
DigitHist: a Histogram-Based Data Summary with Tight
Error Bounds

Michael Shekelyan
Faculty of Computer Science

Free University of
Bozen-Bolzano, Italy

mshekelyan@unibz.it

Anton Dignös
Faculty of Computer Science

Free University of
Bozen-Bolzano, Italy

dignoes@inf.unibz.it

Johann Gamper
Faculty of Computer Science

Free University of
Bozen-Bolzano, Italy

gamper@inf.unibz.it

ABSTRACT
We propose DigitHist, a histogram summary for selectivity estima-
tion on multi-dimensional data with tight error bounds. By combin-
ing multi-dimensional and one-dimensional histograms along regu-
lar grids of different resolutions, DigitHist provides an accurate and
reliable histogram approach for multi-dimensional data. To achieve
a compact summary, we use a sparse representation combined with
a novel histogram compression technique that chooses a higher res-
olution in dense regions and a lower resolution elsewhere. For the
construction of DigitHist, we propose a new error measure, termed
u-error, which minimizes the width between the guaranteed upper
and lower bounds of the selectivity estimate. The construction al-
gorithm performs a single data scan and has linear time complexity.
An in-depth experimental evaluation shows that DigitHist delivers
superior precision and error bounds than state-of-the-art competi-
tors at a comparable query time.

1. INTRODUCTION
Selectivity estimation based on data summary structures plays a

crucial role for query optimization and approximate query answer-
ing in applications such as OLAP and decision support systems.
A critical aspect of summary structures is reliability, i.e., how re-
liable is the query result derived from the structure. Histograms
summarize data points by grouping them into buckets and count-
ing the number of data points per bucket. The resulting aggrega-
tion of the data can be used to deduce guaranteed lower and upper
bounds for the selectivity of range queries. This is not possible
with non-histogram approaches, such as random sampling, kernel
density estimation or wavelets. They only permit to obtain con-
fidence intervals for query results that are probabilistic in nature
and therefore less reliable than the bounds provided by histograms.
Though the bounds are guaranteed, existing histogram approaches
become imprecise when datasets are large and have more than a
few dimensions. To tackle this problem, we propose DigitHist, a
histogram that provides tight bounds and accurate selectivity esti-
mates for large datasets and a moderate number of dimensions.

Consider the example in Figure 1. It shows a large spatial dataset
of around 2.9 billion GPS coordinates around the world zoomed in

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 2150-8097/17/07.

(a) Data (46.4GB) (b) MinSkew (113kB) (c) DigitHist (97kB)

MinSkew DigitHist

Estimated selectivity selH(Q) 0.177% 0.215%
Relative error 17.3% 0.5%
Bounds [0.102%, 0.24%] [0.195%, 0.251%]
Width of bounds wH(Q) 0.138% 0.056%

(d) Estimates and bounds of MinSkew and DigitHist

Figure 1: Summary Structures: MinSkew vs. DigitHist.

on Italy (Figure 1a), which were collected for the OpenStreetMap
project1. The query region of size 100 km around Rome contains
6.2 million points and has a (true) selectivity of 6.2·106

2.9·109 = 0.214%,
i.e., 0.214% of all data points are inside the query region. The
figure shows two histogram summaries of the data, visualized as
density heat maps depicting denser regions with darker shades.
MinSkew [2], a state-of-the-art summary approach for spatial data,
in Figure 1b estimates the selectivity of the query to be 0.177%
with guaranteed bounds of [0.102%, 0.24%]; the relative estima-
tion error is 17.3%. In contrast, the proposed DigitHist approach
of roughly the same size in Figure 1c estimates the selectivity to
be 0.215% with bounds [0.195%, 0.251%]; the relative estimation
error is 0.5%. Thus, DigitHist has 2.4× tighter bounds and a 34×
smaller estimation error than the MinSkew summary. Averaging
over all 193 world capitals, DigitHist has 4.8× tighter bounds and
a 3.5× smaller estimation error.

A DigitHist summary is comprised of a small number of multi-
dimensional equi-width histograms, termed digit histograms, each
of which is augmented with a one-dimensional marginal histogram
for each dimension; all histograms are along regular grids. The
digit histograms summarize disjoint subsets of the data at differ-
ent resolutions with a higher resolution for denser parts of the data.
For instance, Figure 2 shows the four digit histograms of DigitHist
(without the marginals) for the dataset in Figure 1 together with
the percentage of data points summarized by each histogram, its
resolution and size. The first two histograms summarize almost
90% of the data at a high resolution, consuming less than half of
the summary size. The remaining data points are summarized at

1www.openstreetmap.org

1514

24% at 1024×1024 65.1% at 1024×1024 10.5% at 512×256 0.4% at 64×32

D3 (1kB) D2 (34kB) D1 (34kB) D0 (5kB)

Figure 2: Digit histograms D3, D2, D1 and D0.

a lower resolution since they have a smaller impact on the his-
togram’s precision. Unlike previous histogram approaches, such
as equi-width and equi-depth, which group data points into buck-
ets based on either location or local density, DigitHist groups data
based on both location and local density. As a result, the summary
has good knowledge about the location of most points.

As the bucket granularity necessarily decreases with an increas-
ing dimensionality of the data for a given summary size, we aug-
ment each digit histogram with a one-dimensional marginal his-
togram at a higher resolution for each dimension. The marginal
histograms together with the attribute value independence assump-
tion are used to spread the data points inside the buckets of the
digit histograms. This information significantly improves the pre-
cision when the query region partially overlaps buckets. Previ-
ous approaches assume a uniform data distribution inside buck-
ets, which is far less accurate. The problem with only using one-
dimensional histograms is that the attribute value independence as-
sumption is typically violated in real-world data, resulting in low
accuracy. Using both multi-dimensional and one-dimensional his-
tograms allows us to correct the estimates of the attribute value
independence assumption, such that the estimates never contradict
the multi-dimensional histograms. We thereby combine the knowl-
edge of the multi-dimensional histograms about the dependencies
between attributes and the knowledge of the one-dimensional his-
tograms about the distribution of attribute values.

The construction of DigitHist requires only one scan of the data.
During this scan, the data is aggregated at a very high resolution
into an initial multi-dimensional histogram and a one-dimensional
histogram for each dimension. To achieve otherwise unattainable
high resolutions for skewed data, only non-empty grid cells are
materialized. The size of the initial histogram is then reduced
to fit a desired summary size by using a novel lossy compres-
sion technique. The basic idea is to first decompose the initial
histogram along the digits of the largest bucket count, i.e., one
digit histogram for each digit position. For instance, a histogram
with four buckets and respective counts [10, 152, 1009, 12] would
be decomposed into four digit histograms D3 = [0, 0, 1000, 0],
D2 = [0, 100, 0, 0], D1 = [10, 50, 0, 10] and D0 = [0, 2, 9, 2],
where D3 has only multiples of thousand, D2 only multiples of
hundred, and so on. The digit histograms are then compressed by
reducing their resolution while minimizing the information loss.
This can be formulated as a multiple choice knapsack problem. As
the digit histograms store significantly different amounts of infor-
mation, their resolutions will differ, too. It is easy to see that the
bucket counts of the digit histograms can be stored with small num-
bers and a multiplicative factor. In combination with storing only
non-empty grid cells, we achieve a very compact representation of
the proposed summary structure.

To measure the information loss during the lossy compression
step, we propose a novel error metric, termed u-error, that mea-
sures a histogram’s uncertainty about the data, expressed as the
expected width of the histogram’s selectivity bounds assuming a
random distribution of range queries. The computation of the u-

error is linear in the summary size and independent of the data
size. Existing error metrics optimize for a uniform spread inside
buckets from which we diverge to better deal with higher dimen-
sional data. For instance, spatial skew [2] was proposed as a metric
for histograms over real-valued data and later improved in [21].
The improved spatial skew metric discretizes the data space along
a regular grid, pretends that each grid cell is a discrete value and
computes the V-error [10] over values grouped into buckets. The
V-error is defined as the sum of weighted variances

∑J
j=1 njVj ,

where J is the number of buckets, nj is the number of values and
Vj is the variance of the value frequencies in bucket j. The V-error
optimizes for small density variances inside buckets to reduce es-
timation errors when assuming a uniform spread of points inside
buckets. In comparison, the u-error optimizes for tight bounds and
also works well for more sophisticated spread assumptions.

The main technical contributions can be summarized as follows:

• We propose a new error measure, termed u-error, to measure
a histogram’s quality by calculating the expected width of the
bounds for random range queries.

• We introduce DigitHist, a new summary structure over reg-
ular grids that is composed of a set of multi-dimensional
histograms representing disjoint subsets of the data at dif-
ferent granularity levels, each of which is augmented by a
one-dimensional histogram for each dimension.

