Data and
application security and privacy. ACM, 2014.

[40] P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and M. Winslett. To-
wards a Secure and Efficient System for End-to-End Provenance. In 2nd Work-
shop on the Theory and Practice of Provenance (TAPP), February 2010.

[41] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson. The open
provenance model. 2007.

[42] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-
aware storage systems. In Proceedings of USENIX ATC, 2006.

[43] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer. Provenance for the cloud.
In Proceedings of FAST, 2010.

[44] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse
datasets. In IEEE S&P, 2008.

[45] Netsil. http://netsil.com/.
[46] T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R. Pocock, and A. Wipat.

Taverna: A tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 2004.

[47] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic
data. In Proceedings of ICDE, 2007.

[48] A. Sahai and B. Waters. Fuzzy Identity-based Encryption. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
2005.

[49] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze. A3:
An Extensible Platform for Application-Aware Anonymity. In Proceedings of
NDSS, 2010.

[50] J. A. Stankovic. Research directions for the internet of things. IEEE Internet of
Things Journal, 2014.

[51] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of
SIGCOMMM, 2001.

[52] W. System, I. Altintas, O. Barney, and E. Jaeger-frank. Provenance collection
support in the kepler scientific workflow system. In Proceedings of IPAW, 2006.

[53] J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In Proceedings of CIDR, 2005.

[54] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing missing
events in distributed systems with negative provenance. In ACM SIGCOMM
Computer Communication Review, 2014.

[55] Y. Zhang, A. O’Neill, M. Sherr, and W. Zhou. Privacy-preserving network
provenance. Technical report. Available at https://security.cs.
georgetown.edu/˜yuankai/ppnp-tr.pdf.

[56] W. Zhou, E. Cronin, and B. T. Loo. Provenance-Aware Secure Networks. In
International Conference on Data Engineering Workshop (ICDEW), 2008.

[57] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying
and maintenance of network provenance at Internet-scale. In Proceedings of
SIGMOD, 2010.

[58] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
network provenance. In Proceedings of SOSP, 2011.

[59] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives, B. T. Loo, and
M. Sherr. Distributed time-aware provenance. PVLDB, 2013.

1561

http://security.cs.georgetown.edu/~yuankai/ppnp-code.tar.gz
http://security.cs.georgetown.edu/~yuankai/ppnp-code.tar.gz
https://www.cryptopp.com
http://www.cc.gatech.edu/projects/gtitm/
https://cs.brown.edu/~seny/slides/encryptedsearch-full.pdf
https://cs.brown.edu/~seny/slides/encryptedsearch-full.pdf
http://netsil.com/
https://security.cs.georgetown.edu/~yuankai/ppnp-tr.pdf
https://security.cs.georgetown.edu/~yuankai/ppnp-tr.pdf

	Introduction 
	Background 
	System Model
	Network Provenance

	Overview and Goals
	Case Studies: A Need for PPNP
	Security Goals

	Structured Encryption for Colored Subgraphs
	Notation and Conventions
	Formal Model and Security
	Searchable Symmetric Encryption
	Main Construction
	SSE with Fragmentation

	PPNP Design
	Answering Provenance Queries
	Handling Cross-node Communications
	Reconstruct Provenance Graph
	Application of PPNP

	Evaluation 
	Evaluation Settings
	Evaluation Results
	Communication Overhead
	Query Latency
	Scalability
	The Effect of Fragmentation
	Evaluation of Chord DHT


	Related Work 
	Conclusion