• We propose a new histogram compression technique that
chooses higher resolutions in dense regions and lower res-
olutions elsewhere, while minimizing the u-error and com-
pressing the summary to a given size.

• Experiments on real-world data show that DigitHist provides
more accurate selectivity estimates and tighter bounds than
its competitors at a comparable query time.

The rest of the paper is organized as follows. In Section 2 re-
lated work is discussed. In Section 3, the basic concepts of multi-
dimensional histograms and selectivity estimation are introduced.
Section 4 presents the error measure u-error, which is used for the
construction of DigitHist. In Section 5, the DigitHist summary is
described in detail. Section 6 compares DigitHist to random sam-
pling and popular histogram approaches.

2. RELATED WORK
There exists a large body of work on multi-dimensional selec-

tivity estimation inspired by one-dimensional histograms, statis-
tical methods and compression techniques. For a comprehensive
overview of existing approaches we refer to [9, 6, 4].

Multi-dimensional selectivity estimation can be classified into
two types of approaches: Data-driven approaches scan the data up-
front to create the summary, whereas self-tuning approaches [1, 3,
8] use query answers of the database system to dynamically con-
struct a summary. A key property of self-tuning approaches is that
they organically prioritize frequently queried regions, but they can-
not deduce bounds and are inaccurate when an insufficient number
of previous queries intersects the current query region.

A popular data-driven approach are multi-dimensional his-
tograms. A simple example are equi-depth histograms [14] that
group the data points into buckets containing roughly the same
number of points. They excessively prioritize denser regions of
the data, while less dense regions are almost completely neglected.
For large datasets, the construction requires multiple data scans to
either externally sort the data multiple times or to compute multiple
quantiles that depend on each other. Our DigitHist approach scans

1515

the data only once and, while it also prioritizes denser regions of
the data, it is not as radical as equi-depth histograms.

V-optimal histograms [10, 17, 11] received a lot of attention be-
cause they offer a clear notion of optimality for discrete-valued
data. The construction for more than one dimension is known to
be NP-hard. There are multiple ways to generalize it to real-valued
data, but it is unclear if the general idea of minimizing density vari-
ances inside buckets is the best strategy in the multi-dimensional
case. We show in this work that using one-dimensional histograms
for the spread of points inside multi-dimensional buckets appears
to offer vastly more accurate estimates. In addition, optimizing for
density variances requires looking at the data, which is expensive
for large datasets. We propose a novel error metric, u-error, that, in-
stead of measuring density variances inside buckets, measures how
much the histogram knows about the distribution of data points.

MinSkew [2] shares the basic idea of V-optimal histograms, but
settles for sub-optimal histograms in order to avoid excessive con-
struction costs. MinSkew first creates a histogram along a regular
grid and then greedily merges grid cells that minimize the variance
of grouped bucket counts until the desired number of buckets is
reached. MHist-2 [16] is another greedy technique and in many
aspects similar to MinSkew. The problem with these approaches is
that they make split decisions using heuristics based on marginal
distributions, which does not work well for skewed data.

GenHist [5] repeatedly moves high-density bumps in the data
into buckets to flatten the density function. It inspired our approach
to use overlapping buckets, sparsely populated grids and smaller
bucket regions for denser data regions. Unlike other histogram ap-
proaches, GenHist maintains only approximate bucket counts and
hence cannot deduce bounds. Moreover, it suffers from a very slow
construction time. Our approach addresses these shortcomings.

The non-histogram approaches most related to our work are
lossy compression techniques, such as DCT [12] and wavelet-based
approaches [13, 19]. They start with an initial histogram and then
lossy compress it by approximating the number of points counted
by each bucket. In comparison, our approach produces histograms
that allow to deduce guaranteed bounds. Another important non-
histogram approach is random sampling [7]. It uses a random sub-
set of the data to estimate the selectivity, which has the advantage
that, with a fixed sample size, the estimation accuracy does not
deteriorate with increasing dimensionality. Kernel density estima-
tion [5] measures the density at different points in the data space
to estimate the selectivity. It is expensive to construct and difficult
to determine a good radius in which points should contribute to the
density; a GPU-accelerated self-tuning approach [8] was proposed
to remedy this problem. A problem of non-histogram approaches
is that they cannot derive deterministic bounds, which limits their
usefulness for some applications.

Another interesting line of research are ε-approximation sum-
maries in computational geometry and related fields. They offer the
same ±εn error bounds for all datasets, where n is the number of
data points. Quantile-based approaches create ε-approximations by
splitting the data into quantiles akin to equi-depth histograms and
borrow ideas from range trees to achieve faster querying and error
guarantees. A notable approach is to use nested one-dimensional
quantile summaries [18], which can be created in d data scans
and guarantee a size of O(1

ε
log(εn) log2d−2(1

ε
log(εn)) for a d-

dimensional dataset with cardinality n. Another approach is a spe-
cialized two-dimensional technique [20], which achieves asymp-
totically optimal storage costs O(1

ε
(log2 1

ε
+ logn) paired with

O(log 1
ε
) query time, but requires to sort the data multiple times.

Deterministic sampling approaches create ε-approximations by
finding a representative subset of the data. The most notable ap-

proach is [15], which has O(1
ε
log2d(1

ε
) polylog(log(1

ε
))) storage

costs, but requires a large construction time ofO(n 1
ε3

polylog(1
ε
)).

Major limitations of these ε-approximations are their compara-
bly high storage and construction costs, as they do not exploit com-
mon data patterns to reduce storage costs, and both the storage
and construction costs increase exponentially in the dimensional-
ity. Thus, even for a relatively small number of dimensions they
fail to provide tight error guarantees for a limited space budget. In
comparison, the proposed DigitHist approach does not provide er-
ror guarantees for all queries, but typically offers tight bounds for
individual queries even for a moderate number of dimensions and
limited space budget.

3. PRELIMINARIES
Let D ⊆ [0, 1]d be a normalized d-dimensional dataset. The

selectivity, sel(Q), of a rectangular query region Q ∈ Rd × Rd
overD is defined as the fraction of data points that are contained in
Q, i.e., sel(Q) = |{p|p∈D∧p∈Q}|

|D| . A d-dimensional histogram, H ,
with J buckets is comprised of a set of bucket regions, rH1 , . . . , rHJ ,
with corresponding bucket counts, fH1 , . . . , fHJ , where each bucket
region rHj ∈ Rd×Rd is a d-dimensional hyper-rectangle and each
bucket count fHj ∈ N0 is a non-negative integer. Histograms pro-
vide bounds for the true selectivity sel(Q) of queries. The lower
bound, selLBH (Q), is computed by adding the counts of all buck-
ets that are contained in the query region and dividing the result
by the data size. The upper bound, selUB

H (Q), is computed by
adding the counts of all buckets that are intersected by the query
region and divide the result by the data size. We refer to the gap
between the lower and upper bound as the width of the bounds for
a query Q, which is defined as wH(Q) = selUB

H (Q)− selLBH (Q).
For instance, consider a histogram that summarizes 1000 points
and a query Q that completely covers two buckets with 60 and
40 points, respectively, and partially covers two other buckets
with 28 and 2 points, respectively. The 60 + 40 points are cer-
tain to be in the query region, whereas the other 28 + 2 points
are not. This yields a selectivity lower bound of 60+40

1000
= 0.1,

an upper bound of 60+40+28+2
1000

= 0.13 and a width of bounds
wH(Q) = 28+2

1000
= 0.03. Table 1 summarizes the most important

notation used in the paper.

Table 1: Notation Table

Notation Description

D set of data points
d number of dimensions of data points
H histogram
fHj number of points counted by bucket j in H

rHj bucket region of bucket j in H

selH(Q) selectivity estimate of histogram H for Q
selLBH (Q) / selUB

H (Q) H’s lower/upper bound for selectivity of Q
wH(Q) width of H’s bounds for Q
Dk digit histogram for the k-th digit
M i
k marginal histogram in dimension i for Dk

4. OPTIMIZATION MEASURE: u-ERROR
In this section, we present the u-error, a new optimization mea-

sure for histogram construction. Instead of optimizing for how
points are spread inside buckets, we minimize a histogram’s un-
certainty about the data, i.e., the expected number of points about

1516

which the histogram does not know if they are inside the query
region or not.

4.1 Definition of the u-Error
We assume a set Q of random hyper-cube queries that are uni-

formly distributed and completely contained in the normalized data
space. The following definition specifies the query distribution Cd
by describing how to generate random queries.

Definition 1. (Random query region) A random query region
X ∼ Cd is drawn by first drawing its volume v uniformly from the
range [0, 1] and then drawing its center coordinates pi uniformly
from the range [

d√v
2
, 1−

d√v
2
] for each dimension i.

Definition 2. (u-error) Let X ∼ Cd be a random query and
Pr[X = Q] be the probability that X is the query region Q ∈ Q.
The u-error of a histogram H is defined as

uerr(H) = E[wH(X)] =
∑
Q∈Q

Pr[X = Q]wH(X).

The u-error has a histogram H as an input and outputs the ex-
pected width of H’s bounds for a random query region. The u-
error has three important properties: it takes values between 0%
and 100%; the computational complexity is linear in the histogram
size and independent of the data size; and no assumption is made
about how points are spread inside buckets.

4.2 Computing the u-Error
The following theorem provides an effective way to compute the

u-error.

THEOREM 1 (u-ERROR COMPUTATION). Let H be a his-
togram with J buckets and X ∼ Cd be a random variable rep-
resenting a query region. The u-error of H is computed as

uerr(H) =
1

|D|

J∑
j=1

Pr[X overlaps rHj]fHj ,

where Pr[X overlaps rHj] is the probability that a query drawn
from the random distribution overlaps the bucket region rHj .

PROOF. Let I[S] be equal to 1 if the statement S is true and
equal to 0 if S is false, and let w(j)

H (Q) = I[Q overlaps rHj]fHj .
Then, we have:

1

|D|

J∑
j=1

Pr[X overlaps rHj]fHj

=
1

|D|

J∑
j=1

E[I[X overlaps rHj]fHj]

=
1

|D|

J∑
j=1

∑
Q∈Q

Pr[Q]
(
I[Q overlaps rHj]fHj

)

=
∑
Q∈Q

[
Pr[Q]

(
1

|D|

J∑
j=1

I[Q overlaps rHj]fHj

)]
= E[wH(X)] = uerr(H)

The theorem shows that the u-error can be computed by sum-
ming the contribution Pr[X overlaps rHj] of each bucket. To com-
pute these contributions, we use the following two lemmas and
the equivalence Pr[X overlaps rHj] = Pr[X intersects rHj] −
Pr[X contains rHj], where (A intersects B) ⇔ ((A ∩ B) 6= ∅)

and (A contains B) ⇔ ((A ∩ B) = B). The integrals in the
following lemmas can be numerically integrated in O(d). Since
there are J buckets, the overall time complexity of computing the
u-error is O(dJ). The time complexity is independent of the data
size since only the histogram is accessed and not the data.

LEMMA 1 (INTERSECTION PROBABILITY). Let X ∼ Cd
be a hyper-cube, R be a hyper-rectangle, [ai, bi] be the range
of R in dimension i and si(v) = min{bi+

d√v
2
, 1−

d√v
2
} −

max{ai−
d√v
2
,

d√v
2
}. The intersection probability of X and R is

computed as

Pr[X intersects R] =
∫ 1

0

1

1− d
√
v

d∏
i=1

si(v) dv.

PROOF. Let X be a hyper-cube with volume v and D be the re-
gion where X’s center would have to lie such that X intersects R
(hatched rectangle in Fig. 3a). The interval of D in dimension i is
then equal to [ai−

d√v
2
, bi+

d√v
2
]. Furthermore, letA be the region

where X’s center would have to lie such that X is completely con-
tained in the data space (white rectangle in Fig. 3a). The interval
of V in dimension i is equal to [

d√v
2
, 1 −

d√v
2
]. Since X’s center

is uniformly distributed in A, the probability that a random square

intersects R is v(D∩A)
v(A)

=
∏d

i=1 si
1− d√v . By integrating over all possible

hyper-cube volumes we obtain Pr[X intersects R].

1

1

A

D

R

d√v
2

d√v
2

d√v
2

d√v
2

(a) Case X intersects R

1

1

A

C

R

d√v
2

d√v
2

d√v
2

d√v
2

d√v
2

d√v
2

(b) Case X contains R

Figure 3: Illustration of intersection and contain probabilities.

LEMMA 2 (CONTAIN PROBABILITY). Let X ∼ Cd be a
hyper-cube,R be a hyper-rectangle, [ai, bi] be the range ofR in di-
mension i, ti(v) = min{ai+

d√v
2
, 1−

d√v
2
}−max{bi−

d√v
2
,

d√v
2
}

and m = max1≤i≤d bi − ai. The probability that X contains R is
computed as

Pr[X contains R] =
∫ 1

m

1

1− d
√
v

d∏
i=1

ti dv.

PROOF. Let X be a hyper-cube with volume v and C be the re-
gion where X’s center would have to lie such that X contains R
(hatched rectangle in Fig. 3b). The interval of C in dimension i is
then equal to [bi−

d√v
2
, ai+

d√v
2
]. Furthermore, letA be the region

where X’s center would have to lie such that X is completely con-
tained in the data space (white rectangle in Fig. 3b). The interval
of A in dimension i is equal to [

d√v
2
, 1 −

d√v
2
]. Since X’s center

is uniformly distributed in A, the probability that a random square

contains R is therefore v(C∩A)
v(A)

=
∏d

i=1 ti
1− d√v . By integrating over

all possible hyper-cube volumes we obtain Pr[X contains R]. If
v < m = max1≤i≤d bi−ai, then Pr[X containsR] = 0, because
X is too small to contain R. It is therefore sufficient to integrate
from m to 1.

1517

5. DATA SUMMARY: DigitHist

5.1 Constructing DigitHist
The basic idea of DigitHist is to summarize the data by a set

of equi-width multi-dimensional and one-dimensional histograms
with different resolutions.

Definition 3. (DigitHist) The DigitHist summary of a d-
dimensional dataset D is composed of a set of d-dimensional equi-
width histograms D0, . . . , DK−1, termed digit histograms, and
for each Dk a set of d one-dimensional equi-width histograms
M1
k , . . . ,M

d
k , termed marginal histograms.

Each digit histogramDk summarizes a disjoint subset of the data
using a different grid resolution. Histograms that summarize more
points typically use a higher resolution. The one-dimensional his-
tograms, Md

k , associated to the digit histograms are used to spread
the data points inside the buckets of the digit histograms. The con-
struction of the DigitHist summary proceeds in three steps:

1. Create an initial d-dimensional histogram H and, for each
dimension i, a one-dimensional marginal histogram M i.

2. Decompose and compress H into K digit histograms
DK−1, . . . , D0 of maximum S bytes.

3. Distribute each initial marginal histogram M i over
the marginal histograms M i

K−1, . . . ,M
i
0 associated with

DK−1, . . . , D0.

5.1.1 Initial Histograms
The first step scans the data and constructs an initial multi-

dimensional histogram and one marginal histogram per dimension.

Definition 4. (Initial histograms) Let D be a d-dimensional
dataset. The initial multi-dimensional histogram, H , is an equi-
width histogram that has the highest possible resolution such that
all data points are located in at most B buckets and the grid reso-
lution in each dimension is a power of two. The initial marginal
histograms, M1, . . . ,Md, are one-dimensional equi-width his-
tograms of a given resolution C, each summarizing the data pro-
jected onto one of the dimensions.

To achieve a high resolution of the initial multi-dimensional his-
togram, only non-empty buckets are materialized by storing them
in a hash table indexed by the bucket address. The data scan be-
gins with a very high resolution grid (e.g., 262 buckets in our im-
plementation, which is the largest power of two that can be rep-
resented with a signed 64-bit integer). When the number of non-
empty buckets exceeds B, the resolution along one or more dimen-
sions is reduced by merging pairs of adjacent buckets. The dimen-
sions for merging are chosen in a round-robin fashion to prevent
very stretched grid cells. This strategy ensures the construction of
a multi-dimensional histogram with the highest possible precision
we can support. Especially for skewed datasets, we can operate
in orders of magnitude higher resolutions than otherwise would be
possible with a dense representation. For the initial marginal his-
tograms, we assume a fixed granularityC, which is a power of two.

Example 1. Figure 4 illustrates the construction of the initial
histograms for a dataset of 2000 points. Only non-zero bucket
counts are depicted. The maximal number of non-empty cells is
B = 15, and the resolution of the initial marginal histograms
C = 8. The initial grid has 262 = 231 × 231 cells. After pro-
cessing 4.3% of the data points, the grid has already only 8 × 8

cells. Since there are more than 15 non-empty cells, the grid reso-
lution has to be further reduced by merging adjacent cells yielding
4×8 cells. Processing the remaining data points yields a 4×4 grid,
which is the highest resolution with at most 15 non-empty cells.

5
2
1

1
1

37 8
15 1 4 1

2

2
1

1
4

0 3 2 5
54

9 7 6

0
50

24
4
1
3
4
0

8
2
1

4
1

78 1
29
1

6
4

1 2
1
3
4

0 3 5 9
95

15 11 8

0
87

41
7
1
6
4
0

10 152

45 104

1009 13

400 126

2 22

4

28 60

25

4 53 71 21
1

12
61

17
6

13
6

88

4
1180

601
74
29
83
29
0

4.3% 7.3% 100.0%

Figure 4: Initial histograms after processing % of the data.

5.1.2 Digit Histogram Compression
The digit histogram compression is comprised of a decompo-

sition and a shrinking step. The decomposition splits the initial
multi-dimensional histogram, H , into multiple digit histograms,
D̂K−1, . . . , D̂0, such that reducing the size of some digit his-
tograms leads to a larger error than others. The subsequent shrink-
ing step determines the optimal size reduction of the digit his-
tograms, D∗K−1, . . . , D

∗
0 , such that they fit into a user-specified

size constraint S and the total u-error is minimized. To get the best
lossy compression of the initial histogram, the decomposition and
shrinking steps are repeated with lower resolutions of the initial
histogram as a starting point. The reason for trying lower resolu-
tions of the initial histogram is that the decomposition operates on
bucket counts and is most effective if they have a large disparity; at
very high resolution all bucket counts tend to be very small.

Definition 5. (Digit histograms) Let H be an initial histogram
and b be the radix of a numeral system such that all bucket counts
in H can be represented by K digits, i.e., fHj = xK−1 . . . x0.
TheK digit histograms ofH are defined as D̂K−1, . . . , D̂0, where
each D̂k has the same resolution as H and the bucket counts are
f
D̂k
j = xk · bk.

The digit histogram decomposition transforms an initial multi-
dimensional histogram into a set of digit histograms. The digit
histograms summarize disjoint subsets of the data that originate
from different digit positions. Since all bucket counts of a digit
histogram D̂k are multiples of the coefficient bk, we store bk only
once and, for each bucket, the digit xk, yielding a compact rep-
resentation. In our implementation, we limit ourselves to numeral
systems with a power of two as a basis b since digit-related opera-
tions can then be efficiently done as bit operations. For illustration
purposes we use in the running example the decimal system.

Example 2. Figure 5 shows the decomposition of the initial his-
togram into K = 4 digit histograms. All digit histograms have the
same bucket regions as the initial histogram, and they store only the
corresponding digits of the bucket counts; the corresponding coeffi-
cient is shown in parentheses. For instance, the digit in the top-right
bucket is a three in D̂0, a one in D̂1 and a zero in the other two digit
histograms. Summing up 0 · 103 +0 · 102 +1 · 101 +3 · 100 yields
the top-right bucket count 13 of the initial histogram.

The digit histograms facilitate size reduction with small infor-
mation loss because different resolutions can be used depending on
the number of data points that are represented by a digit histogram.

1518

1 1

1 4 1

1 5 1

4 2

2 2 6

2

2 9 3

5 4 6

2 2 8

4 5

10 152 1009 13

45 104 400 126

2 22 28 60

4 25
D̂3(·103) D̂2(·102) D̂1(·101) D̂0(·100)

Figure 5: Decomposition into four digit histograms.

Definition 6. (Resolution space) The resolution space res(D̂k)
of a digit histogram D̂k with 2L buckets is the sequence of his-
tograms 〈D̂L

k , . . . , D̂
0
k〉 such that for any l ≥ 1, the histogram

D̂l−1
k with 2l−1 buckets is obtained from D̂l

k with 2l buckets by
merging pairs of adjacent buckets along one dimension.

The resolution space of an initial digit histogram is comprised of
all its lower-resolution versions down to a histogram with a single
bucket covering the entire data space. In each compression step
from a resolution level l to l−1 information is lost, which is mea-
sured by using the u-error. At the same time, the number of non-
empty buckets, and hence the space requirements of the histogram,
is decreasing. In Fig. 6, each column shows the resolution space of
a digit histogram in the running example, together with the induced
u-error and the size of the histogram in bytes. Obviously, a lower
resolution yields a larger error and a smaller size of the histogram.

1 1
1 4 1

1 5 1
4 2

2 2 6
2

2 9 3
5 4 6
2 2 8

4 5

1

L3

1
1 5

6 1
4 2
2 8

2

2 12
9 6
4 8
4 5

1
L2

2 5 10 3

2 10

11 18

8 13

1
L1

7 13

12

29

21

1L0 7 25 5050

L4

D̂3 (·103) D̂2 (·102) D̂1 (·101) D̂0 (·100)

6 bytes, uerr = 36.7%

6 bytes, uerr = 36.8%

6 bytes, uerr = 45.1%

6 bytes, uerr = 47.1%

1 bytes, uerr = 50.0%

15 bytes, uerr = 14.4%

13 bytes, uerr = 30.7%

8 bytes, uerr = 31.6%

6 bytes, uerr = 33.0%

1 bytes, uerr = 35.0%

31 bytes, uerr = 8.1%

27 bytes, uerr = 10.5%

15 bytes, uerr = 11.3%

11 bytes, uerr = 11.8%

1 bytes, uerr = 12.5%

35 bytes, uerr = 1.5%

29 bytes, uerr = 2.1%

15 bytes, uerr = 2.3%

11 bytes, uerr = 2.4%

1 bytes, uerr = 2.5%

Figure 6: Resolution space with u-error and size.

In order to reduce the digit histograms to a user-defined size S,
they are compressed while minimizing the induced error.

Definition 7. (Optimal digit histogram resolutions) Let S be the
maximal number of bytes available for the digit histograms and
size(H) be the number of bytes needed to represent a histogram
H . The optimal set of digit histograms 〈D∗K−1, . . . , D

∗
0〉 with

D∗k ∈ res(D̂k) minimizes
∑K−1
k=0 uerr(D∗k) under the constraint∑K−1

k=0 size(D∗k) ≤ S.

The set of optimal digit histograms is comprised of one his-
togram from each digit histogram’s resolution space such that the
total number of bytes does not exceed the space budget and the total
u-error is minimized.

The problem of finding the optimal resolution for each digit his-
togram can be formulated as a multiple choice knapsack problem.
The multiple-choice knapsack solver gets as an input the size con-
straint S, the byte sizes size(D̂L

k), . . . , size(D̂
0
k) and the negated

errors −uerr(D̂L
k), . . . ,−uerr(D̂0

k) for each digit histogram. It
returns the optimal resolutions for each digit histogram such that
the size constraint is satisfied and the error is minimized. Al-
though the multiple-choice knapsack problem is weakly NP-hard,
our problem instances are very small, and there exist good solvers
for this purpose. In our implementation, we use K = 4 digit his-
tograms and at most G = 62 resolution levels. Hence, we solve it
in a brute-force fashion by considering all GK ≈ 14 · 106 combi-
nations, which takes less than 20 milliseconds.

Example 3. The four digit histograms at level L4 in Fig. 6 have
a total size of 6 + 15 + 31 + 35 = 87 bytes. Assuming a space
budget of at most 40 bytes for the digit histograms, the resolutions
picked by the multiple-choice knapsack solver are highlighted in
boldface. The two most significant digit histograms keep their ini-
tial resolution, whereas the other two histograms are compressed to
a lower resolution. The selected combination of digit histograms
induces an u-error of 36.7%+ 14.4%+ 11.3%+ 2.5% = 64.9%
and requires 37 bytes.

The digit histogram compression algorithm is outlined in Algo-
rithm 1. The input is the initial histogram, the summary size avail-
able to the digit histograms and the number of digit histograms.
The output of the algorithm are the digit histograms, which are a
lossy compression of the initial histogram. In line 1, the result set is
initialized to empty histograms. In line 2, the termination condition
is checked. The algorithm terminates when the initial histogram be-
comes small enough to obviate the need for compression. In line
3, the initial histogram is decomposed into K digit histograms (cf.
Definition 5). In line 4 and 5, the optimal amount of shrinking for
each digit histogram is determined (cf. Definition 7) by calling a
multiple-choice knapsack solver. In line 6 and 7, the so far best
found digit histograms are updated. Finally, line 8 reduces the size
of the initial histogram for the next iteration.

Algorithm 1: DigitHistCompress
Input: initial histogram H , summary size S, number of digit histograms K

1 〈DK−1, . . . , D0〉 ← 〈∅, . . . ,∅〉 and let uerr(∅) =∞
2 while size(H) > S do
3 decompose H into 〈D̂K−1, . . . , D̂0〉
4 find combination 〈D∗

K−1, . . . , D
∗
0 〉 with D∗

k ∈ res(D̂k)

5 s.t.
∑K−1

k=0 uerr(D∗
k) is minimized and

∑K−1
k=0 size(D∗

k) ≤ S

6 if
∑K−1

k=0 uerr(D∗
k) <

∑K−1
k=0 uerr(Dk) then

7 〈DK−1, . . . , D0〉 ← 〈D∗
K−1, . . . , D

∗
0 〉

8 reduce the resolution of H’s grid by merging adjacent buckets along one
dimension

9 return 〈DK−1, . . . , D0〉

In order to improve the efficiency of this compression step, we
only materialize digit histograms that are potentially small enough
to fit into the final summary.

5.1.3 Marginal Histograms
The last step distributes the counts from each initial marginal his-

togramM i to the digit histograms’ marginals 〈M i
K−1, . . . ,M

i
0〉 in

1519

dimension i. We start by transferring counts to the marginal of the
digit histogram with the highest resolution; if multiple digit his-
tograms have the same grid resolution, a higher digit coefficient
has precedence. For a multi-dimensional bucket j of a digit his-
togram Dk with bucket frequency fDk

j , we first determine which
marginal buckets are covered by bucket j. Then, fDk

j data points
are moved from those buckets in the initial marginal histogram to
the corresponding buckets of Dk’s marginal histogram M i

k. As the
resolution of the marginal histograms is higher than the resolution
of the digit histograms, we have to decide how many points we take
from each marginal bucket. We simply take proportionally, i.e., if
one marginal bucket has a twice as high count, we take twice as
many from it. This procedure is repeated for all dimensions and
all digit histograms. At the end, all data points from the initial
marginal histograms are distributed to the marginals of the digit
histograms.

Example 4. Consider the initial marginal his-
togram in the first (horizontal) dimension, M1 =
〈4, 53, 71, 211, 1261, 176, 136, 88〉, in Figure 4. Each digit
histogram takes proportionally from this initial histogram without
replacement. We start with D3 and go through each bucket.
The first (and only) bucket has count 1 · 103 = 1000. Hence,
we take 1000 proportionally from the intersected marginal
buckets with counts 1261 and 176, i.e., 1261

1261+176
1000 and

176
1261+176

1000. In order to avoid non-integral counts, we
use a trivial greedy approach to round the numbers such
that the sum is preserved and the absolute rounding error is
minimized. This results in M1

3 = [0, 0, 0, 0, 878, 122, 0, 0].
We subtract those counts from the initial marginal his-
togram, such that the initial marginal histogram has
[4, 53, 71, 211, 383, 54, 136, 88] left. Then we continue with
the digit histogram D2, which takes [0, 0, 50, 150, 351, 49, 61, 39]
and leaves [4, 53, 21, 61, 32, 5, 75, 49] in the initial histogram. The
procedure is repeated for D1 and D0. For D0 the step becomes
trivial, since it takes the remaining counts in the initial marginal
histogram. The final DigitHist summary structure of our running
example is shown in Figure 7.

1

0 0 0 0
87

8
12

2
0 0

3
997

0
0
0
0
0
0

D3(·103)

M
1 3

M2
3

1
1 4 1

0 0 50 15
0 35

1
49 61 39

1
99

534
66

0
0
0
0

D2(·102)

M
1 2

M2
2

10 3

2 10

3 46 18 53 26 4
60 40

0
69
55

6
25

70
25

0

D1(·101)

M
1 1

M2
1

50

1 7 3 8
6

1 15 9

0
15
12

2
4
13
4

0

D0(·100)

M
1 0

M2
0

Figure 7: Final DigitHist summary.

5.2 Querying DigitHist
Querying DigitHist is similar to querying other histograms, ex-

cept for how we deal with partially intersected buckets and that we
have to query each of the K digit histograms. If the query region
partially intersects a bucket, we estimate how many of the bucket’s
points are in the intersection. For this, we consult the marginal
histograms to factor in the intersection’s location. We call our ap-
proach AVI spread because it makes use of the attribute value inde-
pendence (AVI) assumption to spread the points of a bucket over its
bucket region. This is different from the classical AVI assumption,
which spreads all points over the complete data space. Instead, we
make an AVI assumption that is corrected by multi-dimensional in-
formation. This typically leads to a quite accurate picture of the

data as illustrated in Figure 8, where it is compared to the unifor-
mity assumption.

(a) data (b) uniform spread (c) AVI spread

Figure 8: Spread estimation inside buckets.

Definition 8. (DigitHist selectivity estimate) Let D be a d-
dimensional dataset, Q a query range, Dk the digit histogram for
the k-th digit, M i

k the marginal histogram of dimension i for the
k-th digit and πi a function that projects a multi-dimensional range
to the one-dimensional range of dimension i. The DigitHist selec-
tivity estimate is calculated as follows:

selDH (Q) =
1

|D|

K−1∑
k=0

∑
j

f
Dk
j α

Dk
j (Q), where

α
Dk
j (Q) =

0 for (Q ∩ rDk

j) = ∅∏d
i=1

sel
Mi

k
(πi[Q∩r

Dk
j])

sel
Mi

k
(πi[r

Dk
j])

for (Q ∩ rDk
j) ⊂ rDk

j

1 for (Q ∩ rDk
j) = r

Dk
j

and the selectivity of a marginal histogram M i
k is calculated as

selMi
k
([a, b]) =

∑J
j=1 f

Mi
k

j

d([a,b]∩r
Mi

k
j)

d(r
Mi

k
j)

, where d([a, b]) = b−a.

The selectivity estimate is computed by going through all digit
histograms and adding the counts of all buckets intersected by the
query region. The counts of partially intersected buckets are multi-
plied by a factor, which estimates the fraction of the bucket’s points
that are inside the intersection with the query region. This factor
divides the AVI estimate for the intersection by the AVI estimate
for the bucket region, where an AVI estimate is simply the product
of the one-dimensional selectivity estimates based on the marginal
histograms.

The lower and upper bounds are computed by reusing the for-
mula for the selectivity estimate. For the lower bound, one assumes
that the data points of partially intersected buckets are not contained
in the query region, and for the upper bound that they are contained
in the query region. Additionally, the marginal histograms also pro-
vide an upper bound for the query region, which is only used if it
is better.

Example 5. Figure 9 shows the final DigitHist summary with an
exemplary query region (hatched rectangle). The selectivity lower
bound of the query is equal to 0% as no bucket is completely cov-
ered by the query region. The selectivity upper bound is computed
as 1

2000

(
103(1) + 102(4 + 1) + 101(1 + 2) + 100(50)

)
= 79%.

The selectivity estimate of the query is computed as

selDH (Q) =
1

2000
10

3

[
1

122

878 + 122

997

997 + 3

]
+

1

2000
10

2

[
4

49

49 + 351

534

534 + 66
+ 1

61

61 + 39

534

534 + 66

]
+

1

2000
10

1

[
3

4 + 60

26 + 4 + 60 + 40

69 + 55

1 + 69 + 55 + 6

]
+

1

2000
10

0

[
50

1 + 15

50

15 + 12

50

]
≈ 11.7%.

1520

1

0 0 0 0
87

8
12

2
0 0

3
997

0
0
0
0
0
0

D3(·103)

M
1 3

M2
3

1
1 4 1

0 0 50 15
0 35

1
49 61 39

1
99

534
66

0
0
0
0

D2(·102)
M

1 2

M2
2

10 3

2 10

4 46 18 53 26 4
60 40

1
69
55

6
25

70
25

0

D1(·101)

M
1 1

M2
1

50

1 7 3 8
6

1 15 9

0
15
12

2
4
13
4

0

D0(·100)

M
1 0

M2
0

Figure 9: DigitHist summary and example query region.

5.3 Implementation Details
DigitHist is comprised of a set of multi-dimensional and a set of

one-dimensional histograms, which have to be stored in a way that
is both compact and can be efficiently queried.

For the representation of the one-dimensional marginal his-
tograms, we use a dense representation and store cumulative sums
instead of the bucket counts. Each range query can then be an-
swered in O(1) time by looking up two cumulative sums.

For the multi-dimensional histograms, we use a sparse represen-
tation and store only the frequency of non-empty buckets. To ad-
dress the buckets with an integral index, a z-order index is used
as illustrated in Fig. 10. This index allows to efficiently access a
cell’s multi-dimensional coordinates as the index’s bit representa-
tion is the interleaving of the coordinates’ bit representations. For
instance, the grid cell with index 9 in Fig. 10a has the bit string
[10̂01̂]2, where the hatted bits represent the coordinate in the first
dimension and the underlined bits in the second dimension. The
z-order index also facilitates the handling of multi-resolution grid
schemes, which occur during the histogram construction. For in-
stance, in Fig. 10a the least significant bit belongs to the first dimen-
sion. Removing the first bit from all indices and merging cells with
equivalent indices results in the grid of Fig. 10b, which is equiva-
lent to merging adjacent buckets along the first dimension. Since
we compute during the construction of DigitHist the z-order index
of each data point, we use in our implementation widely known
look-up table techniques to speed-up the interleaving of bit strings.

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

(a)

0

1

2

3

4

5

6

7

(b)

0 1

2 3

(c)

0

1

(d)

Figure 10: Z-order indices for different grid resolutions.

A sparse representation requires to store the bucket indices to-
gether with the bucket counts. In order to avoid representing the
cell indices directly and to use an offset instead, we store the size
of the gaps between non-empty buckets combined with the counts
of the non-empty buckets, i.e., pairs of gap size and bucket count.
The advantage of this gap representation is that it requires much
less space for sparse histograms, and the overhead of reconstruct-
ing the cell indices at query time is minimal. To store the actual
gap size and bucket counts, we use variable byte encoding, which
uses 7 bits for the payload and 1 bit to indicate that the next byte is
a continuation of the current payload.

In order to answer a query, one could naively go through all
buckets, but the number of buckets can be large. To speed-up
querying, we supplement each digit histogram with a lower res-
olution version that has a much smaller number of buckets. We
then have to go only through all completely covered buckets of the
less-detailed version and access the full-detail level only if a cell in
the less-detailed version is partially intersected by the query region.

We call the cells of the lower resolution histogram root cells. Each
root cell is comprised of a set of child cells, and its count sums the
counts of its children. Figure 11 illustrates the digit histogram D2

and the corresponding lower resolution histogram. For instance,
the root cell with count 5 is comprised of the two child cells with
4 and 1. In our implementation, we pick for a digit histogram with
N buckets a root cell grid resolution of

√
N root cells.

14B 0 2 4B 1 1 1 1 0 5 4B 2 4 0 12 51
1 4 1

14 bytes

1 byte 4 bytes 4 bytes

D2 root cells bit-level representation

Figure 11: Representation of a digit histogram.

In the bit-level representation, the original digit histogram and
the lower resolution histogram are intertwined so that we can skip
the children of root cells that are completely covered by the query
region. Figure 11 illustrates the bit-level representation of D2. The
first value is the number of bytes for the whole histogram, which
is needed to determine when all root cells are read or to skip the
whole histogram in the byte stream. Then the three values of the
root cell follow: the gap value 0, the count value 2 and the children
bytes value 4. These three values are followed by gap and count
values of the first child and then the gap and count values of the
second child. In order to skip the child cells, we simply have to
skip the amount of children bytes, which is in this case 4.

5.4 Complexity Analysis

THEOREM 2 (CONSTRUCTION TIME). DigitHist is con-
structed in O

(
d · (|D| + B + S)

)
time, where d is the data

dimensionality, |D| is the number of data points, B is the maximal
number of sparse buckets and S is the summary size.

PROOF. Let G be the number of bits used for z-order indices to
represent grid cells, which is a small constant. LetK be the number
of digit histograms, which is also a small constant and independent
of the data since the digit decomposition uses a numeral system
such that all bucket counts have at most K digits. In the initial
phase (cf. Section 5.1.1) for each of the |D| data points the z-order
index is computed inO(d) and inserted/updated in the hash map in
O(1). When we reach more than B sparse buckets,O(B) grid cell
indices are divided by two (i.e., merged along one dimension), each
in O(1) time. This may happen G = O(1) times and gives O(d ·
|D| + B) for the initial histogram. The lossy compression phase
(cf. Section 5.1.2) consists of at mostG = O(1) iterations. In each
iteration the initial histogram at the current resolution is split into
K digit histograms in O(B) operations. Then each of the K digit
histograms is reduced in resolution at most G = O(1) times. For
each of the at mostK ·G = O(1) resulting histograms, the u-error
and byte size of the histogram is computed inO(dS) operations. At
the end of each iteration the multiple-choice-knapsack problem is
solved in GK = O(1). Hence, each iteration has time complexity
O(B + S).

At the end of the lossy compression phase, each the initial d
marginal histograms is divided up into K marginal histograms in
O(dS) (cf. Section 5.1.3). Since there is a constant number of
iterations, the lossy compression phase has worst case time com-
plexity O(dS + dB). All phases together have time complexity
O(d(|D|+B + S)) +O(dB + dS) = O(d(|D|+B + S)).

1521

THEOREM 3 (INTERMEDIATE MEMORY). The construction
of DigitHist has worst case memory complexity O(dC + B + S),
where d is the data dimensionality, C is the resolution of the
marginal histograms, B is the maximal number of sparse buckets
and S is the summary size.

PROOF. During the initial phase, one multi-dimensional his-
togram withB values and dmarginal histograms with C values are
stored. When the grid resolution is reduced, an additional multi-
dimensional histogram with B values is stored. The initial phase
has therefore O(dC + B) memory complexity. During the lossy
compression phase, only histograms with O(S) values are materi-
alized as everything else is too big to be part of the final summary.
Hence, at most one initial histogram with O(B) values, (K + 1)
digit histograms withO(S) values and d marginal histograms with
C values are stored during the lossy compression. The multiple
choice knapsack problem is solved using brute-force, storing only
K = O(1) values. This yields a total memory complexity of
O(S +B + dC) for the construction.

THEOREM 4 (QUERY TIME). DigitHist computes an esti-
mate and bounds inO(dS) time, where d is the data dimensionality
and S is the summary size.

PROOF. The query answer is computed for each of the K =
O(1) digit histograms. First, the z-order bucket indices of two
corners of the query region are computed in O(d). Second, for
each dimension four marginal selectivity estimates are computed in
O(d). Then, each multi-dimensional bucket is processed in O(d)
and each bucket is processed at most once resulting inO(dS). This
gives a total query time complexity of O(dS).

6. EXPERIMENTAL EVALUATION

6.1 Setup and Datasets
For the experiments we used a machine with an Intel(R) Xeon(R)

CPU E5-2667 v3 @ 3.20GHz. The data was stored as a binary
file on a local hard drive with 10k rpm. All algorithms have been
implemented in C++ by the same author and were compiled with
GCC 4.9.2 using -O3. Each algorithm runs on a single core and can
use up to 2GB of main memory during the construction.

Datasets. The following three datasets are used in the exper-
iments. OSM: a spatial dataset from the OpenStreetMap project
that records 2.9 billion two-dimensional GPS-coordinates. HIGGS:
a scientific dataset with 11 · 106 7-dimensional entries from CERN
that record particle physics experiments to detect the HIGGS par-
ticle in the standard model. ZIPF: a synthetic dataset with 1000
cluster centers and a total of 107 points that are distributed ac-
cording to a Zipf distribution between clusters in all dimensions,
i.e., some clusters have much more points than others. The clus-
ter centers are uniformly distributed, and the cluster members are
normally distributed around the center. For this dataset we vary the
dimensionality from 2 to 16.

Compared Approaches. For the construction of the DigitHist
summary, we use K = 4 digit histograms and spend 75% of
the summary size on the multi-dimensional histogram and 25%
on marginal histograms. The initial marginal histograms are equi-
width histograms with 225 buckets (C = 225). The initial multi-
dimensional histogram has at most 262 buckets (G = 62) and at
most B = 225 materialized (non-empty) buckets to fit into the
available 2GB of main memory.

We compare DigitHist (DH) to the following baseline and state-
of-the-art approaches: Equi-width (EW) is a widely known tech-
nique that counts the number of points in each cell of a regular grid

and uses cumulative counts to achieve querying in 2d look-ups.
Equi-depth (ED) [14] finds buckets such that they count roughly
the same number of points. To achieve tighter bounds, our imple-
mentation tries to avoid very stretched buckets and keeps track of
deviations from the average bucket counts. MinSkew (MSK) [2] is
a histogram approach that greedily merges cells to create buckets.
In our implementation, we use adaptive refinement as described
by the authors and a modified metric as suggested in [21], which
yields a higher precision. AVI (AVI) [16] uses one-dimensional
histograms in combination with the attribute value independence
assumption to produce estimates. It is obviously very limited and
only serves as a baseline. Random sampling (RS) [7] summarizes
the data with a random subset. It is a simple technique that works
well in higher dimensionality. GenHist (GH) [5] iteratively flat-
tens the data density function by moving the biggest density bumps
into buckets. We follow the authors’ instructions on how to choose
the parameters. To avoid prohibitive construction costs, we use a
10MB data sample to create the summary. The GK cross-product
summary (GK) [18] constructs a nesting of one-dimensional quan-
tile summaries in d data scans, which can be seen as a set of equi-
depth histograms with varying numbers of quantiles per dimension.
Since each query may only intersect a sub-linear number of quan-
tiles, the approach provides an (absolute) error guarantee for all
queries. The Wei-Yi summary (WY) [20] is a specialized two-
dimensional data summary very similar to GK , but it is constructed
by sorting the data multiple times. For larger datasets, our imple-
mentations of ED and WY violate the 2GB main memory con-
straint, because they sort the whole dataset in main memory.

Methodology. To measure the precision of summaries, we fol-
low the same methodology as most of the related works by measur-
ing the precision of a biased set of queries. We use workloads of
1000 queries between 1% and 5% selectivity. The queries are cen-
tered at randomly chosen data points to simulate real-world queries,
prioritizing denser data areas. Note that neither the query centers
nor their volumes are uniformly distributed because centers follow
the data distribution and, with fixed selectivities, the query volume
depends on the data density around the center. As error measures
we use the average relative estimation error and the average width
of bounds over the set of 1000 queries. The relative estimation
error is the absolute difference between the summary’s selectivity
estimate and the true selectivity, divided by the true selectivity. The
relative width of bounds is the absolute difference between the sum-
mary’s lower and the upper bounds, divided by the true selectivity.
Also, we measure the maximum estimation error and maximum
width of bounds. Due to space limitations, we only report a short
summary of these results at the end of the section.

6.2 Experiments
DigitHist Compression and Marginal Histograms. In the first

experiment, we evaluate the effect of the core features of DigitHist,
namely digit histogram compression and the use of marginal his-
tograms, on the selectivity error and the width of bounds. For a
given summary size, the digit histogram compression allows us
to use a higher grid resolution for high density regions, and the
marginal histograms allow us to keep track of one-dimensional
trends to obtain more accurate estimates of the spread of points
inside buckets. We use the ZIPF dataset and vary the number of di-
mensions to see the impact of data dimensionality. Figure 12 shows
that, for a given summary size of 100kB, not using digit histogram
compression and using only one digit histogram (= naive compres-
sion) would, independently of the data dimensionality, vastly in-
crease the selectivity error up to 3 times, but only slightly decrease
the query time by up to 0.1ms. Disabling the marginal histograms

1522

(= without marginals) increases the selectivity error by 1.5 times
for more than two dimensions, but it has only a negligible impact
on the query time. This indicates that the digit compression has
a favorable impact on precision for all values of dimensionality,
whereas the marginal histograms tend to be more important for data
with a higher dimensionality, which allows DH to deal with higher
dimensional data than previous histogram approaches.

2 4 6 8 10 12 14 16
0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

DH naive compression without marginals

Figure 12: Contribution of DigitHist’s core features.

We run the same experiment on the two real-world datasets. For
the two-dimensional OSM dataset we got the same result as for
the ZIPF data with two dimensions. For the 7-dimensional HIGGS
dataset, the effects of using marginal histograms is the same, but the
compression has a lower impact for ZIPF with 7 dimensions. The
reason is that HIGGS contains very small clusters that can be al-
ready precisely captured by one sparsely populated high-resolution
grid. For all these experiments, we also measured the impact on the
width of bounds, and we got the same behavior as for the selectivity
error.

Construction Time. Next, we show the impact of DH ’s core
features on the construction time. The results are summarized in
Table 2. The construction time is measured by recording the wall
clock time at the beginning and the end of the summary construc-
tion. The core features have no significant impact on the con-
struction time for larger datasets. DigitHist’s construction time is
significantly slower than AVI and EW , but operates in the same
time complexity. Random sampling has a very small construction
time, while ED , WY and GK have comparably large construction
times.

Table 2: Total construction time for 100kB and 1MB summaries.

datasets OSM (2D - 46.4GB) HIGGS (7D - 616MB)

summary size 100kB 1MB 100kB 1MB

DH 16 mins 17 mins 35 secs 3 mins
without marginals 16 mins 17 mins 35 secs 3 mins
naive compression 16 mins 16 mins 7 secs 8 secs

AVI 3 mins 3 mins 2 secs 3 secs
EW 5 mins 5 mins 2 secs 3 secs
ED 2.2 hours 2.5 hours 29 secs 34 secs
WY 2.5 hours 3.1 hours - -
GK 1 hour 2.1 hours 20 mins 40 mins

The marginal histograms and compression only add a very small
query and construction time overhead, but they bring large im-
provements in selectivity estimation and width of bounds.

Summary Size. In this experiment, we compare the selectivity
error, width of bounds, and query time of different approaches with
the same summary size. The three vertical plots in Figure 13a show
the result for the OSM dataset and in Figure 13b for the HIGGS
dataset. We can see that for the low-dimensional OSM dataset,
given the same summary size, DH beats all the other approaches

10 100 1,000 10,000
0.01

0.1

1

10

100

summary size [kB]

av
g

re
l.

er
ro

r[
%

]

10 100 1,000 10,000
0.1

1

10

100

1,000

10,000

summary size [kB]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

10 100 1,000 10,000

0.001

0.1

10

summary size [kB]

av
g

qu
er

y
tim

e
[m

s]

(a) OSM dataset

10 100 1,000 10,000
1

10

100

1,000

summary size [kB]

av
g

re
l.

er
ro

r[
%

]

10 100 1,000 10,000
10

100

1,000

10,000

summary size [kB]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

10 100 1,000 10,000

0.001

0.1

10

summary size [kB]

av
g

qu
er

y
tim

e
[m

s]

(b) HIGGS dataset
AVI DH EW ED GH GK MSK RS WY

Figure 13: Varying summary size on real-world datasets.

in terms of selectivity error and width of bounds. The approaches
EW , AVI , GK and WY are noticeably faster, but are in turn
much less precise. AVI does well for low precision, but increasing
the summary size does not help beyond a certain point, because it
is limited to one-dimensional information. EW needs excessively
large summaries to compete with much smaller DH summaries in
terms of precision. For test purposes we constructed a 16GB EW
summary for the OSM dataset, but it still had a slightly larger esti-
mation error than a 10MB DigitHist summary. We also constructed
a 47MB GK summary to see how it behaves with more space. The
result was the same, i.e., the average estimation error was slightly
higher than for a 10MB DigitHist summary, but it took 5 hours to
construct the GK summary, whereas the 10MB DigitHist summary
was constructed in half an hour. We observed the same behavior for
a 120MB WY summary, constructed in 3.7 hours using more than
46GB of main memory.

For the higher dimensional HIGGS dataset, RS offers the lowest
selectivity error, and DH offers the tightest bounds and a lower se-
lectivity error than other histogram approaches. The relative width
of bounds of RS and GH exceed 1000%, because their lower
bound is close to 0% and their upper bound close to 100% selec-
tivity. Compared to DH , all other histogram approaches, such as
AVI , EW , ED and MSK , get much worse in terms of selectivity
error and/or width of bounds for this higher-dimensional dataset.
The same holds for GK . To better understand how GK performs
for larger summaries, we constructed a 88MB GK summary in 32
hours. It has a larger average/maximum estimation error/width of
bounds than a 1MB DH summary constructed in 3 minutes.

Regarding query time, approaches that are faster for this dataset
have a much lower precision in terms of selectivity error or width
of bounds. For the HIGGS dataset, we also note that MSK shows

1523

first an increase in query time for an increasing summary size, but
then it remains constant. The reason for this is that this state-of-
the-art approach does not increase the summary size anymore from
≈ 80kB onwards since it cannot identify more information to store.

Data Dimensionality. We now compare the approaches for dif-
ferent data dimensionality. We use the ZIPF dataset and vary the
dimensionality for two different summary sizes. The three vertical
plots in Figure 14a show the result for summary sizes of at most
100kB, i.e., all approaches may take up to 100kB of space, and
Figure 14b for summary sizes of at most 10MB for all approaches.
GH is not included in the experiments with 10MB summaries, be-
cause its construction costs become prohibitive when constructing
it on a data sample larger than 10MB. GK is included only for up to
eight dimensions, because for higher dimensionality the construc-
tion time becomes excessive, and the approach already struggles
with eight dimensions.

2 4 6 8 10 12 14 16
0.1

1

10

100

1,000

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16
10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

2 4 6 8 10 12 14 16
0.0001

0.001

0.01

0.1

1

10

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

(a) Summary size ≤ 100kB

2 4 6 8 10 12 14 16
0.001

0.01

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16
0.1

1

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

2 4 6 8 10 12 14 16
0.001

0.01

0.1

1

10

100

number of dimensions

av
g

qu
er

y
tim

e
[m

s]

(b) Summary size ≤ 10MB
AVI DH EW ED GH GK MSK RS

Figure 14: Varying dimensionality with limited summary size.

We can observe that DH beats the other histogram approaches
in selectivity error and width of bounds for all cases, except that
ED has in sixteen dimensions slightly tighter bounds with 10MB
summaries. The selectivity error of RS remains constant, while the
error of the histogram approaches increases with more dimensions
until sampling overtakes them. RS overtakes existing histogram
approaches at six dimensions and the proposed DigitHist approach
at around ten dimensions. Also for this case EW , GK and AVI
have the lowest query time, but they provide a very low precision,
too. The query time of EW is exponential in the number of dimen-
sions, since it has O(2d) time complexity.

In the next experiment, we compare the different approaches for
varying dimensionality and show the selectivity error and width of
bounds for the ZIPF dataset. Instead of fixing the summary size,
this time we depict the values for the summaries with a fixed query
time of ≈ 1ms. The result is shown in Figure 15. We can see that
DH outperforms the other histogram approaches by one order of
magnitude and in lower dimensionality even by multiple orders of

magnitude. For high dimensional data, RS at some point outper-
forms DH , but RS cannot provide tight bounds, because it only
knows about a small fraction of the data.

2 4 6 8 10 12 14 16
0.001

0.01

0.1

1

10

100

number of dimensions

av
g

re
l.

er
ro

r[
%

]

2 4 6 8 10 12 14 16
0.1

1

10

100

1,000

10,000

number of dimensions

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

AVI DH EW ED GH GK MSK RS

Figure 15: Varying dimensionality with query time ≈1ms.

Scatterplots Using Query Time. In the next experiment, we
analyze the query time. We construct many summaries of differ-
ent size (≤ 10MB) for each approach and depict a scatterplot for
query time with selectivity error and for query time with widths of
bounds. The result for the OSM and HIGGS datasets is shown in
Figure 16a and Figure 16b, respectively.

0.001 0.01 0.1 1 10
0.01

0.1

1

10

100

avg query time [ms]

av
g

re
l.

er
ro

r[
%

]

0.001 0.01 0.1 1 10
0.1

1

10

100

1,000

10,000

avg query time [ms]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

(a) OSM

0.001 0.01 0.1 1 10
1

10

100

1,000

avg query time [ms]

av
g

re
l.

er
ro

r[
%

]
0.001 0.01 0.1 1 10

10

100

1,000

10,000

avg query time [ms]

av
g

re
l.

w
id

th
of

bo
un

ds
[%

]

(b) HIGGS
AVI DH EW ED GH GK MSK RS WY

Figure 16: Comparison of summaries on two real-world datasets.

DH is the only approach to achieve high-precision in all cases.
RS achieves lower estimation errors for the high-dimensional
dataset, but does not achieve tight bounds like DH . EW is very
fast, but reaching the same level of precision would require pro-
hibitively large summaries, i.e., much larger than 10MB. GK is
also fast to query and can with 100MB reach a higher precision for
the OSM dataset, but requires a construction time of 8 hours.

Worst-case Precision. While in the above evaluation we fo-
cused on the average precision, we also measured the maximal rel-
ative errors and bounds encountered in the experiments. In general,
we observed for all approaches that the maximal error/bounds are
about 10 times higher than the average. On the OSM dataset, MSK
has smaller maximal estimation errors for summary sizes less than
100KB compared to DH . For more than three dimensions, all ap-
proaches except RS and GH reach their limits of applicability and
provide maximal estimation errors that could be outperformed by
naively estimating 0% selectivity for all queries. This does not ap-
ply to the width of bounds, where DH still clearly provides the
tightest bounds, but by a thinner margin.

1524

As the maximum errors are very sensitive to outliers, we also
looked at the 95-percentiles, i.e., values s.t. 95% of the queries are
more precise. The results resemble the averages, indicating that the
averages are a good representation of the overall performance.

6.3 Summary
The construction time of DigitHist scales linearly with data size.

Summarizing a 46GB dataset takes 16 minutes, while construct-
ing a less precise equi-width summary takes 5 minutes. The con-
struction time also scales linearly with dimensionality and sum-
mary size such that larger and higher-dimensional summaries can
be constructed in a comparable time frame.

For summaries below 10MB of size and query times below 1 ms,
DigitHist delivers the tightest bounds and, up to six dimensions, the
highest estimation accuracy. For a lower number of dimensions,
DigitHist offers highly accurate estimates and bounds that are tight
enough to obviate the need for exact answers in many instances.
For example, on the real-world OSM dataset, DigitHist is the only
approach to offer bounds with less than 1% relative width. Further-
more, it is also the only approach to offer relative estimation errors
below 0.01%. For a higher number of dimensions, DigitHist offers
bounds that are tight enough to deduce the order of magnitude of
the true selectivity. For instance, on the HIGGS dataset, DigitHist
is the only approach to offer bounds with less than 100% relative
width.

DigitHist offers many desirable properties and fills the gap of a
strong histogram approach that can offer tight bounds and deal with
more dimensions, but as expected it does not make all existing tech-
niques obsolete. Equi-width can be preferable if low precision or
excessive storage costs are acceptable. Random sampling cannot
deduce tight bounds like DigitHist, but the estimation accuracy in
high dimensionality is difficult to beat as the approach is not sen-
sitive to data dimensionality. The quantile-based ε-approximation
approaches scale poorly with dimensionality, but for two dimen-
sions they can reliably create precise summaries with excellent
query times at the cost of a larger summary size and significantly
higher construction costs.

7. CONCLUSION
In this paper, we presented a novel summary structure, termed

DigitHist, which summarizes data by a set of multi-dimensional
histograms, called digit histograms. Each digit histogram repre-
sents a different portion of the data stored at a different resolution.
Digit histograms are equipped with a one-dimensional marginal
histogram for each dimension. They are used to spread the data
points inside multi-dimensional buckets. For the construction of
DigitHist, we proposed the u-error, which measures a histogram’s
uncertainty about the data as the expected width of its bounds for
a random query region. DigitHist is highly accurate and provides
like other histogram approaches bounds for the true selectivity. An
in-depth experimental evaluation has shown that DigitHist can cope
with more dimensions than other histogram approaches and that for
a given summary size, it delivers superior precision than state-of-
the-art competitors at a comparable query time.

Future work points in several directions: computing the u-error
for non-uniform query distributions, optimizing DigitHist for a
given workload distribution, improving the performance in higher
dimensionality and adjusting the approach for categorical data.

8. REFERENCES
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:

Building histograms without looking at data. In SIGMOD,
pages 181–192, 1999.

[2] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity
estimation in spatial databases. In SIGMOD, pages 13–24,
1999.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
multidimensional workload-aware histogram. In SIGMOD,
pages 211–222, 2001.

[4] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases,
4(1–3):1–294, 2012.

[5] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi.
Selectivity estimators for multidimensional range queries
over real attributes. VLDB J., 14(2):137–154, 2005.

[6] P. J. Haas, I. F. Ilyas, G. M. Lohman, and V. Markl.
Discovering and exploiting statistical properties for query
optimization in relational databases: A survey. Statistical
Analysis and Data Mining: The ASA Data Science Journal,
1(4):223–250, 2009.

[7] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami.
Selectivity and cost estimation for joins based on random
sampling. J. Comput. Syst. Sci., 52(3):550–569, 1996.

[8] M. Heimel, M. Kiefer, and V. Markl. Self-tuning,
GPU-accelerated kernel density models for multidimensional
selectivity estimation. In SIGMOD, pages 1477–1492, 2015.

[9] Y. E. Ioannidis. The history of histograms (abridged). In
VLDB, pages 19–30, 2003.

[10] Y. E. Ioannidis and S. Christodoulakis. Optimal histograms
for limiting worst-case error propagation in the size of join
results. ACM Trans. Database Syst., 18(4):709–748, 1993.

[11] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In VLDB, volume 98, pages 24–27, 1998.

[12] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional
selectivity estimation using compressed histogram
information. In SIGMOD, pages 205–214, 1999.

[13] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In SIGMOD, pages
448–459, 1998.

[14] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multi-dimensional
queries. In SIGMOD, pages 28–36, 1988.

[15] J. M. Phillips. Algorithms for epsilon-approximations of
terrains. In ICALP (1), volume 5125 of Lecture Notes in
Computer Science, pages 447–458. Springer, 2008.

[16] V. Poosala and Y. E. Ioannidis. Selectivity estimation without
the attribute value independence assumption. In VLDB,
pages 486–495, 1997.

[17] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD, pages 294–305, 1996.

[18] S. Suri, C. D. Tóth, and Y. Zhou. Range counting over
multidimensional data streams. Discrete & Computational
Geometry, 36(4):633–655, 2006.

[19] J. S. Vitter and M. Wang. Approximate computation of
multidimensional aggregates of sparse data using wavelets.
In SIGMOD, pages 193–204, 1999.

[20] Z. Wei and K. Yi. The space complexity of 2-dimensional
approximate range counting. In SODA, pages 252–264.
SIAM, 2013.

[21] Y. Wu, D. Agrawal, and A. El Abbadi. Using the golden rule
of sampling for query estimation. In SIGMOD, pages
449–460, 2001.

1525

	Introduction
	Related Work
	Preliminaries
	Optimization Measure: u-Error
	Definition of the u-Error
	Computing the u-Error

	Data summary: DigitHist
	Constructing DigitHist
	Initial Histograms
	Digit Histogram Compression
	Marginal Histograms

	Querying DigitHist
	Implementation Details
	Complexity Analysis

	Experimental Evaluation
	Setup and Datasets
	Experiments
	Summary

	Conclusion
	References

